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Introduction 

Fragile X syndrome is the leading cause of intellectual disability resulting from a single gene 
mutation. Previously, we characterized social and cognitive impairments in a Drosophila model of 
Fragile X syndrome and demonstrated that these impairments were rescued by treatment with 
metabotropic glutamate receptor (mGluR) antagonists or lithium. In the mouse model of Fragile X a 
well-characterized phenotype is enhanced mGluR-dependent long-term depression (LTD) at Schaffer 
collateral to CA1 pyramidal synapses of the hippocampus. Last year we have reported the use of 
PDE-4 inhibitors in rescuing social, and memory phenotypes in the mouse as well as the enhanced-
LTD phenotype observed in the Fmr1 mouse KO. Last year we also reported the finding that 
metformin treatment also rescues the memory phenotype in the fly model of Fragile X. In this year we 
have focused on metformin treatment in the fly model and prepared to perform metformin treatment in 
the mouse to determine if it can also rescue memory and other phenotypes in the mouse model.  

Metformin is an important drug to test in the fly and mouse models of Fragile X. Most 
importantly, metformin is an FDA approved drug that has a very safe and long clinical history. It is 
commonly used to treat type II diabetes in humans and has recently been used to treat weight gain in 
patients treated with anti-psychotics. It is safe enough to prescribe to children and is now routinely 
prescribed to children as young as 5 years of age both to control weight gain and to treat type II 
diabetes. If metformin is effective in the fly and mouse model, clinical trials with Fragile X patients 
would clearly be warranted. 

There are two known targets of metformin action that should help ameliorate the increased 
insulin signaling that we observed in our Fragile X fly model. First metformin is known to increase the 
activity of AMPK. AMPK in a known activator of the TSCI/II complex that represses Rheb activity. 
Since Rheb is a known activator of mTOR, the increased activation of AMPK should result in a 
decrease in mTOR activity (Figure 1). Another activity that metformin has is the transcriptional 
activation of PTEN, increasing PTEN activity levels. PTEN antagonizes PI3K activity which reduces 
the activation of mTOR (Figure 1). Thus both activities of metformin should correct the increased 
signaling observed in the fly fragile X model. 



Figure 1. Insulin, mTOR signaling pathway the activity of metformin. Metformin has two activities that act to reduce 
mTOR signaling activity. First it acts to activate AMPK which increases the activity of the TSCI/II complex and represses 
Rheb activity more, thus activating mTOR less. Metformin also activates the transcription of PTEN, which results in 
increased repression of PI3K and less activation of Akt and thus less repression of TscI/II and again adding to the 
repression of Rheb and thus less activation of mTOR.  

Reportable outcomes: 

Task 8 
To study the efficacy of metformin in more detail, we have tested the effect of treating dfmr1 mutants 
during development, during adulthood or both and tested for short-term memory as well as for rescue 
of circadian behavior. We have found that even with adult treatment alone we can rescue the memory 
phenotype in the dfmr1 mutant. We however could not rescue the circadian defect, however we feel 
that this is due to an accessibility problem. In temporal experiments we have found that dfmr1 activity 
is required during pupal development for proper circadian regulation. Unfortunately we currently 
cannot provide the drug treatment during the pupal period (the flies/larvae do not eat and are covered 
by a hard shell) and have enough adults hatch to test for circadian behavior. Nonetheless the 
success that we have had in rescuing memory warrants testing in the mouse Fragile X model. 



Figure 2. Effect of developmental and adulthood metformin treatment on circadian behavior and courtship-based 
memory. a-b, The circadian behavior of flies raised on a, 30µM or b, 100µM metformin and moved to 1mM metformin or 
vehicle control food within 24 hour of eclosion was examined. Metformin treatment did not improve the rhythmicity of 
dfmr1 mutants. c-d, Flies raised on c, 30µM metformin or d, 100 µM metformin and moved to 1mM metformin or vehicle 
control food within 24 hours of eclosion were tested in the conditioned courtship paradigm. Treatment with either 30µM or 
100µM metformin in development alone, or paired with 1mM metformin treatment in adulthood rescued STM in dfmr1 
mutant flies. Both MIs and CIs are displayed for each experiment. N ranged between 17-27. 

Task 13 
To prepare for studies to determine the efficacy of metformin treatment in the mouse we have 

tested the effect of a high dose of metformin on mice to determine how well it is tolerated and if there 
are any adverse side effects. As shown in Figure 3 we observed that the dfmr1 maintain a relatively 
normal weight profile during from weaning and well into adulthood. 

Figure 3. Effect of high dose metformin on Fmr1 KO and control mice to determine how well the drug is 
tolerated. We find that mice that were given a high dose of metformin (2.0mg/ml) (a comparable dose for type 
II diabetes patients would be 200mg/ml) maintain normal weight and do not show any obvious negative effects 
of metformin treatment. The mice were placed on metformin at 4 weeks of age. 

continued studies for Task 12 
To prepare for testing the mice for rescue of phenotypes with metformin, we have obtained 

reproducible phenotypes with the novel object recognition test, the rotorod with several protocols and 
we have also noted a significant hypoactivity phenotype in the Fmr1 KO mice during their active 
phase. 



Figure 4. The Fmr1 KO mice display a deficit in the novel object recognition task. In this assay 
mice are habituated to a chamber that contains two objects for several trials. The following day one of 
the objects is replaced with a novel object. Control mice display a significant exploratory preference 
for the novel object. The Fmr1KO mice display a significantly reduced preference for the novel object 
displaying a reduced memory of the two initial objects in the chamber. This task is dependent on 
hippocampal and perirhinal cortex function, and the Dfmr1 mutants display a reproducible memory 
deficit in this task. 

We have also established a reproduced a locomotor memory deficit in the rotorod test (Figure 5). We 
have found that in a test where mice are give three trials a day for three consecutive days that the 
Fmr1 KO mice fail to continue to learn to stay on the rod during trials during days 2 and 3. This task 
requires a combination of cerebellar and hippocampal function (Figure 5). 



Figure 5. Fmr1 KO mice display reduced locomotor learning in the rotorod assay. 
In activity monitoring of the Fmr1 KO and control mice, we have observed that the Fmr1 KO 

mice display an activity deficit during their active phase(night time) relative to control mice. Although 
this is not a cognitive task, we will explore what effect metformin treatment has on this phenotype. 

Novel Finding not listed in original tasks 

Key Research Accomplishments: 

Task 8-We have completed timeline testing for metformin treatment of the dfmr1 mutants and have 
found that adult only treatment is sufficient to rescue the memory phenotype with both courtship 
conditioning and olfactory based memory testing.  

Task 12. Continued development of cognitive and behavioral phenotypes to test the efficacy of drug 
treatments. We also currently have Fmr1 KO and control mice on metformin and will be testing there 
abilities on the rotorod and in the novel object recognition assay shortly, see 13c. 

Ongoing tasks: 

Task 1c. Perform biochemical analysis to determine effects of PDE-4 inhibition on PI3K and Akt 
activity and smRP6 levels.  

Using an elisa assay to quantitate cAMP levels, we have now established that the dfmr1 
mutants have reduced resting levels of cAMP. We have also determined that treatment with 
rolipram can rescue the deficit of cAMP. Therefore we are in a position to now examine the 
effect of PDE-4 inhibition on PI3K, Akt and smRP6 levels. 

We are also initiating biochemical tests to determine the effect that meformin treatment has on 
the insulin-signaling pathway of the dfmr1 mutants. We expect that we will observed increased 
levels of p-AMPK (activated AMPK), decreased activity of S6K which is downstream of mTOR 
and is the next proximal antibody that we can use (Figure 1) in Drosophila. We will also 



determine the levels small ribosomal protein 6 whose expression is regulated by the mTOR 
pathway. Increased mTOR activity leads to increase smRP6 levels. Also to examine the effect 
on PTEN activity, we will determine whether metformin treatment also reduces Akt levels (e.g. 
p-Akt). 

8a. Examine naïve courtship, learning during training and memory in dfmr1 mutants and controls 
treated with AlCAR and vehicle during development alone, adulthood alone and during both times. 
This ongoing test will provide validation for the efficacy of metformin, as AICAR also activates AMPK 
activity. 

12c. Perform behavioral testing battery on FMR1 KO and control mice. 

13c. Perform behavioral testing on FMR1 KO and control mice that are treated with metformin or 
vehicle. 
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Conclusions: 

The overall objective of the work we have accomplished so far was to examine the efficacy of 
pharmacologically inhibiting PDE-4 activity to correct synaptic plasticity impairments in the fly and 
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mouse models of Fragile X syndrome. Now we have added metformin to the treatment testing. Since 
metformin has a much better clinical history than any recently FDA approved PDE-4 inhibitors, we 
have reprioritize our studies to focus on the efficacy of metformin treatment on the fly and mouse 
fragile X models.  The Drosophila Fragile X model recapitulates the most debilitating aspect of the 
disease in humans, namely impaired cognitive function. In our further dissection of the proteins 
involved in the mGluR signaling cascade, we have identified metformin as a potential therapy for 
treatment of Fragile X. The data from the fly model indicate that this drug can rescue several memory 
phenotypes displayed by the dfmr1 mutant and this is with adult only treatment. This is important as 
this indicates that by changing the physiology of the dfmr1 mutants we can rescue memory. We are 
currently moving to test whether metformin treatment can rescue the locomotor and novel object 
recognition task deficits that we have established with the Fmr1 KO mice. If we can successfully 
rescue these or other cognitive tasks with the Fmr1 KO mouse, this will provide necessary data to 
warrant clinical testing with Fragile X patients. 
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