Report Date (DD-MM-YYYY)

22 June 2015

Report Type

Briefing Charts

Dates Covered (From - To)

19 June 2015 – 22 June 2015

Title and Subtitle

Optimal Runge-Kutta Schemes for High-order Spatial and Temporal Discretizations

Author(s)

Mundis, N., Edoh, A. and Sankaran, V.

Performing Organization Name(s) and Address(es)

Air Force Research Laboratory (AFMC)

AFRL/RQR

5 Pollux Drive

Edwards AFB, CA 93524-7048

Performing Organization Report No.

AFRL-RQ-ED-VG-2015-268

Distribution / Availability Statement

Approved for public release; distribution unlimited

Supplementary Notes

For presentation at 22nd AIAA Computational Fluid Dynamics Conference; Dallas, TX; 22 June 2015

PA Case Number: #15352; Clearance Date: 6/29/2015

Abstract

Viewgraphs/Briefing Charts

Subject Terms

N/A

Security Classification of:

a. Report

Unclassified

b. Abstract

Unclassified
c. This Page

Unclassified

17. Limitation of Abstract

SAR

18. Number of Pages

29

19a. Name of Responsible Person

V. Sankaran

19b. Telephone No (Include Area Code)

N/A
Optimal Runge-Kutta Schemes for High-order Spatial and Temporal Discretizations

Nathan L. Mundis – ERC, Inc.
Ayaboe K. Edoh – UCLA
Venke Sankaran – AFRL/RQ
Outline

• Introduction
• Governing Equations
 – Spatial Discretizations
 – Temporal Discretizations
• Von Neumann Analysis (VNA)
• Computational Results
 – One-dimensional Wave
 – Three-dimensional Vortex
• Conclusions and Future Work
Introduction

- High-order in space is now commonplace
- High-order in time... not so much...
- Is this sufficient? Is high-order in time needed?

Limiting Fact: There are no A-stable backward-difference formula (BDF) methods with $> 2^{nd}$ -order accuracy

- Thus, multistage methods, like Runge-Kutta (RK) methods, must be used for 3^{rd}- and higher-order
- Explicit RK methods are not amenable to stiff problems

Objective: To find optimal diagonally-implicit Runge-Kutta time integrators for use with high-order spatial discretizations
Governing Equations

- **Dual Time Stepping:**

\[
\frac{\partial Q}{\partial \tau} + \frac{\partial Q}{\partial t} + \frac{\partial F_i}{\partial x_i} = \frac{\partial V_i}{\partial x_i} + H
\]

\[Q = \begin{bmatrix} \rho & \rho u_i & \rho e_0 \end{bmatrix}^T\]

\[F_i = \begin{bmatrix} \rho u_i & \rho u_i u_j + p \delta_{ij} & u_i \rho h_0 \end{bmatrix}^T \text{ where } h_0 = e_0 + \frac{\nu}{\rho}\]

- **Quasi-linear Form:**

\[
\frac{\partial Q}{\partial \tau} + \frac{\partial Q}{\partial t} + A \frac{\partial Q}{\partial x_i} = \frac{\partial V_i}{\partial x_i} + H
\]

\[A = \frac{\partial F_i}{\partial Q} = M \Lambda M^{-1}\]

\[\Lambda = \text{diag} \{ u_i + c, u_i, u_i - c \}\]

- **Residual Form:**

\[
\frac{\partial Q}{\partial \tau} + \frac{\partial Q}{\partial t} + R_s(Q) = 0 \quad \text{where} \quad R_s = \frac{\partial F_i}{\partial x_i} - \frac{\partial V_i}{\partial x_i} - H
\]
Spatial Discretizations

• Central Differences with added artificial dissipation

• Central differences:

\[
\frac{\partial \gamma_j}{\partial x_i}\bigg|_{II} = \frac{\gamma_{j+1} - \gamma_{j-1}}{2\Delta x_i}
\]

\[
\frac{\partial \gamma_j}{\partial x_i}\bigg|_{IV} = \frac{-\gamma_{j+2} + 8\gamma_{j+1} - 8\gamma_{j-1} + \gamma_{j-2}}{12\Delta x_i}
\]

\[
\frac{\partial \gamma_j}{\partial x_i}\bigg|_{VI} = \frac{\gamma_{j+3} - 9\gamma_{j+2} + 45\gamma_{j+1} - 45\gamma_{j-1} + 9\gamma_{j-2} - \gamma_{j-3}}{60\Delta x_i}
\]

where \(\gamma \) could be \(F_i \) or \(Q \) depending on the form of the equations

• Scalar artificial dissipation:

\[
R_s = \frac{\partial F_i}{\partial x_i} - \varepsilon_\eta \parallel \lambda \parallel \frac{\partial^\eta Q}{\partial x_i^\eta} - \frac{\partial V_i}{\partial x_i} - H
\]

where \(\eta \) is even and one more than the order of accuracy

\[
\parallel \lambda \parallel = |u_i| + c
\]

\[
\varepsilon_{II} = \frac{\Delta x_i}{2}, \quad \varepsilon_{IV} = -\frac{\Delta x_i^3}{12}, \quad \varepsilon_{VI} = \frac{\Delta x_i^5}{60}.
\]
Temporal Discretizations

- **Runge-Kutta Methods:**

<table>
<thead>
<tr>
<th>c_1</th>
<th>a_{11}</th>
<th>a_{12}</th>
<th>a_{13}</th>
<th>\ldots</th>
<th>$a_{1(s-1)}$</th>
<th>a_{1s}</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_2</td>
<td>a_{21}</td>
<td>a_{22}</td>
<td>a_{23}</td>
<td>\ldots</td>
<td>$a_{2(s-1)}$</td>
<td>a_{2s}</td>
</tr>
<tr>
<td>c_3</td>
<td>a_{31}</td>
<td>a_{32}</td>
<td>a_{33}</td>
<td>\ldots</td>
<td>$a_{3(s-1)}$</td>
<td>a_{3s}</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\ddots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>c_{s-1}</td>
<td>$a_{(s-1)1}$</td>
<td>$a_{(s-1)2}$</td>
<td>$a_{(s-1)3}$</td>
<td>\ldots</td>
<td>$a_{(s-1)(s-1)}$</td>
<td>$a_{(s-1)s}$</td>
</tr>
<tr>
<td>c_{s}</td>
<td>a_{s1}</td>
<td>a_{s2}</td>
<td>a_{s3}</td>
<td>\ldots</td>
<td>$a_{s(s-1)}$</td>
<td>a_{ss}</td>
</tr>
</tbody>
</table>

$$t^k = t^n + c_k \Delta t$$

$$Q^k = Q^n - \Delta t \sum_{j=1}^{s} a_{kj} R_j^s(Q^j) \quad k = 1, 2, \ldots, s$$

$$Q^{n+1} = Q^n - \Delta t \sum_{j=1}^{s} b_j R_j^s(Q^j)$$

$$\hat{Q}^{n+1} = Q^n - \Delta t \sum_{j=1}^{s} \hat{b}_j R_j^s(Q^j)$$

$$\epsilon^{n+1} = Q^{n+1} - \hat{Q}^{n+1}$$
ESDIRK Methods

- **Explicit first stage** **Singly-Diagonally Implicit Runge-Kutta**

 - Stiffly accurate
 - Second-order stage accuracy
 - FSAL – **First is the Same As Last**

\(c_1 = 0\)	0	0	0	...	0	0
\(c_2\)	\(a_{21}\)	\(\lambda\)	0	...	0	0
\(c_3\)	\(a_{31}\)	\(a_{32}\)	\(\lambda\)	...	0	0
\(\vdots\)	\(\vdots\)	\(\vdots\)	\(\vdots\)	...	\(\vdots\)	\(\vdots\)
\(c_{s-1}\)	\(a_{(s-1)1}\)	\(a_{(s-1)2}\)	\(a_{(s-1)3}\)	...	\(\lambda\)	0
\(c_s = 1\)	\(b_1\)	\(b_2\)	\(b_3\)	...	\(b_{s-1}\)	\(\lambda\)
\(\hat{c}_1\)	\(\hat{b}_1\)	\(\hat{b}_2\)	\(\hat{b}_3\)	...	\(\hat{b}_{s-1}\)	\(\hat{b}_s\)
Implicit, Third-order ESDIRK3

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1767732205903</td>
<td>1767732205903</td>
<td>1767732205903</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>4055673282236</td>
<td>4055673282236</td>
<td>4055673282236</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>640167445237</td>
<td>640167445237</td>
<td>640167445237</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>10658868560708</td>
<td>10658868560708</td>
<td>10658868560708</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>147126639579</td>
<td>147126639579</td>
<td>147126639579</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>7840856788654</td>
<td>7840856788654</td>
<td>7840856788654</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Implicit, Fourth-order ESDIRK4

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1767732205903</td>
<td>1767732205903</td>
<td>1767732205903</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>4055673282236</td>
<td>4055673282236</td>
<td>4055673282236</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>640167445237</td>
<td>640167445237</td>
<td>640167445237</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>10658868560708</td>
<td>10658868560708</td>
<td>10658868560708</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>147126639579</td>
<td>147126639579</td>
<td>147126639579</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>7840856788654</td>
<td>7840856788654</td>
<td>7840856788654</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Distribution A – Approved for public release; Distribution Unlimited
The single biggest drawback of using these schemes is typing them out!
Von Neumann Analysis

• Often used to study stability of schemes
• Von Neumann analysis is used to compare schemes for accuracy
 – Dissipation error
 – Dispersion error
• Assumes linear, periodic problems
• VNA theory and more results are in the associated paper
Dispersion, $CFL = 1.0$
Dissipation, \(CFL = 10.0 \)
Dispersion, \(\text{CFL} = 10.0\)
1-D Acoustic Wave

- **Unperturbed Mach number of 0.5**

\[
\rho_\infty = 8.7077 \times 10^{-1} \frac{kg}{m^3}
\]
\[
\rho u_\infty = 1.7458 \times 10^2 \frac{kg}{m^2 \cdot s}
\]
\[
T_\infty = 400K
\]
\[
R_\infty = 2.871 \times 10^2 \frac{J}{kg \cdot K}
\]
\[
\gamma = 1.4
\]

- **Perturbation wave - 20 points per wave resolution**

\[
Q_o = Q_\infty + M \delta \hat{Q}_{u,u \pm c}
\]
\[
\delta \hat{Q}_{u,u \pm c} = \delta \cdot \cos (kx)
\]

where \(\hat{\delta} = 0.01\)

- **More results in the paper**
1-D, \(CFL = 1.0 \), 10 Periods

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Dissipation Error</th>
<th>Dispersion Error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VNA</td>
<td>Simulation</td>
</tr>
<tr>
<td>Crank-Nicolson</td>
<td>(3.05 \times 10^{-3})</td>
<td>(1.00 \times 10^{-2})</td>
</tr>
<tr>
<td>ESDIRK3</td>
<td>(5.02 \times 10^{-2})</td>
<td>(5.02 \times 10^{-2})</td>
</tr>
<tr>
<td>ESDIRK4</td>
<td>(3.13 \times 10^{-3})</td>
<td>(3.13 \times 10^{-3})</td>
</tr>
<tr>
<td>ESDIRK5</td>
<td>(3.14 \times 10^{-3})</td>
<td>(3.14 \times 10^{-3})</td>
</tr>
</tbody>
</table>

Diagram 1: Graph showing the amplitude of the u-c characteristic variable at different x-coordinates for various schemes.

Diagram 2: Graph showing the absolute error in the u-c characteristic variable (log scale) at different x-coordinates for various schemes.
1-D, \(\text{CFL} = 10.0 \), 1 Period

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Dissipation Error</th>
<th>Dispersion Error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VNA</td>
<td>Simulation</td>
</tr>
<tr>
<td>Crank-Nicolson</td>
<td>(9.02 \times 10^{-5})</td>
<td>(2.44 \times 10^{-3})</td>
</tr>
<tr>
<td>ESDIRK3</td>
<td>(4.99 \times 10^{-1})</td>
<td>(4.90 \times 10^{-1})</td>
</tr>
<tr>
<td>ESDIRK4</td>
<td>(7.22 \times 10^{-3})</td>
<td>(7.25 \times 10^{-3})</td>
</tr>
<tr>
<td>ESDIRK5</td>
<td>(5.10 \times 10^{-2})</td>
<td>(5.46 \times 10^{-2})</td>
</tr>
</tbody>
</table>
1-D, $CFL = 1.0$, 1000 Periods

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Dissipation Error</th>
<th></th>
<th>Dispersion Error</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VNA</td>
<td>Simulation</td>
<td>VNA</td>
<td>Simulation</td>
</tr>
<tr>
<td>Crank-Nicolson</td>
<td>2.63×10^{-1}</td>
<td>2.65×10^{-1}</td>
<td>8.11×10^{-1}</td>
<td>8.10×10^{-1}</td>
</tr>
<tr>
<td>ESDIRK3</td>
<td>9.94×10^{-1}</td>
<td>9.94×10^{-1}</td>
<td>1.51×10^{-1}</td>
<td>1.00×10^{-1}</td>
</tr>
<tr>
<td>ESDIRK4</td>
<td>2.69×10^{-1}</td>
<td>1.95×10^{-1}</td>
<td>1.50×10^{-2}</td>
<td>3.00×10^{-2}</td>
</tr>
<tr>
<td>ESDIRK5</td>
<td>2.70×10^{-1}</td>
<td>2.01×10^{-1}</td>
<td>6.78×10^{-3}</td>
<td>2.50×10^{-2}</td>
</tr>
</tbody>
</table>

![Graphs showing dissipation and dispersion errors for different schemes](image-url)
3-D Isentropic Vortex

- **Free-stream Mach number of 0.5**

\[
\rho_\infty = 1.0 \frac{kg}{m^3}, \quad \rho u_\infty = 200.0 \frac{kg}{m^2.s}, \quad \rho v_\infty = 0.0 \frac{kg}{m^2.s}, \quad \rho w_\infty = 0.0 \frac{kg}{m^2.s}, \quad \rho \epsilon_0,\infty = 305714.3 \frac{kg}{m^2.s^2}
\]

\[
R_\infty = 287.11 \frac{J}{kg.K} \text{ and } \gamma = 1.4
\]

- **Perturbation - 11 points across the vortex**

\[
\delta u = -\sqrt{R_\infty T_\infty} \frac{\alpha}{2\pi} (y - y_0) e^{\phi(1-r^2)}
\]

\[
\delta v = \sqrt{R_\infty T_\infty} \frac{\alpha}{2\pi} (x - x_0) e^{\phi(1-r^2)}
\]

\[
\delta T = T_\infty \frac{\alpha^2 (\gamma - 1)}{16\phi\gamma\pi^2} e^{2\phi(1-r^2)}
\]

\[
\alpha = 4 \text{ and } \phi = 1
\]

Vortex center: \((x_0, y_0)\)

\[
r = \sqrt{(x - x_0)^2 + (y - y_0)^2}
\]

- **More results in the paper**
3-D, $CFL = 1.0$, 40 Lengths, 11 Points Across the Vortex
3-D, $CFL = 1.0$

Different Resolutions
3-D, \(CFL = 8.0 \), 40 Lengths, 11 Points Across the Vortex

![Graph showing density vs. x-coordinate with markers and lines labeled as Exact Solution, CN2-CL, CN2-MAX, ESDIRK3-CL, ESDIRK4-CL, ESDIRK5-CL with an annotation indicating almost 1 vortex width down.}
Sneak Peak: Filtering

11 points across the vortex

$CFL = 1.0$

80 vortex widths convection
Conclusions

- **2nd- and 3rd-order time integrators for 5th-order spatial schemes are inadequate**
 - The same order of spatial and temporal discretizations is preferable
 - However, ESDIRK5 is not much better than ESDIRK4
 - 7 implicit stages vs. 5 implicit stages

- **Higher-order time integrators:**
 - Do not show significant improvement on coarse grids at CFL of one
 - Are better at high CFL number
 - Are better on highly refined grids

- **Spatial error usually dominates for typical CFL numbers and grid resolutions**
 - Central difference plus artificial dissipation schemes are inadequate
Future Work

• Implement more accurate spatial schemes of the same orders of accuracy
 – Compact-difference schemes
 – Filtering schemes

• Derive better ESDIRK schemes tailored to the desired dissipation and dispersion properties

• Add preconditioning to take maximum advantage of the ESDIRK time integrators for stiff problems
 – Improved convergence efficiency
 – Improved solution accuracy
3-D, $CFL = 8.0$

Different Resolutions