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ABSTRACT
Leveraging the abilities of multiple affordable robots as a
swarm is enticing because of the resulting robustness and
emergent behaviors of a swarm. However, because swarms
are composed of many different agents, it is difficult for a hu-
man to influence the swarm by managing individual agents.
Instead, we propose that human influence should focus on
(a) managing the higher level attractors of the swarm system
and (b) managing trade-offs that appear in mission-relevant
performance. We claim that managing attractors theoret-
ically allows a human to abstract the details of individual
agents and focus on managing the collective as a whole. Us-
ing a swarm model with two attractors, we demonstrate this
concept by showing how limited human influence can cause
the swarm to switch between attractors. We further claim
that using quorum sensing allows a human to manage trade-
offs between the scalability of interactions and mitigating the
vulnerability of the swarm to agent failures.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—multiagent systems, coherence and coordination;
H.1.2 [Models and Principles]: User/Machine Systems—
human factors; I.2.9 [Artificial Intelligence]: Robotics—
operator interfaces, intelligent vehicles

Keywords
Human-swarm interaction, managing attractors of dynamic
systems, bio-inspired swarms, quorum sensing

1. INTRODUCTION
Swarms provide complex behaviors out of simple agents

following simple rules. The ability for swarms to adapt and
form these complex behaviors made up of many individual
agents allows us to build multi-agent systems that are flexi-
ble and resilient. However, two important problems emerge
when we try to allow humans to manage swarms of robots.
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personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
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permission and/or a fee.
HRI ’14 Bielefeld, Germany
Copyright 2014 ACM 0-12345-67-8/90/01 ...$15.00.

First, in contested or noisy real-world environments where
bandwidth is limited, it is necessary to interact with only a
subset of the agents in order to achieve desired behaviors.
Thus operators need ways to manage a swarm by managing
the collective emergent behaviors while only requiring com-
munication with a subset of the swarm. Second, as swarms
grow in size it becomes increasingly difficult for a human
operator to manage the behavior of a swarm by controlling
individual agents. This difficulty increases because human
influence becomes more diffuse and less predictable when
robotic swarms grow in size and, consequently, human work-
load increases.

The swarm model presented in [16] has three properties
that make it ideal for studying human interaction with robotics
swarms. First, the model (a) uses an abstract but appro-
priate model for what robots can “see” what other robots
and (b) matches the mobility characteristics of fixed-wing
unmanned aerial vehicles and a large class of fixed-speed
non-holonomic robots. Second, the model has been shown
to have two emergent collective behaviors: a flock and a
torus. Third, the model can be extended, as shown below,
to include bio-inspired quorum-signaling, which lends itself
to human interaction through managing trade-offs between
scalability and vulnerability of the swarm. Note that this
property is essential for this paper because the results do
not include experiments with real humans or real robots.

The second property is essential for human-swarm interac-
tion because it allows a huge number of details to be ignored
when managing the swarm. More specifically, the behavior
of any individual agent in a swarm can be very difficult to un-
derstand and explain due to the highly dynamic interactions
with neighboring agents, but by managing the collective as
a whole much of this difficulty can be avoided. We empiri-
cally show that there exists a critical point in the parameter
space of the radius of orientation and show that managing
the swarm at this critical point allows both a flock and a
torus to form. Through empirical simulations, we show that
an Oz of Wizard human can manage switches between a
torus and flock but require a significant number of human-
influenced agents.

The third property is also essential for human interaction
with robot swarms because it is necessary to balance the
desire to allow the swarm to be responsive to human input
without becoming a centralized system with a single point of
failure. To increase the scalability of the swarm we introduce
the notion of quorum sensing, as found in biological systems
and show how this can be applied to a swarm. In addition to
increasing the scalability of human-swarm interactions, we
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show evidence that quorum sensing provides a mechanism
for limiting the vulnerability of the swarm to agent failure.

The main contribution of this paper is a theoretical and
empirical exploration of how human interaction with robot
swarms can operate at a high level of abstraction. Claims in
the paper are supported by so-called “Oz of Wizard” empiri-
cal studies that explore how an idealized human can manage
swarms by managing attractors and trade-offs.

2. SWARM MODEL
The experiments and simulations in this paper build upon

the model of swarming presented in [16]. This model ex-
hibits both a flock and torus behavior, is similar to many
biological models of swarming behavior, and has dynamics
similar to those of actual robots. The model consists of a
set of N agents with the dynamics for agent i given by

ẋi = s · cos θi, ẏi = s · sin θi, θ̇i = ωi (1)

where [xi, yi]
T ∈ R2 is the agent’s position, θi ∈ [−π, π] is

the agent’s angular heading, s is the constant agent speed,
and wi is the agent’s angular velocity. For simplicity we
define vi = [cos(θi), sin(θi)]

T and ci = [x, y]T . Let A(t) =
aij(t) denote the sensory adjacency matrix where aij(t) = 1
means that agent j is visible to agent i at time t. Each aij(t)
is determined at time t according to a Bernoulli random vari-
able with parameter pij(t) = min

(
1, 1/dij(t)

)
where dij(t)

is the Euclidean distance between agents i and j at time t.
Similar to the Couzin model of biological swarms [9] and

the Reynold model of synthetic agents [26], agents in this
model react to neighbors within three different zones: re-
pulsion, orientation, and attraction. The neighbors in these
zones are determined by

nr
i = {j : ‖ci − cj‖2 ≤ Rr, aij = 1} (2)

no
i = {j : ‖ci − cj‖2 ≤ Ro, aij = 1} (3)

na
i = {j : aij = 1} (4)

where nr
i , no

i , and na
i are the sets of agent i’s neighbors in

the regions of repulsion, orientation, and attraction, respec-
tively. The parameters Rr and Ro are the associated radii
of repulsion and orientation. The angular velocity ωi is de-
termined by first computing the repulsion, orientation, and
attraction vectors

ur
i = −

∑
nr
i

cj − ci
‖cj − ci‖22

(5)

uo
i =

vi +
∑

no
i
vj

‖vi +
∑

no
i
vj‖2

(6)

ua
i =

∑
na
i
(cj − ci)

‖
∑

na
i
(cj − ci)‖2

. (7)

Next, the desired heading vector ui is computed as ui =
ur
i + uo

i + ua
i . Finally, angular velocity, ωi, is computed as

ωi = k(atan2(uy
i , u

x
i )− θi) (8)

where k is a positive gain and atan2(uy
i , u

x
i ) is the two ar-

gument variation of the arctangent that places the angle in
the correct quadrant by considering the signs of the y and x
components of ui.

Before leaving this section, we note three important as-
pects of this model that give confidence that the results will
extend to real robots. First, because we limit (atan2(uy

i , u
x
i )−

(a) Torus (b) Flock

Figure 1: The two group types formed by our model.
Agent headings are represented by straight lines.

θi) to the interval [−π, π], the magnitude of ωi is bounded by
kπ. Thus the agent dynamics match the Dubins curve model
which is often used for actual UAV path planning and applies
to some constant-speed, non-holonomic ground robots [10],
lending some ecological validity to our experimental results
below. Second, the method of choosing neighbors is similar
to the random neighbor model used in [1] which replicated
field observations of starlings and is relevant for robot sys-
tems where visibility and sensing are less likely with growing
distance. Third, we note that the performance in this swarm
model is robust to small deviations in model parameters and
noise levels, indicating that results are likely to be applicable
on real robots.

2.1 Group metrics
In order to define the two different attractors of the model

we use two metrics of group behavior, namely, group angular
momentum, mgroup, and group polarization, pgroup [9, 16].
Group angular momentum is a measure of the degree of
rotation of the group about the group centroid and is a value
between 0 and 1. Themgroup of a swarm reaches a maximum
value of 1 if all the agents are rotating around the group
centroid in the same direction.

Group polarization measures the degree of alignment among
individuals within the group and is also a value between 0
and 1. The pgroup of a swarm reaches a maximum value of
1 when all the agents have the same heading.

2.2 Group types
The swarm model produces two group types: a torus and a

flock. Snapshots of these group types are shown in Figure 1.
A torus is characterized by pgroup close to 0 and mgroup

close to 1. It has a relatively stationary group centroid, and
either a clockwise or counterclockwise rotation. A swarm in
the torus formation could be used for perimeter monitoring,
or as a fixed-wing UAV loitering command.

A flock is characterized by pgroup close to 1 and mgroup

close to 0. It has a moving centroid with all of the agents
heading in the same general direction. A swarm in the flock
formation is ideal for transporting the swarm quickly from
one location to another and could be used for search and
rescue or tracking moving objects.

For the remainder of this paper we define the group type
of the swarm using the following definition:

type =

{
torus, if pgroup < 0.25 and 0.75 < mgroup

flock, if mgroup < 0.25 and 0.75 < pgroup.
(9)

These values were subjectively chosen so that group type
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classification was robust to minor perturbations while en-
suring the fundamental characteristics mentioned previously
were visually evident1.

3. ATTRACTORS AND HYSTERESIS
Kerman et al. showed that the torus behavior is a funda-

mental attractor of the swarm model presented above [16].
In this section we briefly summarize work that is under re-
view for a journal that argues that the flock behavior is also
an attractor of the swarm model. This attractor is funda-
mentally caused by the orientation dynamics, with attrac-
tion and repulsion simply causing the flock to stay cohesive
but avoid collisions. Being able to treat a flock and torus
as basic attractors of a swarm system means that a human
can treat the torus and flock at an abstract level as cohe-
sive units without having situation awareness of (or even
observing [2]) all individual agents.

To argue that the flock is an attractor, consider a discrete
time approximation of the system with only orientation dy-
namics (ui = uo

i in Equation (8)). The angular velocity θ̇
can be approximated by

θ̇i =
k

ni + 1

∑
j

(θj − θi) (10)

where ni is the number of neighbors of agent i. When the
underlying orientation graph is connected, (10) is known
to cause all agents to converge to a common heading [25,
20]. Simulation results show that even when the orientation
graph dynamically switches, agents converge to a common
heading. Thus, agents following the dynamics in Equation
(10) will converge to a stable flock, providing strong evidence
that the flock behavior is an attractor of the swarm model.

3.1 Hysteresis
Systems that have inherent memory are said to exhibit

hysteresis. Couzin noted hysteresis in his model [9], so there
is reason to believe that hysteresis will be found in our model
as well. Figure 2 shows the results of incrementally changing
the radius of orientation, Ro. To obtain these results, the
parameter Ro was incremented or decremented by 1 unit
every 1000 time steps and the average mgroup and pgroup
was calculated over 15 replicates. As can be seen, the group
behavior depends on the previous history of the group. In-
terestingly, when decreasing the radius of orientation, the
flock does not ever switch to a torus but simply remains a
flock until Ro = 0 at which point the flock turns into an un-
oriented cyclic group with agents rotating in both directions
around the swarm’s centroid.

Hysteresis is important because is indicates that the at-
tractors of the swarm exhibit what Couzin called collective
memory. This memory is important if the human is going
to manage a swarm by managing the attractors for two rea-
sons. First, if the attractors are unstable, the human will
not be able to form an accurate and reliable mental model of
the swarm’s behavior. Second, if the attractors are stable,
the human can neglect the swarm, meaning that the human
need not exert continuous control.

1Unless otherwise noted, all simulation results in this pa-
per were performed with the following model parameters:
N = 100, s = 5, k = 0.5, Ro = 8, Rr = 1. The model was
implemented using a discrete time approximation with sim-
ulation time step of ∆T = 0.1 seconds.

(a) (b)

Figure 2: The average change in group momentum
and polarization as the radius of orientation is in-
creased and decreased.

0 5 10 15 20 25 30
0
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Figure 3: Probability of swarm forming a flock or a
torus as a function of radius of orientation.

Unfortunately, this form of hysteresis is found by increas-
ing or decreasing the parameter Ro for all agents, which
requires the human to act as a centralized controller of the
agents by broadcasting global parameters. Fortunately, it is
apparent from inspecting Figure 2 that there are two differ-
ent attractors that can be obtained when Ro is roughly in
the interval [4, 12]. We use this in the next sections.

3.2 Tipping point
Because we desire to be able to switch between the torus

and flock attractors without changing model parameters, we
ran an experiment to determine whether parameter values
exist that allow both group types to emerge. We ran a series
of simulations using N = 100, k = 0.5, s = 5, Rr = 1 and
varied the radius of orientation. Each simulation was run
for 200 seconds. One hundred simulations were performed
for values of Ro between 0 and 30. For each iteration, agents
were given random initial headings with random initial po-
sitions uniformly distributed over a 10 unit×10 unit square.

The percentage of trials that converged to a torus and to
a flock were calculated for each value of Ro and are shown
in Figure 3. As can be seen in the figure, the value Ro = 8
resulted in an approximately equal proportion of torus and
flock group types. Thus, Ro ≈ 8 is the tipping point be-
tween the basins of attraction for the torus and flock, mean-
ing that for agents that are randomly initiated within some
constraints, both attractors are approximately equally prob-
able. This equal probability suggests that having the human
inject randomization and constraints into the swarm is a suf-
ficient condition for allowing the human to determine what
behavior will be exhibited.
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The hysteresis exhibited when R0 = 8 and the tipping
point property at the same parameter value indicate that
it is possible for a human to change the collective behavior
of the swarm by simply perturbing a subset of the agents
enough. For this reason we use Ro = 8 for the remainder
of this paper, but note that our results are robust to small
deviations in this and other model parameters.

4. SWITCHING BETWEEN ATTRACTORS
UNDER HUMAN INFLUENCE

In this section we explore two leadership strategies that
enable a human to switch between the flock and torus at-
tractors. We assume that the human can only interact with
a subset of the swarm. We use a refined version of the stake-
holders that we have used in prior work [24, 13], modified
to support switching between attractors.

4.1 Stakeholders
Stakeholders are influenced by both the human and by

other agents. Each stakeholder has a priority parameter ρ ∈
[0, 1] that determines the priority of human influence over
influence from other agents. If ρ is high, then the stakeholder
responds more to human commands than to its neighbors. If
ρ is low, then the stakeholder responds more to its neighbors
than to human commands. The human influences the swarm
via teleoperation through a waypoint q.

Stakeholders can be led using two different methods: at-
traction and orientation. Stakeholders that are led by at-
traction have the desired direction ui = usa

i +uo
i +ur

i where

usa
i =

ρq̂i + (1− ρ)ua
i

‖ρq̂i + (1− ρ)ua
i ‖2

and q̂i =
q − ci
‖q − ci‖2

. (11)

The vector q ∈ R2 is a reference input generated by the hu-
man, ρ ∈ [0, 1] is priority parameter, and ua

i , uo
i , ur

i are the
usual attraction, orientation, and repulsion influences de-
scribed previously in Equations (5)–(7). This causes stake-
holders to continue to orient with their neighbors while ad-
justing their positions to be closer to the human-specified
waypoint.

Stakeholders that are led by orientation have the desired
direction ui = ua

i + uso
i + ur

i where

uso
i =

ρq̂i + (1− ρ)uo
i

‖ρq̂i + (1− ρ)uo
i ‖2

. (12)

This causes stakeholders to continue to be attracted to their
neighbors’ positions while adjusting their headings towards
the human-specified waypoint. We use the notation M to
denote the number of stakeholders, i.e., the number of agents
receiving human influence.

4.2 Methods
To determine how best to switch the swarm from one

group type to the other, we ran simulations with values of
M ranging from 10 to 100 in 10 step increments and val-
ues of ρ ranging from 0.1 to 1 in 0.1 step increments. Both
orientation and attraction leadership strategies were tested
using a constant waypoint command. These methods sys-
tematically explore the bounds of what an idealized human,
which we denote as an OoWiz after the Oz of Wizard ap-
proach [28], can do to switch between attractors. Ten trials
were performed for each M and ρ pair, and for each leader-
ship strategy. To initialize the simulations, agent positions

were distributed randomly in a 10 unit×10 unit square cen-
tered at the origin. Initial orientations varied depending on
whether the group began as a torus or flock.

When switching from a flock to a torus, all agents were
given random initial positions with initial headings θi = 0,
∀i. After allowing 25 seconds for the group to stabilize,
the constant input q̂ = cg(25) + [0, 10]T , where cg(25) is
the group centroid after 25 seconds, was applied to each
stakeholder to encourage the group to turn and form a torus.
When switching from a torus to a flock, each agent was
given a random initial position ci with initial heading θi =
atan2(cxi , c

y
i ) + π/2 to form a counterclockwise torus. After

letting the group stabilize for 25 seconds, an arbitrarily large
constant control input, q̂ = cg(25)+[10, 000, 0]T , was applied
to the stakeholders to influence them to form a flock. We
gave the swarm 200 seconds to switch group types, removed
the OoWiz human influence, and gave the swarm 50 seconds
to stabilize to evaluate whether the swarm would remain in
the desired group type.

4.3 Switching from Flock to Torus
Leadership by attraction was effective for switching from

a flock to a torus. Figure 4(a) shows the percentage that
switched when under the influence of the OoWiz human.
Figure 4(b) shows the percentage that switched after the
OoWiz human input was removed. As can be seen, for suffi-
ciently high M and ρ, the group successfully switched. How-
ever, there is a noticeable drop in the number of simulations
that switched and remained for ρ = 1 and high values of M .
We investigated this and found that because the OoWiz hu-
man was explicitly controlling the attraction dynamics, the
agents formed a flock-like structure that circled around the
reference input. Because the agents never spread out into
a full torus, when the control input was removed the group
returned to a flock formation.

When leading stakeholders by orientation, we found a
large discrepancy between the number of simulations that
switched to a torus and the number of simulations that re-
mained as a torus (see figures 4(c) and 4(d)). We investi-
gated this phenomenon and found that the human influence
on the orientation dynamics often caused stakeholders to ro-
tate in different directions around the desired torus centroid
preventing the torus from fully forming. After the human
influence was removed, the stakeholders were able to orient
properly, causing a torus to form. This is an example of
what Walker et al. refer to as neglect benevolence [31]. Ne-
glect benevolence says that, in some cases, the swarm must
be allowed to self stabilize before receiving a new command
from the human.

4.4 Switching from Torus to Flock
When switching from a torus to a flock (see Figure 5),

leading stakeholders by orientation worked much better than
leading stakeholders by attraction. We examined these re-
sults and found that leading stakeholders by attraction was
successful in causing the agents to switch from a torus to a
flock. However, the attraction input q̂ caused the stakehold-
ers to slowly pull away from the rest of the group causing the
flock to elongate. Thus, when the human influence was re-
moved, the flock was unstable and usually reformed a torus.
Figures 5(a) and 5(b) show that except for limited areas of
the parameter space, simulations that switched to a flock
usually switched back to a torus. Using leadership by orien-
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(a) Lead by attraction (b) Lead by attraction

(c) Lead by orientation (d) Lead by orientation

Figure 4: Switching from flock to torus.

(a) Lead by attraction (b) Lead by attraction

(c) Lead by orientation (d) Lead by orientation

Figure 5: Switching from torus to flock.

tation eliminated this phenomenon and caused the agents to
form a less elongated flock that remained stable after human
influence was removed (see figures 5(c) and 5(d)).

4.5 Discussion
Based on these results we only lead stakeholders by orien-

tation when switching from a torus to a flock for the remain-
der of this paper and we only lead stakeholders by attraction
when switching from a flock to a torus for the remainder of
this paper. This is a potential problem when viewed in light
of our assumption that we want the human to be able to
manage a swarm at a high level of abstraction because in-
voking a switch between attractors requires the human to
choose what type of influence to exert. A simple solution
to this problem is to allow the human to indicate, through
a GUI or some other means, a desire to change from one
structure to another. Given the current structure and the
desire to switch structures, the correct controller can auto-
matically be used to facilitate the switch.

5. QUORUM SENSING
The previous section showed that an OoWiz human could

manage a swarm by switching between attractors and ar-
gued that the HRI principles of neglect tolerance and neglect
benevolence apply to such a system. Unfortunately, doing
so required the human to send information to a large num-
ber of robots in the collective. In this section, we propose
a way to decrease the number of agents that a human must
influence, and find a design parameter that allows a human
to manage a trade-off between two important properties of
the collective: scalability and vulnerability.

To accomplish this, we use the concept of quorum sensing,
which is used in biological systems to regulate the emergence
of different behaviors depending on external thresholds [6,
7]. To facilitate a discussion of quorum sensing, we utilize
the taxonomy of agent types presented in [12]. An agent’s
type determines how it responds to human influence, exter-
nal influence, and other agents. Agents can be divided into
two classes: human-aware agents who can respond to human
input and human-blind agents who do not respond to human
input. In this section we explore the properties of a hetero-
geneous swarm in which we have both human-aware agents
and human-blind agents. Specifically, we investigate using
stakeholders, a kind of human-aware agent, and a particular
kind of human-blind agent called a type-aware agent.

5.1 Type-aware agents
Type-aware agents are influenced by both human-aware

agents and human-blind agents, but are not influenced by
the human. Type-aware agents have an awareness param-
eter α ∈ [0, 1] that determines the degree of type aware-
ness of the agent. If α is high, then the type-aware agent
is influenced more by human-aware agents than by other
human-blind agents. If α is low, then the type-aware agent
is influenced more by other human-blind agents and less by
human-aware agents. For the remainder of this section we
assume that in the quorum sensing model, agents are either
stakeholders or type-aware agents. Thus, for a swarm of size
N with M stakeholders, we have N −M type-aware agents.

Type-aware agents follow the normal agent dynamics de-
scribed in Section 2 unless one or more of their neighbors
are stakeholders. The agents use quorum sensing to adjust
the awareness parameter αi for each type-aware agent i in
the swarm. To incorporate quorum sensing into the agent
dynamics, we define a quorum threshold Qi for type-aware
agent i. If type-aware agent i has more than Qi stakeholder
neighbors, then it will temporarily increase its type aware-
ness by setting αi = αmax

i , and maintain this increased
type awareness until the number of stakeholders within its
sensing range falls below Qi, at which point the agent sets
αi = αmin

i . We use αmax
i and αmin

i to denote the maxi-
mum and minimum awareness for agent i. The parameter
αmax
i determines how much agent i is influenced by stake-

holder neighbors if it senses a quorum. The parameter αmin
i

determines how much agent i is influenced by stakeholder
neighbors if it does not sense a quorum. Thus, if we let
Ni = {j : aij = 1} represent the set of neighbors of agent i,
and S be the set of stakeholders in the swarm, then for any
type-aware agent i we have

αi =

{
αmax
i , if Qi < |Ni ∩ S|
αmin
i , if |Ni ∩ S| ≤ Qi.

(13)
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The desired direction vector of type-aware agent i is

ui =
uta
i

‖uta
i ‖2

+
uto
i

‖uto
i ‖2

+ ur
i (14)

where the uta
i and uto

i are defined in the footnote2, Ni \ S
represents the set of all non-stakeholder neighbors of agent i,
and ur

i is given by Equation (5). Thus, the type-aware
agent’s attraction and orientation vectors are weighted be-
tween neighbors that are stakeholders and neighbors that
are not stakeholders by the awareness parameter αi.

The effect of an agent increasing αi is to increase the in-
fluence stakeholders have over type-aware agents, thereby
amplifying human influence over the swarm. Because this
amplification only happens when there are Qi or more stake-
holders in a type-aware agent’s sensing neighborhood, the
threshold Qi acts as a nonlinear switch that increases the
responsiveness of the swarm once enough agents are influ-
enced by the human. We demonstrate empirically that this
nonlinear switch based on the threshold Qi increases the
scalability of human influence over a swarm. Note that there
is a trade-off between the responsiveness and the vulnera-
bility of a swarm. A swarm that is highly responsive to
changes in behavior made by only a few agents implies that if
an adversary compromises a small percentage of the agents,
or if a small percentage of the agents fail, then the swarm
will be vulnerable to performing unwanted behaviors. We
demonstrate that the embedded quorum response can act
as a mechanism to limit the vulnerability of the swarm to
agent failures.

5.2 Increased Scalability
To demonstrate that quorum sensing increases the scala-

bility of human-swarm interactions, we compare the quorum
sensing model with the stakeholder model to switch between
collective behaviors. To investigate the scalability of these
two models we repeated the experiment described in Section
4 using both the stakeholder model and the quorum sensing
model for swarm sizes of N = 100, 200, 300, and 400 agents.
We varied M from 10 to N/2 in 10 agent increments. When
switching from torus to flock, we led the M stakeholders by
orientation. When switching from flock to torus, we led the
M stakeholders by attraction. To limit the number of pa-
rameters in these simulations we set αmin

i = 0, αmax
i = 1,

and Qi = 0 ∀i for the quorum sensing model.
Figure 6 shows the minimum number of agents needed

to switch group types and have 100% of the simulations
remain in the new group type for N = 100, 200, 300, and
400. Results are shown for switching from a torus to a flock
where M stakeholders are led by orientation (t2fo) and for
switching from a flock to a torus where M stakeholders are
led by attraction (f2ta). As the size of the swarm increases,
the difference in scalability between the two models is very
distinct. We see that switching between attractors using the
quorum sensing model scales much better to larger swarm
sizes. As the size N of the swarm increases, the number of
agents that the human needs to interact with stays relatively
constant for the quorum sensing model, but rapidly increases
for the stakeholder model.

2uta
i = αi

∑
j∈Ni∩S(cj−ci)

‖
∑

j∈Ni∩S(cj−ci)‖2
+ (1− αi)

∑
j∈Ni\S

(cj−ci)

‖
∑

j∈Ni\S
(cj−ci)‖2

uto
i = αi

vi+
∑

j∈Ni∩S vj

‖vi+
∑

j∈N∩S vj‖2
+ (1− αi)

vi+
∑

j∈Ni\S
vj

‖vi+
∑

j∈Ni\S
vj‖2

Figure 6: Minimum number of stakeholders, M ,
needed to switch from torus to flock where stake-
holders are led by orientation (t2fo) and to switch
from flock to torus where stakeholders are led by
attraction (f2ta). Results compare the stakeholder
model with the quorum sensing model.

5.3 Limited vulnerability
We now investigate whether using a quorum threshold al-

lows us to limit the vulnerability of the swarm. We define
limited vulnerability as the requirement that a swarm has
an upper bound on the number of agents that can fail and
not adversely affect the collective behavior.

To demonstrate that quorum sensing provides a way to
limit the vulnerability of a swarm, we ran a series of exper-
iments where M human-influenced stakeholders attempt to
cause the group type to switch for different quorum thresh-
olds Q. We experimented with values of Q between 0 and
6 and values of M between 0 and 50. Because of the large
number of parameters in our model we restricted our anal-
ysis to parameter settings found to reliably allow the col-
lective to switch between group types and remain switched.
We used ρ = 0.7 when switching from a flock to a torus and
ρ = 0.5 when switching from a torus to a flock. Based on
our earlier results we chose to lead the agents by orientation
when switching to a flock and to lead the agents by attrac-
tion when switching to a torus. We ran 10 replicates of each
M and Q combination and used αmax = 1 and αmin = 0.
We compare these results with the stakeholder model.

Figure 7 shows the probability of the swarm switching
from a torus to a flock and from a flock to a torus. From
this figure we see that the probability of switching decreases
as Q increases.

If we consider the stakeholders as malfunctioning or ad-
versarial agents, then these results show that the quorum
threshold Q provides a tunable parameter that controls the
vulnerability/responsiveness of the swarm. By choosing a
value for Q that is sufficiently high, we can limit the respon-
siveness of the swarm and prevent the swarm from switch-
ing group types unless there are sufficient agents making
the change. Alternatively, if the goal is to have a swarm
that is highly responsive, a low quorum threshold provides
controlled switches with fewer agents.

5.4 Summary
We have shown that quorum sensing increases the scal-

ability of human-swarm interactions. We have additionally
shown that the quorum threshold Q provides mechanism for
limiting the vulnerability of a swarm. In light of our goal
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(a) Probability of switching from torus to
flock

(b) Probability of switching from flock to
torus

Figure 7: Switch from a torus to a flock using only
stakeholders and using quorum sensing with Q=0–
6. The M stakeholders are led by orientation. N =
100.

to find ways for a human to manage a bio-inspired robot
swarm, these results indicate that it is possible for a human
to select a switching probability before execution that bal-
ances scalability and vulnerability. Although this violates
our goal of avoiding having a human broadcast parameters
to the collective, it is useful since it allows a human to man-
age a trade-off prior to execution and still manage the flock
and torus using a set of stakeholders during run-time.

6. RELATED WORK
Swarm models have been explored in a variety of fields

and are typically capable of either flocking [26, 30, 22] or
cyclic behavior [19, 18]. The model described in this paper
is one of a small set of swarm models that exhibit multiple
group behaviors [9, 29, 27]. This paper concentrates on the
flock and torus behaviors. However, there are other types
of swarm behavior seen in the literature. Couzin’s model
[9] has four group types: swarm, torus, dynamic parallel
group, and highly parallel group, where the last two group
types are simply two different flavors of flocking. Strömbom
[29] demonstrates that attractive forces between agents are
sufficient to form swarms, flocks, and mills (torus-like forma-
tions where agents do not all rotate in the same direction).
Strömbom also shows that adding a blind spot creates two
additional group types: a torus and an interweaving chain-
like structure. Romero et al. [27] present a swarm model
that produces a swarm, a torus, a flock, and a flock that

rotates around a stationary point. If we restrict our atten-
tion to models without centralized control, global informa-
tion, or explicit inter-agent communication, the group types
mentioned above are the only group types we have found
in the literature that emerge from swarm models capable of
exhibiting multiple behaviors.

Couzin et al. [8] and Conradt et al. [5] explore leading a
flock with a small number of informed agents. Couzin et al.
show that their method of leading a flock scales well as group
size increases, but do not consider leading a torus or chang-
ing group types. In the controls community much research
focuses on consensus protocols [23] for flocking, but we have
not found any research involving switching between attrac-
tors without communication or centralized control. Olfati-
Saber [22] uses global information and communication with
local neighbors to form a robust flock and proves that a
leader agent can lead the group through global information.

Some work has been done with communication-free flock-
ing, but this work typically creates flocks that can be con-
trolled by one or a few agents, which makes the flock vul-
nerable to leader failure. Gervasi and Prencipe [11] study
distributed coordination and control without any communi-
cation or shared reference frame, but require that all agents
can identify the leader agent and can be efficiently controlled
by a single agent. Jadbabaie [15] provides mathematical re-
sults on the convergence of the Vicsek flocking model [30]
to a single group direction as well as convergence conditions
for the group to converge to a single leader’s direction.

Recent work has compared different methods for human-
swarm interactions, but has either focused on flocking [24]
or has relied on connectivity maintenance, rendezvous, and
deployment algorithms that require a communication net-
work between agents [17]. Nunnally et al. explore band-
width constraints on swarm-to-human communications, but
assume human communication with the entire swarm [21].

Several researchers have studied the effects of heterogene-
ity and quorum sensing on multi-agent interactions. Wu [3,
4] investigates the importance and role of heterogeneity in
robot teams and shows that increased agent variation in task
allocation problems can increase stability. Kumar [14] uses
mathematical models of bio-inspired foraging tasks and quo-
rum sensing to develop control strategies for redistributing
agents among multiple sites but does not investigate human
influence over the agent behaviors.

7. CONCLUSIONS
We have presented a model of swarming that has two

emergent behaviors: a flock and a torus. We also provided
evidence that these behaviors are fundamental attractors of
the swarm dynamics. Because these behaviors are attrac-
tors, a human operator can interact with the swarm by man-
aging these attractors. We propose that human-swarm inter-
actions should focus on managing higher level attractors of
the swarm systems because it allows a human to abstract the
details of individual agents and focus on managing the col-
lective as a whole. We extended this work by presenting an
application of quorum sensing to human-swarm interactions
that increases the scalability of human-swarm interactions
as well as provides a mechanism for allowing a human to bal-
ance a trade-off between vulnerability and responsiveness of
the swarm to agent failures. Both the stakeholder and the
quorum sensing models demonstrate the ability for a human
to manage a swarm by managing its emergent behaviors.
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