The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

<table>
<thead>
<tr>
<th>1. REPORT DATE (DD-MM-YYYY)</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED (From - To)</th>
</tr>
</thead>
<tbody>
<tr>
<td>08/31/2015</td>
<td>Final Report</td>
<td>12/14/09-05/31/15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
<th>5a. CONTRACT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>PECASE: HARNESING SOLAR POWER NOVEL STRATEGIES FOR RATIONAL DESIGN OF PHOTOCATALYSTS AND PHOTOVOLTAIC MATERIALS</td>
<td>FA9550-10-1-0028</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
<th>5b. GRANT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gregory S. Engel</td>
<td>FA9550-10-1-0028</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIVERSITY OF CHICAGO, THE</td>
<td></td>
</tr>
<tr>
<td>5801 S ELLIS AVE</td>
<td></td>
</tr>
<tr>
<td>CHICAGO IL 60637-5418</td>
<td></td>
</tr>
<tr>
<td>(773) 702-5060</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>USAF, AFRL DUNS 143574726</td>
<td></td>
</tr>
<tr>
<td>AF OFFICE OF SCIENTIFIC RESEARCH</td>
<td></td>
</tr>
<tr>
<td>875 N. RANDOLPH ST. ROOM 3112</td>
<td></td>
</tr>
<tr>
<td>ARLINGTON VA 22203</td>
<td></td>
</tr>
<tr>
<td>JULIA FITZPATRICK (937) 656-9772</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribution A: For public release</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. SUPPLEMENTARY NOTES</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
<td>b. ABSTRACT</td>
<td>c. THIS PAGE</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19b. TELEPHONE NUMBER (Include area code)</th>
<th></th>
</tr>
</thead>
</table>

DISTRIBUTION A: Distribution approved for public release.
INSTRUCTIONS FOR COMPLETING SF 298

1. REPORT DATE. Full publication date, including day, month, if available. Must cite at least the year and be Year 2000 compliant, e.g. 30-06-1998; xx-06-1998; xx-xx-1998.

2. REPORT TYPE. State the type of report, such as final, technical, interim, memorandum, master's thesis, progress, quarterly, research, special, group study, etc.

3. DATE COVERED. Indicate the time during which the work was performed and the report was written, e.g., Jun 1997 - Jun 1998; 1-10 Jun 1996; May - Nov 1998; Nov 1998.

4. TITLE. Enter title and subtitle with volume number and part number, if applicable. On classified documents, enter the title classification in parentheses.

5a. CONTRACT NUMBER. Enter all contract numbers as they appear in the report, e.g. F33315-86-C-5169.

5b. GRANT NUMBER. Enter all grant numbers as they appear in the report. e.g. AFOSR-82-1234.

5c. PROGRAM ELEMENT NUMBER. Enter all program element numbers as they appear in the report, e.g. 61101A.

5e. TASK NUMBER. Enter all task numbers as they appear in the report, e.g. 05; RF0330201; T4112.

5f. WORK UNIT NUMBER. Enter all work unit numbers as they appear in the report, e.g. 001; AFAPL30480105.

6. AUTHOR(S). Enter name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. The form of entry is the last name, first name, middle initial, and additional qualifiers separated by commas, e.g. Smith, Richard, J, Jr.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES). Self-explanatory.

8. PERFORMING ORGANIZATION REPORT NUMBER. Enter all unique alphanumeric report numbers assigned by the performing organization, e.g. BRL-1234; AFWL-TR-85-4017-Vol-21-PT-2.

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES). Enter the name and address of the organization(s) financially responsible for and monitoring the work.

10. SPONSOR/MONITOR'S ACRONYM(S). Enter, if available, e.g. BRL, ARDEC, NADC.

11. SPONSOR/MONITOR'S REPORT NUMBER(S). Enter report number as assigned by the sponsoring/monitoring agency, if available, e.g. BRL-TR-829; -215.

12. DISTRIBUTION/AVAILABILITY STATEMENT. Use agency-mandated availability statements to indicate the public availability or distribution limitations of the report. If additional limitations/ restrictions or special markings are indicated, follow agency authorization procedures, e.g. RD/FRD, PROPIN, ITAR, etc. Include copyright information.

13. SUPPLEMENTARY NOTES. Enter information not included elsewhere such as: prepared in cooperation with; translation of; report supersedes; old edition number, etc.

14. ABSTRACT. A brief (approximately 200 words) factual summary of the most significant information.

15. SUBJECT TERMS. Key words or phrases identifying major concepts in the report.

16. SECURITY CLASSIFICATION. Enter security classification in accordance with security classification regulations, e.g. U, C, S, etc. If this form contains classified information, stamp classification level on the top and bottom of this page.

17. LIMITATION OF ABSTRACT. This block must be completed to assign a distribution limitation to the abstract. Enter UU (Unclassified Unlimited) or SAR (Same as Report). An entry in this block is necessary if the abstract is to be limited.

DISTRIBUTION A: Distribution approved for public release.
Abstract:

The goal of this effort was to develop the spectroscopic infrastructure to be able to probe non-Born-Oppenheimer couplings near conical intersections in the condensed phase. This effort required 2D electronic spectroscopy to be extended to broader bandwidth, higher sensitivity and improved resolution of coherent dynamics to detect phase. We invented a new approach to 2D spectroscopy to address these issues: Gradient-Assisted Photon Echo Spectroscopy (GRAPES). This approach allowed improved bandwidth due to purely reflective optics, improved sensitivity due to elimination of laser power fluctuations in the indirect domain, and improved phase resolution. We applied this spectroscopy to a range of synthetic and natural photosynthetic light harvesting systems to examine the system-bath coupling (electronic-vibrational couplings) using coherences as a detailed probe of the environment.

The heart of the strategy for design of novel photocatalysts involved a detailed understanding of how electronic states interact with their environment. Detecting and interpreting this coupling occupied most of our effort during this program. In addition to technical advances in our spectroscopy, we have been able to develop models that incorporate vibronic coupling (or system-bath coupling) as parameters and use these models to help quantify the degree of vibronic mixing in molecular systems. Separately, in an effort to understand dephasing dynamics, we developed the first time-resolved 2D electronic chiral spectroscopy to probe wavefunction collapse and angular momentum of the initial wavepacket. Together these measurements demonstrate an intricate and tunable coupling between electronic and vibrational states and point to a mechanism to test theories of Berry phase near conical intersections.
In multidimensional spectroscopy, coherences among excited states report on interactions between electronic states and their environment. Mixed electronic-vibrational (vibronic) resonance has been proposed as a possible physical origin for the prolonged lifetimes of coherences observed in some systems, and recent observations confirm the existence of vibronic coupling in both model systems and photosynthetic complexes. We hypothesized that this same coupling is responsible for steering electronic wavepackets through conical intersections. We attempted to take a comprehensive spectroscopic strategy: on one hand, we sought to extend femtosecond stimulated Raman to allow correlation mapping while on the other hand, we created new ultra-sensitive measures of 2D electronic spectroscopy to directly measure excited state coherences. The FSR strategy met with many technical hurdles and remains to be fully implemented. The largest issue was getting enough power from our laser system into the pre-resonant Raman beam. With regard to the direct 2D spectroscopic measurements, the GRAPES system provided an enormous boost in signal-to-noise (up to 12,000 on a standard 2D spectrum) and permitted rapid acquisition of the spectra. This approach became the workhorse for most of our work.

Scientifically, we seek to understand how the dynamics of electronic states, to include both energy transfer and photochemical reactivity, depends on the vibrational bath surrounding the electronic wavepacket. Establishing control over this vibronic coupling within model systems will permit unambiguous identification of detailed molecular design principles that control the interplay between vibronic coupling and energy transfer. During the course of this grant, we investigated molecular systems such as PM650 that show purely vibrational dynamics, photosynthetic light harvesting complexes that show dissipative energy transfer dynamics, and nanoscale systems that show complex and rapid dephasing dynamics. In each case, we investigated coherence dynamics in time-domain spectroscopy to provide a fine probe of how a system interacts with its surroundings. The analysis of these systems has allowed us to begin to develop microscopic design principles regarding both the signals and coupling, but we have not yet been able to gain sufficient control to develop and design novel photocatalysts.
Publications from this effort:

Changes in Period of Performance:

At AFOSR's suggestion, we agreed to

a. extend Option 3 from 12 months to 17 months with a Period of Performance to 31 May 14.

b. as a result, Option 4 POP will be from 01 Jun 14 to 31 May 15.
1. Report Type
Final Report

Primary Contact E-mail
Contact email if there is a problem with the report.
gsengel@uchicago.edu

Primary Contact Phone Number
Contact phone number if there is a problem with the report
7738340818

Organization / Institution name
The University of Chicago

Grant/Contract Title
The full title of the funded effort.
(PECASE) - HARNESSING SOLAR POWER NOVEL STRATEGIES FOR RATIONAL DESIGN OF PHOTO

Grant/Contract Number
AFOSR assigned control number. It must begin with "FA9550" or "F49620" or "FA2386".
FA9550-10-1-0028

Principal Investigator Name
The full name of the principal investigator on the grant or contract.
Gregory S. Engel

Program Manager
The AFOSR Program Manager currently assigned to the award
Michael Berman

Reporting Period Start Date
12/15/09

Reporting Period End Date
05/31/2015

Abstract
The goal of this effort was to develop the spectroscopic infrastructure to be able to probe non-Born-Oppenheimer couplings near conical intersections in the condensed phase. This effort required 2D electronic spectroscopy to be extended to broader bandwidth, higher sensitivity and improved resolution of coherent dynamics to detect phase. We invented a new approach to 2D spectroscopy to address these issues: Gradient-Assisted Photon Echo Spectroscopy (GRAPES). This approach allowed improved bandwidth due to purely reflective optics, improved sensitivity due to elimination of laser power fluctuations in the indirect domain, and improved phase resolution. We applied this spectroscopy to a range of synthetic and natural photosynthetic light harvesting systems to examine the system-bath coupling (electronic-vibrational couplings) using coherences as a detailed probe of the environment.

The heart of the strategy for design of novel photocatalysts involved a detailed understanding of how electronic states interact with their environment. Detecting and interpreting this coupling occupied most of our effort during this program. In addition to technical advances in our spectroscopy, we have been able to develop models that incorporate vibronic coupling (or system-bath coupling) as parameters and use these models to help quantify the degree of vibronic mixing in molecular systems. Separately, in an effort to understand dephasing dynamics, we developed the first time-resolved 2D electronic chiral spectroscopy to

DISTRIBUTION A: Distribution approved for public release.
probe wavefunction collapse and angular momentum of the initial wavepacket. Together these measurements demonstrate an intricate and tunable coupling between electronic and vibrational states and point to a mechanism to test theories of Berry phase near conical intersections.

Distribution Statement
This is block 12 on the SF298 form.

Distribution A - Approved for Public Release

Explanation for Distribution Statement
If this is not approved for public release, please provide a short explanation. E.g., contains proprietary information.

SF298 Form
Please attach your SF298 form. A blank SF298 can be found here. Please do not password protect or secure the PDF. The maximum file size for an SF298 is 50MB.

SF 298.pdf

Upload the Report Document. File must be a PDF. Please do not password protect or secure the PDF. The maximum file size for the Report Document is 50MB.

Final Report.pdf

Upload a Report Document, if any. The maximum file size for the Report Document is 50MB.

Archival Publications (published) during reporting period:

A.F. Fidler, V.P. Singh, P.D. Long, P.D. Dahlberg, and G.S. Engel, “Time Scales of Coherent Dynamics in

DISTRIBUTION A: Distribution approved for public release.

Changes in research objectives (if any):

N/A

Change in AFOSR Program Manager, if any:

N/A

Extensions granted or milestones slipped, if any:

At AFOSR's suggestion, we agreed to
a. extend Option 3 from 12 months to 17 months with a Period of Performance to 31 May 14.

b. as a result, Option 4 POP will be from 01 Jun 14 to 31 May 15.

AFOSR LRIR Number

LRIR Title

Reporting Period

Laboratory Task Manager

Program Officer

Research Objectives

Technical Summary

Funding Summary by Cost Category (by FY, $K)

<table>
<thead>
<tr>
<th></th>
<th>Starting FY</th>
<th>FY+1</th>
<th>FY+2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment/Facilities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Report Document

Report Document - Text Analysis

Report Document - Text Analysis

Appendix Documents

2. Thank You

E-mail user

Aug 28, 2015 17:16:39 Success: Email Sent to: gsengel@uchicago.edu