1. REPORT DATE (DD-MM-YYYY) 02/16/2010
2. REPORT TYPE Technical Report - Briefing Charts
3. DATES COVERED (From - To) 02/16/2010

4. TITLE AND SUBTITLE
High Cycle Life Cathode for High Voltage (5V) Lithium Ion Batteries

5. AUTHOR(S)

6. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Army Research Laboratory Adelphi MD United States

7. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Army Research Laboratory Adelphi MD United States

8. DISTRIBUTION/AVAILABILITY STATEMENT
A = Approved For Public Release 12/3/2015 No

9. SECURITY CLASSIFICATION OF:
 a. REPORT U
 b. ABSTRACT U
 c. THIS PAGE U

10. LIMITATION OF ABSTRACT

11. NUMBER OF PAGES

12. SUBJECT TERMS

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SECURITY CLASSIFICATION OF:
 a. REPORT U
 b. ABSTRACT U
 c. THIS PAGE U

16. LIMITATION OF ABSTRACT

17. NUMBER OF PAGES

18. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (Include area code)
High Cycle Life Cathode for High Voltage (5V) Lithium Ion Batteries

Inventor: Dr. Jan L. Allen
There is a huge, growing demand in commerce and the military for high energy density rechargeable batteries.

In response to this need, we have developed a high voltage, high cycle life Li-ion cathode material based on lithium cobalt phosphate (LiCoPO$_4$) that provides higher energy density (15% $>$ LiFePO$_4$ demonstrated, up to 40% greater with further R&D).

The invention combines the safety of a phosphate system with a high energy content. Safety advantage arises from abuse tolerance of phosphate.

Previous attempts to use LiCoPO$_4$ have generally resulted in rapid charge-capacity fade and an extremely short cycle life (e.g., greater than 50 percent loss after only 10 cycles).

The innovation is the partial substitution of lithium and cobalt by iron, which stabilizes electrochemical cycling and greatly reduces capacity loss. The capacity retention is more than 80 percent after 500 cycles with high coulombic efficiency.
ARL innovation of partial substitution of Li and Co by Fe stabilizes the electrochemical capacity of LiCoPO₄ cathode.

Substituted LiCoPO₄ with ARL-SEDD high voltage stabilized electrolyte demonstrates high cycle life (capacity retention of >80% at 500 cycles shown here) with about 97% coulombic efficiency.

Comparison to standard LiCoPO₄ and standard electrolyte:

- Cathode expected to last far beyond 500 cycles
- Preparation method adaptable to existing cathode process lines
- IP includes novel composition of matter and preparation method

APPROVED FOR PUBLIC RELEASE
The High Cycle Life Cathode’s advantages:

• Provides potentially up to 40% greater energy density than standard LiFePO$_4$
• Higher voltage at cell level may reduce number of cells required for application
• Easy and inexpensive method to prepare
• Offers safety advantage of phosphate based cathodes without trade-off in energy density.
• It is a “drop-in” technology (no new processing methods are required)
Military application

- A soldier currently required to carry 50 lbs of batteries could potentially reduce the overall weight by about 20 lbs.
- Current military vehicles consume immense quantities of fossil fuels. Cost to bring forward fuel to the battlefield is enormous in terms of dollars and lives. Hybrid electric vehicles based on this technology will consume less fuel.

Improvements over existing products

- The BB2590, the current soldier rechargeable battery, constructed with this cathode material has a projected energy density of about 170 Wh/kg relative to current specifications of about 120 Wh/kg. Mission time can increase by 40% or weight of batteries can be reduced by 40%.
Method of Preparation

Cathode coated with standard methods and tested in coin cells demonstrating long cycle life

Currently about TRL-4

Rate capability not compromised

Long Cycle Life

APPROVED FOR PUBLIC RELEASE

X-ray diffraction
Envisioned military applications include:

• Soldier power for a longer life rechargeable Li-ion, e.g., BA-2590
• “More-electric” vehicles: starting, silent watch
• Military electronics
• Projected $500 Million military/aerospace market for Li-ion by 2015*

APPROVED FOR PUBLIC RELEASE
40% Increased battery life for application to:
Three major markets
• Electric Vehicle, Hybrid Electric Vehicle
• Consumer Electronics
• Large scale stationary energy storage

Overall, Li ion market is about $18 billion in 2010 (Sanyo estimate)*

Projected By 2015 (Sanyo estimate)*:
• $18 Billion in Automotive applications
• $18 Billion in Consumer electronics
• $24 Billion in Large scale stationary energy storage

*As reported in Bloomberg Businessweek.com, 11/17/2010 author: Mariko Yasu

APPROVED FOR PUBLIC RELEASE
• A patent license and CRADA is sought. The current technology would benefit from a collaboration between the inventor team and the commercialization partner. This would most readily be done through a patent license / CRADA agreement.

• TRL 4– Fully functioning cell prototypes using the invented cathode.

• A Provisional patent application has been filed.