1. REPORT DATE (DD-MM-YYYY)
22 June 2015

2. REPORT TYPE
Briefing Charts

3. DATES COVERED (From - To)
19 June 2015 – 22 June 2015

4. TITLE AND SUBTITLE
Optimal Runge-Kutta Schemes for High-order Spatial and Temporal Discretizations

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER
Q12J

6. AUTHOR(S)
Mundis, N., Edoh, A. and Sankaran, V.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory (AFMC)
AFRL/RQR
5 Pollux Drive
Edwards AFB, CA 93524-7048

8. PERFORMING ORGANIZATION REPORT NO.

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory (AFMC)
AFRL/RQR
5 Pollux Drive
Edwards AFB, CA 93524-7048

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)
AFRL-RQ-ED-VG-2015-268

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
For presentation at 22nd AIAA Computational Fluid Dynamics Conference; Dallas, TX; 22 June 2015
PA Case Number: #15352; Clearance Date: 6/29/2015

14. ABSTRACT
Viewgraphs/Briefing Charts

15. SUBJECT TERMS
N/A

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
<td>Unclassified</td>
<td>Unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
SAR

18. NUMBER OF PAGES
29

19a. NAME OF RESPONSIBLE PERSON
V. Sankaran

19b. TELEPHONE NO (include area code)
N/A
Optimal Runge-Kutta Schemes for High-order Spatial and Temporal Discretizations

Nathan L. Mundis – ERC, Inc.
Ayaboe K. Edoh – UCLA
Venke Sankaran – AFRL/RQ

2015 AIAA SciTech
June 23, 2015
Outline

• Introduction

• Governing Equations
 – Spatial Discretizations
 – Temporal Discretizations

• Von Neumann Analysis (VNA)

• Computational Results
 – One-dimensional Wave
 – Three-dimensional Vortex

• Conclusions and Future Work
Introduction

• High-order in space is now commonplace
• High-order in time… not so much…
• Is this sufficient? Is high-order in time needed?
• **Limiting Fact:** There are no A-stable backward-difference formula (BDF) methods with $> 2^{nd}$-order accuracy
• Thus, multistage methods, like Runge-Kutta (RK) methods, must be used for 3^{rd}- and higher-order
• Explicit RK methods are not amenable to stiff problems

Objective: To find optimal diagonally-implicit Runge-Kutta time integrators for use with high-order spatial discretizations
Governing Equations

• Dual Time Stepping:

\[
\frac{\partial Q}{\partial \tau} + \frac{\partial Q}{\partial t} + \frac{\partial F_i}{\partial x_i} = \frac{\partial V_i}{\partial x_i} + H
\]

\[
Q = [\rho \quad \rho u_i \quad \rho e_0]^T
\]

\[
F_i = [\rho u_i \quad \rho u_i u_j + p \delta_{ij} \quad u_i \rho h_0]^T \text{ where } h_0 = e_0 + \frac{p}{\rho}
\]

• Quasi-linear Form:

\[
\frac{\partial Q}{\partial \tau} + \frac{\partial Q}{\partial t} + A \frac{\partial Q}{\partial x_i} = \frac{\partial V_i}{\partial x_i} + H
\]

\[
A = \frac{\partial F_i}{\partial Q} = \mathbf{MAM}^{-1}
\]

\[
\Lambda = \text{diag} \{u_i + c, u_i, u_i - c\}
\]

• Residual Form:

\[
\frac{\partial Q}{\partial \tau} + \frac{\partial Q}{\partial t} + R_s (Q) = 0 \text{ where } R_s = \frac{\partial F_i}{\partial x_i} - \frac{\partial V_i}{\partial x_i} - H
\]
Spatial Discretizations

- Central Differences with added artificial dissipation

- Central differences:

\[
\frac{\partial \gamma_j}{\partial x_i} = \frac{\gamma_{j+1} - \gamma_{j-1}}{2 \Delta x_i}
\]

\[
\frac{\partial \gamma_j}{\partial x_i} = \frac{-\gamma_{j+2} + 8\gamma_{j+1} - 8\gamma_{j-1} + \gamma_{j-2}}{12 \Delta x_i}
\]

\[
\frac{\partial \gamma_j}{\partial x_i} = \frac{\gamma_{j+3} - 9\gamma_{j+2} + 45\gamma_{j+1} - 45\gamma_{j-1} + 9\gamma_{j-2} - \gamma_{j-3}}{60 \Delta x_i}
\]

where \(\gamma \) could be \(F_i \) or \(Q \) depending on the form of the equations.

- Scalar artificial dissipation:

\[
R_s = \frac{\partial F_i}{\partial x_i} - \varepsilon_\eta \| \lambda \| \frac{\partial^\eta Q}{\partial x_i^\eta} - \frac{\partial V_i}{\partial x_i} - H
\]

where \(\eta \) is even and one more than the order of accuracy

\[
\| \lambda \| = |u_i| + c \quad \varepsilon_{II} = \frac{\Delta x_i}{2}, \quad \varepsilon_{IV} = -\frac{\Delta x_i^3}{12}, \quad \varepsilon_{VI} = \frac{\Delta x_i^5}{60}.
\]
Temporal Discretizations

- **Runge-Kutta Methods:**

<table>
<thead>
<tr>
<th>c_1</th>
<th>a_{11}</th>
<th>a_{12}</th>
<th>a_{13}</th>
<th>\ldots</th>
<th>$a_{1(s-1)}$</th>
<th>a_{1s}</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_2</td>
<td>a_{21}</td>
<td>a_{22}</td>
<td>a_{23}</td>
<td>\ldots</td>
<td>$a_{2(s-1)}$</td>
<td>a_{2s}</td>
</tr>
<tr>
<td>c_3</td>
<td>a_{31}</td>
<td>a_{32}</td>
<td>a_{33}</td>
<td>\ldots</td>
<td>$a_{3(s-1)}$</td>
<td>a_{3s}</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>c_{s-1}</td>
<td>$a_{(s-1)1}$</td>
<td>$a_{(s-1)2}$</td>
<td>$a_{(s-1)3}$</td>
<td>\ldots</td>
<td>$a_{(s-1)(s-1)}$</td>
<td>$a_{(s-1)s}$</td>
</tr>
<tr>
<td>c_s</td>
<td>a_{s1}</td>
<td>a_{s2}</td>
<td>a_{s3}</td>
<td>\ldots</td>
<td>$a_{s(s-1)}$</td>
<td>a_{ss}</td>
</tr>
</tbody>
</table>
| \hline
| b_1 | b_2 | b_3 | \ldots | b_{s-1} | b_s |
| \hat{b}_1 | \hat{b}_2 | \hat{b}_3 | \ldots | \hat{b}_{s-1} | \hat{b}_s |

\[
t^k = t^n + c_k \Delta t \quad \quad Q^k = Q^n - \Delta t \sum_{j=1}^{s} a_{k,j} R_s^j(Q^j) \quad k = 1, 2, \ldots, s
\]

\[
Q^{n+1} = Q^n - \Delta t \sum_{j=1}^{s} b_j R_s^j(Q^j) \quad \quad \hat{Q}^{n+1} = Q^n - \Delta t \sum_{j=1}^{s} \hat{b}_j R_s^j(Q^j)
\]

\[
\epsilon^{n+1} = Q^{n+1} - \hat{Q}^{n+1}
\]
ESDIRK Methods

- **Explicit first stage** **Singly-Diagonally Implicit Runge-Kutta**
 - Stiffly accurate
 - Second-order stage accuracy
 - FSAL – *First is the Same As Last*

<table>
<thead>
<tr>
<th></th>
<th>(c_1 = 0)</th>
<th>(0)</th>
<th>(0)</th>
<th>(0)</th>
<th>(\cdots)</th>
<th>(0)</th>
<th>(0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_2)</td>
<td>(a_{21})</td>
<td>(\lambda)</td>
<td>(0)</td>
<td>(\cdots)</td>
<td>(0)</td>
<td>(0)</td>
<td></td>
</tr>
<tr>
<td>(c_3)</td>
<td>(a_{31})</td>
<td>(a_{32})</td>
<td>(\lambda)</td>
<td>(\cdots)</td>
<td>(0)</td>
<td>(0)</td>
<td></td>
</tr>
<tr>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td></td>
</tr>
<tr>
<td>(c_{s-1})</td>
<td>(a_{(s-1)1})</td>
<td>(a_{(s-1)2})</td>
<td>(a_{(s-1)3})</td>
<td>(\cdots)</td>
<td>(\lambda)</td>
<td>(0)</td>
<td></td>
</tr>
<tr>
<td>(c_s = 1)</td>
<td>(b_1)</td>
<td>(b_2)</td>
<td>(b_3)</td>
<td>(\cdots)</td>
<td>(b_{s-1})</td>
<td>(\lambda)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b_1)</td>
<td>(\hat{b}_2)</td>
<td>(\hat{b}_3)</td>
<td>(\cdots)</td>
<td>(\hat{b}_{s-1})</td>
<td>(\hat{b}_s)</td>
<td></td>
</tr>
</tbody>
</table>
ESDIRK3 and 4

Implicit, Third-order ESDIRK3

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1767732205903</td>
<td>1767732205903</td>
<td>1767732205903</td>
<td>1767732205903</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>2746238789719</td>
<td>640167445237</td>
<td>1767732205903</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>10658868560708</td>
<td>6845629431997</td>
<td>4055673282236</td>
<td>1767732205903</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1471266399579</td>
<td>4482444167858</td>
<td>11266239266428</td>
<td>1767732205903</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>7840856788654</td>
<td>7529755066697</td>
<td>11593286722821</td>
<td>4055673282236</td>
<td>1767732205903</td>
<td>0</td>
</tr>
</tbody>
</table>

Implicit, Fourth-order ESDIRK4

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1/2</td>
<td>1/4</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>8611</td>
<td>62500</td>
<td>31250</td>
<td>1743</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>5012029</td>
<td>34652500</td>
<td>2922500</td>
<td>388108</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>15267082809</td>
<td>155376265000</td>
<td>71443401</td>
<td>730878875</td>
<td>2285395</td>
<td>4</td>
</tr>
<tr>
<td>17</td>
<td>120774400</td>
<td>902184768</td>
<td>8070912</td>
<td>15625</td>
<td>69875</td>
<td>2260</td>
</tr>
<tr>
<td>20</td>
<td>82889</td>
<td>524892</td>
<td>0</td>
<td>83664</td>
<td>102672</td>
<td>8211</td>
</tr>
<tr>
<td>1</td>
<td>82889</td>
<td>524892</td>
<td>0</td>
<td>83664</td>
<td>102672</td>
<td>8211</td>
</tr>
</tbody>
</table>

Distribution A – Approved for public release; Distribution Unlimited
The single biggest drawback of using these schemes is typing them out!
Von Neumann Analysis

• Often used to study stability of schemes
• Von Neumann analysis is used to compare schemes for accuracy
 – Dissipation error
 – Dispersion error
• Assumes linear, periodic problems
• VNA theory and more results are in the associated paper
Dissipation, $CFL = 1.0$
Dispersion, $CFL = 1.0$
Dissipation, $CFL = 10.0$
Dispersion, $CFL = 10.0$
1-D Acoustic Wave

- Unperturbed Mach number of 0.5
 \[\rho_\infty = 8.7077 \times 10^{-1} \frac{kg}{m^3} \]
 \[\rho u_\infty = 1.7458 \times 10^2 \frac{kg}{m^2 \cdot s} \]
 \[T_\infty = 400K \]
 \[R_\infty = 2.871 \times 10^2 \frac{J}{kg \cdot K} \]
 \[\gamma = 1.4 \]

- Perturbation wave - 20 points per wave resolution
 \[Q_o = Q_\infty + M \delta Q_{u,u \pm c} \]
 \[\delta Q_{u,u \pm c} = \delta \cdot \cos(kx) \]
 where \(\delta = 0.01 \)

- More results in the paper
Dissipation Error

<table>
<thead>
<tr>
<th>Scheme</th>
<th>VNA</th>
<th>Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crank-N-colson</td>
<td>3.05×10^{-3}</td>
<td>1.00×10^{-2}</td>
</tr>
<tr>
<td>ESDIRK3</td>
<td>5.02×10^{-2}</td>
<td>5.02×10^{-2}</td>
</tr>
<tr>
<td>ESDIRK4</td>
<td>3.13×10^{-3}</td>
<td>3.13×10^{-3}</td>
</tr>
<tr>
<td>ESDIRK5</td>
<td>3.14×10^{-3}</td>
<td>3.14×10^{-3}</td>
</tr>
</tbody>
</table>

Dispersion Error

<table>
<thead>
<tr>
<th>Scheme</th>
<th>VNA</th>
<th>Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crank-N-colson</td>
<td>8.11×10^{-2}</td>
<td>8.11×10^{-2}</td>
</tr>
<tr>
<td>ESDIRK3</td>
<td>1.51×10^{-3}</td>
<td>1.53×10^{-3}</td>
</tr>
<tr>
<td>ESDIRK4</td>
<td>1.50×10^{-4}</td>
<td>1.58×10^{-4}</td>
</tr>
<tr>
<td>ESDIRK5</td>
<td>6.78×10^{-5}</td>
<td>6.90×10^{-5}</td>
</tr>
</tbody>
</table>
1-D, $CFL = 10.0$, 1 Period

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Dissipation Error</th>
<th>Dispersion Error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VNA</td>
<td>Simulation</td>
</tr>
<tr>
<td>Crank-Nicolson</td>
<td>9.02×10^{-5}</td>
<td>2.44×10^{-3}</td>
</tr>
<tr>
<td>ESDIRK3</td>
<td>4.99×10^{-1}</td>
<td>4.90×10^{-1}</td>
</tr>
<tr>
<td>ESDIRK4</td>
<td>7.22×10^{-3}</td>
<td>7.25×10^{-3}</td>
</tr>
<tr>
<td>ESDIRK5</td>
<td>5.10×10^{-2}</td>
<td>5.46×10^{-2}</td>
</tr>
</tbody>
</table>
1-D, $CFL = 1.0$, 1000 Periods

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Dissipation Error</th>
<th>Dispersion Error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VNA</td>
<td>Simulation</td>
</tr>
<tr>
<td>Crank-Nicolson</td>
<td>2.63×10^{-1}</td>
<td>2.65×10^{-1}</td>
</tr>
<tr>
<td>ESDIRK3</td>
<td>9.94×10^{-1}</td>
<td>9.94×10^{-1}</td>
</tr>
<tr>
<td>ESDIRK4</td>
<td>2.69×10^{-1}</td>
<td>1.95×10^{-1}</td>
</tr>
<tr>
<td>ESDIRK5</td>
<td>2.70×10^{-1}</td>
<td>2.01×10^{-1}</td>
</tr>
</tbody>
</table>

Diagram:

- **Left Diagram**: Amplitude of the u-c Characteristic Variable vs X-Coordinate.
- **Right Diagram**: Absolute Error in the u-c Characteristic Variable (log scale) vs X-Coordinate.

Distribution A – Approved for public release; Distribution Unlimited
3-D Isentropic Vortex

- **Free-stream Mach number of 0.5**
 \[
 \rho_\infty = 1.0 \frac{kg}{m^3}, \quad \rho u_\infty = 200.0 \frac{kg}{m^2 \cdot s}, \quad \rho v_\infty = 0.0 \frac{kg}{m^2 \cdot s}, \quad \rho w_\infty = 0.0 \frac{kg}{m^2 \cdot s}, \quad \rho e_0,\infty = 305714.3 \frac{kg}{m \cdot s^2}
 \]
 \[
 R_\infty = 287.11 \frac{J}{kg \cdot K} \text{ and } \gamma = 1.4
 \]

- **Perturbation - 11 points across the vortex**
 \[
 \delta u = -\sqrt{R_\infty T_\infty} \frac{\alpha}{2\pi} (y - y_0) e^{\phi (1 - r^2)}
 \]
 \[
 \delta v = \sqrt{R_\infty T_\infty} \frac{\alpha}{2\pi} (x - x_0) e^{\phi (1 - r^2)}
 \]
 \[
 \delta T = T_\infty \frac{\alpha^2 (\gamma - 1)}{16\phi \gamma \pi^2} e^{2\phi (1 - r^2)}
 \]
 \[\alpha = 4 \text{ and } \phi = 1\]
 \[][\text{Vortex center: } (x_0, y_0)]
 \[
 r = \sqrt{(x - x_0)^2 + (y - y_0)^2}
 \]

- **More results in the paper**
3-D, CFL = 1.0, 40 Lengths, 11 Points Across the Vortex
3-D, CFL = 1.0
Different Resolutions

![Graph showing 3-D CFL = 1.0 with different resolutions.](image)

Distribution A – Approved for public release; Distribution Unlimited
3-D, $CFL = 8.0$, 40 Lengths, 11 Points Across the Vortex.
Sneak Peak: Filtering

11 points across the vortex
\(CFL = 1.0\)
80 vortex widths convection
Conclusions

- *2nd- and 3rd-order time integrators for 5th-order spatial schemes are inadequate*
 - The same order of spatial and temporal discretizations is preferable
 - However, ESDIRK5 is not much better than ESDIRK4
 - 7 implicit stages vs. 5 implicit stages

- **Higher-order time integrators:**
 - Do not show significant improvement on coarse grids at CFL of one
 - Are better at high CFL number
 - Are better on highly refined grids

- **Spatial error usually dominates for typical CFL numbers and grid resolutions**
 - Central difference plus artificial dissipation schemes are inadequate
Future Work

• Implement more accurate spatial schemes of the same orders of accuracy
 – Compact-difference schemes
 – Filtering schemes

• Derive better ESDIRK schemes tailored to the desired dissipation and dispersion properties

• Add preconditioning to take maximum advantage of the ESDIRK time integrators for stiff problems
 – Improved convergence efficiency
 – Improved solution accuracy
Extra Slides
3-D, $CFL = 8.0$
Different Resolutions