Goal-Oriented Probability Density Function Methods for Uncertainty Quantification

Daniele Venturi
BROWN UNIVERSITY IN PROVIDENCE IN STATE OF RI AND PROVIDENCE PLANTATIONS

12/11/2015
Final Report

DISTRIBUTION A: Distribution approved for public release.
14. ABSTRACT
During the performance period of the grant we developed the proposed goal-oriented probability density function method based on the Mori-Zwanzig formulation and applied it to stochastic partial differential equations (SPDEs) such as advection-reaction and Burgers equations. We also developed new algorithms to solve high-dimensional probability density function (PDF) equations and stochastic domain decomposition techniques to propagate uncertainty across heterogeneous domains. The main findings can be summarized as follows: The Mori-Zwanzig approach has the potential to overcome well-known limitations encountered in stochastic simulations of high-dimensional random systems, in particular the curse of dimensionality and the lack of regularity of the solution. This comes at the price of solving complex integro-differential PDEs whose computability relies on either analytical approximations or data-driven approaches. The new methods we developed for high-dimensional PDF equations can be used in many different disciplines, ranging from optimal control under uncertainty of nonlinear dynamical systems to plasma dynamics (numerical solution to the full Boltzmann equation).

15. SUBJECT TERMS
Mori-Zwanzig formulation, Probability density function equations, uncertainty quantification.
INSTRUCTIONS FOR COMPLETING SF 298

1. REPORT DATE. Full publication date, including day, month, if available. Must cite at least the year and be Year 2000 compliant, e.g. 30-06-1998; xx-06-1998; xx-xx-1998.

2. REPORT TYPE. State the type of report, such as final, technical, interim, memorandum, master’s thesis, progress, quarterly, research, special, group study, etc.

3. DATES COVERED. Indicate the time during which the work was performed and the report was written, e.g., Jun 1997 - Jun 1998; 1-10 Jun 1996; May - Nov 1998; Nov 1998.

4. TITLE. Enter title and subtitle with volume number and part number, if applicable. On classified documents, enter the title classification in parentheses.

5a. CONTRACT NUMBER. Enter all contract numbers as they appear in the report, e.g. F33615-86-C-5169.

5b. GRANT NUMBER. Enter all grant numbers as they appear in the report, e.g. AFOSR-82-1234.

5c. PROGRAM ELEMENT NUMBER. Enter all program element numbers as they appear in the report, e.g. 61101A.

5d. PROJECT NUMBER. Enter all project numbers as they appear in the report, e.g. 1F665702D1257; ILIR.

5e. TASK NUMBER. Enter all task numbers as they appear in the report, e.g. 05; RF0330201; T4112.

5f. WORK UNIT NUMBER. Enter all work unit numbers as they appear in the report, e.g. 001; AFAPL30480105.

6. AUTHOR(S). Enter name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. The form of entry is the last name, first name, middle initial, and additional qualifiers separated by commas, e.g. Smith, Richard, J, Jr.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES). Self-explanatory.

8. PERFORMING ORGANIZATION REPORT NUMBER. Enter all unique alphanumeric report numbers assigned by the performing organization, e.g. BRL-1234; AFWL-TR-85-4017-Vol-21-PT-2.

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES). Enter the name and address of the organization(s) financially responsible for and monitoring the work.

10. SPONSOR/MONITOR’S ACRONYM(S). Enter, if available, e.g. BRL, ARDEC, NADC.

11. SPONSOR/MONITOR’S REPORT NUMBER(S). Enter report number as assigned by the sponsoring/monitoring agency, if available, e.g. BRL-TR-829; -215.

12. DISTRIBUTION/AVAILABILITY STATEMENT. Use agency-mandated availability statements to indicate the public availability or distribution limitations of the report. If additional limitations/ restrictions or special markings are indicated, follow agency authorization procedures, e.g. RD/FRD, PROPIN, ITAR, etc. Include copyright information.

13. SUPPLEMENTARY NOTES. Enter information not included elsewhere such as: prepared in cooperation with; translation of; report supersedes; old edition number, etc.

14. ABSTRACT. A brief (approximately 200 words) factual summary of the most significant information.

15. SUBJECT TERMS. Key words or phrases identifying major concepts in the report.

16. SECURITY CLASSIFICATION. Enter security classification in accordance with security classification regulations, e.g. U, C, S, etc. If this form contains classified information, stamp classification level on the top and bottom of this page.

17. LIMITATION OF ABSTRACT. This block must be completed to assign a distribution limitation to the abstract. Enter UU (Unclassified Unlimited) or SAR (Same as Report). An entry in this block is necessary if the abstract is to be limited.
Final Report

Goal-Oriented Probability Density Function Methods for Uncertainty Quantification

Daniele Venturi

Department of Applied Mathematics and Statistics
University of California Santa Cruz
and
Division of Applied Mathematics
Brown University

AFOSR Grant FA9550-14-1-0212: Dr. Jean-Luc Cambier

1E-mail: venturi@ucsc.edu, daniele.venturi@brown.edu

DISTRIBUTION A: Distribution approved for public release.
1 Summary

During the performance period of the grant we developed the proposed goal-oriented probability density function method based on the Mori-Zwanzig formulation and applied it to stochastic PDEs such as advection-reaction and Burgers equations (see section 1.2.1). We also developed new algorithms to solve high-dimensional probability density function (PDF) equations (see section 1.2.2) and stochastic domain decomposition techniques to propagate uncertainty across heterogeneous domains. These research efforts resulted in two papers published in the Proceedings of the Royal Society of London A, two papers under review during performance period (one published now and one in press) and one book chapter (now in press). The main findings can be summarized as follows: The Mori-Zwanzig approach has the potential to overcome well-known limitations encountered in stochastic simulations of high-dimensional random systems, in particular the curse of dimensionality and the lack of regularity of the solution. This comes at the price of solving complex integro-differential PDEs - the Mori-Zwanzig equations - whose computability relies on either analytical approximations or data-driven approaches. We investigated the accuracy of analytical techniques based Kubo-Van Kampen operator cumulant expansions for Langevin equations driven by fractional Brownian motion and other noises, stochastic advection-reaction equations and stochastic Burgers equation. In the context of the Burgers equation, we studied numerically one- and two-point MZ-PDF equations and computed the statistical properties of random shock waves generated by high dimensional random initial conditions and random additive forcing terms. We also addressed the problem of computing the numerical solution to high-dimensional PDF equations. To this end, we developed three different classes of new algorithms: the first one is based on separated series expansions, resulting in a sequence of low-dimensional problems that can be solved recursively and in parallel by using alternating direction (ADI) methods. The second class of algorithms relies on a truncation the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy of coupled probability density function equations. The third class of algorithms is based on high-dimensional model representations, e.g., ANOVA and probabilistic collocation methods. A common feature of all these approaches is that allow us to compute the solution of high-dimensional PDF equations via a sequence of low-dimensional problems. This is a very important question which will find its way in many related works. For instance, we are currently using the alternating direction Galerkin method we developed for high-dimensional PDF equations in the context of stochastic optimal control, i.e., optimal control under uncertainty of nonlinear dynamical systems, and plasma dynamics (solution to the full Boltzmann equation).

1.1 Published Papers and Book Chapters

$t = 1$

$0 1.57 3.14 4.71 6.28$

$-4 -2 0 2 4$

x

Figure 1: Stochastic Burgers equation. One realization of the velocity field computed by using adaptive discontinuous Galerkin methods (left). Time snapshots of the one-point PDF obtained by solving the MZ-PDF equation (1).

1.2 Research Accomplishments

In this section we would like to summarize some of the research accomplishment we have published in the papers listed above, in particular in Ref. [3] and Ref. [4]

1.2.1 Mori-Zwanzig Equations for Burgers Turbulence

The MZ-PDF approach allows us to systematically eliminate degrees of freedom from nonlinear random system, to obtain formally exact equations for quantities of interest. In the context of randomly forced Burgers turbulence, this allows us to derive exact equations for the one-point PDF of the velocity field by formally integrating out random noise of small amplitude or small correlation length. The result of such integration can be represented as a perturbation expansion in powers of a suitable coupling constant, e.g., noise amplitude. The result is

$$\frac{\partial p_u(t)}{\partial t} = L_0 p_u(t) + \sigma \langle f(x, t) \rangle \frac{\partial p_u(t)}{\partial a} + \sigma^2 \left[\int_0^t \langle f(x, t) \frac{\partial}{\partial a} e^{(t-s)\mathcal{L}_0} f(x, s) \rangle \frac{\partial}{\partial a} e^{-(t-s)\mathcal{L}_0} ds \right] p_u(t) + \cdots,$$

where $p_u(t) = p(x, t, a)$ is the one-point one-time PDF of the velocity field (a is the phase-space coordinate associated with u), and L_0 is the linear operator

$$L_0 = -\int_{-\infty}^{\infty} da \frac{\partial}{\partial x} - a \frac{\partial}{\partial x}.$$

In Figure 2 we compare the PDF dynamics obtained by solving Eq. (1) with Monte Carlo simulation. It is seen that, as we increase the amplitude σ of the forcing term, the first- and second-order truncations of equation (1) lose accuracy. However, if we include more terms in the perturbation series we can get as close as we like to the MC results - provided we re-normalize the perturbation series.

In summary, the MZ-PDF framework allows us to study the statistical properties of the solution to the stochastic Burgers equation subject to random space-time perturbations and random initial conditions. This includes random shock waves in both physical and probability spaces (see the results in Ref. [4]). The mathematical methods and algorithms we developed for the Burgers equation can be applied to other randomly forced conservation laws, potentially leading to new insights in high-dimensional stochastic dynamics and more efficient computational techniques.
Figure 2: Stochastic Burgers equation. One-point PDF of the velocity field at \(x = \pi \) for exponentially correlated, homogeneous (in space) random forcing processes with correlation time 0.01 and amplitude \(\sigma = 0.01 \) (left plot) and \(\sigma = 0.1 \) (right plot). Shown are results obtained from MC, and from two different truncations of the MZ-PDF equation (1).

1.2.2 Numerical Methods for High-Dimensional PDF equations

In this section I would like to briefly discuss the research accomplishments in the context of numerical methods for high-dimensional probability density function equations. In particular, I would like to highlight a new class of adaptive algorithms based on separated series expansions (SSE) which yield a sequence of low-dimensional problems that can be solved recursively and in parallel by using alternating direction methods. The mathematical details of the new algorithms are described in Ref. [3] above. Given a high-dimensional PDF evolution equation

\[
\frac{\partial p}{\partial t} = Lp, \tag{3}
\]

where \(L \) is a linear differential operator, we look for a representation of the solution \(p = p(x_1, \ldots, x_n, t) \) as a summation of separable functions, i.e.,

\[
p(x_1, \ldots, x_n, t) = \sum_{r=1}^{R} \prod_{j=1}^{n} p_{i}^{(r)}(x_i) \tag{4}
\]

In this way, we can determine the unknown functions \(p_{i}^{(r)} \) by using an alternating-direction weighted residual formulation, - in particular an alternating direction Galerkin method. In this way, the computational cost of solving high-dimensional PDF equations scales linearly with the dimension of the PDF and the algorithm can be parallelized with asynchronous updates - we are currently working on this. We applied the alternating-direction Galerkin method to a variety of PDF equations, including prototype equations in high-dimensional parameter spaces, e.g.

\[
\frac{\partial p}{\partial x} = - \left(\sin(t) \sum_{k=1}^{m} \frac{1}{5(k+1)} \sin((k+1)x)b_k \right) \frac{\partial p}{\partial a}. \tag{5}
\]

This equation involves two phase variables \((x \text{ and } a) \), and \(m \) parameters \((b_k) \). Equation (5) represents the one-point PDF formulation of a randomly forced advection problem in one spatial dimension. To compute...
the solution to such equation we look for a series expansion in terms of separated functions

\[p(x, t, a, b_1, \ldots, b_m) = \sum_{r=1}^{R} p^{(r)}(x, t, a) \prod_{j=1}^{m} h_j^{(r)}(b_j), \]

and determine the unknowns \(p^{(r)}(x, t) \) and \(h_j^{(r)} \) by solving at most two-dimensional linear problems at each time step. In Figure 3 we show the modes \(p^{(r)}(x, t) \) \((r = 1, \ldots, 10) \) we obtain at \(t = 2 \) The L2 error of the separated solution (6) relative to an analytical solution is shown in Figure 4 versus the number of parameters and for different separation ranks \(R \). The main feature of the numerical methods we developed for high-dimensional PDF equations is that they allow us to compute their solution by solving a sequence of low-dimensional problems. This will find its way in many different applications, ranging from the Boltzmann equation to the Fokker-Plank and Liouville equations. In particular, we are currently using the separated series expansion method for optimal control of the Liouville equation, i.e., optimal control under uncertainty of nonlinear dynamical systems.

1.3 International Collaborations

During the reporting period of grant I invited Lucia Parussini, a young assistant professor from the department of Mechanical Engineering at University of Trieste, to join the Division of Applied Mathematics at Brown University from September 8 to October 4, 2014 and from May 13 to June 14, 2015. Lucia’s visit was funded by Italy/US science and technology exchange program sponsored by AFOSR. For technical reason those fundings were added to the AFOSR grant I am reporting on. Lucia collaborated with me, Prof. Karniadakis and other members of the research group at Brown in developing new methods addressing the curse of dimensionality forward uncertainty quantification (UQ) problems. Specifically, she studied a multivariate Gaussian process regression approach that allows us to infer quantities of interest, including random functions and fields, in physical models governed by stochastic partial differential equations (SPDEs). We have results on stochastic Burgers, and Navier-Stokes equations indicating that the new method is accurate and can achieve speed-up factors of up to several orders of magnitude relative to classical UQ approaches. This was made possible by combining the output of variable-fidelity stochastic simulations (variable-fidelity in both models and probability space) in a Bayesian inference process that relies on recursive co-kriging. Lucia brought to the Division of Applied Math at Brown the expertise and the mathematical tools developed by the research group on optimization of Prof. Carlo Poloni at University of Trieste. Carlo is the owner of the
ESTECO company that developed the multi-objective and multi-disciplinary optimization software package modeFrontier. The collaboration with Lucia triggered AFOSR in the context of the Italy/US international initiative is still active and will continue in the years to come.

1.4 Invited Lectures, Conferences and Workshops

Hereafter, I provide a list of all invited lectures and talks I gave from the tentative start date of the project (Nov 1, 2013) to the final date (July 31, 2015). Note: not all lectures and conferences listed here were financially supported by AFOSR (see the cost breakdown section 1.5), but all of them involve the research work I performed in the context of the AFOSR project. I acknowledged support from AFOSR in all of them.

Invited Lectures in Universities

7. D. Venturi, “Reduced-order methods for probability density function equations”, University of Massachusetts Amherst, Amherst (MA), Nov. 4th, 2014.

Invited Talks in Conferences and Workshops

2. D. Venturi, Dimension reduction through the Mori-Zwanzig formulation, SIAM Workshop on Dimension Reduction, Penn State University, State College (PA), Mar. 21-24, 2015.

1.5 Cost Breakdown

Hereafter, I provide a cost breakdown of the grant during the period of performance (8/1/2014 - 7/31/2015)

• PI effort - 3.19 months - $17,311.94
• PI benefits - $5,228.20
• International collaborations (section 1.3) - $9,500
• Domestic Conferences, Workshops and Invited Talks (section 1.4) - $3,382.19
 1. 11/4/14 - Invited talk at the University of Massachusetts Amherst - $89.63
 2. 12/4/14 - APS-DFD and invited talk at UCSD - $367.81
 3. 2/5/15 - Invited talk at UCSC - $329.87
 4. 6/7/15 - Invited talk at Stanford University and UCSC - $2,445.65
 5. 6/26/15 - Workshop at Woods Hole Oceanographic Institute - $149.23
• Indirect Costs - $22,138.96
• Total Costs: $57,561.29
1. Report Type

Primary Contact E-mail
Contact email if there is a problem with the report.
 daniele_venturi@brown.edu

Primary Contact Phone Number
Contact phone number if there is a problem with the report
 831-502-7249

Organization / Institution name
Brown University

Grant/Contract Title
The full title of the funded effort.
 Goal-oriented probability density function methods for uncertainty quantification

Grant/Contract Number
AFOSR assigned control number. It must begin with "FA9550" or "F49620" or "FA2386".
 FA9550-14-1-0212

Principal Investigator Name
The full name of the principal investigator on the grant or contract.
 Daniele Venturi

Program Manager
The AFOSR Program Manager currently assigned to the award
 Jean-Luc Cambier

Reporting Period Start Date
 08/01/2013

Reporting Period End Date
 09/12/2015

Abstract

During the performance period of the grant we developed the proposed goal-oriented probability density function method based on the Mori-Zwanzig formulation and applied it to stochastic PDEs such as advection-reaction and Burgers equations. We also developed new algorithms to solve high-dimensional probability density function (PDF) equations and stochastic domain decomposition techniques to propagate uncertainty across heterogeneous domains.

These research efforts resulted in two papers published in the Proceedings of the Royal Society of London A, two papers under review during performance period (one published now and one in press) and one book chapter (now in press). The main findings can be summarized as follows: The Mori-Zwanzig approach has the potential to overcome well-known limitations encountered in stochastic simulations of high-dimensional random systems, in particular the curse of dimensionality and the lack of regularity of the solution. This comes at the price of solving complex integro-differential PDEs - the Mori-Zwanzig equations - whose computability relies on either analytical approximations or data-driven approaches. We investigated the accuracy of analytical techniques based Kubo-Van Kampen operator cumulant expansions for Langevin equations driven by fractional Brownian motion and other noises, stochastic advection-reaction equations and stochastic Burgers

DISTRIBUTION A: Distribution approved for public release.
equation. In the context of the Burgers equation, we studied numerically one- and two-point MZ-PDF equations and computed the statistical properties of random shock waves generated by high dimensional random initial conditions and random additive forcing terms. We also addressed the problem of computing the numerical solution to high-dimensional PDF equations. To this end, we developed three different classes of new algorithms: the first one is based on separated series expansions, resulting in a sequence of low-dimensional problems that can be solved recursively and in parallel by using alternating direction (ADI) methods. The second class of algorithms relies on a truncation the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy of coupled probability density function equations. The third class of algorithms is based on high-dimensional model representations, e.g., ANOVA and probabilistic collocation methods. A common feature of all these approaches is that allow us to compute the solution of high-dimensional PDF equations via a sequence of low-dimensional problems. This is a very important question which will find its way in many related works. For instance, we are currently using the alternating direction Galerkin method we developed for high-dimensional PDF equations in the context of stochastic optimal control. i.e., optimal control under uncertainty of nonlinear dynamical systems, and plasma dynamics (numerical solution to the full Boltzmann equation).

Distribution Statement
This is block 12 on the SF298 form.

Distribution A - Approved for Public Release

Explanation for Distribution Statement
If this is not approved for public release, please provide a short explanation. E.g., contains proprietary information.

SF298 Form
Please attach your SF298 form. A blank SF298 can be found here. Please do not password protect or secure the PDF. The maximum file size for an SF298 is 50MB.

AFD-070820-035.pdf

Upload the Report Document. File must be a PDF. Please do not password protect or secure the PDF. The maximum file size for the Report Document is 50MB.

final_report.pdf

Upload a Report Document, if any. The maximum file size for the Report Document is 50MB.

Archival Publications (published) during reporting period:

Changes in research objectives (if any):

Change in AFOSR Program Manager, if any:

Extensions granted or milestones slipped, if any:

AFOSR LRIR Number

LRIR Title

Reporting Period

Laboratory Task Manager

Program Officer

Research Objectives

Technical Summary

Funding Summary by Cost Category (by FY, $K)
<table>
<thead>
<tr>
<th></th>
<th>Starting FY</th>
<th>FY+1</th>
<th>FY+2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment/Facilities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Report Document

Report Document - Text Analysis

Appendix Documents

2. Thank You

E-mail user

Dec 07, 2015 14:42:19 Success: Email Sent to: daniele_venturi@brown.edu

DISTRIBUTION A: Distribution approved for public release.