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1. INTRODUCTION:  The subject of this research is the need for improved treatment of segmental bone
defects. The purpose of this study is to test the efficacy of thrombopoietin (TPO) to heal a segmental bone 
defect (SBD) in a large animal model, the minipig. The scope of the research comprises the following specific 
aims (i) to determine the union rate of tibial midshaft defects in minipigs treated with BMP-2, TPO, or saline 
control; and (ii) to evaluate the safety and side effects of treating tibial midshaft defects in minipigs treated with 
BMP-2, TPO, or saline control. 

2. KEYWORDS: Bone healing, bone morphogenetic protein (BMP), thrombopoietin (TPO), therapy, fracture
healing, bone regeneration, minipig, pig 

3. OVERALL PROJECT SUMMARY:

Task 1 and Milestone 1. Obtain Regulatory Approvals – Completed by Drs. Kacena, Chu, and Anglen (led 
by Dr. Kacena). Most recent amendment was approved 09/04/14 (ACURO).  

Task 2. Perform surgeries on minipigs and evaluate bone healing with xray.  

Task 2a. Fabricate Scaffolds –completed by Dr. Chu. 

Task 2b. Perform surgeries on minipigs – 27 minipig surgeries completed – surgeries performed by Drs. 
Anglen, Chu, and Cheng (plus other approved trainees and vet technicians). Drs. Chu and Anglen optimized 
the surgical protocol on cadaver minipigs and live pilot minipigs first, tested hardware on tibia curvature etc. 
Drs. Kacena and Chu ordered all required supplies/equipment/reagents/animals and confirmed schedule. Dr. 
Kacena has been responsible for management of personnel/trainees for post-operative animal care. The time, 
effort, and even drugs required (pain management) for post-operative management of minipigs has been 
substantially larger than was anticipated. The veterinarian was in charge or deciding our post-operative pain 
management protocol. These studies required significantly more time, effort, and budget than we anticipated. 
We obtained significant internal funding and cost shared significant effort to accomplish the surgeries and post-
operative care to date (we enlisted in the assistance of 6 medical students, 2 additional orthopaedic surgeons 
(Drs. Todd McKinley and Karl Shively), a graduate student, and a postdoctoral fellow (the latter has been 
averaging 60-90 hours/week since the surgeries have begun) in addition to our original team of 4 (Drs. Kacena, 
Chu, Anglen, and Cheng) and everyone is well over their anticipated % effort). We have not increased the 
salary associated with the effort or added salary for any of the additional personnel at this time, but for 
subsequent studies may need to reallocate funding. 

Task 2c. Perform radiographic assessments. X-rays have been obtained for the 27 minipigs. Completed by Drs. 
Anglen, Chu, and Cheng. 

Task 3. Determine the bone union rate of the minipigs after implant retrieval using uCT and histology. 

Task 3a. Retrieve tibiae from minipigs – completed for 27 minipigs by Drs.  
Chu and Cheng (and Dr. Kacena’s medical students, postdoctoral fellows as well as pathologists). 

Task 4. Determine the biomechanical properties of the newly formed callus. 

Task 4a. Retrieve samples – completed for 27 minipigs by Drs.  
Chu and Cheng (and Dr. Kacena’s medical students, postdoctoral fellows as well as pathologists). 

Task 4b. Perform torsion testing – completed for 27 minipigs by Dr. Chu. 

Task 5. Evaluate potential systemic side effects of TPO by studying the blood of the minipigs before and post-
surgery. 

Task 5a. Collect blood samples. We have completed the collection of the blood samples as per approved 
IACUC/ACURO protocols. Completed for 27 minipigs by Drs. Kacena and Cheng 
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Task 5b. Evaluate platelet numbers. Complete blood counts were completed on all blood samples, data has been 
collected and is being analyzed. It appears there is no specific trend/changes for any of the minipigs assessed. 
Completed for 27 minipigs by Drs. Kacena and Cheng 

The remaining tasks/milestones will be achieved in our final granting period. 

The surgical method is detailed in our IACUC/ACURO protocols. Briefly, Prior to surgery, x-rays of the 
right tibia will be collected to confirm skeletal maturity (epiphyses are closed). Also prior to surgery, PPF/TCP 
scaffolds of 17 mm in the outer diameter, 10 mm in the inner diameter, and 25 mm in height will be fabricated 
using the casting method described in our previous publication. (Chu et al 2007)  As a carrier for saline, BMP-2, 
or TPO we have chosen to use an FDA approved type  bovine collagen sponge (Helistat, 7.5 cm x 10.0 cm x 
5.0 mm, ½ of a sponge will be used for each pig or 7.5 cm X 5.0 cm X 5.0 mm). Collagen sponges will be 
treated with BMP-2, TPO, or saline and allowed to sit for 15 minutes prior to implantation.  

The animals will be induced and maintained under sodium thiopental and fentanyl dihydrogencitrate for 
the duration of the procedure. First, a subcutaneous implantable port system will be inserted into each minipig 
to provide better access for later blood sampling and injections. The animals will be properly draped and 
surgical site will be prepared using sterile technique. The right hind-limb will be prepared with betadine. A 10 
cm incision will be made in the proximal diaphysis of the tibia using an anteromedial approach. The exposure 
will be carried down between the tibia and the TA muscle and the tibia will be circumferentially exposed 
through muscle elevation. The tibia will be marked for length and orientation to ensure rotational accuracy. 
Two parallel, transverse osteotomies will be made 25 mm apart with a reciprocating saw (Stryker, Kalamazoo, 
MI).  The resulting free segment of bone will be removed, creating a critical-size defect. The scaffold will be 
placed into the segmental defect.  The scaffold will be circumferentially surrounded by a type  collagen sponge 
soaked with BMP-2, TPO, or saline control and the joined ends will be secured with Vicyrl suture. The 
intramedullary (IM) nail will be inserted through the proximal incision.  The IM nail will be inserted in an 
antegrade fashion from the proximal bone fragment, through the central canal of the scaffold, terminating in the 
distal bone fragment, ensuring tight apposition between the cut bone ends and the scaffold.  The IM nail will 
then be locked with 2 locking screws proximal and 2 locking screws distal to the segmental defect. The fascia 
and subcuticular layer will be closed with Vicryl suture. Vicryl suture will be used for skin closure. From our 
preliminary minipig study, we have not observed deformation of locking screws but have needed to tighten the 
screws. A fixed defect size is critical to the validity of our study and we will be cognizant during monthly x-
rays to look for deformation of the nail and the need to tighten or replace screws. Thus far our surgical 
technique and hardware maintain defect size without mechanical failure.   

Amoxicilline, benzylpenicillin and clavulanate will be given 24 hrs prior to the surgery and daily for  3 
days after the surgery as prophylactic antibiotics; the animals will be monitored postoperatively and given 
analgesic drugs such as dexmedetomidine, buprenorphine, hydromorphine, and ketamine for three postoperative 
days at which time tramadol will then be given for up to 4 weeks based on veterinarian recommendations. 
Anterioposterior and lateral radiographs of both tibiae will be taken during the acclimation period before 
implanation to serve as controls as a standard for normal tibia mineralization (Toshiba Infinix VC with Vitrea 2 
work station) and to exclude animals with pre-existing bone pathology.  

4. KEY RESEARCH ACCOMPLISHMENTS: We recently completed surgeries and tissue collection from
all 27 minipigs. 8 = saline control, 8 = 1.5mg BMP-2, 8 = 1.5 mg TPO, 3= 7.5 mg TPO. As the sample size was 
low in the high dose TPO group and there were complications observed with a pig in that group below we focus 
on data from the 3 groups with the higher sample sizes. 

Figure 1 demonstrates the key methods. 
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Figure 2 shows the key x-ray findings.   

Figure 3 shows the biomechanical data.  

Figure 3. Both operated tibia and contralateral un-operated tibia were 
retrieved at sacrifice and were subjected to non-destructive torsional test 
using a digital torque gauge. All operated tibia in the BMP group healed 
and demonstrated a torsional stiffness of 114 ± 15% of the contralateral 
tibia. Four out of eight tibia in the 1.5 mg TPO group healed and showed 
a torsional stiffness of 100 ± 12% of the contralateral tibia. Another four 
tibia in the 1.5 mg TPO group did not heal. None of the tibia in the saline 
group healed. There were no statistical significant differences between 
the BMP and the healed TPO group (p >0.05). These two groups are 
statistically significantly higher than the unhealed TPO and the saline 
groups.  Due to retrieval issues and/or hardware/technical failures we 
unfortunately lost 3 of the saline specimens (experimental limb or 
contralateral limb), and thus only have n=5 rather than n=8 for the 
torsional stiffness data. 

Figure 4 shows the key platelet data. 

B

Figure 4. Blood was collected from the 
minipigs prior to surgery (baseline) as 
well as 1 week, 2 weeks, 1 month, 2 
months, 3 months, 4 months, 5 months, 
and 6 months post-surgery . A complete 
blood count was completed on all blood 
samples. Platelet concentrations are 
reported as the mean ± standard 
deviation. Platelet concentrations were 
significantly elevated in all minipigs 1 
week after surgery (compared to 
respective baseline samples, p<0.001). 
No differences were observed in platelet 
concentrations between minipigs treated 
with saline or TPO. However, using a 2-
way anova we determined that platelet 
concentrations were significantly 
reduced in BMP-2 treated minipigs 
compared to that observed in saline 
treated controls (p<0.001). 
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5. CONCLUSIONS: 
• All eight of the saline control treated animals failed to demonstrate healing across the induced tibial

defect.
• All eight of the BMP-2 treated animals showed healing across the induced tibial defect and had a

torsional stiffness of 114±15% of the contralateral tibia.
• Four of the eight TPO treated animals showed healing across the tibial defect and had a torsional

stiffness of 100±12% of the contralateral tibia.
• No adverse effects from TPO treatment have been identified from blood measurements, organ

pathology, or veterinary inspection.
• Healed tibiae had torsional stiffness values which were not statistically different from their

contralateral counterparts.
• While healing with TPO is better than that observed with saline, TPO did fail in 4 of 8 of our pigs.

Based on our 4 healed tibia and our previous mouse/rat data, TPO morphologically appears to promote
robust bone growth by direct bone healing, which takes longer to accomplish than BMP-2. Thus, if our
fixation fails before our healing process is allowed to occur (which appears to have been the problem in
the 4 tibiae that failed to heal), we cannot properly assess the value of TPO as a bone healing therapy.
To better investigate this we have recommended completion of one more group of pigs with a different
fixation strategy (more rigid fixation). As we secured internal funding to assist with defraying our
expenses to date as well our revising our protocol to euthanize the pigs earlier than the original 1 year
time point, we would have sufficient funds to complete this testing. Dr. Todd McKinley discussed this
with Dr. Yadav in person at the August meeting in Florida.

• Platelet concentrations were significantly elevated in all minipigs 1 week after surgery (compared to
respective baseline samples, p<0.001).

• Platelet concentrations were significantly reduced in BMP-2 treated minipigs compared to that observed
in saline treated controls (p<0.001).

• TPO treatment did not result in a significant systemic increase in platelet concentration as significant
differences were not observed in platelet concentrations between minipigs treated with saline or TPO. 

Future plans: Complete uCT and histological analysis of tibias. Complete blood analyses. Develop new 
fixation strategy and test it. Finalize transition of co-PI from Dr. Jeffrey Anglen to Dr. Todd McKinley due to 
Dr. Anglen having left our institution. 

6. PUBLICATIONS, ABSTRACTS, AND PRESENTATIONS:
a. Manuscripts submitted for publication during award period
1. Lay Press: N/A
2. Peer-Reviewed Scientific Journal:

1.) Davis KM, Griffin KS, Chu T-MG, Wenke JC, Corona BT, McKinley TO, Kacena MA. Muscle-bone
interactions during fracture healing. J Musculoskelet Neuronal Interact, 15:1-9, 2015.  

3. Invited Articles:
1.) Jewell E, Rytlewski J, Anglen JO, McKinley TO, Shively KD, Chu T-MG, Kacena MA. Surgical

Fixation Hardware for Regeneration of Long Bone Segmental Defects: Translating Large Animal Model 
and Human Experiences. Clinical Reviews in Bone and Mineral Metabolism, in press. 

2.) Griffin KS, Davis KM, McKinley TO, Anglen JO, Chu T-MG, Boerckel JD, Kacena MA. Evolution of 
bone grafting: Bone grafts and tissue engineering strategies for vascularized bone regeneration. Clinical 
Reviews in Bone and Mineral Metabolism, in press.  

4. Abstracts:
1.) Rytlewski J, Childress P, Cheng Y, Anglen JO, Shively KD, McKinley TO, Chu T-MG, Kacena MA.

Safety and efficacy of thrombopoietin as a novel bone healing agent in a large animal model. SRPinAM 
Research Day, 2015.  

b. Presentations made during the last year:
1.) Rytlewski J, Childress P, Cheng Y, Anglen JO, Shively KD, McKinley TO, Chu T-MG, Kacena MA. 

Safety and efficacy of thrombopoietin as a novel bone healing agent in a large animal model. SRPinAM 
Research Day, 2015.  

7. INVENTIONS, PATENTS AND LICENSES: Nothing to report. 
8. REPORTABLE OUTCOMES: Nothing to report.



9. OTHER ACHIEVEMENTS:

Based in part on work supported by this award we have applied for several grant opportunities. From the Center 
for the Advancement of Science in Space (CASIS) we obtained funding for spaceflight ground testing “NASA 
Ames Grounds Testing – Rodent Research-4” ($91,370). To further explore the role of TPO in stimulating 
angiogenesis during the bone healing process we obtained a grant from the Indiana Clinical and Translational 
Institute “Delivery of Recombinant Human Thrombopoietin for Large Bone Defect Regeneration” ($27,951) 

10. REFERENCES:
1.) Chu TM, Warden SJ, Turner CH, Stewart RL. Segmental bone regeneration using a load-bearing 

biodegradable carrier of bone morphogenetic protein-2. Biomaterials. 2007;28(3):459-467. 
2.) Davis KM, Griffin KS, Chu T-MG, Wenke JC, Corona BT, McKinley TO, Kacena MA. Muscle-bone 

interactions during fracture healing. J Musculoskelet Neuronal Interact, 15:1-9, 2015. 
3.) Jewell E, Rytlewski J, Anglen JO, McKinley TO, Shively KD, Chu T-MG, Kacena MA. Surgical 

Fixation Hardware for Regeneration of Long Bone Segmental Defects: Translating Large Animal Model 
and Human Experiences. Clinical Reviews in Bone and Mineral Metabolism, in press. 

4.) Griffin KS, Davis KM, McKinley TO, Anglen JO, Chu T-MG, Boerckel JD, Kacena MA. Evolution of 
bone grafting: Bone grafts and tissue engineering strategies for vascularized bone regeneration. Clinical 
Reviews in Bone and Mineral Metabolism, in press. 

11. APPENDICES:
We will include the final accepted version of the manuscript in next year’s report from references 3&4 above as 
revisions are still forth coming. 

Note, updated Quad chart is submitted as an attachment as directed in the instructions. 

Full publication related to scaffold creation (Chu et al 2007). Full publication related to muscle-bone 
interactions during fracture healing (Davis et al, 2015).  
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Abstract

Segmental defect regeneration has been a clinical challenge. Current tissue-engineering approach using porous biodegradable scaffolds

to delivery osteogenic cells and growth factors demonstrated success in facilitating bone regeneration in these cases. However, due to the

lack of mechanical property, the porous scaffolds were evaluated in non-load bearing area or were stabilized with stress-shielding devices

(bone plate or external fixation). In this paper, we tested a scaffold that does not require a bone plate because it has sufficient

biomechanical strength. The tube-shaped scaffolds were manufactured from poly(propylene) fumarate/tricalcium phosphate (PPF/TCP)

composites. Dicalcium phosphate dehydrate (DCPD) were used as bone morphogenetic protein-2 (BMP-2) carrier. Twenty-two scaffolds

were implanted in 5mm segmental defects in rat femurs stabilized with K-wire for 6 and 15 weeks with and without 10 mg of rhBMP-2.

Bridging of the segmental defect was evaluated first radiographically and was confirmed by histology and micro-computer tomography

(mCT) imaging. The scaffolds in the BMP group maintained the bone length throughout the duration of the study and allow for bridging.

The scaffolds in the control group failed to induce bridging and collapsed at 15 weeks. Peripheral computed tomography (pQCT) showed

that BMP-2 does not increase the bone mineral density in the callus. Finally, the scaffold in BMP group was found to restore the

mechanical property of the rat femur after 15 weeks. Our results demonstrated that the load-bearing BMP-2 scaffold can maintain bone

length and allow successfully regeneration in segmental defects.

r 2006 Elsevier Ltd. All rights reserved.

Keywords: Bone morphogenetic protein (BMP); Bone regeneration; Calcium phosphate cement; Bone tissue engineering; Free form fabrication
1. Introduction

Segmental bone defects resulting from trauma or pathol-
ogy represent a common and significant clinical problem.
Limb amputation was historically the principal treatment
option for these defects as they typically do not heal
spontaneously [1]. With advances in medicine and science,
alternative treatment options have developed such as the use
of bone-grafting techniques. Autologous bone grafts are
preferred as they possess inherent osteoconductivity, osteo-
e front matter r 2006 Elsevier Ltd. All rights reserved.
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genicity and osteoinductivity. However, there is often
limited supply of suitable bone for autologous grafting,
and its collection is frequently associated with donor-site
morbidity. An alternative is to use allogeneic bone grafts
from donors or cadavers. These circumvent some of the
limitations associated with harvesting autologous grafts, but
allogeneic bone grafts lack osteogenicity, have limited
osteoinductivity and present a risk of disease transmission.
These limitations necessitate the pursuit of alternatives for
the management of segmental bone defects, with the latest
approach being to use tissue-engineering techniques.
Tissue engineering for bone typically involves coupling

osteogenic cells and/or osteoinductive growth factors with
osteoconductive scaffolds [2,3] In terms of osteoinductive
growth factors, most research has focused on the use of the
bone morphogenic proteins (BMPs) and, in particular,

www.elsevier.com/locate/biomaterials
dx.doi.org/10.1016/j.biomaterials.2006.09.004
mailto:tgchu@iupui.edu
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BMP-2 [1,4–8]. BMP-2 is a bone matrix protein that
stimulates mesenchymal cell chemotaxis and proliferation,
and promotes the differentiation of these cells into
chondrocytes and osteoblasts [6,8]. These cellular effects
bestow BMP-2 potent osteoinductive capabilities, which
are primarily evident by the induction of new bone
formation via a process of endochondral ossification when
implanted at ectopic sites [9,10]. This osteoinductive action
of BMP-2 is well established to be beneficial during the
repair of fractures and segmental bone defects [1,5,7,8].

BMP-2 induces bone regeneration following injury and
has been approved for limited clinical use in the form of
recombinant human BMP-2 (rhBMP-2) [5]. However,
rhBMP application has been limited by ongoing delivery
issues. To facilitate retention of rhBMP-2 at the treatment
site and reduce the effective dose, an appropriate carrier is
required [9]. The preferred carrier consists of a scaffold that
is both biocompatible and bioresorbable in order to limit
tissue rejection and exposure to the scaffold material,
respectively [11]. While numerous scaffolds have been
manufactured that meet these requirements [12] many
lack the ability to tolerate appreciable loads. This is of
importance as segmental defects frequently occur in load-
bearing bones. Scaffolds need to be able to tolerate loading
so that patient morbidity is minimized during reparation
and the structure of the engineered bone is optimized to the
local mechanical environment. Few load-bearing scaffolds
have been described in the literature, with many studies of
tissue engineered bone regeneration with BMP-2 being
conducted at non-load-bearing sites [13–16] or in defects
stabilized with stress-shielding devices (bone plates or
external fixation) [17–20].

In the current paper, we present a tissue-engineering
strategy for bone regeneration using rhBMP-2 carried by a
novel load-bearing biodegradable scaffold. Tube-shaped
scaffolds were fabricated from a high strength biodegradable
composite and calcium phosphate cement, and implanted
into critical-sized defects in an established rodent model [21].
Defects and scaffolds were stabilized with a load-sharing
device (intramedullary pin). The aim was to investigate the
effect of our novel load-bearing scaffold carrying rhBMP-2
on segmental defect repair in the rat femur.

2. Materials and methods

2.1. Animals

Twenty-two adult male Long-Evans rats (weight ¼ 450–550 g) were

purchased from Charles River Laboratory (Wilmington, MA) and

acclimatized for a minimum of 1 week prior to experimentation. Animals

had ad libitum access to standard rat chow and water at all times, and all

procedures were performed with prior approval of the Institutional

Animal Care and Use Committee of Indiana University.

2.2. Scaffold manufacture

Polypropylene fumarate (PPF) with a molecular weight of 1750 g/mol

and PI ¼ 1.5 was obtained from Prof. Antonios Mikos (Rice University,
10
Houston, TX). A thermal-curable PPF/tricalcium phosphate (TCP)

suspension was prepared by mixing PPF, N-vinyl pyroolidinone (NVP),

and TCP at a weight ratio of 1:0.75:0.66 [22]. Tube-shaped structures

(outer diameter ¼ 4mm, inner diameter ¼ 2mm, height ¼ 5mm, with

four side holes of 800mm diameter) were created by the indirect casting

technique developed by Chu et al. [23,24]. Briefly, a scaffold design was

generated using commercial Computer-Aided-Design software and a

negative model obtained by using Boolean computer operation. Wax

casting-molds were fabricated on a 3-D Inkjet Printing Machine (T66,

Solidscape Inc. NH) according to the model design. The PPF/TCP slurry

was combined with 0.5% benzoyl peroxide (thermal initiator) and 10 ml
of dimethyl p-toluidine (accelerator), and cast into the wax mold.

Following polymerization, the wax mold was removed by acetone to

reveal the scaffold. rhBMP-2 was aseptically added to half of the scaffolds

prior to surgery by adding 10mg of rhBMP-2 (Wyeth, Cambridge, MA) to

porous dicalcium phosphate dihydrate (DCPD) cement previously packed

into the side holes of the scaffold (BMP-2 group). In the remaining

scaffolds, DCPD without rhBMP-2 was added to the side holes (control

group).

2.3. Segmental defect induction and surgical implantation of the

scaffolds

All animals underwent surgery to create a unilateral midshaft femur

segmental defect into which either a rhBMP-containing scaffold (BMP

group) or control scaffold (control group) was implanted. A non-scaffold

control group was not used in this study since the non-healing nature of

5mm segmental defects in the rat femur is well established [25,26].

Following a pre-operative subcutaneous dose of buprenorphine hydro-

chloride analgesia (0.05mg/kg; Buprenexs—Reckitt Benckiser Pharma-

ceuticals Ltd., Inc., Richmond, VA), surgical anesthesia was achieved

using a mixture of ketamine (60–80mg/kg; Ketasets—Fort Dodge

Animal Health, Fort Dodge, IA) and xylazine (7.5mg/kg; Sedazines—

Fort Dodge Animal Health, Fort Dodge, IA) introduced intraperitone-

ally. The fur was clipped and cleaned using alternating chlorhexidine and

70% ethanol scrubs. Using a sterile technique, a 30-mm longitudinal

incision was made over the lateral thigh, beginning just distal to the lateral

knee joint and extending proximally. The intermuscular septum between

the vastus lateralis and hamstring muscles was divided using blunt

dissection to localize the femur. The lateral structures stabilizing the

patella were divided and the patella manually dislocated medially. A 5mm

segment of the midshaft femur was removed following two parallel

osteotomies under irrigation using a Dremel drill (Robert Bosch Tool

Corporation, Mount Prospect, IL) with attached diamond-embedded

wafer blade (Super Flex Diamond Disc, Miltex Inc, York, PA). To

stabilize the fracture, a 1.25mm diameter stainless steel K-wire (Synthes

Inc, West Chester, PA) was inserted retrograde into the distal

intramedullary canal, beginning in the knee between the femoral condyles.

The wire was advanced to the segment defect and a scaffold centered over

the tip. The wire passed through the central canal of the scaffold and was

further advanced in a retrograde fashion into the proximal intramedullary

canal and through the greater trochanter (Fig. 1). The distal tip of the wire

was cut flush with the femoral condyles. After thorough irrigation, the

patella was relocated and stabilized with an absorbable suture, and the

muscle and skin layers closed and sutured.

2.4. Radiographic analysis

In vivo X-rays were taken of eight rats (n ¼ 4/group) at 1, 3, 6, 12 and

15-weeks post-operatively using a portable X-ray machine (AMX-110, GE

Corp, Waukesha, WI). The rats were anesthetized using isoflurane

(Abbott Laboratories, North Chicago, IL) and placed prone on an

X-ray film cassette 29 inches beneath the X-ray source. Exposure was at

60 kVp for 2.5mAs. All films were evaluated in a blinded fashion by three

independent evaluators using a three-point radiographic scoring system

(0 ¼ no callus formation; 1 ¼ possible union across the gap; 2 ¼ complete

callus bridging across the gap).
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Fig. 1. Illustration of the BMP scaffold placed in rat femur segmental

defect stabilized with intramedullary pin.
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2.5. Assessment time points and specimen preparation

Animals were killed at 6 (n ¼ 4/group) and 15 (n ¼ 7/group) weeks post-

operatively by inhalation of carbon dioxide followed by bilateral pneuothor-

ax. In four rats per group, both femora were dissected free, and prepared for

micro-computed tomography (mCT), peripheral quantitative computed

tomography (pQCT) and histological assessment by fixing in 10% neutral

buffered formalin for 48h and storing in 70% alcohol. In the remaining six

rats in the 15-week group, hind limbs were prepared for mechanical testing

by wrapping in gauze and storing in normal saline at �4 1C.

2.6. mCT

mCT was performed on a randomly selected subgroup of segmental defects

to visualize in three dimensions the stage of healing at 6- and 15-weeks post-

operatively. The intramedullary K-wires were carefully removed before further

assessment as metal causes beam-hardening artifacts during quantitative

radiographic imaging. Each femur was centered in the gantry of a desktop

mCT machine (mCT-20; Scanco Medical AG, Bassersdorf, Switzerland) and

scanned at 50kVp/32keV (160mA) with an isotropic voxel size of 8mm. The

scanned slices were reconstructed to show in three dimensions the external and

cut-away views of the reparative callus and scaffold.

2.7. pQCT

pQCT was used to assess callus and scaffold volumetric bone mineral

density (vBMD; mg/cm3) at 6- and 15-weeks post-operatively. Each femur
11
was centered in the gantry of a pQCT machine (XCT Research SA+;

Stratec Medizintechnik, Pforzheim, Germany) and scanned with a 70mm
voxel size. Five 0.46mm cross-sectional slices were scanned at 1mm

intervals, with the center slice coinciding with the center of the scaffold.

Contouring mode 1 with a threshold of 240mg/cm3 was used to separate

bone from soft tissue. Areas containing only the callus or scaffold were

selected from the images using the region-of-interest (ROI) tool function,

and the vBMD of the callus and scaffolds were determined, respectively.

2.8. Histological assessment

Femurs were processed for histomorphometry by washing, dehydrating

in graded alcohols, and infiltrating and embedding undecalcified in methyl

methacrylate (Aldrich Chemical Co., Inc., Milwaukee, WI). Thin (7 mm)

sections were taken through the long axis of each femur in the sagittal

plane using a rotating microtome (Reichert-Jung 2050; Reichert-Jung,

Heidelberg, Germany). Alternating sections were stained with hematoxy-

line-and-eosin and McNeals tetrachrome. Sections were viewed on Nikon

Optiphot fluorescence microscope (Nikon, Inc., Garden City, NJ).

2.9. Mechanical testing

For mechanical testing, femurs were brought to room temperature

overnight in a saline bath, the gauze wrapping removed, soft-tissue

dissected free and the intramedullary pin carefully removed. A custom-

made four-point bending fixture with a span width of 22.0mm between

the lower contacts and 8.0mm between the upper contacts was used.

The femurs were positioned cranial side up across the lower contacts.

A preload of 1.0 N and crosshead speed of 20.0mm/min were used to break

the femurs. Measurements made using force-versus-displacement curves

included: ultimate force (N) or the height of the curve, stiffness

(N/mm) or the maximum slope of the curve, and energy to ultimate force

(mJ) or the area under the curve up to ultimate force.

2.10. Statistical analyses

Statistical analyses were performed with the Statistical Package for

Social Sciences (SPSS 6.1.1; Norusis/SPSS Inc., Chicago, IL) software. All

comparisons were two-tailed with a level of significance set at 0.05, unless

otherwise indicated. Mann–Whitney U-tests were used to compare

radiographic scores between scaffold groups (BMP vs. control) at each

time point. vBMD was compared by two-way factorial analyses of

variance (ANOVA), with scaffold group (BMP vs. control) and time since

surgery (6 vs. 15 weeks) being the independent variables. Mechanical

properties were compared by two-way, one-repeated measure ANOVA,

with scaffold group (BMP vs. control) and surgical group (segmental

defect vs. intact control) being the between- and within-animal indepen-

dent variables, respectively. Paired or unpaired t-tests were performed in

the event of a significant ANOVA interaction, with a Bonferroni

correction to the level significance for the number of pair-wise

comparisons. ANOVA main effects were explored in the event of a non-

significant interaction. Surgical group effect sizes were assessed using

mean percentage differences and their 95% confidence intervals (CIs)

between femurs with segmental defects and contra-lateral intact control

femurs, whereas time since surgery effect sizes were determined using

mean differences and their 95% CI between 6 and 15 weeks.

3. Results

3.1. Radiographic analysis

Qualitative assessment of the X-rays films showed no
bone formation in any specimen at 1 week after surgery. At
3 weeks, continuous callus had formed and bridged across
the gap defect in two of the four rats in the BMP group.
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In the control group, some cortical bone thickening and
callus formation was noticed immediately adjacent to the
scaffold; however, callus did not bridge the gap. At 6
weeks, the callus bridge in the BMP group showed signs of
consolidation and further thickening of the cortex next to
the scaffold. In the control group, isolated radiopaque
spots were noticed (islands of bone formation), but callus
bridging was not present. Further thickening and remodel-
ing of the callus was seen at 12 and 15 weeks in the BMP
groups. AT 12 and 15 weeks the control group showed
increased callus size in the area adjacent to the scaffold, but
there was no X-ray evidence of bridging callus (Fig. 2). In
the X-ray score, all rats in the BMP group showed a score
of 0 at week 1. Three rats received scores of 1 and 2 at week
3. At 6 weeks, all rats received a score of 2. All rats in the
control group received a score of 0 till 12 weeks. One rat
received a score of 1 at 15 weeks (Table 1).
Fig. 2. Representative serial radiological images of segmental defects in the B

weeks, callus had formed and bridged the segmental defect in the BMP group.

was evident immediately adjacent to the scaffold; however, there was no bridg

showed signs of consolidation and remodeling. In contrast, in the control group

and no bridging callus was present.
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There were no significant differences on radiographic
scoring between the BMP and control groups after 1
(p ¼ 1:00) or 3 (p ¼ 0:11) weeks. After 6, 12 and 15 weeks,
defects in the BMP group had significantly greater radio-
graphic scores than those in the control group (all
p ¼ 0:03), indicating that the former had more advanced
healing.

3.2. Histology

Histology sections at 6 weeks showed mineralized callus
bridging the gap in the BMP group. Normal trabeculae
were found between the periosteal callus and the scaffold
(Fig. 3A). Residual DCPD can be seen in the side holes
(Fig. 3B). Under H&E stain, normal fatty bone marrow
was restored at 6 weeks (not shown). No inflammation
reaction was seen in either BMP group or control group.
MP and control groups at 1, 3, 6, 12 and 15 weeks post-operatively. At 3

In the control group, some cortical bone thickening and callus formation

ing callus. Between 6 and 15 weeks, the bridging callus in the BMP group

only isolated regions of radio-opacity were evident within the defect region
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In the control group, the histology showed characteristics
of psuedoarthrosis with cartilage forming at the junction
between the scaffold and the bone end. The periosteal
callus did not bridge the gap (Fig. 3C). The histology of the
BMP group at 15 weeks showed mature trabeculae between
the scaffold and the periosteal callus (Fig. 3D). In the
Table 1

Table showing the scores on bridging based on x-ray films at 1, 3, 6, 12,

and 15 after surgery. X-ray scores: 0 ¼ no callus formation; 1 ¼ possible

union across the gap; 2 ¼ complete callus bridging across the gap

Week X-ray score

0 1 2

Control group (N ¼ 4) 1 4 0 0

3 4 0 0

6 4 0 0

12 4 0 0

15 3 1 0

BMP group (N ¼ 4) 1 4 0 0

3 1 1 2

6 0 0 4

12 0 0 4

15 0 0 4

Fig. 3. Representative histological images of segmental defects in the (A) contr

stained with McNeal’s tetrachrome, which stains bone black. (A) Segmental d

defects in the BMP group were bridged by mineralized callus that (C) invade

osteoconductivity. Inflammatory cells were not present in either scaffold group.

of the scaffold is evident by the formation of new bone on its surfaces. * ¼ o

scaffold, y ¼ cartilaginous tissue, z ¼ mineralized callus, y ¼ side hole within

rhBMP-2, n ¼ mineralized callus within the side hole and on the surface of t
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control group, the gap was filled with fibrous tissue and the
scaffolds started to crumble (not shown).

3.3. mCT analysis

mCT scans showed continuous callus formation around
the scaffold in the BMP group at 6 weeks. Bone has also
formed inside the marrow cavity next to the intramedullary
pin (pin removed prior to scanning). Normal trabecular
bone was found between the cortical layer of the callus and
the BMP group scaffolds. In contrast, the control group at
6 weeks shows minimal bone formation outside the
scaffold and the callus did not bridge the gap. At 15
weeks, the bridging callus and the trabeculae between the
scaffold and the cortex of the callus is evident in the BMP
group (Fig. 4).
The histology and mCT results confirms the radiographic

finding that defects in the BMP group to be bridged with
mineralized callus that was integrated with the scaffold.

3.4. pQCT analysis

At 6 weeks, the measured vBMD of the callus for the
BMP group and the control group was 724.057108.71 and
742.00754.46mg/cm3, respectively. At 15 weeks, the
vBMD of the callus increased to 959.06781.47 and
ol and (B and C) rhBMP groups at 6-weeks post-operatively. Sections are

efects in the control group demonstrated cartilaginous union, whereas (B)

d the side hole and was on the surface of the scaffold, indicating scaffold

(D) By 16-weeks post-operatively in the BMP group, the osteoconductivity

riginal cortex of the femoral diaphysis, # ¼ weight bearing biodegradable

the scaffold, || ¼ residual dicalcium phosphate dihydrate cement carrying

he scaffold.
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Fig. 4. Representative external and cut-away images of segmental defects in the (A) control and (B) BMP groups, as assessed by microcomputed

tomography at 6-weeks post-operatively. (A) Segmental defects in the control group had minimal bone surrounding the scaffold and the reparative callus

did not bridge the defect. (B) In contrast, the BMP group had a continuous mineralized callus around the scaffold, and bridging trabeculae beneath the

cortical layer of the callus were integrated with the scaffold, indicating scaffold osteoconductivity. (C) By 16-weeks post-operatively in the BMP-group, the

bridging trabeculae had thickened and there is evidence of bone formation of bone on the surfaces of the scaffold, indicating scaffold osteoconductivity.

* ¼ original cortex of the femoral diaphysis, # ¼ weight bearing biodegradable scaffold, y ¼ mineralized callus, z ¼ side hole within the scaffold.
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894.66759.82mg/cm3 for BMP group and control group.
The measured vBMD in the native femur was 920.957
49.53mg/cm3.

The mineral density of the scaffold was measured to
evaluate the in vivo absorption of TCP in the scaffold. The
mineral density of the scaffolds after 6 weeks of implanta-
tion in vivo was 625.96726.14mg/cm3 in the BMP group
and 613.59716.35mg/cm3 in the control group. After 15
weeks of implantation in vivo, the mineral density of
scaffold was 579.42713.99mg/cm3 in the BMP group and
574.82737.50mg/cm3 in the control group.

There were no significant interactions between group
(BMP vs. control) and time since surgery (6 vs. 15 weeks)
on either callus (p ¼ 0:28) or scaffold (p ¼ 0:79) vBMD
(Fig. 4). Similarly, there were no group main effects on
either callus (p ¼ 0:36) or scaffold (p ¼ 0:62) vBMD.
In contrast, there were significant main effects for time
since surgery on both callus (po0:001) and scaffold
(po0:01) vBMD. Callus vBMD was 26% greater
(mean difference ¼ 193.2mg/cm3, 95% CI ¼ 118.2 to
268.2mg/cm3) and scaffold vBMD was 6.9% lower
(mean difference ¼ �42.4mg/cm3, 95% CI ¼ �65.7 to
�19.1mg/cm3) at 15-weeks post-surgery than at 6 weeks
(Fig. 5).
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3.5. Mechanical property results

Mechanical properties of the femurs were only measured
at 15 weeks. There were significant interactions between
scaffold group (BMP vs. control) and surgical group
(segmental defect vs. intact control) on ultimate force
(p ¼ 0:01) and stiffness (po0:05), but not energy to
ultimate force (p ¼ 0:10) (Fig. 6). Segmental defects in
the BMP group had 290%, 286% and 234% greater
ultimate force (po0:01), stiffness (p ¼ 0:04) and energy to
ultimate force (p ¼ 0:02) than segmental defects in the
control group, respectively (Fig. 6). There were no side-to-
side differences in ultimate force (%diff ¼ �1.4%, 95%
CI ¼ �35.7% to 32.8%), stiffness (%diff ¼ �15.5%, 95%
CI ¼ �68.5% to 37.6%) or energy to ultimate force
(%diff ¼ �11.7%, 95% CI ¼ �28.8% to 5.3%) in the
BMP group between femurs with segmental defects and
contra-lateral, intact control femurs (all p ¼ 0:15–0.64). In
contrast, femurs with segmental defects in the control
group had lower ultimate force (%diff ¼ �66.1%, 95%
CI ¼ �105.8% to �26.5%) and stiffness (%diff ¼
�62.6%, 95% CI ¼ �96.6% to �28.5%) than contra-
lateral, intact control femurs (all po0:02). Energy to
ultimate force between femurs with segmental defects and
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quantitative computed tomography at 6- and 15-weeks post-operatively.
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contra-lateral, intact control femurs did not differ in the
control group (%diff ¼ �61.4%, 95% CI ¼ �126.4% to
3.6%) (p ¼ 0:06).

4. Discussion

We have shown that scaffold made from high-strength
biodegradable composite can be used as BMP-2 carrier to
facilitate segmental defect regeneration in partial load-
bearing condition, such as in the intramedullary pin
fixation. This is clinically relevant since intramedullary
pin fixation is commonly used for segmental defect
fixation. In a retrospective study of ten patients treated
for large bone defects, six of the 10 treatments involve the
use of intramedullary pins [27]. In another retrospective
study, six of the seven patients treated for acute segmental
defects involve the use of intramedullary pins [28]. In
research, Tiyapatanaputi et al. [29] demonstrated the use of
pin to stabilize autograft, isograft and allograft in rat
femoral defect model and found that the fixation using
K-wire as intramedullary pin provided reproducible results
in stabilized structural allograft. However, studies using
15
intramedullary pin for stabilization tissue-engineering
scaffolds has been lacking.
In this paper, we stabilized the PPF/TCP tissue-

engineering scaffold by a 1.25mm K-wire as intramedul-
lary pin. This is a load-sharing model since the loads are
shared by the friction between the intramedullary pin and
the contact areas in the medullary canal and by the
scaffolds. All BMP groups show bridging callus, indicating
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a stable biomechanical environment conducive to the
formation of callus. Our previous experience showed that
the scaffolds made from DCPD by itself (compressive
strength ¼ 0.5MPa) collapsed 1 day after implantation,
indicating that the rats bear load on the scaffolds
(unpublished results). The PPF/TCP scaffold has an initial
compressive strength of 23MPa, but gradually reduces to
12MPa after 12 weeks of incubation in phosphate buffered
solution at 37 1C [30]. The fact that PPF/TCP scaffold did
not collapse during implantation indicates that the initial
strength of the scaffold is sufficient to sustain the femoral
loading in the rat model. When callus bridging failed to
occur, the PPF/TCP scaffolds eventually collapsed after
15 weeks demonstrating that the degraded compressive
strength of PPF/TCP at 15 weeks is no longer sufficient to
support rat locomotor loads. This result together with the
fact that the scaffold in the BMP group is still intact at 15
weeks also indicates that the bridging callus in the BMP
group has assumed loading sharing/bearing function in the
defect.

DCPD is biodegradable and has been used as BMP-2
carrier [25]. In this study, a dose of 10 mg of BMP-2 was
found to induce callus formation, similar to the results by
Ohura et al. [25] and Yasko et al. [26]. PPF/TCP is
biodegradable [31], though very slowly, as pQCT measure-
ments demonstrated that the scaffold density was reduced
by less than 10% in 15 weeks of implantation. The long
effect of the degradation byproduct on tissue is critical and
will need to be studied in the future. Nonetheless, this study
established that a compressive strength of 23MPa will
provide sufficient strength to withstand the initial load
placed on the scaffold when the scaffold is implanted in rat
femoral gap stabilized with intramedullary pin.

In BMP group and control group, we and found no
difference in callus vBMD, in consistent with the findings
by Hyun et al. [32] where bone density in BMP-2 induced
new bone was the same as normal bone. From our results,
we conclude that it is the quantity and the distribution of
the callus, but not the bone mineral density, that makes the
difference between the BMP group and the control group.
5. Conclusions

In this study, investigated a tissue-engineering strategy
for bone regeneration using BMP-2 carried by a load-
bearing biodegradable scaffold. We found that critical-
sized segmental defects in the rodent femur have advanced
radiological, histological and mechanical healing using
our tissue engineering strategy of load-bearing scaffold
stabilized with intramedullary pins. Radiographical and
histological healing is enhanced with weight-bearing
biodegradable scaffolds of rhBMP-2.

The weight-bearing biodegradable scaffold of BMP-2
do not influence the callus mineral density. Finally, the
mechanical properties of the segmental defects are restored
with weight-bearing biodegradable scaffolds of BMP-2.
16
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Introduction

In the orthopaedic field, the muscle-bone relationship is of ut-

most importance as surgeons must often battle increased compli-

cations, morbidity, and delayed fracture healing in cases with

extensive soft tissue damage resulting from high energy trauma.

The Gustilo-Anderson open fracture classification scale, which

has been commonly used for nearly 4 decades, classifies severity

almost solely on soft tissue (primarily muscle) injury, and the

complication rate is much higher in fractures with soft tissue dam-

age1. Although it has long been accepted that intact surrounding

soft tissues are important in the fracture healing process, the un-

derlying mechanisms have not been fully elucidated. However,

basic science and translational research have made advances in

the understanding of how muscle injuries impede fracture healing. 

To understand muscle’s potential role in fracture repair, a

comprehension of the repair process is necessary. In brief, frac-

ture repair consists of three chronological and overlapping

phases: a reactive phase, a reparative phase, and a remodeling

phase. The reactive phase peaks within the first 24-48 hours

and lasts less than 1 week. During this phase, endothelial dam-

age to the vasculature causes a hematoma, drawing in inflam-

matory cells (lymphocytes, polymorphonuclear cells,

monocytes) and fibroblasts to form granulation tissue2. The

granulation tissue is important for vascular ingrowth as well

as the recruitment of mesenchymal stem cells (MSCs). The in-

flammatory cells release cytokines such as TNF-α, IL-1, IL-

6, IL-11, and IL-18 to induce osteogenic differentiation of

MSCs as well as promote angiogenesis3. The reparative phase

begins within a few days after fracture and lasts several weeks.

Pluripotent mesenchymal cells, dependent on local strain and

oxygen tension, differentiate into fibroblasts, chondroblasts,

or osteoblasts. Healing can occur through intramembranous

ossification alone (direct healing) or a combination of in-

tramembranous and endochondral ossification (indirect heal-

ing), depending on the degree of mechanical stability4. In

endochondral ossification, a fibrocartilage callus forms and is

subsequently replaced by a bony callus with woven bone dep-

osition. In intramembranous ossification, lamellar bone regen-

eration occurs without the need for remodeling, but it requires

stable fixation2. Thus, the ossification process is dependent on
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the stability of the fracture site. During the remodeling phase,

the woven bone is replaced with lamellar bone, and the bone

is gradually remodeled under mechanical stress to its original

contour. This phase can last for several years2,5.

Vascularization and fracture healing

The importance of vascularization in osteogenesis cannot

be overemphasized, as a nearby vascular supply is required for

both normal development and bone regeneration6-9. Indeed, an

early step in the fracture healing process is the formation of

granulation tissue consisting of connective tissue and small

blood vessels10,11, reinforcing the importance of vascularization

in healing. Surrounding soft tissues at the fracture site prima-

rily have been considered an important vascular source12 to de-

liver oxygen13, nutrients13, and potential osteoprogenitor cells

to the injured area14,15. In the surrounding soft tissue are MSCs

and pericytes, which are crucial for angiogenesis in the

wounded tissue16,17. In the clinical arena, the rate of non-union

is 4 times higher in cases with reduced vascular function18, and

in animal fracture models that disrupt angiogenesis, bone for-

mation is hindered through the suppression of osteoblast pro-

liferation18-20. Muscle flap coverage has been shown to increase

bone blood flow and the rate of osteotomy union compared to

skin tissue coverage, supporting the vascular role of muscle in

bone regeneration21-23.

Although vascularization has been shown to be critical for

regeneration, there has been evidence of nearly equal vascu-

larization in healed bone and non-unions in animal studies as

well as in human patients20,24-26. In a murine open tibial fracture

model, Harry et al. observed faster fracture healing in muscu-

locutaneous compared to fasciocutaneous flaps, despite the

musculocutaneous flaps having decreased vascularization27.

These studies point to a more extensive role of muscle in the

repair process than solely as a vascular supply.

Osteoprogenitors derived from muscle

The relationship between muscle and bone has been ob-

served for decades and continues to be elucidated. Urist first

deduced muscle’s ability to induce bone formation in 1965

when decalcified bone implanted into muscle resulted in new

bone formation28,29. In fracture healing studies in multiple

species, callus formation tends to be the largest and most dense

at the interface between bone and muscle30, suggesting that

muscle contributes to callus formation or provides a suitable

environment for its occurrence. 

Muscle is also a common site for ectopic bone formation

following physical trauma31, orthopaedic surgery32, or due to

disease like fibrodysplasia ossificans progressiva, which has

been identified to be a result of a mutation in a gene encoding

a bone morphogenetic protein (BMP) receptor33. BMPs, a

group of growth factors involved in tissue architecture

throughout the body, are of particular importance to bone for-

mation as they induce osteoblast differentiation. 

In the presence of BMPs, cells derived from muscle are ca-

pable of differentiating into cells expressing bone markers34-37.

That muscle-derived cells capable of displaying osteogenic po-

tential under proper conditions could partly explain the impor-

tance of muscle in fracture healing aside from their role in

vascularization. In addition, muscle may be able to influence

bone in a manner unlike any other tissue. When both muscle

and fat are activated by exposure to a BMP-2 encoded aden-

ovirus, the “gene-activated” muscle results in more consistent

bone regeneration than the “gene-activated” fat38. Furthermore,

when muscle-derived stem cells (MDSCs) are recruited and

driven to osteogenic differentiation by BMPs, they display an

osteogenic potential that is equivalent to those derived from

bone marrow39. Lineage-traced MDSCs in a fracture healing

model have been found to alter gene expression to give rise to

chondrocytes, up-regulating chondrogenic markers Sox9 and

Nkx3.2 and down-regulating the muscle marker Pax336. These

studies provide evidence that, in the appropriate environmental

conditions, muscle can supply osteoprogenitor cells required

for the fracture repair process.

It should be noted, however, that MDSCs are not the sole

osteoprogenitor cells derived from muscle. C2C12 myoblasts

infected with a retroviral vector have been found to overex-

press osteoactivin (OA) and transdifferentiate into osteoblasts

and express bone-specific markers40. Muscle-derived stromal

cells, when administered TNF-α at low concentrations, are

also capable of undergoing recruitment and osteogenic differ-

entiation41. Muscle satellite cells were originally believed to

be muscle stem cells restricted to the myogenic lineage42, but

the osteogenic potential of these cells has been observed under

several conditions. Satellite cell-derived myoblasts have been

shown to differentiate into osteocytes following treatment with

BMPs43, into osteoblasts in vivo and in vitro in the presence of

platelet-rich plasma44, and the osteogenic potential of satellite

cells can increase in response to cutaneous burn trauma45.

Satellite cells have been observed to express both myoblastic

(Pax7, MyoD) and osteoblastic (alkaline phosphatase, Runx2)

markers and are capable of differentiating into osteoblasts

spontaneously46.

The abundance of potential osteogenic cells derived from

muscle could have applications in the future in tissue engineer-

ing techniques, particularly in cases where the bone marrow or

periosteum is compromised. It has been commonly believed

that in fractures in which the periosteum is intact, repair occurs

largely through endochondral ossification driven by a periosteal

supply of cells10,47-50. Indeed, in open fractures with a stripped

periosteum, Liu et al. found that myogenic cells of the MyoD-

lineage contributed to fracture repair, but MyoD-expressing

cells were not incorporated into the callus in the case of a closed

fracture with intact periosteum51. Such a study demonstrates

that myogenic cells can be activated to serve as a secondary

supply of cells when the periosteal supply becomes compro-

mised52,53. These recent findings of muscle’s ability to augment

the periosteal supply of osteoprogenitor cells provide insight

into the clinical observations of prolonged recovery time and

increased morbidity that is especially seen associated with high

energy fractures with substantial soft tissue damage.
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Muscle-bone paracrine interactions in 

bone repair

Only within the past two decades has the muscle secretome

been identified and explored. With the recent advent of im-

proved characterization instruments, the muscle secretome has

rapidly expanded to over 200 proteins54. Muscle secreted pro-

teins important in muscle-bone interactions include, but are

not limited to: myostatin, BMPs, secreted protein acidic and

rich in cysteine (SPARC or osteonectin), interleukin (IL)-1,

IL-4, IL-6, tumor necrosis factor (TNF)α, and insulin-like

growth factor (IGF)-141,54-56. Many of the muscle derived fac-

tors have previously been described to play a role in muscle-

bone interactions without addressing the interactions

specifically during fracture repair. Importantly, the presence

of inflammation differentiates fracture repair from bone for-

mation during development. That is, fracture healing is initi-

ated by an inflammatory cascade, which is mediated by a

number of factors, including but not limited to: neutrophils,

macrophages, lymphocytes, and various inflammatory cy-

tokines (i.e., IL-1, IL-6, TNFα)2,57-59. Mounting and maintain-

ing an appropriate inflammatory response in early fracture

healing is critical for adequate repair and multiple studies have

demonstrated that interference with the inflammatory process

can either impair60,61 or improve62 fracture healing. This review

focuses primarily on four factors known to be involved in mus-

cular injury and fracture repair and are therefore likely to con-

tribute to muscle-bone interactions in the presence of

inflammation.

Insulin-like growth factor-1

IGF-1 is recognized as a key myokine that may direct local

fracture healing63. IGF-1 is expressed by maturing osteoblasts

in culture64 and expression has been localized using in situ hy-

bridization to osteoblasts during phases of matrix formation

and remodeling in fractured human bone65. Further signifying

the importance of IGF-1 to fracture healing, delivery of IGF-

1 to ovine bone defects promotes accelerated bone forma-

tion66,67. The association of low systemic levels of IGF-1 with

osteoporosis68,69 suggests that local production of IGF-1 by

nearby skeletal muscle tissue may support bone healing. Given

that skeletal muscle up-regulates expression of IGF-1 in re-

sponse to injury70-72, the context of fractures involving muscle

trauma specifically highlight this possibility. Overexpression

of IGF-1 in skeletal muscle can result in increased systemic

concentrations evidencing the capacity of skeletal muscle as a

paracrine organ to support nearby bone healing73. IGF-1 plays

a role in muscle fiber repair and regenerative processes via a

number of mechanisms to include increasing protein synthesis

via PI3-AKT-mTOR pathway and by activating and promoting

proliferation of satellite cells74,75. Perhaps most interesting in

the context of complex musculoskeletal injury is the anti-in-

flammatory (i.e., inhibition of NF-κB) role of IGF-1 in mus-

cle76,77 and bone67.

Myostatin

Perhaps the most well-known muscle derived protein, myo-

statin, has been implicated to play a significant, albeit in-

hibitory, role in fracture repair. Myostatin is a member of the

TGF-β superfamily, negatively regulating muscle growth, de-

velopment, and regeneration78,79. Its negative trophic influence

has been supported in myostatin null mice that demonstrate in-

creased bone strength and increased bone mineral density80-82.

Furthermore, myostatin inhibition by decoy receptors increases

musculoskeletal mass83. Interestingly however, expression of

myostatin is elevated with significant musculoskeletal injury,

specifically in the early part of bone repair84,85. Due to its neg-

ative role in musculoskeletal development, interventions were

targeted toward inhibiting myostatin after skeletal injury. Small

molecule inhibition of myostatin following orthopaedic trauma

has been demonstrated to improve muscle regeneration and

fracture healing79,85,86. These data suggest that inhibition of

myostatin may be a plausible intervention to improve fracture

healing outcomes in patients with significant musculoskeletal

injuries. However, the conundrum of elevated myostatin after

musculoskeletal injury remains poorly understood.

Bone morphogenetic proteins

Generally speaking, BMPs are growth factors for various

skeletal tissues and are required for skeletal development. Con-

ditional knockout mice deficient in BMPs displayed a wide

range of skeletal defects87,88. There are 7 members of the BMP

family, of which BMPs 2-7 belong to the TGFβ superfamily89.

Multiple BMPs have been demonstrated to promote osteoblas-

tic differentiation of bone marrow stromal cells90,91. Specifi-

cally, BMP-2 and BMP-7 are FDA approved for use in clinical

musculoskeletal therapeutics due to their role in osteoblast dif-

ferentiation and musculoskeletal repair. Unfortunately, con-

cerns have arisen regarding the multiple side effects and

off-label usage of BMPs including a recent link to oncogenic

side effects with use of BMP-292,93. More novel approaches to

utilization of BMP-2 in fracture healing includes modified

muscle cells that secrete BMP-2. Critical size rat femoral de-

fects underwent quicker bridging and restored mechanical

strength when receiving activated muscle secreted BMP-238.

Though not a member of the TGFβ superfamily and not used

in the clinical setting currently, BMP-1 is secreted by muscle

and may play a role in fracture healing. BMP-1, specifically,

is a protease secreted by muscle that cleaves procollagen94. In

patients with traumatic blast injuries, both BMP-1 protein and

mRNA levels were elevated95, suggesting a significant role for

BMP-1 in musculoskeletal repair. Therefore, better under-

standing of the roles of muscle derived BMPs in skeletal tissue

regeneration is warranted to improve musculoskeletal repair

in patients who suffer extensive traumatic injuries.

SPARC or osteonectin

Osteonectin is a phosphorylated glycoprotein present in de-

veloping bone in many animal species96. Osteonectin is sug-

gested to serve multiple functions in the developing bone
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matrix, including collagen organization, osteoblast growth and

proliferation, and matrix mineralization97. Mice deficient in

osteonectin display osteopenia and decreased bone mineral

content98. Importantly, osteonectin is secreted by injured and

regenerating myotubes and muscle fibers99. Osteonectin ex-

pression by these sources is dependent on injury severity, sug-

gesting that more severe musculoskeletal injuries result in

greater ostonectin expression99. Longitudinal studies of frac-

ture healing show detectable osteonectin transcripts throughout

the healing phase100,101, most notably from days 9 to 15102.

These studies provide evidence for the significant role os-

teonectin plays in bone regeneration and suggest muscle may

be a source of osteonectin during musculoskeletal repair. 

Mechanical muscle-bone interactions

It would be remiss to forego some discussion of the mechan-

ical influences involved in muscle bone interactions. The cel-

lular mechanisms by which mechanical strain affects bone are

largely uncharacterized, but some data suggest it is due in part

to gap junctions in bone formed by connexin43103,104. Though

characterization of mechanically induced cellular mechanisms

remains limited, multiple studies have pointed to the impor-

tance of muscle’s mechanical interactions on bone health105.

Disuse atrophy via denervation or immobilization has been

shown to decrease bone integrity in animal models106-108. Fur-

thermore, multiple studies have demonstrated that muscle

paralysis induced by administration of botulinum toxin impairs

bone quality and/or fracture healing109-113. Further research into

the cellular mechanisms of the mechanical influence of muscle

is warranted to better understand how bone can be further mod-

ified by muscle during the healing process. 

Muscle in fracture healing - current models 

Murine

Multiple murine studies have been conducted to examine the

extent to which muscle enhances bone repair after significant

musculoskeletal injury. Zacks and Sheff114 conducted early sen-

tinel research addressing the potential for muscle to contribute

to bone regeneration in 1982. Zacks and Sheff utilized experi-

mental groups where after limb muscle resection, isotopic or

heterotopic minced muscle implants were placed immediately

adjacent to the periosteum. Their control groups consisted of

liver minced implant or no implant. They concluded that iso-

topic and heterotopic minced muscle preparations implanted

adjacent to the periosteum could directly induce new bone for-

mation in situ as demonstrated by the formation of exostoses

and metaplastic nodules in the minced muscle implants114. The

work of Zacks and Sheff confirmed the importance of studying

the trophic influence of muscle on bone.

As previously mentioned, Harry et al. conducted a murine

study addressing the importance of muscle in open tibial fracture

repair27. The authors demonstrated that musculocutaneous flaps

performed superior to the fasciocutaneous flaps, though the fas-

ciocutaneous flaps provided more angiogenic capacity. There-

fore, the osteogenic capability of muscle is greater than that of

cutaneous flaps and extends beyond simply angiogenesis.

Rattus

Multiple studies have also been conducted utilizing rat mod-

els to assess bone healing in light of soft tissue injuries. A study

by Hao et al.109 evaluated the effect of muscle atrophy and

paralysis on femoral fracture healing. Atrophy of the quadri-

ceps muscle, induced by administration of botulinum A toxin,

negatively impacted the healing capacity of femoral fractures

in rats. Utvag et al. conducted three critical studies115-117 as-

sessing the role of periosteum or surrounding soft tissue in

bone healing. In 1998 Utvag et al.115 demonstrated that fracture

healing was impaired when periosteal tissue was mechanically

removed from interacting with surrounding muscle. Addition-

ally, Utvag et al. showed that significant muscle injury and ab-

sence of muscle by resection, or by traumatic injury in the

clinical setting, significantly compromised the regeneration

potential of non-augmented healing bone116,117. The importance

of muscle for bone healing was further confirmed by the work

of Willett et al. that demonstrated that volumetric muscle loss

(VML) also impairs the effectiveness of BMP-2 in the healing

of a critical size bone defect118. Taken together, it is clear that

frank loss of muscle tissue (VML) is a significant comorbidity

to poor bone healing outcomes. 

Humans

Since the mid 1970s, open fractures have been graded clin-

ically according to the Gustilo-Anderson classification

scale1,119, which is largely based on the severity of soft tissue

injury associated with open fractures. Gustilo and Anderson

identified 3 types of fractures: Type I - open fracture with a

wound <1 cm and clean; Type 2 - open fracture with a wound

>1 cm without extensive soft tissue damage; and Type 3 - open

fracture with extensive soft tissue damage119. Type 3 fractures

were later subdivided into 3 subcategories1. The Gustilo An-

derson classification makes it evident that soft tissue injury

plays a significant role in the musculoskeletal repair process

in the clinical setting. Specifically, open fractures (Type 3)

with extensive soft tissue injury demonstrate greater compli-

cation rates than open fractures without soft tissue injury

(Types 2 & 3)120,121.

Similar to the results observed from animal studies, sub-

stantial clinical data exist characterizing the importance of

muscle integrity in bone repair. A multitude of studies have

demonstrated soft tissue damage associated with fractures im-

pairs the ability of bone to repair properly122,123, while the qual-

ity of the muscle bed is essential for appropriate bone

formation and bone healing30,51.

Similar to the murine study conducted by Harry et al.27,

Gopal et al.124 specifically examined the treatment of open tibial

fractures with fasciocutaneous flaps versus muscle flaps in hu-

mans. The results of their study were then later confirmed by

Harry et al. in the mouse model, with both groups concluding

that muscle flaps are superior in bone healing. Even in clinical
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practice, the gold standard of treating critical size defects or ex-

tensive fractures includes soft tissue coverage, supporting the

significance of muscle-bone interactions during bone healing.

A more recent meta-analysis by Reverte et al.125 analyzed 16

studies addressing the union rate and time to fracture union in

patients with tibial fractures and associated compartment syn-

dromes. Reverte et al. demonstrated that tibial fractures with

associated soft tissue injury significantly impaired fracture heal-

ing. The rate of delayed union or non-union in tibial fractures

with associated compartment syndrome was 55% compared to

only 18% in patients with tibial fracture without associated

compartment syndrome125. This study points to the importance

of soft tissue integrity in the quality of fracture healing.

Conclusion

Taken together, these studies illustrate the importance of

muscle-bone interactions in bone regeneration. Exact mecha-

nisms by which muscle is responsible for bone formation in

the healing process are not well elucidated. Most of the current

literature is limited to qualitative findings of muscle’s role in

bone healing. Therefore, more rigorous models with aims di-

rected toward identification and quantification of muscle-de-

rived effectors of bone regeneration are required. Identifying

and characterizing the muscle-derived factors responsible for

bone healing may provide opportunities to develop therapies

to augment normal physiologic mechanisms underlying bone

regeneration.

Current strategies, such as the use of BMPs, in fracture heal-

ing have recently been thought of as having more limited ben-

efit due to the more robust understanding of detrimental side

effects. This review outlines some potential targets for thera-

peutic development, including stimulation of MDSCs, inhibi-

tion of myostatin, or administering or enhancing the targeted

expression of osteonectin. Future studies addressing muscle

factors associated with bone healing may provide insight into

these mechanisms necessary to promote bone regeneration.

Soft tissue integrity is crucial to appropriate bone regeneration,

but our understanding of the mechanisms is limited at the pres-

ent time. A better understanding of muscle’s effect on fracture

healing at the cellular and molecular levels will open transla-

tional opportunities to incorporate the findings into clinics and

operating rooms abroad.
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