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INTRODUCTION

This program builds off of our extensive experience in using electrical properties of prostate to distinguish
malignant from benign tissues [1-5] and specifically stems from exciting new data published in The Prostate [6]
in which we demonstrated significant electrical property differences between high- and low-grade prostate
cancer. These electrical properties are influenced by a tissue’s intra- and extra-cellular composition,
morphology, and cellular constituency, and we have hypothesize that it is possible to use these properties to
discriminate between normal, low-grade, and high-grade malignant formations in a clinical setting. While
measuring these properties by direct contact with the tissues is possible in invasive experiments, it is desirable
to develop methods to do so in a non-invasive fashion. To date our group, and other groups around the world,
have investigated Electrical Impedance Tomography and Microwave Imaging, two techniques which are limited
in resolution by the underlying physics. The primary objective of this current program is to develop a high-
resolution MR-based approach to imaging the electrical properties of prostate with the intent of producing a
system potentially able to image cancer grade. This is possible by leveraging ultra-novel developments in MR,
and our extensive experience in developing technologies to gauge and assess the utility of electrical properties
for prostate cancer detection [1-6] and assessment and in developing computer algorithms to transform
electromagnetic data into electrical property images of the prostate [7-14]. Specifically, we are attempting to
use the maps of MRI RF field data acquired with safe and fast sequences to create high-resolution electrical
property images of the prostate. We are developing this novel technology, evaluating it in an ex vivo setting,
and finally assessing the feasibility of employing this imaging modality in a routine clinical cohort of patients
with the intent of having a significant and immediate impact on clinical practice. By developing this high-
resolution electrical property imaging modality we expect to produce highly sensitive and specific images of
cancer grade within the prostate and ultimately better guide clinicians in distinguishing aggressive from
indolent disease.

Much of the second year of this program has focused on ex vivo prostate imaging, preliminary ex vivo data
analysis, continued developing of MR-EPT conductivity reconstructions, and preparing for in vivo data
collections. We are currently in a No Cost Extension year in which we will focus on completing ex vivo and in
vivo data collection and statistical analysis of our data. In addition we will be preparing publications and
proposals focused more heavily on clinical data acquisition and evaluation.

BODY

The following research summary is presented in terms of the approved Statement of Work, with each task
being discussed separately. When appropriate, detailed discussion is referenced to manuscripts published,
submitted, or in preparation which are provided in the Appendix. Information provided in our previous annual
report is omitted here and instead we note the tasks that are completed and reference our 2014 annual report.
Note that future task and objectives to be completed are marked as TBC.

SPECIFIC AIM 1: TO DEVELOP MR-EPT FOR PROSTATE IMAGING

Major Task 1: Develop computation toolbox for MR-EPT

a) Build Matlab-based toolbox for computing electrical property images
Completed and reported on in our 2014 Annual Report. On-going investigation continue in order to further
optimize and validate the approach developed.

We have fully implemented our proposed method as a MATLAB toolbox for MR-EPT image reconstruction
as described in our 2014 annual report. Over the past year we have conducted additional simulations to
explore the impact measurement noise has on our reconstructed images. An example analysis, shown in
Figure 1, demonstrates that the inverse approach we developed performs better than previously developed
direct approaches. This analysis is further described in Appendix 1.



b)

Surface Integral Reconstruction 5% Nolse Surface Integral Reconstruction 10% Nolse Surface Integral Reconstruction 15% ch)ise Surface Intergral Reconstruction 20% Noise

5
15

1
1

Spatlal Locatlon [Pixel Number] Spa(lal Locallon [Pixel Number]

Spatial Location [Pixel Number]
Conductivity [S/m]
Spatial Location [Pixel Number]

Conductivity [S/m]
Spatial Location [Pixel Number’
|
Conductivity [S/m]
Spatial Location [Pixel Number]
|
Conductivity [S/m]

Spatial Location [Pixel Number] Spatial Location [Pixel Number]

Quadratic Reconstruction 5% Nolse Quadratic Reconstruction 10% Noise Quadratic Reconstruction 15% Nmse Quadratic Reconstruction 20% Nolse
2

T T T T
£ T £ T E s t 7

€ 3 € €
2 & 2 & 2 & 2 &
2 vz g vz 2 vz 2 vz
I 3 & 3 & 3 & 3
< k] c T = B = 1 £
2 3 2 3 2 % 2 S
g 5 ¢ § F g 8 §
3 [ 8 (] 3 S 8 I
= = =l =
s " " B
Q. Q. Q 1 Q
a A & @

os os
Spaual Locatlon [Pixel Number] Spatlal Locanon [Pixel Number] Spatlal Locauon [Pixel Number] Spanal Locatlon [Pixel Number]
TV Reconstruction 5% Noise TV Reconstruction 10% Noise TV Reconstruction 15% Noise TV Reconstruction 20% Noise

2

Spatial Location [Pixel Number]
Conductivity [S/m]

Spatial Location [Pixel Number]
Conductivity [S/m]
Conductivity [S/m]
Conductivity [S/m]

Spatial Location [Pixel Number]
Spatial Location [Pixel Number]

2
15
1
ﬂ H.s
5 10 15 20
Spatial Location [Pixel Number]

2
5
1
ﬂ H.s

Spanal Locanon [Pixel Number]

L]

0s
5 0 15 2
Spatlal Locauon [Pixel Number] Spatial Location [Pixel Number]

Figure 1. 2D cross-sections of three-dimensional reconstructions of synthetic phase data with noise levels of 5%, 10%, 15%, and 20%,
associated with columns 1 to 4, respectively. Each row in the figure represents a reconstruction with a different algorithm: the top row
shows (for different levels of noise) reconstructions with a direct approach that has previously been developed. The reconstruction
successfully identifies the conductivity distribution, showing a left-to-right transition. The second and third row of the figure represent
reconstructions with the inverse approach we have developed as part of this program, using Quadratic Regularization (QR) and Total
Variation (TV) regularization, respectively. The QR algorithm is able to identify the left—to—right change in conductivity and to describe it
with a certain degree of smoothness, which is characteristic of this type of regularization. The TV algorithm is able to identify and
describe with pronounced sharpness the left-to—right change in conductivity. In this specific case the TV algorithm also appears
particularly robust to noise. The inverse based algorithms seem to fare batter in the presence of noise compared to the direct algorithm,
as it would be expected from the fact that they do not need to differentiate input phase data (noisy data > large variation in derivatives).
All figure are represented on a grayscale ranging from 0 to 2 S/m.

Build Matlab-based toolbox for specific MR-based field of views
Completed and reported on in our 2014 Annual Report. On-going investigation/developments continue in
order to further optimize and validate this toolbox.

We have developed Matlab-based functions to read in arbitrary MRl DICOM and .PAR/.REC (Phillips
format) images and display them for evaluation. Additional developments have included the ability to create
multi-slice images of the MR data for use in comparing the different MR variants we are exploring. This
toolbox was briefly described in our 2014 annual report.

Task 1 Milestones:

1. Functional toolbox for producing MR-EPT images — Completed

Major Task 2: Optimize MR-EPT and multi-parametric MR imaging through phantom imaging

a)

b)

Optimize MR-sequence for MR-EPT
Completed and reported on in our 2014 Annual Report.

Perform initial tank-based phantom imaging studies
Completed and reported on in our 2014 Annual Report. On-going investigation continue in order to further
optimize and validate the approach developed.

A number of additional tank-based phantom studies were conducted during this past year to further
demonstrate that our MR-EPT algorithms are able to accurately estimate the internal conductivity of a
volume. One such experiment specifically focused on validating that our approach is able to accurately
reconstruct curved surfaces (some of our previous experiments explored linearly varying conductivity
changes). Figure 2 displays a curvilinear gelatin phantom conducted along with the MR magnitude image



produced. The phase data recorded from this experiment was reconstructed using both QR and TV
approaches to solve the inverse problem (Figure 3). Both approaches accurately reconstruct the curved
surface suggesting that these techniques extend beyond reconstructing linearly varying conductivity
distributions. In addition, we divide the phase images into a number of sub-domains to reduce the
computational time associated with image reconstruction. We explored this and the time associated with
using different numbers of sub-domains (Figure 3 and Table 1). The experimental configuration and
analysis are further described in Appendix 1.
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Figure 2. Curved phantom photographic image (left) and MRI magnitude image (right). This phantom was built with a similar method

used to create our previous linear phantoms, by creating a gelatin slab which is immersed in a saline solution. The gelatin slab has a

conductivity of of 1.8 S/m and Copper sulfate (CuSO,) was added to it, to generate contrast in the MRI magnitude image. The saline

solution has a conductivity of 4.1 S/m. In part (A) of the figure is indicated a white edge that approximates the perimeter of a region of

interest which was selected for image reconstruction. Part (B) of the figure shows the MRI magnitude corresponding to the region of

interest used in the reconstructions of Figure 3.
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c) Perform anatomically accurate phantom imaging studies

Completed and reported on in our 2014 Annual Report.



Task 2 Milestones:
Note that while the below tasks are complete, we expect to continue conducting phantom experiments over the
course of the next year to continue to improve our image reconstruction algorithms and better understand any
image artifacts that may appear in our clinical data acquisition.

1. Validated MR-EPT algorithms — Completed

2. Fully functional protocol for obtaining MR-based images in a single serially acquired imaging session —

Completed
3. 1 peer-reviewed publication submitted — Completed, see Appendix

Major Task 3: Submit documents for IRB and MRMC HRPO approval
a) Draft and submit IRB protocol revisions and new protocol submission
Ex vivo Protocol: Completed during last annual reporting period.

In Vivo Protocol: We submitted a protocol modification request to the CCRC in July 2014, requesting
approval to conduct the in vivo portion of the proposed work (to take place starting month 15 of this
program); in consultation with our local IRB, we felt this staged approach was appropriate for this protocol.
This was approved by CCRC in August 2014. We submitted a protocol modification to the Committee to
Protect Human Subjects (Dartmouth’s IRB of record) in September 2014. This was approved in October
2014.

b) Draft and submit documentation for MRMC HRPO approval
Ex vivo Protocol: Completed during last annual reporting period

In Vivo Protocol: We submitted a protocol modification request to MRMS HRPO in October of 2014. This
was approved in November of 2014.

Task 3 Milestones:
1. Obtain IRB and MRMC HRPO approval for ex vivo and in vivo cohorts — ex vivo completed, in vivo
completed

SPECIFIC AIM 2: TO EVALUATE MR-EPT IN AN EX VIVO COHORT OF PROSTATES
Major Task 1: Optimize ex vivo MR-EPT and multi-parametric MR imaging
a) Record MR-EPT and multi-parametric MR sequences of ex vivo prostates
This task has been complete and described in our 2014 Annual Report.
b) Optimize MR-EPT sequences and algorithms based on findings in this initial cohort
This task has been complete and described in our 2014 Annual Report.

Task 1 Milestones:
1. Validation that our MR-EPT and multi-parametric MR protocol is initially optimized, robust, and
repeatable — Completed

Major Task 2: Evaluate ex vivo MR-EPT and multi-parametric MR imaging

a) Record multi-parametric MR sequences of ex vivo prostates
Over the past year we have actively recruited patients to participate in our ex vivo study. We have been
averaging ~ 2 cases per month. To date we have imaged 30 ex vivo prostates (20 more ex vivo prostates
will be imaged over the course of the next year to complete our target of 50 ex vivo prostates). For all
cases we have been recording B1 phase and magnitude images (for MR-EPT image reconstruction), T1
spin echo, T1 turbo spin echo, and T2 turbo spin echo images. — TBC

b) Perform semi-quantitative and quantitative analysis of ex vivo prostate samples
We have developed Matlab code to analyze our MR-EPT conductivity images, MR images (other variants),
and pathology maps. Specifically, we have developed techniques to extract regions of interest from the
MR-based images for comparison with the pathology maps. Figure 4 describes the approachdeveloped to
analyze our MR images in comparison to the pathology maps being generated to identify cancer
distribution within the prostate. Mean values from these ROIs will be used as our metric for statistical
analysis of the data.
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Figure 4. Approach developed to statistically analyze the images in comparison to the pathology maps generated for each case. An
automated segmentation algorithm was developed to identify the prostate boundary in the T1w images (regions enclosed in blue in MR
images). The ellipses within the Path Map were warped using a Thin Plate Spline (TPS) algorithm to match the segmented boundaries
identified in the T1w images. The TPS algorithm also appropriately deforms the regions identified as cancer within the Path Maps and
overlays these islands on the MR-based images (regions enclosed in magenta in the MR images). The pixels within the magenta regions
are categorized as cancer and those outside the magenta regions, but within the blue regions are categorized as benign tissues. The
pixel categorization are ultimately used to statistically compare benign and cancer regions.

Statistically analyze MR-based images and pathological metrics

Data generation continues to be in process (MR images & Pathology metrics). Figure 5 shows a typical
panel of images we create for each prostate imaged. We also have the ability to produce a variety of MR-
EPT images based on different algorithms we developed (and described in previous reports) (see Figure 6
for an example). We have fully reconstructed 25 of our 30 cases. Upon initial qualitative review of our
images (qualitative evaluation of our initial 19 cases) we observed an artifact in our inverse 3d
reconstruction algorithm. This artifact manifests as an unexpected conductivity variation in the axial
direction (see for example Figure 7). Based on our initial qualitative assessment we have decided to
include in our initial analysis of the data MR-EPT images reconstructed using the Laplacian algorithm
because this variation doesn’t appear to be as strong (Figure 8). We are in the process of evaluating why
our inverse-based algorithm is generating this artifact, but believe it is associated with the lack of continuity
maintained within our sub-domain approach to image reconstruction. An interesting observation that we
observed during our initial qualitative assessment is that there appears to be a different conductivity within
the peripheral zone of the prostate (see for example Figure 9). This peripheral enhancement was clearly
present in 10 of 19 cases, possibly present in 7 of 19 cases, clearly not present in 1 of 19 cases, and 1
case was not included due to image artifacts. Figures 10 and 11 show a single slice from 16 of our cases
(note that the Laplacian-based reconstruction algorithm demonstrates much less patient-to-patient
variability).
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Figure 6. Typical panel of conductivity images based on applying different MR-EPT algorithms we have developed. This particular example displays a single
slice from a patient. Five different reconstruction algorithms (discussed in previous reports) were used to produce these conductivity images. We plan to

statistically analyze each of the algorithms when evaluating the clinical efficacy of MR-EPT.

Figure 7. Panel of 16 conductivity images acquired for 16 of our ex vivo prostate cases (this panel shows results from our 3D inverse approach to image

reconstruction). We aim to continue exploring this variability in magnitude during the next year.
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Figure 8. MR-EPT conductivity images for a single patient. A) pathology map, b) estimated conductivity based on our 3d inverse-based reconstruction
algorithm, c) estimated conductivity based on a laplacian-based reconstruction algorithm. Note the conductivity variation along the axial direction of the
prostate (i.e. there appears to be conductivity variations, from high to low conductivity (light to dark), in each of the panels) for the inverse reconstruction
algorithm based images. These variations are not present in the Laplacian-based solution.
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Figure 9. Example cases exhibiting enhancement in the prostate’s peripheral zone. Red arrow points to the feature in each of the cases. The enhancement is
observed along the axis of the prostate (i.e. observed in multiple slices).




Figure 10. Panel of 16 conductivity images acquired for 16 of our ex vivo prostate cases (this panel shows results from our 3D inverse approach to image
reconstruction). We aim to explore the variability in magnitude during the next quarter and to conduct an interim analysis compare these images with the
pathology maps we have produced for each case. Not the significant variation in the mean conductivity values in each of these cases. Based on our qualitative

evaluation, this variation is likely due to the axial artifact described in Figure 3.

Figure 11. Panel of 16 conductivity images acquired for 16 of our ex vivo prostate cases (this panel shows results from our 3D Laplacian approach to image
reconstruction). Note that the patient to patient variation is much less in this series of images as compared to Figure 5.

Interim Statistical Analysis

We have performed an initial interim analysis on 18 of our 30 cases specifically exploring any differences
between benign and cancer pixels as categorized through the segmentation and TPS-base deformation
used to co-register our Pathology Maps with our MR images. We have explored the data on an individual
patient basis and as a composite group using both T-tests and Kolmogorov—Smirnov (KS) test. Significant
differences in the mean pixel values between benign and malignant regions were identified in 14 of 18, 13
of 18, 13 of 18, and 11 of 18 patients when the magnitude, phase, conductivity (Laplacian-based), and
conductivity (inverse approach) images were analyzed, respectively (Figure 12). In the majority of cases (9
of 13), the conductivity of cancer was found to be significantly less than that of benign pixels (when the
Laplacian-based images are considered). This agrees with theory and previous findings at lower
frequencies in which the denser cancer tissues impeded current flow more than in benign tissues (i.e. have
a lower conductivity). When data from all inages were combined, statistically significant differences were
noted for all images types (magnitude, phase, Laplacian-based conductivity, inverse-based conductivity)
(Figure 13). Despite the significant differences, there is moderate variability in the data presented. In
addition to continuing to conduct this analysis as more data is accrued, we will be coupling the Gleason
grade to each of the patient data sets in order to explore conductivity variations with respect to tissue
morphology (i.e. Gleason Grade). We may find that the cases in which conductivity in cancer is less than
that in benign regions is correlated to the Gleason grade. This will be part of our on-going analysis.
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Figure 12. Comparison of mean cancer and benign pixels for each patient. Magnitude, phase, Laplacian-based conductivity, and Inverse-based
conductivity images are evaluated. T-tests and KS-tests were used to evaluate if the means between the two tissues types were significant. Gray shaded
regions denote the patients in which the differences were NOT significant. Significant differences were found for all remaining unshaded patients.
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Figure 13. Comparison of mean cancer and benign pixels for entire cohort of patients analyzed (18 prostates). Magnitude, phase, Laplacian-based
conductivity, and Inverse-based conductivity images are evaluated. T-tests and KS-tests were used to evaluate if the means between the two tissues types
were significant. Significant differences were found for all MR-imaging variants.

Task 2 Milestones:
1. Assessment of the clinical potential MR-EPT combined with multi-parametric MR might have for
prostate imaging — in process (TBC)
2. 1 peer-reviewed publication submitted — in process (TBC)
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SPECIFIC AIM 3: TO EVALUATE MR-EPT IN AN IN VIVO COHORT OF PATIENTS
Major Task 1: Evaluate in vivo MR-EPT and multi-parametric MR imaging

a)

b)

c)

Record MR-EPT and multi-parametric MR sequences of in vivo and ex vivo prostates

Recruiting patients for our in vivo protocol is in progress. Over the last year we have imaged 4 volunteers
without prostate cancer. We initially recorded our MR-EPT sequences from a volunteer without cancer to
evaluate the images prior to enrolling prostate cancer patients. In our initial volunteer images we observed
significant phase noise in the images. We originally traced the noise to a breach in the shielded room
surrounding the MR system we have been using in our Advanced Imaging System. The breach did not
adversely effect our ex vivo study since the imaging volume is so small. When a person lays in the MR
bore, they act as an antenna absorbing the noise in the MR room resulting in image artifacts within our
phase images. A new breach was identified during a subsequent in vivo test, conducted in February,
causing additional image artifacts. This breach was repaired in early April. We were able to record
additional data from a human volunteer (without prostate cancer) in June to confirm that the images have
sufficient quality for MR-EPT reconstruction (Figure 14). Note that the phase images have a similar
appearance to our ex vivo images, with substantially less noise than we observed in our earlier in vivo
images. The Laplacian-based reconstructions were observed to be more smooth than the inverse-based
reconstructions. We will continue to explore the low spatial frequency noise exhibited in the inverse images
going forward. Despite these noisy inverse-based images, we believe that the phase images are
sufficiently noise free for us to initiate enrolling prostate cancer patients. We are scheduled to conduct our
first in vivo prostate imaging case in August. We plan to enroll 1 patient in August and then 2 patients per
month from September until March in order to meet our targeted enroliment of 15 patients.
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Figure 14. First in vivo MR-EPT images of human prostate. This was a volunteer without cancer. Laplacian reconstruction show more promise than
that inverse reconstruction in in vivo conditions. The noise in the Inverse-based approach is likely due to the sub-domain used to reconstruct the images.
The MR signals are lower in the large volumes of tissue images in vivo as compared to the ex vivo cases. We believe that the Laplacian-based approach
may be sufficient for MR-EPT imaging. In addition to collecting data from prostate cancer patients, we will continue to explore this imaging modality in
benign volunteers. One approach we are going to explore for improving signal to noise ratio is to put a water bladder around the waist of the patient.
The water will provide additional signal for MR phase imaging which may help to improve overall image quality.

Perform post-prostatectomy pathological assessment of extracted prostates
To be completed during the next of this program

Statistically analyze MR-based images and pathological metrics
To be completed during the next year of this program

Task 1 Milestones:

1. Comparison between in vivo and ex vivo MR-EPT - TBC

2. Preliminary clinical statistics defining utility of MR-EPT combined with other MR-imaging variants — TBC
3. Initial parameter threshold values for use in detecting and staging prostate cancer — TBC

4. 1 peer-reviewed publication submitted — TBC
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KEY RESEARCH ACCOMPLISHMENTS
* Assembled a database of MR and MR-EPT images from 30 ex vivo human prostate samples; this will
ultimately be made available to the research community once we have acquired data for the proposed
50 ex vivo prostates.

* Developed a robust approach for registering pathological maps of ex vivo prostate section to MR and
MR-EPT image stacks

* Demonstrated through an interim statistical analysis of MR-EPT for ex vivo prostate imaging that
significant differences between cancer and benign regions exist within the conductivity images

* Produced the first ever MR-EPT-based conductivity images of in vivo human prostate

REPORTABLE OUTCOMES

Manuscripts

Borsic A, Perreard |, Mahara A, Halter RJ, “An Inverse Problems Approach to MR-EPT Image Reconstruction,”
IEEE Transactions on Medical Imaging, accepted with minor modifications June 2015. (Appendix 1 -
accepted manuscript)

Perreard |, Borsic A, Mahara A, Halter RJ, “Towards Magnetic Resonance — Electrical Properties Tomography
(MR-EPT) for Prostate Imaging,” Medical Physics, to be submitted September 2015 (Appendix 2 — initial
outline/draft)

CONCLUSION

It is a daily challenge for clinicians to determine whether a man recently diagnosed with prostate cancer has
aggressive disease requiring immediately radical therapy or indolent disease requiring a more passive watchful
waiting or active surveillance approach. This program is focused on developing Magnetic Resonance —
Electrical Property Tomography (MR-EPT) specifically for prostate imaging. Over the past year we have
continued to optimize our MR-EPT algorithms for estimating the prostate’s electrical conductivity given
magnetic field phase and magnitude images acquired using custom MR sequences. We have taken corrective
action to ensure that our MR suite is sufficiently shielded to reduce phase noise in our images. Additional
simulations and phantom experiments have been conducted to explore the influence of noise on our MR-EPT
images and to validate that we can image objects with curvilinear structures. We have continued to enroll men
in our ex vivo study, have recorded data from 30 ex vivo prostates, and have demonstrated significant
conductivity difference between benign and cancerous regions based on our MR-EPT images. Finally, the first
ever in vivo prostate conductivity images were generated using MR-EPT. Over the course of the next year, we
will be focusing primarily on clinical data acquisition (both ex vivo and in vivo cohorts) and in analyzing images
acquired to assess the potential of using MR-EPT (coupled with other MR imaging variants) to distinguish
between aggressive and indolent prostate cancer.
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An Inverse Problems Approach to MR-EPT Image
Reconstruction

A. Borsic, I. Perreard, A. Mahara, R. J. Halter

Abstract—Magnetic Resonance - Electrical Properties Tomog-
raphy (MR-EPT) is an imaging modality that maps the spatial
distribution of the electrical conductivity and permittivity within
a body using information from the B; RF field captured in a
standard clinical MR system. The presence of a body within the
scanner alters the phase and amplitude of the B; field, and by
mapping these alterations it is possible to recover the electrical
properties. The B field is time-harmonic, and its interaction with
the imaged body can be described by the Helmholtz equation.
Approximations to this equation have been previously used to
estimate the conductivity and permittivity of the imaged body in
terms of first or second derivatives of B; phase and B; amplitude
data, respectively. Using these same approximations, an inverse
approach to solving the MR-EPT problem is presented here that
leverages a forward model for describing the magnitude and
phase of the B; field within the imaging domain, and a fitting
approach for estimating the electrical properties distribution. The
advantages of this approach are that 1) differentiation of the
measured data is not required, thus reducing noise sensitivity,
and 2) different regularization schemes can be adopted, depend-
ing on prior knowledge of the distribution of conductivity or
permittivity, leading to improved image quality. To demonstrate
the developed approach, both quadratic and Total Variation (TV)
regularization methods were implemented and evaluated through
numerical simulation and experimentally acquired data. The
proposed inverse approach to MR-EPT reconstruction correctly
identifies contrasts and accurately reconstructs the geometry in
both simulations and experiments. The TV regularized scheme
reconstructs sharp spatial transitions, which are difficult to
reconstruct with other, more traditional approaches. While the
computational burden of this method is higher compared to
previous approaches when properties are estimated over large
imaging domains, a parallel computational approach is possible
by subdividing the imaging domain into several subdomains. The
feasibility of this approach is demonstrated on numerical and
experimental data. The memory requirements and computational
burden of this reconstruction approach are related to the size of
the Jacobian matrix, which is proportional to the sixth power of
the size of the imaging domain. Sub-dividing the domain into a
few subdomains leads to significant gains in computational speed.

Keywords: Conductivity, Permittivity, Reconstruction, Elec-
trical Properties Tomography, Magnetic Resonance, Inverse
Problem, Quadratic Regularization, Total Variation Regular-
ization, Primal Dual - Interior Point Method

I. INTRODUCTION

Magnetic Resonance - Electrical Properties Tomography
(MR-EPT) is an imaging modality that maps the spatial dis-
tribution of the electrical conductivity and permittivity using

Copyright (c) 2013 IEEE. Personal use of this material is permitted. How-
ever, permission to use this material for any other purposes must be obtained
from the IEEE by sending a request to pubs-permissions @ieee.org. A. Borsic
is with NE Scientific LLC, NH, USA, email: aborsic@ne-scientific.com. 1.
Perreard is with the Department of Radiology, Dartmouth Hitchcock Medical
Center, Dartmouth College, NH, USA. A. Mahara and R. J. Halter are with
the Thayer School of Engineering, Dartmouth College, NH, USA

standard clinical MR systems. This technique exploits B; field
perturbations associated with the objects present within the
bore of the scanner. These field perturbations can be used to
estimate the spatial distribution of electrical properties within
the objects giving rise to the perturbations.

Early work in MR-EPT was published in 1991 [1], but the
technique has only recently seen a resurgence of exploration
due to the clinical potential that the electrical properties
may offer in terms of tissue contrast. Several groups have
focused on developing novel image reconstruction methods
and algorithms for this purpose.

Reconstruction algorithms can be classified as direct meth-
ods, from which measured B; information is directly used to
map the electrical properties (EPs), and as inverse methods, in
which EPs are estimated by fitting a model to the measured
data. The initial work by Haake et.al. [1] is based on using the
Helmholtz equation for describing the time harmonic magnetic
field H at radio frequencies used in MRI imaging:

V2H = —puw’kH + {ka x (V x ﬁ)} (1)

where k = ¢ — j(o/w), and w is the angular frequency
of the H field, o the electrical conductivity, € the electri-
cal permittivity, and p the magnetic permeability. Assuming
that 0 and € are piecewise constant or slowly varying (i.e.
Vk =~ 0), the second term on the right hand side of (1) can
be neglected. Considering only the MRI-measurable positive
circularly polarized component H™ of the RF transmit field,
and considering k as isotropic, one obtains:

277+
po SLVH "
pw? Ht

which expresses the EPs as a function of the H™ field and its
second derivative. One method for measuring H* amplitude
is through use of double-angle mapping techniques [2], H
phase is assumed to be half of the spin—echo phase, an
assumption valid when one transmit and one receive coil are
used, and the sensitivity patterns of the two coils have a similar
spatial distribution but a reverse polarity [3]. Typically, in
biological tissues, p is considered equal to the permeability
of free space .

Despite the simplifying assumptions (2), this approach has
successfully been used to fit layered models [1] and to produce
electrical properties images in post-mortem animals [4]. While
this approach is feasible, the 2nd-order differentiation required
for computing the Laplacian is sensitive to noise, and therefore
not desirable. In 2009, Katscher et.al. [3] used the Gauss
theorem to propose an alternate formulation that decreases the
differentiation from 2nd to 1st order. With this transformation,



the conductivity and permittivity are proportional to surface
integrals of the gradient of HT phase and amplitude, over the
surface of an arbitrary block of pixels where the electrical
properties are assumed to be approximately constant. This
approach has been successfully demonstrated in in-vitro and in
in-vivo experiments [3], [5], [6] and exhibits decreased noise
sensitivity compared to previously considered approaches.

The assumption that EPs are constant or slowly varying also
does not broadly apply to imaging of biological tissues, and
the errors arising from violating this assumption are analyzed
in detail by Seo et.al. [7].

An approach based on measuring two sets of H' data
with multi-channel MRI systems was proposed by Zhang et.al.
[8]. This approach reduces artifacts resulting from fast spatial
variations of EPs, but requires measuring components of H+
in the (x,y) plane of the scanner, which is impractical in
clinical applications, where only the z component along the
direction of the static magnetic field is normally available.

Sodickson et.al [9] derived a general formulation to MR-
EPT that does not make assumptions on the distribution of
EPs and that is suitable for multi-channel systems. In this
approach conductivity, permittivity, phase, phase derivatives,
magnetization, and magnetization derivatives are assumed to
be unknowns. This approach has produced promising numeri-
cal results, however, it requires computing spatially-dependent
second derivatives and may therefore be sensitive to noise
in experimental applications. An approach based on formu-
lating the dependence of EPs on HT via the convection—
reaction equation has been developed by Hafalir er.al [10].
This approach does not make any restrictive assumption on
the distribution of EPs. However, this method also requires
first and second derivatives of H' be computed and is
therefore potentially sensitive to noise; despite this, it has
been demonstrated numerically and experimentally to provide
results that are superior to standard methods based on (2).

Inverse approaches to MR-EPT have been also considered.
An algorithm termed CSI-EPT (Contrast Source Inversion -
EPT) has been proposed by Balidemaj et.al [11]. This algo-
rithm does not make any assumption regarding the distribution
of EPs and is based on an inverse formulation, where the
EPs are fit to the data using a contrast source approach. The
method has been shown in numerical simulations to produce
accurate and detailed reconstructions of a pelvis model. Total
Variation [12] regularization has also been adopted in order
to reduce this method’s sensitivity to noise. To the best of
our knowledge this method has not yet been demonstrated
on experimental data. A model-based based approach to
conductivity reconstruction which incorporates regularization
techniques has also been proposed by Ropella et.al [13]. This
approach is based on inverting the Laplacian in (3) in the
Fourier domain, and has demonstrated better image quality
compared to traditional direct approaches in phantoms and in
in-vivo data.

In this manuscript we present a novel MR-EPT recon-
struction algorithm resulting from further development and
enhancement of initial work developed by the authors [14],
[15]. The algorithm is based on an inverse approach applied
to (2). Conductivity and permittivity are treated separately as

in [4], and taken as parameters to be fitted. A forward model
is developed to link electrical parameters to the H* data.
A Jacobian matrix, based on the forward model, is defined
and used for updating the model parameters. Regularization
is used to stabilize the inversion for parameter estimation.
This inverse approach to MR-EPT, based on fitting H* data
with a model, has the general advantage compared to direct
methods based on (2), and with respect to [9], [10], of
not requiring differentiation of measured H*' data, and is
therefore less sensitive to noise. The approach is demonstrated
to successfully reconstruct noisy numerical and experimental
data. Because this approach casts MR-EPT reconstruction in a
well established inverse problem framework, two well known
regularization techniques, Quadratic Regularization and Total
Variation regularization are implemented to reduce the effects
of noise and to stabilize the inversion. Quadratic Regular-
ization leads to smoother reconstructed images, while Total
Variation regularization is able to produce sharper images.
This method, being based on the approximate relationship
(2), which might result in artifacts at the interface of highly
enterogenous boundaries as discussed in [7]. However, this
approach is common in MR-EPT, and has been demonstrated
to produce meaningful images [3], [5], [6], [16], [17].

Algorithms based on (2) have been applied to breast cancer
detection, showing potential of MR-EPT as a diagnostic tool.
In this context prior structural information available from T1
and/or T2 weighted MRI imaging has been used to enhance the
reconstructed EPs by weighting differently variations along the
normal and tangential direction with respect to the expected
prior features [16], [17]. Our approach also enables incorporat-
ing prior structural information, so that preferential directions
of change of EP can be embedded into the regularization (e.g.
[18], [19]). In general we believe that the approach developed
here has advantages over algorithms based directly on (2) since
it does not require differentiation of H*. This may make it
more suitable for clinical applications where noise is present.
It is difficult to offer comparative remarks with respect to
recent inverse algorithms [9], [10], [11], as these comparisons
will likely require application of the different algorithms on
particular tests cases.

Reconstruction of EPs with the inverse approach devel-
oped her entails considering the EPs of every pixel in the
image as an unknown to be estimated. For three-dimensional
datasets this can result in an excessive computational burden.
We describe methods for splitting the imaging domain that
significantly reduce this burden.

In Section II we introduce our reconstruction approach and
develop a forward model. In Section III we describe an inverse
formulation for reconstructing EPs, and in Section IV we
discuss an implementation using Quadratic Regularization and
one using Total Variation regularization. Section V reports
numerical experiments, Section VI discusses the computa-
tional burden of the methods developed and offers methods for
reducing it, Section VII reports image reconstruction results
from physical experiments. Finally concluding remarks are
offered.



II. FORWARD MODEL

The MR-EPT reconstruction approach developed here is
based on an inverse formulation, in which a model is fit to
measured data. In this context, the relationship linking the H+
field data to the electrical conductivity, o, and permittivity,
€, defines the forward model. These relationships can be
approximated as [4]:

1

o= V2p(HT) 3)
Mo w
and
1 V2 HT|
E=——5——— 4)
po w? [HT
Equation (3) can be recognized as the Poisson equation:
V2p = powo )

where for simplicity ¢ denotes ¢(H ™). Equation (4) takes the
form of the Helmholtz equation:

V2A + pow?eA =0 (6)

where for simplicity A denotes |H ™.

This manuscript focuses on reconstructing conductivity
from (5). Permittivity can be reconstructed from (6) with
similar methods, which are not developed in this manuscript.
Boundary conditions appropriate to the physics describing the
forward model need to be specified in order to solve (5). This
approach ultimately aims to match a measured phase @peqs
with a simulated ¢ computed from (5); Dirichlet conditions
defining the phase on the domain boundary are therefore ideal
for this case. This conditions is specified as

O(r) = d(r)meas  Vr € 0N @)

where 7 is a point in space and 92 is the boundary of the
imaging domain. ¢,,.qs is perfectly matched at the boundary
through use of (7), and it will be matched point-by-point inside
the domain by appropriate adjustment of the o distribution.
It is worth noting that for any value of measured data,
Pmeas, the condition (7) is compatible with (5) [20], and
therefore a solution to (5) always exists and is unique for
those boundary conditions [20]. Equations (5) and (7) define
a forward model for MR-EPT conductivity reconstruction via
the inverse approach developed here.

III. INVERSE FORMULATION

The forward model linking ¢ to ¢ can be used to establish an
estimate of the o distribution by fitting the phase ¢ predicted
by the model to the measured phase ¢,cqs- As an example,
this fitting can be optimized in the least squares sense as

Orec = argmian)(o) - ¢meas”2 ()

where o, is the spatial distribution of the electrical conduc-
tivity reconstructed by fitting ¢(0) t0 Pmeqs. This fitting is
accomplished by adjusting ¢ to minimize the discrepancy be-
tween ¢(o) and @,eqs in the L2-norm sense; the dependence
of the model predicted phase ¢ on o is explicitly shown in

®.

To account for noisy phase measurements, a regularization
term [21] is adopted to stabilize the inversion, transforming
(8) into

Orec = argmin [||gz5(0) — (;SmeasHQ + a\Il(a)] 9)

where « is a scalar Tikhonov factor controlling the amount of
regularization and ¥ (o) is a regularization functional. These
functionals are often quadratic and involve first or second
differential operators [21], but many different forms beyond
simple differential operators have been proposed in literature.
Two different functionals often used in inverse problems,
Quadratic Regularization and Total Variation Regularization,
are described and implemented here.

IV. IMPLEMENTATION

In order to implement an MR-EPT reconstruction based on
(9), a regularization functional needs to be defined, a numeric
method for computing ¢(o) as defined by (5) and (7) must be
implemented, and the Jacobian matrix of the mapping o +—
¢(o) needs to be computed.

A. Quadratic Regularization

In a first implementation example, a classical quadratic
functional can be used to transform (9) into

rec = argmin [||¢(0) — Gmeas||? + al|Lal’]  (10)

where o is discretized on the same pixel grid as that used
by the MR scanner to map ¢,eqs. This converts o from a
continuous function into a finite vector of discretized values.
The matrix L is a regularization matrix, which we have chosen
to be the Laplacian of the conductivity distribution, a relatively
common choice [22], [23].

By applying the Newton-Raphson method to (10), an update
equation for the conductivity can be derived as

o =—[J"T+aL"L]""
[‘]T(¢(0) - ¢meas) -

where J is the Jacobian matrix of the mapping o — ¢(o),
and o* is an initial conductivity distribution. A uniform
conductivity can be used as an initial starting distribution o*
and updated using (11), as 0, = 0* 4+ do. A single update
is sufficient in this case since the forward model is linear in
o. As a result, the Newton-Raphson method finds the solution
to (10) in one step. In order to apply (11) one has to compute
¢(o) and the Jacobian matrix .J.
The forward problem o +— ¢(o) in three dimensions

consists of solving

0? 0? 0?

87332 + Tyf + 7¢ = pwo
where the (x,y,z) are the coordinates in the axes (&, 2),
which are defined to be aligned to the main axes of the image
stack. The Partial Differential Equation (12) can be easily
discretized on the image grid using Finite Difference schemes
[24] expressing the partial derivatives as

aLlTL(oc —0o*)] (11)

(12)
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where h;,hy,h, are respectively the pixel spacings along
the z,y,z axes and the points (x — h;),z, (x + hy), (y —
hy),y, (Y + hy), (z — hs), 2z, and (z + z,) translate into the
indices within the vector of discrete phases ¢. As is standard
in Finite Differences, the partial differential equation (12) can
be transformed into a linear system

Ap=1b (14)

where A is a matrix derived from applying (13) to the different
pixels in the image, b is a right hand side (RHS) derived from
the evaluation of the term pwo in (12) at each pixel location
in the image, and ¢ is the vector of computed phase values.
Appropriate boundary conditions need to be applied to the
linear system in (14). The following approach is used here

o Boundary Pixels: Dirichlet boundary conditions are es-
tablished for all the pixels on the boundary surface of
the image stack by placing a 1 on the diagonal element
A(i,1), where i is the index of each of these pixels, and
setting b(i) = ¢(i)meas.

o Internal Pixels: for all the pixels internal to the do-
main (defined as being at least 1 pixel away from the
boundary), (13) is applied and the RHS is computed as
b(i) = pwo (i), where i is the index of the considered
pixel.

Solving the linear system (14) results in the vector ¢ of
computed phase values.

A similar approach is used for building the matrix L, which
is a Laplacian operator. The purpose of L is to limit high
frequency spatial variations in the image, which typically arise
from noise in the data. The term || Lo||? takes large values for
large spatial variations or for high frequency spatial variations
in o, which penalizes their presence in the reconstructed image
(10). Elements of L corresponding to the interior domain are
computed using the same finite differences applied to solve
the forward problem (13). Elements of L corresponding to
the domain boundary are defined using mirroring boundary
conditions. Specifically, if the term (x + h,) in (13a) falls
outside the domain, (z + h,) is assumed equal to (z — hy)
and the second derivative for that image location is expressed

as: )
0% _ —2¢(x) + 2¢(x — ha)
ox? h2 '
Similar conditions are used for derivatives in y and z.

The Jacobian matrix in (11) can be computed from (14)
using the following matrix identities

_@_B(A_lb)_ —1@_ 1
T 90 do =4 BJ_A ¢

where ¢ is the derivative of b with respect to o. In this case,

(15)

J (16)

&(i) = 0 for all indices ¢ corresponding to boundary pixels (for
which the Dirichlet condition has been set) and £(i) = pw for
all the indices corresponding to interior pixels where b(4) is set
to b(i) = pwo (7). Equations (14) and (16) enable calculation
of ¢ and J, which are in turn used in (11) to compute 0.

As shown later, the above procedure results in successful
reconstructions on synthetic and experimental data. The use of
the quadratic regularization functional produces conductivity
profiles that are relatively smooth. The benefit of the inverse
formulation developed here (9) is that different functional
terms can be used for regularization. In the next subsection,
Total Variation is introduced as an alternative regularization
term.

B. Total Variation Regularization

In the previous sections, a framework for MR-EPT image
reconstruction based on inverse problems was developed.
One benefit of this framework is that different regularization
terms can be chosen. Regularization functionals affect how
the reconstructed image is smoothed and different choices
are appropriate for different situations. Total Variation (TV)
is a relatively novel form of regularization that results in
images with sharper conductivity transitions as compared to
Quadratic Regularization approaches (e.g. 11). Reconstructing
sharp image transitions can be challenging in MR-EPT. In
direct approaches derivatives are estimated on multiple points
(e.g. 5,7, or 9) to reduce noise sensitivity, but this results in
smoothing. In the inverse approach described above the regu-
larization smooths the reconstructed image, again for reducing
sensitivity to noise. The use of TV regularization instead
allows reconstructing fast spatial variations more accurately.

The TV-based inverse formulation for (9) is expressed as

Orec = argmin [[|¢(0) — dmeas||* + @ TV ()] (17)

where the TV functional is defined as TV (o) =
Jo IV(0)]d€2 and Q is the imaging domain. The sharper re-
constructions possible with TV regularization arise because the
TV functional remains finite for step changes, while quadratic
functionals like [, [V(o)[?d€, or, [, [V?(c)[*dQ (common
quadratic regularization functionals) tend towards infinity. As
a result of the large quadratic functional values associated
with fast spatial changes in conductivity, these profiles (i.e.
step changes in conductivity) are penalized, rendering the
reconstructions smoother. More detailed discussion of the TV
function properties are presented in [12].

While the use of TV is desirable for reconstructing sharp
variations, the image reconstruction expressed by (17) is a non-
differentiable optimization problem, and special techniques
need to be employed to minimize ||¢(0') — Pmeas||*+a TV (o)
when acting on o. In this case, a Primal Dual - Interior
Point framework developed in [25], [26] for optimizing (17)
was used. Specifically, the algorithm named “PD-IPM - L2-
L1 Norm” reported in [25] is used. The MR-EPT forward
model ¢(o) and Jacobian matrix J developed in section IV-A
are input into the optimization algorithm, resulting in ... as
defined in (17).

In Sections V and VII, numerical and experimental data
are used respectively to compare these two regularization



approaches and demonstrate how the smoothing / sharpening
characteristics of the reconstruction can be tuned by the
regularization functional.

V. NUMERICAL EXPERIMENTS

A number of numerical experiments were conducted to
validate this inverse formulation for MR-EPT conductivity
reconstruction. The simulated volume of interest consists of
a cubic block of 20 x 20 x 20 millimeters split in half by
passing a plane through the center of the cube. One half of
the cube is set to have a conductivity of 1 Sm~! while the
other half is set to 2 Sm~!, as shown in Figure 1. While
these simulated conductivities are generally larger than typical
physiological values, they serve as a good test do demonstrate
that the algorithms can reconstruct a unit step change from
1 to 2 Sm~! at the interface between the two halves of the
numerical phantom.

The simulated cube was discretized into 1x 1x1 mm volume
elements, and Finite Differences were used to compute the
MRI phase using equations (12) to (14), and assuming a 3
Tesla static magnet strength. A Dirichlet boundary condition
of ¢p(r) = 0 Vr € 09 was assumed on the boundary. As
discussed in Section II, Dirichlet boundary conditions can be
used for matching a measured phase at the domain boundary
while computing the forward solution. In the absence of
boundary data, the condition ¢(r) = 0 Vr € 9 is a practical
condition that is compatible with the Poisson equation and
results in a unique solution. This choice does not alter the
reconstructed conductivity, which depends on the Laplacian of
the phase - the value of which is enforced within the domain
by the Poisson equation itself.

Figure 2 (A) shows a 2D cross section of the computed
synthetic phase; Figure 2 (B) shows the same synthetic phase
with 20% additive Gaussian noise, as discussed later and as
used in the reconstructions. The curvature (i.e. Laplacian) of
the phase is more pronounced in the left part of the domain
due to the higher conductivity (2Sm~!) within this region.

The simulated phase data was input into three different
reconstruction algorithms. The first is an implementation of
the direct approach developed by Katscher er. al. [3]. This
algorithm is based on numerically solving (2) and using a
volume of integration to improve robustness to noise. Specif-
ically, the order of differentiation is decreased from 2"? to
1%t order using the Gauss theorem to convert the volume
integral of (2) to a surface integral which has only first
derivatives of the field variables. This represents an approach
that directly computes the output conductivity as a function of
the input phase distribution by taking 1%¢ order derivatives and
computing their integral over specific integration volumes. In
our implementation of this algorithm, an integration volume
of 5 x 5 x 5 pixels was defined and phase derivatives were
estimated using Savitzky-Golay [27] filters involving 7 points
(three points per side of the considered pixel). Katscher et.
al. uses similar integration volumes, and 5 to 9 points for
derivative estimation. We found that, for our numerical data,
using only 7 points represents a good compromise between
image sharpness and noise sensitivity, while larger numbers of

points lead to smoother images with limited ability to identify
sharp transitions. The second and third algorithms are imple-
mentations of the inverse formulation approach developed in
this manuscript with Quadratic Regularization (10) and with
TV regularization (17), respectively.

Reconstructions for the three different algorithms are shown
in Figure 3 using a fixed gray-scale for all figures spanning
conductivity values from 0.5 to 2 Sm~!. The top row of the
figure represents reconstruction with our own implementation
of the algorithm proposed in [3], the second row represents
reconstruction with the inverse algorithm using Quadratic
Regularization, and the last row reconstructions with the
inverse algorithm using TV regularization. Different levels of
simulated noise were added to the phase data for each column
of the reconstructions. Specifically, noise levels of 5%, 10%,
15%, and 20% were added to columns 1 to 4, respectively.
Noise was generated by extracting values from a Gaussian
random distribution. These values were scaled to generate a
particular percent noise level (5% to 20%) and added to the
noiseless simulated phase of Figure 2. As an example, for a
1% noise level, an input noise image v is scaled such that
:ggg; = 0.01, where std indicates the standard deviation.
Figure 2 (B) shows an example 2D cross section of the noisy
simulated phase for a 20% noise level.

For the two inverse algorithms an optimal value of the
Tikhonov factor was found empirically, and used for each of
the different noise levels. A value of 1e10~> was used for
the Quadratic Regularization reconstruction, and a value of
5e10~6 for the TV reconstruction. The effect of the choice of
the Tikhonov value is discussed later in this Section.

The direct algorithm successfully reconstructs the phase
information, showing a higher conductivity on the left side
of the domain, and a vertical transition between the more
conductive and less conductive regions. The gray, 3-pixel wide,
band present at the boundary of the image is an artifact of
using derivative filters, which cannot operate in proximity of
the boundary; the derivative filters used here require three
pixels per side of the considered pixel. The inverse quadratic
algorithm successfully reconstructs the conductivity profile
showing a more conductive and a less conductive region on
the left and right sides, respectively. This algorithm provides
a similarly smooth transition at the conductivity boundary as
compared to the direct algorithm, but visually is more stable
in the presence of noise. Total Variation-based reconstructions
exhibit a sharp transition in the conductivity distribution,
resulting in a better overall estimation of the original data. This
algorithm is also the least sensitive to noise for this dataset.
TV is an appropriate image prior for distributions with sharp
transitions like the one used for these tests, and therefore likely
to produce better results compared to other methods. All the
images produced by the inverse approach present a border of
one pixel. Pixels on the boundary are not estimated as they
can be affected by the boundary condition ¢(7) = ¢(7)meas-

Figure 4 shows the effect of the Tikhonov factor on the
reconstructed images. This figure shows 2D cross-sections of
three—dimensional reconstructions with the Quadratic Regu-
larization inverse algorithm for a noise level of 10% and
for different values of the Tikhonov factor, which are, from
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Simulated domain used for the numerical experiment: a 20x20x20 mm cube with a conductivity of 1 Sm~' on one side and of 2 Sm~"! on the

other was generated in MATLAB. The simulation of the MR phase within the cube was computed for a 3T magnet using a Finite Difference discretization

with 1mm resolution, using the modeling approach developed in Section II.
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2D cross section in the horizontal plane of the 3D computed MRI phase for the conductivity distribution shown in Figure 1. Subfigure (A) shows

the noiseless phase, and subfigure (B) the noisiest phase (20% noise level) fed into the numerical simulations. As expected the computed phase has a higher
curvature corresponding to the more conductive region (left of the picture), as the Laplacian takes larger values for high conductivity regions compared to
less conducting regions (right of the picture). The units used for plotting the phase are radians, and the range is -0.08 to 0.00 radians.

left to right, 1e10~7, 1e107 5, 1e10~*, and 1e10~3. These
values bracket the optimal value of 1e10~° used in the
reconstructions of Figure 3. The two left reconstructions are
under—regularized (i.e. a too small Tikhonov value results in
noisy images). The two right reconstructions are instead over—
regularized (i.e a too large value of Tikhonov factor results in
reconstructions that are not as sensitive to noise, but in which
the spatial transitions have been smoothed excessively). The
value of 1e10~° used in Figure 4 therefore represents a good
compromise between sensitivity to noise and resolution.
Conductivity profiles across the middle of the domain and
passing through the transition point were extracted from the
three reconstructions with the three different algorithms for the
10% noise level case , and are shown in Figure 5). The orig-
inal conductivity profile (Figure 5A) used for generating the
synthetic phase data shows the true transition each algorithm
attempts to recover. The bold lines depict the reconstructed
profile, while the true conductivity profile is shown as a dotted
line in Figures SA, 5B, and 5C. While the direct approach
(Figure 5A) and the inverse approach with Quadratic Regular-
ization (Figure 5B) are substantially equivalent in terms of how
fast they describe the transition from high conductivity to low
conductivity, the reconstruction with TV regularization (Figure
5C) shows a much steeper transition in the reconstructed
profile, and is therefore a more accurate reconstruction of the
step conductivity profile. The inverse formulation developed
here enables one to select regularization functionals that are

appropriate for the problem at hand. Besides TV and similar
edge-preserving techniques it is possible to envision using ad-
hoc functionals that incorporate prior structural information
extracted from other anatomic MR images [18], [19].

VI. COMPUTATIONAL BURDEN CONSIDERATIONS

While the developed approach offers flexibility in terms of
the regularization functionals available and does not require
differentiating the noisy input images, it does require a higher
computational load compared to methods based on direct
differentiation. This computational burden can be measured
in terms of number of computations and amount of working
memory required. We will show that the computational burden
can be significant, for images with a moderate number of
pixels, but that it is possible to reduce it by subdividing
the image domain and by reconstructing smaller subdomains
individually. We will use this approach for reconstructing the
experimental MRI data presented in Section VII.

Image reconstruction with the developed inverse formula-
tion requires solving the forward problem (5), using for exam-
ple a finite-difference scheme, and updating the conductivity
or permittivity values with a Gauss Newton update as in (11).
For moderate to relatively large imaging volumes solving (5)
or (11) presents challenges. For example, an imaging volume
of 256 x 256 x 256 pixels requires the forward problem
to be solved for 2563, or more than 16 million unknowns.
Problems of this size can be efficiently solved on a desktop
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Fig. 3. 2D cross-sections of three-dimensional reconstructions of synthetic phase data with noise levels of 5%, 10%, 15%, and 20%, associated with columns 1
to 4, respectively. Each row in the figure represents a reconstruction with a different algorithm: the top row shows (for different levels of noise) reconstructions
with our own implementation of the algorithm proposed in [3]. We use an integration volume of 5 X 5 X 5 pixels, and estimate derivatives on 3 pixels
per side of the central pixel, this results in a band, 3-pixels wide, around the image that cannot be reconstructed. The reconstruction successfully identifies
the conductivity distribution, showing a left-to-right transition. The second and third row of the figure represent reconstructions with the developed inverse
approach, using Quadratic Regularization (QR) and Total Variation (TV) regularization, respectively. The QR algorithm is able to identify the left—to—right
change in conductivity and to describe it with a certain degree of smoothness, which is characteristic of this type of regularization. The TV algorithm is able
to identify and describe with pronounced sharpness the left—to-right change in conductivity. In this specific case the TV algorithm also appears particularly
robust to noise. For both QR and TV algorithms an optimal Tikhonov factor was found empirically, and maintained constant across the different levels of
noise. Specifically a value of 1e10~° and of 5e10~6 was used respectively for the two algorithms. With the parameters used, the inverse based algorithms
seem to fare batter in the presence of noise compared to the direct algorithm, as it would be expected from the fact that they do not need to differentiate

input phase data. All figure are represented on a grayscale ranging from O to 2 Sm™

TABLE I
COMPUTATIONAL TIME FOR DIFFERENT SUBDOMAIN CONFIGURATIONS

Config. H Time QR Recon [s] Time TV Recon [s] Jac. Mem. [MB] ‘

2x1 50.9 684.8 162
2x2 8.8 2329 39
3x2 3.5 133.3 16
3x3 1.5 85.9 7

computer in a few minutes of computation time using special-
ized algorithms, such as those based on Algebraic Multigrid
Methods [28]. These algorithms are not readily available in
computing environments like MATLAB, and require the user
to procure specialized libraries. In addition to the time required
for forward solving, there is a particular challenge posed by
the memory utilization required to solve (11). The number
of rows and columns in the Jacobian matrix J is equal to
the number of unknowns in the problem. In the particular
case of a 256 x 256 x 256 imaging domain, the Jacobian
would be a 2562 x 256° matrix, requiring memory allocation
beyond the limits of any personal computer. The approach we
have implemented subdivides the imaging domain into several
smaller subdomains over which the Jacobian is formed; this

significantly reduces the computational burden and memory
requirements. For a N x N x N imaging domain, the size
of the forward problem is N3 and the memory required for
storing the Jacobian is proportional to N3x N3 = N6; dividing
the domain into a small number of subdomains immediately
reduces the computational burden.

If the domain is subdivided, for example into cubic blocks
smaller than the full domain, the boundary condition (7) can be
applied at the interface between the different blocks. The for-
ward problem can then be solved (5) within each subdomain.
Since (7) can be applied everywhere using the measured phase
values, the forward problem can be solved on a subdomain
independently from the neighboring subdomains, and image
reconstruction carried out on each subdomain independently
from others.

The only potential dependence between neighboring pixels
is introduced at the interface between two imaging subdomains
if the regularization matrix L in (11), or in the equiva-
lent Total Variation formulation (17), correlates neighbouring
pixels across the two different subdomains. In our current
implementation, we do not regularize pixels across different
imaging subdomains; this enables us to run fully independent
reconstructions on portions of the full domain. For real MRI
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Fig. 4. Effect of the Tikhonov factor on reconstruction. The four figures show 2D cross-sections of three-dimensional reconstructions of synthetic phase data
with a fixed noise level of 10% and a varying Tikhonov factor of a value of 1e10~7, 1e1079, 1e10~4, and 1e10~3, from left to right. The chosen values
bracket the optimal value of 1e10~5, which was found empirically and used in the reconstructions in Figure 3. The values 1e10~7 and 1e10~ result in an
under-regularized image which is sensitive to noise. The values of 1e10~%, 1e10~2 result in images that are over-regularized, where sensitivity to noise has

been greatly reduced, but spatial transitions have been overly smoothed. All figures are represented on a grayscale ranging from O to 2 Sm™
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Subfigure A shows a plot of the conductivity value on a horizontal line crossing the cube of Figure 1, where the vertical axis represents the

conductivity value and the horizontal axis the position along the left-to-right direction inside the conductivity cube. Subfigures B, C, and D represent a similar
plot for the reconstructed conductivity values, for a noise level of 10%, respectively for our own implementation of the algorithm proposed in [3], for the
inverse reconstruction with quadratic regularization, and for the inverse reconstruction with Total Variation regularization. In these three subfigures the bold
continuous line represents the reconstructed values, and the thin dotted line the true conductivity value, as in subfigure A. The algorithm in subfigure B and
C have a similar performance in terms of how steeply they can describe the sharp transition, while the algorithm in subfigure D (Total Variation) is able to

describe the step conductivity change much more accurately.

data (see Section VII), we split the imaging domain using
this sub-domain technique to reduce the computational burden
associated with the large number of pixels within the MR
image stack. The number of pixels recorded during a standard
MR-EPT scan are significantly more than those used in our
numerical simulation (Section V).

To substantiate the above discussion, we report the compu-
tational time and the required amount of memory for storing
the Jacobian matrix for different subdomain sizes used for
reconstructing the phantom in Figure 9. The original MRI
image (acquisition details described in Section VII) has a size
of 144 x 144 x 144 pixels. Within this volume a region of
interest (ROI) of 61 x 55 X 5 pixels was chosen to capture the
curved detail of the phantom and to exclude the boundaries of
the plastic container used to house it. A magnitude image of

the selected ROI is shown in Figure 9(B). The slices of the ROI
were split in 1, 2, or 3 parts along the vertical and horizontal
directions, giving raise to a number of smaller subdomains
for image reconstruction. Precisely we used the following
configurations: 2 x 1, 2 x 3, 3 X 2, and 3 x 3, where the first
number indicates how many subdivisions were used along the
vertical direction and the second number indicates the number
of subdivisions along the horizontal direction. For example,
the configuration 3 x 3 results in 9 subdomains in total, where
slices are subdivided with a 3 by 3 grid (see Figure 10). All
the information (5 slices) was used in the third dimension.

Table I reports timing and memory usage information.
All computation where performed on a workstation with a
Intel Xeon 3503 CPU running at 2.40GHz, with 8GB of
memory, using the Windows 7 Ultimate — 64bit operating



system; algorithms were implemented and run in the MAT-
LAB environment. An important difference exist between the
algorithm implementing Quadratic Regularization and and the
algorithm implementing Total Variation regularization (TV):
the quadratic update equation (11) is linear with respect to
o (the Jacobian does not depend on o), and therefore the
term [JTJ + oLTL]~! only needs to be computed once,
and can be applied later to any subdomain of the image -
a fast matrix—vector multiplication. The Total Variation regu-
larization algorithm instead requires an iterative cycle on each
subdomain of the image (we use a fixed number of iterations,
10 cycles per subdomain), resulting in longer reconstruction
times compared to Quadratic Regularization (QR). For both
algorithms computing was performed in double precision,
timing and memory usage information is therefor relative to
an 8-byte representation of floating point values. The coarser
subdivision, 2 x 1, requires 61 seconds to compute with QR
and 685 seconds with TV, using 162 Megabytes. These timing
and memory requirements reduce respectively to 1.5 and 86
seconds for the smaller 3 x 3 subdomain configuration, and
to 7MB of memory for Jacobian storage. While the QR
algorithm, for smaller subdomains, presents a computational
burden that is not dissimilar to that of direct approaches,
TV reconstruction, as implemented in our algorithm, still
presents a burden that is significant. Use of TV regularized
reconstruction is therefore a tradeoff between the benefits
offered by this type of functional and the time consumed in
the reconstruction.

VII. PHYSICAL EXPERIMENTS

The proposed MR-EPT reconstruction approach is demon-
strated on two phantom datasets acquired using a Philips
Achieva 3T MR scanner using a Philips SENSE Flex S trans-
mit/receive coil. A first conductivity phantom was prepared
by slicing a 12cm x 7cm x Scm block of gelatin (o =
1.8 Sm~!) into slabs of different thicknesses (see Figure 6).
Specifically, slice thickness of 20mm, 15mm, 10mm, and 5mm
were formed and placed into a polymer housing. The slices
were positioned inside the housing and adhered to the walls by
slightly heating the container; the heating causes a thin layer of
gelatin to melt and re-solidify providing adhesion. Gelatin was
prepared by using 10% by weight of dry porcine gelatin, and
approximately 1% by weight of NaCl to adjust conductivity
to the desired level. A saline solution with a conductivity of
4.1 Sm~! was produced using approximately 2% NaCl in
weight and used to fill the gaps between the slices of gelatin
(not shown in Figure 6), to provide an inclusion (gelatin) to
background (saline) contrast. In addition, approximately 1%
by weigh of copper sulfate (CuSO,) was added to the gelatin,
but not to the saline, in order to provide MR contrast.

Standard MR images (e.g. T1-weighted and T2-weighted)
were not expected to detect the electrical properties contrast
between the gelatin and the saline solutions; the CuSO,
provides MR contrast so that the structure of the phantom can
be appreciated in standard MR images. MRI magnitude images
depict a high intensity (white) where the gelatin slabs are
located (corresponding to the high concentration of CuSO,),

while the saline solution appears as a low intensity (black)
region (see Figure 6). This magnitude MR image provides
a high resolution image of the experimental configuration
to which reconstructed MR-EPT images can be compared.
A standard Spin Echo (SE) MRI sequence was utilized for
acquiring the magnitude and phase data, with the following
settings: resolution of 80 x 80 x 20 pixels, field of view
(FOV) of 160 x 160 x 60mm, repetition time (TR) = 600
ms, and echo time (TE) = 7.79 ms. Four temporal averages
were used in order to improve the SNR for a total acquisition
time of 389 seconds. MR phase information was captured
together with amplitude information and used for reconstruct-
ing conductivity images with the inverse implementation and
with the direct method proposed by Katscher et. al. [3].
For the inverse formulation, both quadratic regularization
and TV-based regularization approaches were used. For all
reconstructions, data extracted from a central portion of the
phantom, consisting of a 58 x 22 x 7 pixel volume, was
used. All three reconstruction approaches exhibit regions of
high and low conductivity corresponding to the saline and
gelatin, respectively (see Figure 7). The same grayscale was
selected for each of the different algorithms, ranging from
0 Sm~! (black) to 4 Sm~! (white). It is important to note
that gelatin slices present a lower conductivity (1.8 Sm™1)
compared to the saline solution (4.1 Sm~1), making the gelatin
slices appear in a darker gray level. This is in contrast to
MR magnitude images (Figure 6), where gelatin slices appear
brighter due to the presence of (CuSO,). These contrast
differences observed between MR magnitude images (Figure
6) and MR-EPT reconstructions (Figure 7) help to validate
MR-EPT’s dependence on conductivity and not on typical MR
contrast mechanisms (e.g. CuSO,).

All three reconstruction approaches correctly identify the lo-
cation of the gelatin strips within the phantom (Figure 7). The
reconstruction using our implementation of the direct method
developed by Katscher ef. al. [3] has a border of 3 pixels
over which the conductivity values are not reconstructed. This
artifact stems from using Savitzky-Golay filters with 3 pixels
on each side of the central pixel of interest to estimate the
derivatives at these locations. In the inverse formulation, a
single pixel around the border is used to match the measured
phase with the Dirichlet boundary condition (7) and is not
reconstructed; all other interior pixels are fit to the data. In this
particular experimental configuration, the reconstruction with
quadratic regularization (Figure 7B) provides slightly more
contrast as compared to the reconstruction based on integration
of first derivatives (Figure 7A). Much more noticeable is
the difference between the reconstruction based on Total
Variation (TV) (Figure 7C) regularization and the other two
reconstruction approaches. TV represents a good prior for
describing the sharp conductivity transitions that are present at
the gelatin-saline interface; using this form of regularization
significantly enhances the reconstructed images. The recon-
structed conductivity (Figure 7C) geometrically aligns with
the phantom configuration (as viewed visually and in MR
magnitude images) in that the high conductivity gelatin regions
(dark stripes) correspond to high intensity MR magnitude
regions (light stripes). The TV-based regularization accurately
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Fig. 6. Top: photographic representation of the conductivity phantom. A conductivity phantom was generated by slicing a slab of gelatin in slices of 20mm,
15mm, 10mm, and 5mm of thickness. The slices were positioned inside a polymer housing and secured to it by slightly heating the housing and letting the
gelatin in contact with the housing walls slightly melt before re-solidification. The phantom was then filled with a saline solution (not shown). The gelatin
had a conductivity of 1.8 Sm~! and the saline solution of 4.1 Sm—1. Copper sulfate (CuSO,) was added to the gelatin, so that the gelatin slabs would show
with a different intensity in traditional MR amplitude images. Bottom: an MR amplitude image shows the phantom. Gelatin slices appear in a brighter gray
due to the inclusion of Copper Sulfate (note that gelatin slices have a lower conductivity value compared to the saline solution (1.8 Sm~! versus 4.1 Sm—1),
and therefore they appear darker in the MR-EPT reconstructions of Figure 7).
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Fig. 7. MR-EPT Reconstructions of MR data acquired on the phantom of figure 6. Subfigure A shows a “traditional” MR-EPT reconstruction with our
implementation of the algorithm proposed in [3]. A border of 3 pixels is present all around the boundary of the image, as derivatives are estimated using
three pixel values per each side of the current pixel, therefore reconstruction can occur only for pixels that are at a distance of 3 pixels from the domain
boundary. The algorithm reconstructs correctly the alternating conductivity values, corresponding to the high conducting saline solution, and less conducting
gelatin slices. Gelatin slices appear in fact darker, as opposed to the lighter gray in which they appear in the MR magnitude image in Figure 6B, as the
contrast mechanism in MR-EPT is based on the electrical properties, while the MR amplitude image is sensitive to the presence of Copper Sulfate. Subfigure
B shows a MR-EPT reconstruction using the developed inverse formulation with quadratic regularization, and Subfigure C a MR-EPT reconstruction using
the developed inverse formulation with Total Variation regularization. All figure are represented on a grayscale ranging from 0 to 4 Sm~1.
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Fig. 8. Phase fitting process. This figure shows how the MR-EPT inverse reconstruction algorithm is fitting the phase data. The plot on the left shows results
relative to the QR algorithm, and the plot on the left result relative to the TV algorithm. The dash-dotted line at the top of the plots represents the computed
phase value across a numerical phantom of Figure 6 corresponding to a uniform initial distribution of conductivity. The solid bold line at the bottom of
the plots represents the true measured phase across the phantom. The dips and peaks of the measured phase represent phase changes corresponding to the
alternating high-low conductivity values encountered across the gelatin stripes and saline volumes that constitute the phantom (see Figure 6A). The dash-dotted
line at the bottom of the plots represents the fitted phase, resulting from the inversion procedure. Despite reconstructed images looking quite different for
the QR and TV algorithms, the fitted phases show minor differences. This is to be expected, as different values of reconstructed conductivity can stem from
minor curvature changes in the phase. For both algorithms the fitted phase follows closely the general trends of the measured phase; regularization techniques
used in the algorithm help to ensure that the model does not “overfit” the small scale phase perturbations that represent noise in the data (e.g. small dip near
pixel position 20).
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Fig. 9. Curved phantom photographic image (left) and MRI magnitude image (right). This phantom was build with a similar method to the phantom shown
in Figure 6, by creating a gelatin slab which is immersed in a saline solution. The gelatin slab has a conductivity of of 1.8 Sm—! and Copper sulfate (CuSO,)
was added to it, to generate contract in the MRI magnitude image. The saline solution has a conductivity of 4.1 Sm—!. In part (A) of the figure is indicated
a white edge that approximates the perimeter of a region of interest which was selected for image reconstruction. Part (B) of the figure shows the MRI
magnitude corresponding to the region of interest used in the reconstructions of Figure 10.

identifies the steep transitions that are characteristic of the as presented in [29] will be explored in the future to reduce
phantom, while the direct and quadratic-based inverse formu- or eliminate this artifact.

lation do not recover the steep transitions. Both quadratic and
TV-regularized inverse approaches to reconstruction (Figure
7 B and C) exhibit a conductivity discontinuity through the
center of the image. This discontinuity arises from having

The fitting process resulting from the inverse approach
to reconstruction can be evaluated by observing how the
fitted phase progresses from the initial guess to the final
- X o reconstructed phase (Figure 8). In this case, the estimated
subdwlde?d the reconstruction domam.mto an upper andllower phase (y-axis) is plotted as a function of distance (x-axis) along
st'lbdomam. for the purpose of Speedmg‘uf’ reconst.ructlon 45 a trajectory passing horizontally through the striped phantom
discussed in Se'ctlon VL In the gum'ent 1mplemegtat10n of this ¢ . Foth the QR and TV algorithms. The dips and peaks in
approach the different sut?domams n Whlf:h an image can be 4, phase data are caused by the varying conductivity values
divided are reconstructed in a completely independent manner . - o phantom gelatin slabs and saline volumes. True

(1,'6' we do I}Ot introduce correlanon. bereen nelghb.ouqng measured phase is indicated with a solid line, and the dash—
pixels at the interface of the subdomains in the regularization  j 0 ine at the top of the plots represents the computed
matrices), and results in small discontinuities observed in the phase for an initial uniform conductivity distribution of 1

images. Using a scheme that incorporates subdomain overlap Sm~", while the dash—dotted line at the bottom of the plots
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Fig. 10. 2D cross-sections of three-dimensional reconstructions of the phantom of Figure 10. This figure demonstrates the ability of the inverse algorithms
to reconstruct curved boundaries, and also serves to demonstrate the possibility of speeding up image reconstruction by splitting the image domain in smaller
subdomains to be reconstructed independently. The left column represents reconstructions with the inverse algorithm with Quadratic Regularization and the
right column reconstructions using Total Variation regularization. Each row represents a different subdomain splitting for image reconstruction, as discussed
in Section VI. In the top row MRI slices have been split in two parts vertically, indicated as 2 X 1 splitting, in the second row the slices have been split in two
parts vertically and horizontally, indicated as 2 x 2 splitting, and the third and fourth represent respectively 3 x 2 and 3 x 3 splittings. Splitting the original
image domain in smaller parts allows for a faster reconstruction as discussed in Section VI and reported in Table I. Some discontinuities are present at those
image locations where two different subdomains meet. This results from the fact that different subdomains are treated as separate by the reconstruction and
no continuity is enforced. In future work we intend to introduce some correlation between neighbouring subdomains, through regularization techniques, which
should reduce or eliminate these discontinuities. In both sets of reconstructed images, though some minor discontinuities are present at the interface between
subdomains both and inverse QR and inverse TV algorithms are able to correctly reproduce the curved interface. All figures are represented on a grayscale
ranging from O to 4 Sm~1!.



represents the computed phase after the fitting is complete.
The computed phase closely tracks the measured phase, with
the exception of small-scale features associated with noisy
measurements. The regularization helps to enforce an accurate
fit of the measured phase, but to avoid fitting small scale
variations that are typically associated with measurement noise
and errors.

A second conductivity phantom was prepared using the
same method described above for the striped phantom of
Figure 6. In this case though a portion of a round slab of
gelatin was cut and placed in a corner of a polymer housing as
shown in Figure 9. This second physical phantom was used to
evaluate the inverse reconstruction algorithms on a curvilinear
geometry. The striped phantom of Figure 6 is well suited for
reconstruction with TV regularization algorithms, as it presents
straight step changes, aligned with one axis of the image, that
can be accurately reconstructed by TV algorithms. The curved
boundary of the phantom in Figure 9 poses a challenge to TV
based algorithms, as they are know to tend to reconstruct round
boundaries with a staircase appearance. The reconstructions of
Figure 10 demonstrate that both the QR and TV algorithms
are able to capture and reproduce the curved nature of the
boundary between gelatin and water. Both algorithms exhibit
some artifact at the interface between subdomains, since we
have not enforced any contiguity between the reconstructed
values from different subdomains. TV regularization seems in
this case to suffer less from the staircase effect compared to
application in other tomographic applications. For example in
Electrical Impedance Tomography the staircase effect seems
to be more pronounced [25]. We believe this might be due to
the fact that in MR-EPT data is measured everywhere in the
domain and not only at the boundary as in other techniques.
This might help to drive the reconstruction towards more
realistic results.

VIII. CONCLUSIONS

A novel approach to MR-EPT image reconstruction based
on an inverse formulation has been developed. The approach is
based on the observation that the central equations of MR-EPT
can be inverted and used to describe a forward model, which
in turn can be used in an inverse, data fitting approach to MR-
EPT reconstruction. This approach is valid for reconstruction
of conductivity from measured phase information and for
reconstruction of permittivity from measured H+ amplitude
information, though in the present manuscript we develop
and demonstrate this approach only for reconstruction of
conductivity. A forward model for computing phase infor-
mation from conductivity data is presented (Section II). In
addition, an inverse approach based on quadratic regularization
and Jacobian computation has been developed for solving
the MR-EPT image reconstruction problem (Section IV-A).
An inverse formulation using Total Variation as a functional
for regularization has been developed (Section IV-B); this
approach enables the reconstruction of sharper conductivity
transitions within the imaging domain. Numerical experiments
were conducted to validate the developed inversion approaches
in the presence of synthetic noisy data (Section V). A method

for splitting the imaging domain into subdomains has been
developed to reduce the computational burden arising from the
proposed inverse approach (Section VI); this implementation
requires less memory utilization and fewer computations lead-
ing to faster reconstructions. Subdividing the imaging domain
into smaller subdomains results in significant performance /
memory utilization gains, as both the memory and computation
time are linked to the size of the Jacobian matrix (which
grows with the 6! power of the size of the imaging domain).
Successful reconstructions were obtained on laboratory data
collected from a phantom experiment that included alternating
regions of high and low conductivity, and from a phantom
with a curved boundary (Section VII). Both the inverse
approach using quadratic regularization and the approach
using Total Variation regularization accurately identified the
position of the gelatin slabs; TV regularization more accurately
reconstructed the steep conductivity transitions present at the
gelatin-saline interface of the phantoms imaged. Benefits of
this reconstruction method include: 1) no differentiation is
required on the input data, therefore decreasing sensitivity to
noise compared to other methods described in the literature;
2) different regularization functionals can be implemented,
depending on the expected distribution of the parameters
to be reconstructed. This capability is particularly useful in
the context of reconstructing biomedical data, in such cases
custom regularization functionals can be constructed ad-hoc
to incorporate prior anatomical information and ultimately en-
hance the quality and robustness of the reconstructed images.
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ABSTRACT

Determining prostate cancer grade is critical for determining optimal treatment strategies for men
diagnosed with prostate cancer. MR-based approaches have been explored as a modality to aid clinicians
in properly staging men with prostate cancer. Here we explore the feasibility of using an MR-based
imaging modality capable of mapping the electrical conductivity of tissue for prostate cancer imaging.
This imaging modality, termed Magnetic Resonance — Electrical Properties Tomography (MR-EPT), is
based on computationally manipulating phase data recorded during an MR scan to reconstruct an image
of the electrical conductivity. In the present work, the MR-EPT reconstruction method employed is based
on a novel inverse problem formulation recently developed. The method offers three main advantages
over a direct inversion approaches typically used in MR-EPT: a) no spatial differentiation is needed,
reducing the impact noise has on image formation, b) a regularization term enables user control of the
resolution of the reconstructed data, and 3) a prior information (e.g. anatomic MR images) can be used to
help guide the reconstruction. The feasibility of using MR-EPT for prostate imaging is explored through
use of gelatin and saline phantoms, biological tissue phantoms, and scans of ex vivo prostate tissue.

1. INTRODUCTION

MR-EPT (Magnetic Resonance Electrical Properties Tomography) is a technique for imaging/estimating
the electrical properties of tissues based on MRI technology without the need for electrodes as are needed
for Electrical Impedance Tomography (EIT) or Magnetic Resonance EIT (MR-EIT). MR-EPT was
originally proposed by Katscher et al. [1, 2] in 2009 and a recent review of the technique has been offered
by Zhang et al. in [3].

MREPT is based on the fact that the RF B1 field, used for flipping the magnetic moments of the protons,
interacts with the body to be imaged in the scanner; as a result its magnitude and phase gets altered. With
appropriate MRI sequences this altered B1 field data can be gathered (in space, and within the body to be
imaged). Based on this data it is possible to reconstruct the distribution of electrical conductivity and
permittivity of the body being imaged. Obtaining maps of conductivity and permittivity has diagnostic
and clinical value.

MR-EPT applied to prostate imaging (cancer data, outcomes) — [references Ryan and Andrea].

2. METHODS

2.1 Inverse problem formulation

The general approach for conductivity imaging with MR-EPT is to obtain a phase image and/or B1 map
image of the RF field produced using specific pulse sequences. The data contained in the image is utilized
to estimate the conductivity distribution of the regions within the image. A number of methods have been
proposed for this manipulation: one approach requires second derivatives to be computed from the phase



data, but the method is prone to noise amplification; other approaches have included algorithms that lower
this requirement to first derivatives, thus reducing sensitivity to noise. ADD REFS!

This work presents an alternative method that solves the MR-EPT problem using an inverse problem
formulation that does not require differentiating the input image, as described by [4].

Paragraph from EIT 2014:

*The electrical conductivity 6 can be shown to be proportional to the Laplacian of the phase of the
transmit B1 field:

o(r) ~ oo Ad(H* (). M

The inverse is true as well: if 6(r) is known, the phase can be obtained by solving A¢p = wpao(r).
Using an iterative inverse formulation approach, the updated value of ¢ is given by 0y = 0 + 80 where

so= (T +aL™L) " (IT((H* (M) — ¢ + olTLo)). ()

Here J is the Jacobian of the conductivity to phase mapping, L is a regularization matrix, and o is a
regularization parameter used to stabilize the inversion.

We have implemented this inversion using two different regularization terms:

a) a quadratic/Laplacian approach and

b) a Total Variation functional approach [5,6]. A Primal Dual Interior Point Method optimization scheme

is used for the Total Variation approach, which produces images with sharper contrasts at boundaries.
%

TO ADD HERE!

2.2 Data acquisition

2.2.1. Phantoms

To validate the proposed approach experimentally a number of phantoms comprised of: gelatin and
saline, gelatin-gelatin, gelatin and a playdough inclusion, have been developed and imaged. The gelatin
used for the phantoms to be presented below is porcine gelatin (Sigma-Aldrich, 300 bloom). Saline
solution (deionized sterile water and table salt (NaCl) in various proportions has been used as a phantom
and also to vary the conductivity of gelatin, by adding it in the process of making the gelatin. When
desired, cupric sulphate (Sigma-Aldrich) was added for MR contrast. An electrical conductivity meter
(company?) has been used to measure the electrical conductivity of any solution used in the process of
making the phantom (i.e. before adding gelatin, for the gelatin phantom). A detailed description of the
composition and geometry of the phantoms used in the current study follows:

a) Gelatin and saline phantom (aka resolution phantom)



Smm 10mm  15Smm
S ke <€ >
— /4\\
o {( \
8S/m @) '\_/A \ /] M
N—_——”
()
~
5S/m O )i ) o
CRAWA )
\v/
- N\
~ [ [ —
3S/m QO 1\\/1 \.\ )
N——
~1.85/m

Figure 1. Gelatin and saline phantom: geometry description and phantom.

A block gelatin phantom (10% gelatin, 1% NaCl, ~55x125x75mm) was constructed with three rows of
circular wells with increasing diameters (5, 10, 15mm). The gelatin block was cured for 24 hours at 4°C.
Prior to imaging, each series of wells was filled with saline solutions with increasing conductivities (3, 5,
8 S/m, as measured with a conductivity meter in solution) (Figure 1). To visually differentiate easily
between the saline solutions filling each row of wells, within the magnitude MR images, different minute
amounts of cupric sulfate were added to the solutions.

b) Gelatin phantom with two regions

A gelatin phantom, with the geometry of a real prostate (~50mm in diameter) - a silicone mold created
from an actual prostate imaged geometry was used. The phantom was comprised of two regions of
different conductivities, as seen in Figure 2.
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Figure 2. Gelatin phantom with two regions

The mold was initially filled halfway with gelatin of one conductivity and after the gelatin set and cooled
(~1h at 4°C), the second gelatin solution was poured to fill the mold. The phantom was cured for 24 hours
at 4°C. To differentiate visually between the two conductivity regions, food coloring was added to each
saline solution. The solutions, before the addition of the gelatin, had a measured conductivity of 1.6 S/m
and 3.4 S/m, respectively for the pink/right region and blue/left region in Figure 2. Prior to imaging, the
phantom was submerged in a bath of deionized water, supported and kept in place by paper rings that
provided no interference to the MR signal and minimal ringshaped contact to the phantom.

c) Oneinclusion gelatin phantom



Figure 3. One inclusion gelatin phantom

A third phantom (Figure 3), prostate-shaped, with one 5mm inclusion (made of play dough, for
conductivity contrast) was constructed in a similar manner with the phantom described above. The saline,
colored with food coloring, used to make the gelatin, had a measured conductivity of 2S/m. The phantom
was cured for 24 hours at 4°C. Prior to imaging, the phantom was submerged in a bath of deionized water,
supported and kept in place by paper rings in a similar manner with what is shown in Figure 2.

NOTE: this phantom was scanned with 3mmx3mm(x3mm for the voxel) resolution. The previous have a
2x2x3pixel size! It was in the interest of reducing scan time in preparation for the prostate scans.

d) Two inclusions gelatin phantom

Two 5 mm diameter inclusions constructed from play dough to provide significant conductivity contrast,
were embedded in a gelatin prostate with a conductivity of approximately 2 S/m, in a similar fashion as

described for phantom c), and shown in Figure 3.

NOTE: voxel is 2 mm x 2 mm X 3mm
NEED PHOTO?

e) Meat phantom

The phantom was an actual block of pork meat (approximately 70x70x50mm), as seen in with Figure 4,
immersed in deionized water prior to being imaged. The goal of reconstructing this phantom was to
accurately differentiate between the muscle fibers and fat (a layer of variable thickness on the top region).

NOTE: this phantom was scanned with 3mmx3mm(x3mm for the voxel) resolution.

Figure 4. Meat phantom.



2.2.2. Ex-vivo prostate

An approved IRB protocol for imaging excised prostate tissue was obtained and a number of male
subjects consented to participate in this study. An ex-vivo prostate was imaged within an hour from
excision, in order to be ready for the subsequent pathology analysis. Upon receiving it, the prostate was
placed in an acrylic tub filled with deionized water (low conductivity) and supported in place by paper
cylinders (as shown in Figure 2).

Candidates: P108 (big tumor, one MREPT image that looks promising), P111, P110.

To ask Aditya: age of the specimen.

Do we mention the type of cancer?

2.2.3. Imaging Protocol

QUESTIONS: Use the SE scans for all? For phantom c¢) — we have a TSE scan, but have data for similar
phantoms SE.

Different pixel size?

Do I describe this as a process to get to the best imaging sequence, as it was historically done, or do I use
the best sequence we have? Might need to redo some phantoms...

The phase data necessary to reconstruct the conductivity is collected on Philips Achieva 3T scanner,
using a Spin Echo (SE) multi-slice sequence (TR=800, TE=20) with a flip angle of 90°.

We try to acquire 16 signal averages (NSA=16) in both cases in the interest of achieving a high SNR.
However if the scan duration is too long (>1h), especially in the TSE sequence case, we reduce the signal
averages (NSA=8). The data is acquired with a flex coil (one transmit, one receive channel); no
endorectal coil is used clinically at DHMC. In all scans, for the ease of comparison with subsequent
clinical data, we use a patient position used for MR scans of the prostate: head-first supine, with
‘transverse’ slices (from seminal vesicles to the apex of the prostate) (fold-over direction AP, fat shift
direction L). The current preferred voxel size is 2x2x3mm (a 3mm imaging slice thickness is clinically
used). The corresponding reconstructed voxel size is 1.63x1.63x3mm. The field of view (FOV) and
number of slices influence the scan duration as well. For example for the Gelatin phantom with two
regions (phantom b), with the above mentioned parameters, a stack of 25 slices and a FOV of
130x130x75mm lead to a total scan duration of 1:00:16 for the TSE sequence and 27:48.8 for the SE
sequence. Although the TSE tends to result in sharper contrasts in the reconstructed conductivity maps,
its duration makes it difficult to use for the future in vivo study, so the SE sequence will be used instead.

3. RESULTS

Do we show all recons or only 3D (laplacian and inverse, NO TV 3D?)?



4. CONCLUSIONS
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