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A Joint Multitarget Estimator for the Joint Target
Detection and Tracking Filter

Erkan Baser∗, Mike McDonald†, Thia Kirubarajan∗, and Murat Efe‡

Abstract—This paper proposes a joint multitarget (JoM) esti-
mator for the joint target detection and tracking (JoTT) filter.
An efficient choice to the unknown JoM estimation constant
(i.e., hypervolume around target state estimate) is proposed as
a Pareto-optimal solution to a multi-objective nonlinear convex
optimization problem. The multi-objective function is formulated
as two convex objective functions in conflict. The first objective
function is the information theoretic part of the problem and
aims for entropy maximization, while the second one arises from
the constraint in the definition of the JoM estimator and aims
to improve the accuracy of the JoM estimates. The Pareto-
optimal solution is obtained using the weighted sum method,
where objective weights are determined as linear predictions from
autoregressive models. In contrast to the marginal multitarget
(MaM) estimator, the “target-present” decision from the JoM
estimator depends on the spatial information as well as the
cardinality information in the finite-set statistics (FISST) density.
The simulation results demonstrate that the JoM estimator
achieves better track management performance in terms of track
confirmation latency and track maintenance than the MaM
estimator for different values of detection probability. However,
the proposed JoM estimator suffers from track termination
latency more than the MaM estimator since the localization
performance of the JoTT filter does deteriorate gradually after
target termination.

Index Terms—Target tracking, JoM estimator, Bernoulli RFS,
JoTT filter, track management.

I. INTRODUCTION

Target tracking is the process of estimating the state of a
dynamic object by filtering noisy measurements in the pres-
ence of false alarms and missed detections. The whole process
can be divided into track confirmation, track maintenance, and
track termination functions. Hence, it is necessary to verify
the existence of the target from the received measurements.
A number of statistical algorithms have been proposed for the
detection and tracking of single (or multiple) target(s) [1]. A
recent innovation in the area of target detection and tracking
is in the application of the Random Finite Sets (RFS) using
the finite-set statistics (FISST) [2], [3].

The RFS formalism of the Bayesian multitarget filter pro-
vides a formal mechanism for propagating and updating FISST
densities. Using the Almost Parallel Worlds Principle (AP-
WOP) along with the relationship between the FISST prob-
ability and the measure theoretic probability, some statistical
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concepts and techniques in filtering theory and information
theory can be established for the RFS formalism [2], [3].
However, the conventional single target state estimators (e.g.,
the maximum a posteriori (MAP) estimator and the expected
a posteriori (EAP) estimator) are undefined for RFS based
multitarget filters [2], [4]. Hence, two Bayesian optimal es-
timators were proposed to obtain the multitarget states from
FISST densities. The first multitarget state estimator is called
the marginal multitarget (MaM) estimator. This estimator only
considers the cardinality information (i.e., the number of
elements of a given RFS) in FISST densities. The second mul-
titarget state estimator is called the joint multitarget (JoM) esti-
mator. This estimator, as its name suggests, considers both the
cardinality and spatial information related to multitarget states
in FISST densities. These two estimators are Bayesian optimal,
i.e., they minimize their Bayes risk functions. Recently, the
minimum mean optimal sub-pattern assignment (MMOSPA)
estimator in [5] was generalized for the probability hypothesis
density (PHD) filter [6]. Thus, a theoretical basis also has been
established for the commonly used k-means clustering method.

The multi-Bernoulli assumption on the RFS of targets
represents each target independently by a parameter pair {q, f}
[8]. That is, for each target an independent Bernoulli RFS
provides a unified statistical representation of target existence
via the probability q and target states via the spatial probability
density f (x). Using the multi-Bernoulli RFS representation,
tractable approximations of the multitarget Bayes filter, gen-
erally known as the multi-target multi-Bernoulli (MeMBer)
filters, were developed [2], [9], [10]. In addition, the Bernoulli
RFS formalism was used in the development of an exact solu-
tion to the single-target tracking problem. First, the integrated
probabilistic data association (IPDA) filter [11] was formulated
as an RFS based Bayes filter [12]. Then, this RFS formula-
tion was extended by making use of a target birth model,
state-dependent detection probability and arbitrary false alarm
process in its framework. Thus, the joint target detection and
tracking (JoTT) filter (also known as the Bernoulli filter)
was developed with the objective of estimating the target
existence probability along with its state(s) [2], [13]. For more
detailed information regarding the theory, implementation and
applications of Bernoulli filters, interested readers are referred
to [8].

The performance of tracking algorithms and state estimators
can be evaluated by metrics defined in terms of cardinality,
time, and accuracy [14], [15]. The performance metrics should
be determined according to which attributes of the tracking
algorithm or the state estimator are selected to be monitored.
For example, the mean OSPA (MOSPA) metric is appropriate
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to reduce jitters and track coalescence [5], [7]. In addition,
they should be consistent with the criteria that the tracking
algorithm or state estimator is developed to optimize [5], [16].
Based on these facts, it is important to point out that the
estimated states from the JoTT filter using the JoM estimator
is identical to that using the MaM estimator if “target-present”
decision is confirmed by these two estimators. Therefore, the
performance metric(s) should be selected so as to monitor
the cardinality and time attributes of these two estimators re-
garding track confirmation, track maintenance quality after the
target birth, and track termination. There are numerous metrics
defined in terms of cardinality and time. Nevertheless, the
OSPA metric is defined as a rigorous and robust performance
measure for the (multi)target Bayes filters [17], [18].

Even though the MaM estimator is used in MeMBer type
filters, the exact use of the JoM estimator with these filters
has not been studied so far. In this paper, we propose a JoM
estimator to obtain the estimate of the target RFS from the
JoTT filter. The proper choice to the unknwon JoM estimation
constant (i.e., hypervolume around target state estimate) is
obtained as a Pareto-optimal solution to a multi-objective
nonlinear convex optimization problem. The multi-objective
function is formulated as two convex objective functions in
conflict. The first objective function is the information theo-
retic part of the problem and aims for entropy maximization,
while the second one arises from the constraint in the definition
of the JoM estimator and aims to improve the accuracy of the
JoM estimates. The Pareto-optimal solution is obtained using
the weighted sum method [19]–[22]. This method aggregates
two or more objective functions into a single objective function
using weights selected according to their relative importance.
Then, the resulting single-objective optimization problem can
be solved using any standard optimization technique [19], [20].

This paper is organized as follows: Section II provides the
necessary background on information theory and multitarget
state estimation. In Section III, the Bayesian optimal multitar-
get estimators (i.e., MaM and JoM estimators) are presented
along with their evaluations for estimation of multitarget states.
The proper choice to the JoM estimation constant is formulated
in Section IV. For its Pareto-optimal solution, linear predic-
tions of objective weights are proposed in Section V. The
implementation of the JoM estimator for the JoTT filter under
Gaussian assumptions is presented in Section VI. Simulation
results are shown in Section VII. Finally, conclusions and
future research directions are given in Section VIII.

II. BACKGROUND

A. Concepts in Information Theory

In the following, we introduce some of the basic concepts of
information theory. For the sake of completeness and clarity,
we also summarize how each concept is utilized later.

Entropy: A random variable is statistically characterized by
its probability density function (pdf). In traditional statistics,
variance of a random variable is used to measure its uncer-
tainty. However, in the information theoretic sense, entropy is
a measure of the amount of uncertainty in a random variable
[23]. For a discrete random variable x characterized by the

probability mass function (pmf) p (x) over its sample space
X , the entropy is computed as

H (p) = −
∑
x∈X

p (x) log (p (x)), (1)

where − log (p (x)) is called the self-information obtained by
the observation of x. For the continuity of entropy, 0 log (0) =
0, and thus zero probability does not change the uncertainty
in x.

Entropy is a nonnegative measure, i.e., H (x) ≥ 0 with the
properties that H (x) is maximized if p (x) is uniform, and
H (x) = 0 if there is no uncertainty in x, i.e., p (x) = 0 or
1 [23]. Hence, larger entropy means that less information is
available for the realization of a random variable through its
pmf [24].

Differential Entropy: For continuous random variables, the
information theoretic uncertainty analogous to the entropy is
called the differential entropy, and is defined as

H (f) = −
∫
s

f (x) log (f (x)) dx, (2)

where S is the support set of the continuous pdf f (x). Unlike
the entropy, the differential entropy has values in the range
[−∞,∞]. Therefore, its standalone value cannot be interpreted
as the amount of uncertainty on a continuous time random
variable. Besides, it makes sense within the definition of the
following concepts.

Entropy and differential entropy will be utilized to analyze
uncertainties related to the cardinality and spatial information
in a FISST density, respectively. Thus, we can evaluate how
appropriate the MaM and JoM estimators are for estimation
of the multitarget states.

Asymptotic Equipartition Property: In information theory,
the weak law of large numbers corresponds to asymptotic
equipartition property (AEP) [23]. That is, given that x̃1, ..., x̃n
are independent and identically distributed (i.i.d.) random
samples from f (x), then the normalized self-information of
this sequence weakly converges to the (differential) entropy of
f (x) with a small positive tolerance, i.e., τ > 0 if n is large
enough to satisfy [23]

Pr

(∣∣∣∣− 1

n
log f (x̃1, ..., x̃n)→ H (f)

∣∣∣∣ < τ

)
> 1− δ, (3)

where δ → 0 as n → ∞ (proof is given by Chebyshev’s
inequality). The collection of these sequences forms typical
set Anτ . Most of the total probability is contained in this set,
i.e., Pr (Anτ ) > 1− τ and is almost uniformly distributed [23]
as

2−n(H(f)+τ) ≤ Pr (x̃1, ..., x̃n) ≤ 2−n(H(f)−τ). (4)

Hence, if any statistical conclusion is drawn for a typical set,
it would be true in general with high probability [23]. In
addition, the volume of typical set is almost given by [23],
[25]

V ol (Anτ ) ≈ 2nH(f). (5)

Then, the larger\smaller the differential entropy is, the more
f (x) disperses\concentrates over its support set S. Note that
the typical set has the smallest volume, compared to all
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possible sets that contain most of the total probability [23],
[24].

Typical set of a standard Gaussian density will lead us to
define another important set, where the sequences of mostly
likely state estimates exist. Thus, our aim would be the entropy
maximization by defining a uniform density over this set.

Quantization: The relationship between the entropy and the
differential entropy is established by quantization. To see this,
assume that the range of a continuous random variable x is
divided into bins of ∆ where f (x) is continuous. Then, the
entropy of the quantized random variable is given by

H (p) = −
∞∑
−∞

pi log (pi) ,

= −
∞∑
−∞

f (xi) ∆ log (f (xi) ∆) ,

= −
∞∑
−∞

f (xi) ∆ log (f (xi))− log (∆) ,

(6)

where the first term approaches −
∫
S
f (x) log (f (x)) as

∆ → 0. Thus, for n bit quantization of a continuous random
variable, i.e., ∆ = 2−n, the entropy increases with n as

H (p) = H (f) + n.

This means that in order to represent an n-bit quantized
information from x ∼ f (x) the average number of bits
required is H (f) + n [23].

This concept will be utilized to analyze the entropy of a
FISST density when the corresponding RFS is quantized. This
analysis demonstrates an important fact about the selection of
the JoM estimation constant.

Kullback-Leibler Divergence (Relative Entropy): Kullback-
Leibler (KL) divergence is a statistical measure of the differ-
ence of a model or a theory based pdf f (x) from a true or
a reference pdf ft (x) on the same support set. If ft (x) is
absolutely continuous with respect to f (x) or +∞ otherwise,
KL divergence of f (x) from ft (x) is defined as

K (ft ‖f ) =

∫
ft (x) log

(
ft (x)

f (x)

)
dx,

=

∫
ft (x) log (ft (x))dx−

∫
ft (x) log (f (x))dx,

= H (ft ‖f )−H (ft) ,
(7)

where the first term measures the uncertainty introduced by
using a model or theory based f (x) instead of the true
or reference ft (x) while the second term is the differential
entropy of ft (x). Hence, the more f (x) resembles ft (x),
the less is the information lost due to using f (x). That is,
K (f ‖ft ) ≥ 0 gets smaller values with equality if and only
if f (x) = ft (x).

KL divergence is an important concept used in the develop-
ment of other consistent concepts in information theory. For
example, mutual information is a special case of KL diver-
gence [23], and entropy maximization is in general formulated
as the minimization of KL divergence instead of Shannon’s
entropy given by (1) and (2) [24], [26].

With the help of other relevant concepts KL divergence will
be utilized to define the information theoretic part of the multi-
objective optimization problem.

B. Multitarget State Estimation

In the following, we exemplify the problems of the MAP
and EAP estimators when they are generalized for estima-
tion of multitarget states. Then, we define the global MAP
estimators, i.e., the GMAP-I and GMAP-II estimators, which
were introduced in [27] and also known as the MaM and JoM
estimators in [2], [4], respectively.

Consider the scenario in [2], [3], where a Bernoulli target
moves in the one dimensional interval [0, 2] with units given in
meters. In addition, suppose that the target existence probabil-
ity is set to 0.5 and if the Bernoulli target does exist, its spatial
probability density is uniform over [0, 2]. That is, suppose that
the FISST density in units of m−|X| is

f (X) =


0.5, if X = ∅

0.25 m−1, if

{
X = {x}
0 ≤ x ≤ 2

0, otherwise

First, we try to obtain the MAP estimate using XMAP =
arg sup

X
f (X). However, the MAP estimator is undefined since

f (∅) = 0.5 cannot be compared with f ({x}) = 0.25 m−1.
This problem would be eliminated by converting f (X) into a
unitless quantity by multiplying it with m|X|. Thus, we obtain
the MAP estimate as XMAP = ∅. However, this conversion
results in a paradox. That is, if the Bernoulli target moved
in the same interval with units given in kilometer instead of
meter, this would result in f ({x}) = 250 m−1. Thus, we
would obtain the MAP estimate as XMAP = {x} after the
conversion. That is, the change in unit of measurements from
m to km also changes the MAP estimate [2], [3].

Now, using the set integral we try to obtain the EAP estimate
from

XEAP =

∫
Xf (X) δX,

= ∅f (∅) +

2∫
0

xf ({x}) dx,

= 0.5 (∅+ 1 m) .

As indicated in [2], [3], the EAP estimator faces additional
problems arising from ill-defined arithmetic operations on
sets. Therefore, like the MAP estimator, the EAP estimator
is undefined when generalized for estimation of multitarget
states.

The GMAP-I and GMAP-II are Bayesian estimators, which
are defined according to the minimization of the following cost
functions [27]

C0 (X,Y ) =

{
0, if |X| = |Y |
1, if |X| 6= |Y |

(8)

and
C (X,Y ) = C0 (X,Y ) + C1 (X,Y ) , (9)
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respectively. The second cost function in (9) takes into account
the spatial information in a FISST density, i.e.,

C1 (X,Y ) =


0, if


s = r,

(`1, ..., `s) = (ϕβ1
, ..., ϕβr ) ,

(x1, ..., xs) = (yβ1
, ..., yβr ) ∈ K

1, otherwise

where the hybrid RFSs are defined as X = {ξ1, ..., ξs}
and Y = {ζ1, ..., ζr} with their identities (`1, ..., `s) and
(ϕ1, ..., ϕr), i.e., ξi = (xi, `i) for i = 1, ..., s and ζi = (yi, ϕi)
for i = 1, ..., r. The RFSs consisting of ∀x, y ∈ Rn are
surrounded by a closed ball K in (Rn)

r and are associated
through a one-to-one function given by β : (`1, ..., `s) →
(ϕ1, ..., ϕr). Thus, the cost function in (8) just weights the car-
dinality discrepancy, whereas the cost function in (9) weights
both the cardinality and spatial discrepancies. These properties
of the GMAP-I and GMAP-II estimators will help us in
evaluating the corresponding MaM and JoM estimators for
estimation of multitarget states.

III. MULTITARGET BAYES ESTIMATORS

For RFSs with different cardinalities, their FISST den-
sities have incommensurable scales (i.e., different physical
dimensions). Furthermore, addition and subtraction operations
on RFSs are not defined properly. Therefore, the multitarget
analogues of the MAP and EAP estimators are undefined [2]–
[4], [27]. Nevertheless, two MAP like multitarget estimators
were proposed for FISST densities. In the following, we
show how multitarget states are obtained using these Bayes
estimators. In addition, we evaluate how appropriate they
are for this purpose based on the results obtained from the
analysis of uncertainties related to the cardinality and spatial
information in a FISST density.

Marginal Multitarget (MaM) Estimator: The MaM estimate
of an RFS is computed in a two-step procedure: first, the MAP
estimate of the cardinality is determined:

n̂MAP ∆
= arg sup

n
p|X| (n) , (10)

where |X| denotes the cardinality variable for the RFS X and
is characterized by its probability mass function. That is, the
cardinality distribution of the RFS X , given that Z(k) is the
RFS of measurements at time k, is

p|X| (n)
∆
=

1

n!

∫
fk|k

(
{x1, ..., xn}

∣∣∣Z(k)
)
dx1...dxn. (11)

Then, the MAP estimate of the multitarget states is deter-
mined from the corresponding FISST posterior density for the
given cardinality estimate n = n̂MAP as

X̂MaM = arg sup
x1,...,xn̂MAP

fk|k

(
{x1, ..., xn̂MAP }

∣∣∣Z(k)
)
.

(12)
The MaM estimator is Bayesian optimal [2], [4], [27].

However, it does not utilize all the information contained in the
multitarget posterior density. Hence, it would be statistically
unreliable when the target number is related to the spatial
information in the FISST posterior density [2], [4]. That is,
using the relationship between the FISST probability and

measure theoretic probability, the differential entropy of an
RFS X is given by [28], [29]

H (fX) = −
∫
f (X) log

(
v|X|f (X)

)
δX,

= −
∞∑
n=0

1

n!

∫
f ({x1, ..., xn})×

log (vnf ({x1, ..., xn})) dx1...dxn,
(13)

where v−|X| is the unit of the FISST density f (X). Note that
the dependence of the FISST posterior density on the RFS
Z(k) is dropped here for conciseness.

Substituting f ({x1, ..., xn}) = n!p|X| (n) f (x1, ..., xn)
into (13) yields

H (fX) = −
∞∑
n=0

p|X| (n)

∫
f (x1, ..., xn)×

log
(
n!vnp|X| (n) f (x1, ..., xn)

)
dx1...dxn,

(14)
and, after some algebraic manipulations, the differential en-
tropy may be rewritten as the sum of the three terms, i.e.,

H (fX) =

−
∞∑
n=0

p|X| (n) log
(
p|X| (n)

)∫
f (x1, ..., xn) dx1...dxn+

−
∞∑
n=0

p|X| (n)

∫
f (x1, ..., xn) log (vnf (x1, ..., xn))dx1...dxn+

−
∞∑
n=0

p|X| (n) log (n!)

∫
f (x1, ..., xn) dx1...dxn,

(15)
where the first term is the entropy of the cardinality distribu-
tion:

H (p) =
∞∑
n=0

p|X| (n) log
(
p|X| (n)

)∫
f (x1, ..., xn) dx1...dxn,

= −
∞∑
n=0

p|X| (n) log
(
p|X| (n)

)
,

and the second term is the average differential entropy of the
joint pdf of x1, ..., xn over p|X| (n):

E [H (fX,n)] =
∞∑
n=0

p|X| (n)H (fx,n) .

The probability assigned to the FISST density with cardinality
n, i.e., fX,n = f ({x1, ..., xn}), is uniformly distributed
among joint pdfs fx,n = f (x1, ..., xn) of n! possible vectors
for all permutations of {x1, ..., xn}, i.e., fx,n are symmetric
joint pdfs of (xσ1, ..., xσn), where σ indicates the permutation
on the numbers {1, ..., n} [2], [29]. Hence, the third term
indicates the information uncertainty due to change in the
representation from RFSs, i.e., {x1, ..., xn}, to vectors of
indistinguishable points, i.e., (x1, ..., xn) [28], [29]:

E [log (n!)] =
∞∑
n=0

p|X| (n) log (n!) ,
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The MaM estimator’s cost function only penalizes the
cardinality discrepancy between the true RFS and its estimate
[27]. Therefore, the MaM estimator determines multitarget
states without considering the uncertainty represented by the
second and the third terms in the FISST densities.

Joint Multitarget (JoM) Estimator: In contrast to the MaM
estimator, the JoM estimator determines the target number
and multitarget states simultaneously from the FISST posterior
density [2] as

X̂JoM = arg sup
X
fk|k

(
X
∣∣∣Z(k)

) ε|X|
|X|!

, (16)

where the parameter ε denotes a small constant (hereinafter
called as the JoM estimation constant) and satisfies that
f ({x1, ..., xn}) εn ≤ 1 for all integers n ≥ 0. However, there
is a trade-off in the selection of ε. That is, smaller values
of ε yield better accuracy in multitarget state estimates, but
with slower convergence to the true multitarget states [2], [4].
In Appendix A, information theoretic analysis demonstrates
that the uncertainty in multitarget state estimates cannot be
improved by selecting too small values for ε.

Alternatively, the JoM estimator can be performed in a two-
step procedure [2]. First, for integer values n ≥ 0 the MAP
estimates of the RFSs are computed from the corresponding
posterior FISST densities:

X̂n = arg sup
x1,...,xn

f
(
{x1, ..., xn}

∣∣∣Z(k)
)
. (17)

Then, using X̂n for each n, the JoM estimate is determined
as X̂JoM = X̂ n̂, where n̂ denotes the solution to the following
maximization problem:

n̂ = arg sup
n
f
(
{x̂1, ..., x̂n}

∣∣∣Z(k)
) εn
n!
. (18)

Like the MaM estimator, the JoM estimator is Bayesian
optimal [2], [4], [27]. However, it is naturally more appropriate
for the estimation of multitarget states since its cost function
penalizes both discrepancies in cardinality and multitarget
states [27]. In addition, it is known that the JoM estimator
is statistically convergent [2], [4].

IV. OPTIMIZATION OF THE JOM ESTIMATION CONSTANT

The differential entropy of a pdf is roughly represented by
a uniform density over its typical set [23], [25]. However,
typical sets do not include the sequences of all the most (least)
probable state estimates [23], [25]. For example, Fig. 1 shows
the cross-section of the typical set of a standard Gaussian
density around a hypersphere centered at the origin of Rnx
[25], [30]. It can be seen that the typical set is represented by
a thin shell bounded by two convex sets (see Appendix B).
Instead, for log-concave pdfs (e.g., a Gaussian pdf) superlevel
sets can be defined so as to include the sequences of most
likely state estimates [30], [31]:

Sλ = {x ∈ Rnx | f (x̃1, ..., x̃n) ≥ λ} , (19)

where x̃1, ..., x̃n are i.i.d. samples drawn from the log-concave
pdf f (x), and λ is the supremum value of the uniform
probability on the typical set for a small positive constant

Typical Set

Typ
ic

al
 S

et

Typ
ic

al
 S

et

Inner Convex Set

 2
x

n n 

Outer Convex Set

 2
x

n n 

Fig. 1. The cross section of the typical set of the standard Gaussian density
in Rnx .

τ , i.e., λ = e−n(H(f)−τ) [23], where H (f) is in nats. In
particular, if x is Gaussian-distributed with mean µ and co-
variance matrix P in Rnx , i.e., x ∼ N (µ, P ), then substituting
H (f) = 0.5 log ((2πe)

nx |P |) [23] for λ yields

λ = ((2π)
nx |P |)−n/2

e−n(nx2 −τ),

and the joint probability distribution of i.i.d. samples are given
by

f (x̃1, ..., x̃n) =
n∏
i=1

f (x̃i),

= f (x̂)
n
e
− 1

2

n∑
i=1

(x̃i−µ)TP−1(x̃i−µ)
,

where f (x̂) = ((2π)
nx |P |)−1/2.

Thus, the superlevel set given by (19) can be alternatively
defined as

Sλ =

{
x̃ ∈ Rnx | 1

n

n∑
i=1

(x̃i − µ)TP−1(x̃i − µ) ≤ nx − 2τ

}
.

(20)
In general, this bounded and closed set includes the sequences
of most likely random samples drawn from f (x). However,
our aim is to define a confined set that exclusively consists
of good state estimates from the JoM estimator. To this end,
the superlevel set in (20), when evaluated at n = 1, gives the
least upper bound for this special subset as

S
(1)
λ =

{
x ∈ Rnx | (x− µ)

T
P−1 (x− µ) ≤ nx − 2τ

}
,

(21)
where 0 < 2τ < nx. This means that S(1)

λ is a hyperellipsoid
(i.e., a convex set) with the centroid at µ in the region
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surrounded by the inflection points of the Gaussian density
f (x).

The entropy maximization helps ignore spurious details like
tail probabilities and side-lobes for which samples from these
parts can be hardly ever observed [32]. Over bounded and
closed sets, the entropy maximization is achieved by uniform
densities [23]. Then, the KL divergence of f (x) from the
uniform density defined on S(1)

λ , i.e., u (x) = ε−1
λ is given by

K (u ‖f ) =

∫
u (x) log

(
u (x)

f (x)

)
dx,

= H (u ‖f )− log (ελ) ,

(22)

where log (ελ) is the differential entropy of u (x) = ε−1
λ , i.e.,

H (u) = log (ελ), and

H (u ‖f ) = − log (f (x̂)) +
1

2ελ

∫
ελ

(x− µ)TP−1(x− µ)dx,

≤ − log (f (x̂)) +
1

2
(nx − 2τ) ,

where the last inequality follows from (21). Thus, the KL
divergence in (22) can be rewritten as

K (u ‖f ) ≤ − log (f (x̂) ελ) +
1

2
(nx − 2τ) , (23)

where the first term on the right hand side is the approximated
KL divergence of f (x) from u (x) = ε−1

λ when ελ takes so
small values, i.e., nx−2τ → 0. Note that the sum on the right
hand side of (23) is always nonnegative since K (u ‖f ) ≥ 0
on ελ.

The volume of the hyperellipsoid S(1)
λ can be expressed in

terms of τ as follows [33]:

ελ = C (nx) |P |
1/2

rnx/2, (24)

where r = nx−2τ is the critical value for the total probability
of f (x) in the hyperellipsoid, and C (nx) is the volume of the
hypersphere with the unit radius in Rnx .

After substituting for ελ into (23), the problem at hand (i.e.,
determining the optimum volume of the hyperellipsoid) can be
formulated as a nonlinear convex optimization problem that
determines the optimum value of τ for the least upper bound
of the KL divergence. That is,

minimize fo,I (τ) = −log (f (x̂) ελ) +
1

2
(nx − 2τ) ,

subject to g1 (τ) = −τ ≤ 0,

g2 (τ) = − (nx − 2τ) + γmin ≤ 0,

(25)
where γmin is a small constant determined according to the
chi-square table, considering the degree of freedom (i.e., nx)
and the probability of the confidence level indicating the
smallest hyperellipsoid, e.g., Pr ((nx − 2τ) ≥ γmin) ≥ 95%.

The convex optimization problem in (25) is solely for-
mulated in terms of information theoretic sense. In other
words, the objective function fo,I(τ) in (25) is minimized
as nx − 2τ → nx (see Appendix C for proof). Thus, the
computation of the least upper-bound on the KL divergence

through the optimization problem in (25) corresponds to the
minimization of information gain in magnitude measured by

K (u ‖f ) ≤ H (f)− log (ελ) .

In the JoM estimator, the selected hyperellipsoid surround-
ing the estimated states of targets should satisfy∫

εnλ

f ({x1, ..., xn}) dx1...dxn
∆
=

∫
εnλ

f (x1, ..., xn) dx1...dxn,

∼= f (x̂1, ..., x̂n) εnλ,
(26)

where the first expression follows from f ({x1, ..., xn})
∆
=

n! f (x1, ..., xn) and implies that the volume of the hyperel-
lipsoid ελ for each target should be so small that only one
permutation of the RFS is possible in the product space εnλ,
i.e., {x1, ..., xn} = (x1, ...xn) [27]. However, as indicated in
[2], setting εnλ to extremely small values would be impractical
without considering the information provided by f (x). In
other words, u (x) would be more informative than f (x)
as nx − 2τ → 0. However, this contradicts the information
theoretic part of the optimization problem in (25), which aims
for entropy maximization by minimizing information gain
obtained using u (x) instead of f (x).

In contrast to single-objective optimization, there is usually
no unique solution that simultaneously achieves the optimiza-
tion of more than one objective function. Instead, in multi-
objective optimization problems, Pareto-optimal solutions can
be computed according to the relative importance of individual
objective functions [19], [20]. For a vector of conflicting
objective functions given by F (x) = [f1(x), ..., fN (x)] a
solution x∗ is said to be Pareto optimal if there does not exist
another solution that dominates it [19]. That is, given that T
is the feasible design space, there is no another point, x ∈ T
satisfying F (x) ≤ F (x∗) and fi(x) < fi(x

∗) for at least
one objective function. There are multiple methods for multi-
objective optimization problems. However, the conversion of
the multi-objective problem into a single-objective problem is
the standard way of solving [19], [20].

To determine the optimum value of τ , two objective func-
tions fo,I (τ) and fo,J (τ), which quantify entropy maximiza-
tion and the accuracy of the JoM estimator, respectively, are
in conflict with one another. An optimization problem with
a single convex objective function can be defined by aggre-
gating them with appropriately selected weights. However, a
consistent Pareto-optimal solution to this optimization prob-
lem requires the normalization of these conflicting objective
functions in different magnitudes [20], [21]. To this end,
their extreme values are calculated at the vertex points of
the Pareto-optimal set [20]. Specifically, for the problem at
hand, first set τ = 0 to obtain the minimum of fo,I (τ), i.e.,
FMin
o,I while setting fo,J (τ) to its maximum value, i.e., FMax

o,J .
Then, set τ = 0.5 (nx − γmin) to obtain FMax

o,I and FMin
o,J for

fo,I (τ) and fo,J (τ), respectively. Finally, the following robust
normalization is performed for these conflicting objective
functions [20], [21]:

fTranso,ξ (τ) =
fo,ξ (τ)− FMin

o,ξ

FMax
o,ξ − FMin

o,ξ

,∀ξ ∈ {I, J} .
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Thus, an optimization problem with a single convex objective
function can be obtained as follows:

minimize fm (τ) = wIf
Trans
o,I (τ) + wJf

Trans
o,J (τ) ,

subject to g1 (τ) = −τ ≤ 0,

g2 (τ) = − (nx − 2τ) + γmin ≤ 0,

(27)

where fTranso,J is the normalization of the objective function
defined as

fo,J (τ) =

{
(nx − 2τ)

2 if (nx − 2τ) > γmin

0 otherwise,

considering the accuracy of the JoM estimator.
In this paper, the weights of the conflicting objectives are

determined as linear predictions from autoregressive (AR)
models. The next section presents details about this process.
However, the weights can also be chosen depending on the
application and preference of decision maker(s) [19], [20].

The nonlinear convex optimization problem in (27) can be
solved using any standard nonlinear optimization technique
[19]. In addition, the solution is strictly Pareto optimal for the
positive weights of the convex objective functions [20], [21] .
In this paper, the sequential quadratic programming (SQP) is
employed to find a Pareto-optimal solution to (27). The SQP
iteratively solves a quadratic approximation to the Lagrangian
function, in the sense that the sequence of solutions approaches
to optimal solution satisfying the necessary Karush-Kuhn-
Tucker (KKT) conditions [34], [35]. Note that there are many
other ways to solve the above multi-objective optimization
problem. The contribution of this paper is not in optimization,
but in multitarget detection and state estimation. Thus, we
have used a standard optimization approach that guarantees
a Pareto-optimal solution without exhaustive comparison with
other approaches.

In order to illustrate the geometrical interpretation of the
weighted sum method, let us examine the nonlinear convex
optimization problem in (27) with the following parameters:
P = diag

(
[50, 50, 10, 10]

′), nx = 4 and γmin = 0.297
with the confidence probability of 99.9%. Considering the
inequality constraints in (27) the feasible design space of
τ , i.e., T = {τ |gi (τ) ≤ 0, i = 1, 2} is obtained as T =
[0, 1.8515] [20], [22]. Thus, the feasible criterion space of
the vector of the normalized objective functions, i.e., F =[
fTranso,I (τ) , fTranso,J (τ)

]
is defined as Ω = {F |τ ∈ T} [20],

[22]. Fig. 2 shows the relationship between the Pareto front
and the normalized objective functions in the feasible criterion
space. The Pareto front is the set of the non-dominated points,
i.e., Pareto-optimal points in the criterion space [20]. As can
be seen in Fig. 2, the Pareto front is a convex curve. Thus,
a Pareto-optimal point can always be obtained depending on
the weights of the conflicting objective functions [22], [36].
This is because for a given set of weights, the weighted sum
method approximates the Pareto front as a line [36]:

fTranso,I (τ) = −wJ
wI

fTranso,J (τ) +
1

wI
fm (τ∗) ,

where τ∗ denotes a Pareto-optimal solution. For example, the
SQP finds the Pareto-optimal solution as τ∗ = 1.1674 if the

conflicting objective functions are considered equally impor-
tant, i.e., wI = wJ = 0.5. Thus, the Pareto-optimal point in
the feasible design space is computed as F = [0.1747, 0.1687].
As expected, the normalized objective functions in conflict are
penalized almost equally. In Fig. 2, the line with the slope −1
is tangent to the Pareto front at F = [0.1747, 0.1687] and
locally approximates the convex Pareto front.
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Fig. 2. Geometrical interpretation of the weighted sum method in the feasible
criterion space.

V. LINEAR PREDICTIONS OF OBJECTIVE WEIGHTS

AR models predict the current output of a stochastic process
based on its previous outputs. The AR model of order N ,
denoted as AR (N), is in general defined by [37]

xk = c+
∑N

i=1
αixk−i + ϑk,

where c denotes a constant for a non-zero mean value of xk,
{αi}Mi=1 are predictor coefficients and ϑk is a white noise
representing prediction error with zero mean and variance σ2

ϑ.
For linear predictions of the objective weights, we use the
following AR (1) model:

wk = c+ αwk−1 + ϑk, (28)

where the predictor coefficient indicates linear relationship in
this time series. For a wide sense stationary (WSS) process, the
condition |α| < 1 must be satisfied. In this case, the AR (1)
model is statistically characterized by [37]

E [wk] = µw =
c

1− α
,

var (wk) = σ2
w =

σ2
ϑ

1− α2
,

cov (wk, wk−i) = σ2
wα

i.
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Thus, the autocorrelation function between wk and wk−i

decays to zero by αi as i → ∞. This means that the AR (1)
model is also stable, i.e., represents a predictable process.

The objective function fo,J (τ) in (27) only considers the

degree of freedom, i.e., nx because of the definition of the

hyperellipsoid in (21). Thus, substituting (24) into (26) for a

Bernoulli target with parameter pair {qk, fk} over the volume

ελ results in∫
ελ

fk ({x}) dx ∼= qkfk (x̂) ελ,

= qk
1

2nx/2Γ
(
nx

2

) (nx − 2τ)
nx/2,

where fk (x) is a Gaussian pdf and Γ (·) denotes the gamma

function. Notice that the approximation is independent of P
at time k, denoted as Pk. To consider the covariance of fk (x)
implicitly in this approximation we determine the degree of

correlation between wJ,k and wJ,k−1 as

βk =
|Pk−1|1/2
|Pk|1/2

1A (qk) ,

where the first term is the ratio of infinitesimal volumes to

locate a Bernoulli target with the same spatial probability at

time k and k − 1, respectively and 1A denotes an indicator

function defined on the set A = [qmin, 1] [2]. The indicator

function neglects changes in Pk before confirming a Bernoulli

target with the threshold qmin. Thus, we keep the weights

at their initial states until a probable Bernoulli target is

confirmed. In addition, for a stable process the correlation

must decay to zero as time lag increases. For this purpose,

we set α = βk in (28) within its control limits as shown in

Fig. 3.

β

α

Fig. 3. Predictor coefficient of AR(1) model versus the degree of correlation
between successive weights.

At this point, it is important to note that our AR (1)
model with the predictor coefficient evolving in time does not

represent a WSS process. However, it would turn into a WSS

process after the optimal JoTT filter converges to its steady-

state with detections. Then, the predictor coefficient is set to

α = 0.9 according to Fig. 3 since successive changes in Pk

would be small. Thus, the linear predictions monotonically

approach to μw,J = 10cJ , where 0.1 ≤ μw,J ≤ 0.9 in order

to prevent that one objective completely dominates another in

the multi-objective optimization. Since fk (x) is very peaky

after the convergence, fo,J (τ) becomes more important than

fo,I (τ) in (27). Hence, μw,J is set to its maximum value, i.e.,

μw,J = 0.9 by cJ = 0.09.

Using wI,k + wJ,k = 1, the the AR (1) model for wI,k is

defined by

wI,k = 0.01 + αwI,k−1 + νk,

where νk is a white noise with zero mean and variance σ2
w,I =

σ2
w,J since νI,k = −ϑJ,k. Similarly, after the convergence its

linear predictions monotonically approach to μw,I = 0.1.

On the other hand, the optimal JoTT filter gradually dete-

riorates after target death. Therefore, βk takes values close

to zero and with α = 0.1 the linear predictions for wJ,k

and wI,k monotonically approach to their opposite means,

i.e., μw,J = 0.1 and μw,I = 0.9, respectively. Consequently,

fo,I (τ) becomes more important than fo,J (τ) in (27) as

fk (x) disperses over ελ.

VI. IMPLEMENTATION OF THE JOM ESTIMATOR FOR THE

JOTT FILTER

Suppose that at most one target is present. In this case, the

RFS of a single target can be modeled as a Bernoulli RFS

with the parameter pair (qk−1, fk−1). Thus, its FISST density

is parameterized as

fk−1 (X) =

{
1− qk−1 if X = ∅
qk−1fk−1 (x) if X = {x} , (29)

where qk−1 is the existence probability of the target, and

fk−1 (x) is its spatial pdf if the target is present.

In the prediction step of the JoTT filter, the FISST density

fk−1 (X) propagated to time k is parameterized as follows

[2], [13]:

qk|k−1 = pB (1− qk−1)+qk−1

∫
pS,k−1 (x) fk−1 (x) dxk−1,

(30)

fk|k−1 (x) =
1

qk|k−1
[(1− qk−1) pBbk (x) + qk−1 〈f, pSψ〉] ,

(31)

where a newborn target is declared with probability pB ac-

cording to a birth density bk (x), i.e., the Bernoulli parameter

pair (pB , bk), and

〈f, pSψ〉 =
∫

fk−1 (x) pS,k−1 (x)ψk|k−1 (· |x ) dxk−1,

where pS,k−1 (x) is the state-dependent target survival proba-

bility and if the target survives, its states evolve according to

the Markov state transition density ψk|k−1 (· |x ).
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Suppose that the single-sensor multitarget measurements at
time k are modeled as

Zk = Γk (x)UCk,

where Ck is the RFS of i.i.d. false alarms and Γk (x) is
the Bernoulli RFS of target-originated measurement with the
parameter pair (pD(x), gk(z|x)), where pD(x) is the detection
probability, and gk(z|x) is the measurement likelihood func-
tion.

In the original derivation of the JoTT filter, the false
alarm process is modeled as an arbitrary RFS. If the Poisson
false alarm RFS with mean rate λc and spatial pdf c (z) is
substituted for the arbitrary false alarm RFS, the original data
update equations of the JoTT filter defined in [2], [13] have
the form of

qk|k =

1− fk|k−1 [pD] +
∑
z∈Zk

fk|k−1 [pDgk(z|· )]
κ(z)

q−1
k|k−1 − fk|k−1 [pD] +

∑
z∈Zk

fk|k−1 [pDgk(z|· )]
κ(z)

, (32)

fk|k (x) =

1− pD (x) + pD (x)
∑
z∈Zk

gk(z|x )
κ(z)

1− fk|k−1 [pD] +
∑
z∈Zk

fk|k−1 [pDgk(z|· )]
κ(z)

fk|k−1 (x) .

(33)
where, in general, fk|k−1 [x] =

∫
x fk|k−1 (x)dx and κ (z) =

λc c (z) is the intensity function of the Poisson false alarm
RFS.

For the JoM estimator, the Bayesian risk function to be
minimized is given by [27]∫

C (X, J (Z)) f (X) δX ≈ 2− p|X| (|J |)−
f (X) ε|J|

|J |!
,

(34)
where J denotes the JoM estimator, C is the cost function
that penalizes both discrepancies in cardinality and multitarget
states, and p|X| (|J |) is the cardinality distribution evaluated
at the target number |J |.

Then, using the updated Bernoulli parameters from the JoTT
filter, the JoM estimator confirms the presence of a single
target if

2− (1− qk|k ) > 2− qk|k − qk|k fk|k (x̂) ε, (35)

where the left hand side is the Bayes risk function evaluated
for the “no-target” case, i.e., X = ∅ and the right hand side
is the Bayes risk function evaluated for the “target-present”
case, i.e., X = {x}. Solving this inequality for qk|k yields the
following test for “target-present” decision:

qk|k >
1

2 + fk|k (x̂) ε
. (36)

As in the original JoM estimator, first, the MAP estimate of
X = {x} is computed from the parameterized FISST density,
i.e.,

(
qk|k , fk|k

)
where the spatial pdf fk|k has the Gaussian

mixture form, i.e., fk|k (x) =
∑Nk
i=1 w

(i)
k|kf

(i)
k|k, with the mixing

weights satisfying that
∑Nk
i=1 w

(i)
k|k = 1.0. Before state estima-

tion, pruning and merging of the Gaussian components are
performed. Thus, the state estimation is obtained using the
well-separated and significant Gaussian density components

according to (17). For the selected Gaussian density compo-
nent, its Pareto-optimal volume given by TP,opt = qk|kεP,opt
is computed. Then, the test for “target-present” decision in
(36) is checked using εP,opt. That is, fk|k (x̂) εP,opt is set to
min

(
fk|k (x̂) εP,opt, 1/qk|k

)
. Consequently, if target is pro-

gressively better-localized, all of its probability mass would
be almost located in εP,opt, i.e., qk|k fk|k (x̂) εP,opt ≈ 1 [2].

VII. SIMULATION RESULTS

In this section, the proposed JoM estimator is compared
with the MaM estimator. To do this, their track management
performance using outputs of the JoTT filter is evaluated
through the OSPA metric [17], [18]. The OSPA metric com-
pares two finite sets X , and Y , considering the difference
in their cardinalities (i.e., cardinality error) and the positional
distance between their associated points (i.e., localization
error) after an optimal assignment. The sensitivity of the
OSPA metric to these two errors are controlled by the cut-
off parameter c and the order parameter p. However, for a
Bernoulli RFS the OSPA metric reduces to [38]

d(c)
p (X,Y ) =


0 if X = ∅, Y = ∅
c if X = ∅, Y = {y}
c if X = {x} , Y = ∅
d(c) (x, y) if X = {x} , Y = {y} ,

where d(c) (x, y) = min (c, d (x, y)) is the cut-off distance
between the points in two non-empty Bernoulli RFSs. Thus,
in this case, the OSPA metric is independent of the order
parameter p. In addition, the major performance difference
between the two estimators is expected to occur in the accuracy
of their decisions on track confirmation, track maintenance,
and track termination. Then, the cut-off parameter c must be
set to a high value in order to make the OSPA metric sensitive
to cardinality errors due to false and missing point estimates.
In simulations, the OSPA metric is therefore computed with
the parameters p = 1, and c = 25.

The target state vector comprises position and velocities in
x−y directions, i.e., xk = [px,k, py,k, vx,k, vy,k]′. If the target
does survive with probability pS = 0.90, its states evolve
according to the coordinated turn model with the known turn
rate Ω [33], [39], i.e., the state transition model is

xk = F (Ω)xk−1 +Gωk−1,

where ωk−1 ∼N (0, Qk−1) is the zero-mean Gaussian process
noise with covariance matrix Qk−1 = diag ([0.1, 0.1]′) m/s

2,
and the system matrices are

F (Ω) =


1 0 sin(ΩT)

Ω − 1−cos(ΩT)
Ω

0 1 1−cos(ΩT)
Ω

sin(ΩT)
Ω

0 0 cos (ΩT) − sin (ΩT)

0 0 sin (ΩT) cos (ΩT)

 ,

G =


T 2

2 0

0 T 2

2

T 0

0 T

 ,
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where T is the sampling interval and set at T = 1s in
simulations.

The single target tracking scenario runs for 40s. The target
appears at time k = 6 and moves along a straight line with
a constant speed of |v| = 5 m/s in the x − y directions until
time k = 20. Then, it starts maneuvering at a constant turn
rate of |Ω| = 2 deg/s and is terminated at time k = 35.
The target birth is modeled as a Bernoulli RFS given by
{qb, fb (x)}, where the birth existence probability is set at
qb = 0.01, and the spatial pdf is defined as fb (x) = N (x̂b, Pb)
with mean x̂b = [−70, 70, 0, 0]

′ and covariance matrix Pb =
diag

(
[50, 50, 10, 10]

′).
The target is detected by a sensor with state-independent

detection probability pD and the sensor has a linear Gaussian
measurement model given by

zk = Hxk + ηk,

where ηk ∼ N (0, Rk) is the zero-mean Gaussian measure-
ment noise with covariance matrix Rk = diag

(
[1, 1]

′)
m.

With I2×2 and 02×2 denoting the n × n identity and zero
matrices, respectively, the observation matrix is given by
H = [I2×2, 02×2]. In addition to noisy target-originated
measurement, the received measurement set includes clutter
points. In simulations, clutter is modeled as a Poisson RFS
with the mean rate of λc = 10 per scan and uniform spatial dis-
tribution over the surveillance region V = [−300m, 300m]×
[−300m, 300m], i.e., c(z) = V −1. The performance of the
two estimators is evaluated by running the same scenario
for 500 Monte Carlo runs. In each trial, target-originated
measurement, detected with pD, and independent random
clutters are generated. Fig. 4 shows the x and y components of
the target trajectory, measurements and the position estimates
obtained from the JoTT filter with pD = 0.80 for one Monte
Carlo trial.

In the JoTT filter, the Bernoulli RFS is represented as
a Gaussian mixture. The maximum number of Gaussian
components is set at Jmax = 100. They are pruned and
merged at each time step with thresholds Tprune = 10−3

and Tmerge = 4.0, respectively according to the algorithm
proposed in [40].

The track management performance of the proposed JoM
estimator and the MaM estimator are shown in Fig. 5–7 for dif-
ferent values of the detection probability, ranging from high to
moderately small values, i.e., pD = 0.95, 0.90, ...., 0.70. The
MaM estimator confirms “target-present” decision by com-
paring the existence probability qk|k with the hard threshold
0.5. However, the proposed JoM estimator confirms “target-
present” decision by setting a lower margin than this hard
threshold considering how well the JoTT filter localizes the
target, i.e., the term fk|k (x̂) ε in (36). However, the maximum
value of fk|k (x̂) ε is set by a confirmation threshold qmin. In
simulations, qmin is set to 0.20. Thus, the track, for which
qk|k > qmin, is confirmed by the JoM estimator. In particular,
the use of this threshold helps to prevent false point estimates
before the target birth and after the target death.

In Fig. 5, it can be seen that the two estimators demonstrate
almost the same track management performance in terms of
track confirmation before the target birth at time k = 6. In
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Fig. 4. x and y components of target trajectory, measurements and JoTT filter
estimates.
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Fig. 5. 500 Monte Carlo run averages of the OSPA metric computed for the
track management performance of the JoM and MaM estimators.

addition, the initial track maintenance quality of the proposed
JoM estimator with insignificant values of the lower margin is
nearly the same as that of the MaM estimator. However, the
JoTT filter localizes the target more accurately using target-
originated measurements detected with high probability as
time proceeds. Therefore, the lower margin than the hard
threshold 0.5 becomes significant, so that the proposed JoM
estimator does not prematurely declare track termination if
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the target is miss-detected due to sensor imperfection. On the
other hand, large values of the lower margin than the hard
threshold 0.5 result in latency on track termination. That is,
after the target is terminated at time k = 35, the localization
performance of the JoTT filter does deteriorate gradually due
to missed detections. Hence, the track termination decision is
delayed in the proposed JoM estimator.
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Fig. 6. 500 Monte Carlo run averages of the OSPA metric computed for the
track management performance of the JoM and MaM estimators.

In Fig. 6(a), it can be seen that the track management
performances of the two estimators are nearly the same
during the tracking scenario. These results indicates that the
decrease in the existence probability of target (qk|k) cannot be
compensated by the value of the lower margin computed in
the proposed JoM estimator when the target is miss-detected.
However, Fig. 6(b) shows that the track maintenance quality
of the proposed JoM estimator is better than that of the MaM
estimator after the target birth. That is, the value of the lower
margin can compensate the decrease in qk|k due to target
being miss-detected. Nevertheless, the proposed JoM estimator
suffers from track termination latency more than the MaM
estimator due to the statistics indicating a well-localized target
obtained from the JoTT filter after time k = 35.

Finally, Fig. 7 shows the track management performances
of the two estimators under moderately small detection prob-
abilities. It can be seen that the initial track management per-
formance of the proposed JoM estimator is better than that of
the MaM estimator. More explicitly, the MaM estimator suffers
much more from the track confirmation latency using the hard
threshold 0.5 than the JoM estimator with insignificant values
of the lower margin. In addition, the track maintenance quality
of the proposed JoM estimator is better than that of the MaM
estimator after a small period of time from the target birth.
However, as in Fig. 6(b), the proposed JoM estimator confirms

track termination with larger time delay after time k = 35,
compared to the MaM estimator.
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Fig. 7. 500 Monte Carlo run averages of the OSPA metric computed for the
track management performance of the JoM and MaM estimators.

According to the AR (1) models in Section V, time evo-
lution of the weights in (27) for different values of detection
probability is shown in Fig. 8 and Fig. 9. For considerably
high detection probabilities, e.g., pD = 0.95 and pD = 0.90,
the weights are adjusted as indicated in Section V, i.e., they
monotonically approach to their means after the optimal JoTT
filter converges to its steady-state with detections. However, if
the detection probability is not so high or close to moderately
small values, the weights are predicted based on the estimation
error analysis in the optimal JoTT filter. Consequently, the
linear predictions can be considered to be adaptive to the JoTT
filter’s performance.

VIII. CONCLUSIONS

In this paper, we have proposed an optimization algorithm to
compute the optimal value of the unknown estimation constant
in the JoM estimator. The optimization problem is defined in
terms of two conflicting objective functions. The first objective
function is defined in terms of the information theoretic sense
and aims for entropy maximization by setting the estimation
constant to its maximum permissible value. In contrast, the
second one arises from the constraint in the definition of the
JoM estimator and aims to improve the accuracy of the JoM
estimates by setting the estimation constant to its minimum
value determined by the probability of user’s confidence level.
We used a standard optimization approach that guarantees a
Pareto-optimal solution.

The proposed JoM estimator is used in the JoTT filter and
compared to the other MAP type multitarget estimator-called
the MaM estimator. The simulation results demonstrate that the
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Fig. 8. 500 Monte Carlo run averages of the weights for high detection
probabilities.

0 5 10 15 20 25 30 35 40
0

0.5

1

W
e
ig
h
ts

 

 

wJ

wI

0 5 10 15 20 25 30 35 40
0

0.5

1

W
e
ig
h
ts

 

 

wJ

wI

0 5 10 15 20 25 30 35 40
0

0.5

1

Time Index

W
e
ig
h
ts

 

 

wJ

wI

pD = 0.80

pD = 0.75

pD = 0.70

Fig. 9. 500 Monte Carlo run averages of the weights for moderately small
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track management performance of the proposed JoM estimator
in terms of track confirmation latency, and track maintenance
quality after target birth is better than that of the MaM esti-
mator for different values of the detection probability, ranging
from high to moderately small values. However, the proposed
JoM estimator suffers from track termination latency more
than the MaM estimator as the localization performance of the
JoTT filter does deteriorate gradually after target termination.

APPENDIX A

To understand why selection of too small values for the
JoM estimation constant does not ameliorate multitarget state
estimates, quantize the FISST density f ({x1, ..., xn}) for all
n into small and disjoint hyperspaces ∆n with volume εn.
Then using the relation f ({x1, ..., xn})

∆
= n!f (x1, ..., xn) the

probability over a small hyperspace indexed by variable i, i.e.,
∆n
i [2] is computed as:

pi (n) =
1

n!

∫
∆n
i

f ({x1, ..., xn}) dx1...dxn,

=

∫
∆n
i

f (x1, ..., xn) dx1...dxn,

≈ f (x̂1i , ..., x̂ni) ε
n.

(A.1)

where x̂1i , ..., x̂ni denotes the multitarget state estimates
obtained from f ({x1, ..., xn}) in ∆n

i . Note that if
f ({x1, ..., xn}) is peaky over ∆n

i , ε must be set to a small
value to satisfy the following condition:

∞∑
n=0

∑
i:∆n

i ∈Xn
pi (n) ≤ 1. (A.2)

Thus, similar to the quantization of a continuous random
variable, the entropy of the quantized RFS is defined as

H
(
X∆

)
= −

∞∑
n=0

∑
i:∆n

i ∈Xn
pi (n) log (pi (n)). (A.3)

Upon substitution of pi (n) = f (x̂1i , ..., x̂ni) ε
n into the

logarithmic function in (A.3), the entropy of the quantized
RFS can be rewritten as

H
(
X∆

)
= −

∞∑
n=0

∑
i:∆n

i ∈Xn
pi (n) log (f (x̂1i , ..., x̂ni) ε

n),

= −
∞∑
n=0

∑
i:∆n

i ∈Xn
pi (n) log (f (x̂1i , ..., x̂ni))−

∞∑
n=0

∑
i:∆n

i ∈Xn
pi (n) log (εn),

(A.4)
where the first term is the average self-information of the
joint symmetric pdfs (i.e., f (x1, ..., xn)) over ∆(n) and the
second term is the average self-information of the uniform
pdfs (i.e.,U (x1, ..., xn) = ε−n) over ∆(n).

For simplicity of analysis, assume that f (x̂1i , ..., x̂ni) ≈ 1.0
over some hyperspaces ∆n

i indexed by i∗. For the rest,
f (x̂1i , ..., x̂ni) ≈ 0 and thus from (A.1) the probability over
those regions is pi (n) ≈ 0. In this case, using the convention
0 log 0 = 0 and log 1 = 0, the first term in (A.4) is canceled
and the entropy of the quantized RFS simplifies to

H
(
X∆

)
≈ −

∞∑
n=0

∑
i∗:∆n

i∗∈Xn
pi∗ (n) log (εn), (A.5)

Note that ε is small enough to satisfy the condition given by
(A.2). Similar to typical sequences with equal probabilities in
a typical set, most of the total probability is almost equally
divided on some hyperspaces ∆n

i∗ indexed by i∗. Therefore,
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selecting too small values for ε will not ameliorate the
accuracy in multitarget state estimates. On the contrary, the
entropy will get larger values due to the uncertainty regarding
what multitarget state estimate is true.

APPENDIX B

For the standard Gaussian density f (x) defined in Rnx , it
follows from (3) that the amount of self-information associated
with the outcome (x̃1, ..., x̃n) ∈ Aτn is

H (f)− τ < − 1

n
log f (x̃1, ..., x̃n) < H (f) + τ, (B.1)

where x̃1, ..., x̃n are i.i.d. samples from f (x), and H (f) =
0.5 log (2πe)

nx [23].
Substituting for − log f (x̃1, ..., x̃n) = 0.5n log (2π)

nx +
0.5
∑n
i=1 x̃

T
i x̃i into (B.1) and making some algebraic manip-

ulations yield

n (nx − 2τ) <
∑n

i=1
x̃Ti x̃i < n (nx + 2τ) , (B.2)

where
∑n
i=1 x̃

T
i x̃i represents a thin shell around a hypersphere

centered at the origin of Rnx as claimed.

APPENDIX C

The nonlinear convex optimization problem in (25) is re-
ferred to as the primal problem [31]. The Lagrangian of the
primal problem is written as

L (τ, λ) = fo,I (τ) + λ1g1 (τ) + λ2g (τ) , (C.1)

where τ and λ = (λ1, λ2) are called primal and dual variables,
respectively.

According to the duality theorem, the dual problem has
the same optimal solution with the primal problem if Slater’s
condition holds [35]. Associated with the primal problem, the
dual function is defined as

g (λ) = min
τ
L (τ, λ) ,

= L (τ∗, λ) ,
(C.2)

where τ∗ is the primal solution and the dual solutions to g (λ),
i.e., λ∗ = (λ∗1, λ

∗
2) are the Lagrange multipliers of the primal

problem.
For any convex optimization problem with differentiable

objective and constraint functions, the necessary and sufficient
conditions to analyze the optimality of τ∗, and λ∗ = (λ∗1, λ

∗
2),

are called the Karush-Kuhn-Tucker (KKT) conditions [31],
[35]. That is, τ∗, and λ∗ = (λ∗1, λ

∗
2) must satisfy the following

conditions

gi (τ∗) ≤ 0, for i = 1, 2 (C.3)
λ∗
i
≥ 0, for i = 1, 2 (C.4)

λ∗
i
gi (τ∗) = 0, for i = 1, 2 (C.5)

and

∇τL (τ∗, λ∗) = ∇τfo,I (τ∗) +
∑2

i=1
λ∗

1
∇τ gi (τ∗) = 0,

(C.6)
where (C.3) is called primal feasibility conditions of τ∗, (C.4)
is called the dual feasibility conditions of λ∗ = (λ∗1, λ

∗
2), and

(C.5) is called complementary slackness conditions. Thus, the
last KKT condition verifies that τ∗ is the global minimum
point of L (τ, λ∗).

Based on the KKT conditions three possible cases are
distinguished for optimality of τ∗ , and λ∗ = (λ∗1, λ

∗
2):

1) The constraints are both inactive: this means that λ∗
i

=
0, for i = 1, 2. Then, the optimal value of the primal
variable is set to τ∗ = 0 to satisfy the last KKT condition
as

∇τL (τ∗, λ∗) =
nx

nx − 2τ∗
− 1 = 0. (C.7)

2) The constraints are both active: this means that λ∗
i
>

0 for i = 1, 2. Then, the complementary slackness
conditions contradicts for optimality of τ . That is, (C.5)
for i = 1 requires that τ∗ = 0, whereas (C.5) for i = 2
requires that τ∗ = 0.5 (nx − γmin) where γmin � nx.
Nevertheless, the optimal value of the primal variable
becomes τ∗ = 0 if the probability of confidence is
excessively set to γmin = nx. Thus, the last KKT
condition will have the form

∇τL (τ∗, λ∗) =
nx

nx − 2τ∗
− 1− λ∗1 + 2λ∗2,

= −λ∗1 + 2λ∗2,
(C.8)

in which case, λ∗1 = 2λ∗2. That is, the inequality
constraint g2 (τ) turns into g2 (τ) : τ ≤ 0. Then, the
constraints g1 (τ) and g2 (τ) contradict each other unless
they both turn into the equality constraint given by
τ = 0.

3) One active and one inactive constraint: this means that
either λ∗1 > 0 and λ∗2 = 0 or λ∗1 = 0 and λ∗2 > 0. If
λ∗1 > 0 and λ∗2 = 0, then the complementary slackness
condition for i = 1 requires that τ∗ = 0 but the
last KKT condition cannot be satisfied for τ∗ = 0.
On the other hand, if λ∗1 = 0 and λ∗2 > 0, then the
complementary slackness condition for i = 2 requires
that τ∗ = 0.5 (nx − γmin) and again, the last KKT
condition cannot be satisfied for λ∗2 > 0.

Consequently, the inequality constraints for the nonlinear con-
vex problem are both inactive unless nx = γmin. In addition,
τ∗ = 0 is the optimal solution for the primal problem. That
is, the convex objective function fo,I (τ) given by (25) has a
global minimum at nx − 2τ∗ = nx. Note that the inequality
constraints gi (τ) , for i = 1, 2 are affine in addition to the
convexity of fo,I (τ), then Slater condition for the strong
duality holds. Therefore, the strong duality indicates that the
optimal solution to the primal problem fo,I (τ) can be attained
from the dual problem [31].
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