NEW LIMITATION CHANGE

TO
Approved for public release, distribution unlimited

FROM
Distribution authorized to U.S. Gov’t. agencies and their contractors; Administrative/Operational Use; APR 1953. Other requests shall be referred to Air Force Wright Air Development Center, Wright-Patterson AFB, Oh 45433.

AUTHORITY
afwal ltr, 17 apr 1980

UNCLASSIFIED
STUDIES ON THERMAL STRESSES
FOR
AIRCRAFT STRUCTURES EXPOSED TO TRANSIENT EXTERNAL HEATING

VOLUME I
EVALUATION OF THE THERMAL RESPONSE, FORCE AND MOMENT IN A PLATE

J. E. Mahlmeister
T. Ishimoto
A. Ambrosio

University of California
Department of Engineering
Los Angeles, California

April 1955

WRIGHT AIR DEVELOPMENT CENTER
STUDIES ON THERMAL STRESSES
FOR
AIRCRAFT STRUCTURES EXPOSED TO TRANSIENT EXTERNAL HEATING

VOLUME I
EVALUATION OF THE THERMAL RESPONSE, FORCE AND MOMENT IN A PLATE

J. E. Mahlmeister
T. Ishimoto
A. Ambrosio

University of California
Department of Engineering
Los Angeles, California

April 1955

Aircraft Laboratory
Contract No. AF 33(616)-293
Project No. 1350

Wright Air Development Center
Air Research and Development Command
United States Air Force
Wright-Patterson Air Force Base, Ohio
FOREWORD

This report was prepared by J. E. Mahlmeister, T. Ishimoto, and A. Ambrosio of the Department of Engineering, University of California, Los Angeles, under Contract No. AF 33(616)-293. The contract was initiated under Project No. 1350, "Effects of Atomic Weapons on Aircraft Systems," and was administered by the Aircraft Laboratory, Directorate of Laboratories, Wright Air Development Center, with Lt. Joseph W. Saylor, Jr. acting as Project Engineer.

Alphonso Ambrosio directed and was technically responsible for the research described in this report and Walter C. Hurty acted as the representative of the Chairman of the Department, L.M.K. Boelter.

The authors wish to acknowledge the assistance of J. Schwartz, J. Snow, J. Barnes, and I. Grossman in the preparation of the graphs for this report.
ABSTRACT

This report is one of a series of analytical studies of aircraft structures exposed to transient heating. The present study reports on the response characteristics of the front surface temperature and the front-back temperature difference across a finite plate as well as the "thermal force" and "thermal moment" which exists as a result of the heating. The results are given in graphical form for use in future studies.

PUBLICATION REVIEW

This report has been reviewed and is approved.

FOR THE COMMANDER:

DANIEL D. McKEE
Colonel, USAF
Chief, Aircraft Laboratory
Directorate of Laboratories
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>HEAT TRANSFER SYSTEM</td>
<td>2</td>
</tr>
<tr>
<td>THE THERMAL FORCE AND MOMENT</td>
<td>5</td>
</tr>
<tr>
<td>DISCUSSION OF RESULTS</td>
<td>7</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>10</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>11</td>
</tr>
<tr>
<td>APPENDIX</td>
<td>12</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Coordinate System for Uniformly Irradiated Finite Plate</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Transient Heating Function</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Schematic Temperature-Time Response for a Finite Plate</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>Coordinate System for Heated Plate Equations</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>Dimensionless Thermal Moment</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>Dimensionless Thermal Force</td>
<td>6</td>
</tr>
<tr>
<td>A-1 to A-2</td>
<td>Front Surface Temperatures</td>
<td>13, 14</td>
</tr>
<tr>
<td>A-3 to A-6</td>
<td>Front-Back Temperature Differences</td>
<td>15 - 18</td>
</tr>
<tr>
<td>A-7 to A-8</td>
<td>Thermal Forces</td>
<td>19, 20</td>
</tr>
<tr>
<td>A-9 to A-12</td>
<td>Thermal Moments</td>
<td>21 - 24</td>
</tr>
</tbody>
</table>
NOMENCLATURE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Thermal diffusivity ($k/\rho C_p$)</td>
<td>ft2/hr</td>
</tr>
<tr>
<td>b</td>
<td>Plate thickness</td>
<td>ft</td>
</tr>
<tr>
<td>Bi</td>
<td>Biot modulus</td>
<td>dimensionless</td>
</tr>
<tr>
<td>C_p</td>
<td>Heat capacity</td>
<td>Btu/lb$^\circ$F</td>
</tr>
<tr>
<td>E</td>
<td>Modulus of elasticity</td>
<td>lb/in2</td>
</tr>
<tr>
<td>h_c</td>
<td>Unit thermal conductance</td>
<td>Btu/hr ft2$^\circ$F</td>
</tr>
<tr>
<td>I</td>
<td>Integral ($\int_0^\infty dt$)</td>
<td></td>
</tr>
<tr>
<td>k</td>
<td>Thermal conductivity</td>
<td>Btu/hr ft2$^\circ$F/ft</td>
</tr>
<tr>
<td>M_x</td>
<td>Thermal moment</td>
<td>lb in/in</td>
</tr>
<tr>
<td>N_x</td>
<td>Thermal force</td>
<td>lb/in</td>
</tr>
<tr>
<td>q</td>
<td>Rate of heat flow per unit area into plate</td>
<td>Btu/hr ft2</td>
</tr>
<tr>
<td>Q</td>
<td>Total heat absorbed by plate</td>
<td>Btu/ft2</td>
</tr>
<tr>
<td>T</td>
<td>Temperature</td>
<td>$^\circ$F</td>
</tr>
<tr>
<td>t</td>
<td>Time</td>
<td>sec or hr</td>
</tr>
<tr>
<td>Z</td>
<td>Cartesian coordinate (Z' refers to distance from back surface)</td>
<td>ft</td>
</tr>
<tr>
<td>α</td>
<td>Coefficient of linear thermal expansion</td>
<td>$^\circ$F$^{-1}$</td>
</tr>
<tr>
<td>β</td>
<td>Heat transfer parameter ($b/\sqrt{\pi \eta}$)</td>
<td>dimensionless</td>
</tr>
<tr>
<td>Δ</td>
<td>Difference</td>
<td></td>
</tr>
<tr>
<td>η</td>
<td>Reference time (time for the input function to maximize)</td>
<td>sec or hr</td>
</tr>
<tr>
<td>ν</td>
<td>Poisson's ratio</td>
<td></td>
</tr>
<tr>
<td>ρ</td>
<td>Weight density</td>
<td>lb/ft3</td>
</tr>
</tbody>
</table>

Subscripts
- f = Thermal
- m = maximum
- ref = reference
- a = ambient

Superscript
- + = dimensionless
INTRODUCTION

Previous studies1-5 concerning the effects of heating aircraft structures have indicated that excessive temperatures and stresses can occur. The combination of temperatures and stresses can greatly increase aerodynamic drag due to large deflections and cause permanent deformations in the skins of wings and control surfaces.

Studies3, 5 of the heated plate equations originally developed by A. Nadai4 have shown the necessity of evaluating the so-called "Thermal Force" and "Thermal Moment" resulting from restrained thermal expansions and temperature distributions, respectively. These quantities are the essential factors which combine the heat transfer and thermal stress investigations. The heat transfer investigation2 resulted in an analytical determination of the thermal response of a finite plate exposed to transient heating.

A numerical evaluation of the thermal force and moment is presented in this study using the results of the uniformly irradiated finite plate of reference 2. In addition, the front surface temperature rise and the front to back surface temperature difference are reported in terms of dimensionless parameters. It is visualized that these results will be utilized in future thermal stress evaluation of aircraft structures.

*Numbers in superscripts indicate references in the bibliography at the end of the report.
HEAT TRANSFER SYSTEM

The idealized heat transfer system of reference 2 is shown in Figure 1. It consists of a uniformly irradiated plate with a constant thermal conductance \(h_c \) on the lower side and an insulated boundary on the other. The transient heating function \(q(t) \) is shown in Figure 2. In order to present the results in dimensionless form, the following definitions were employed:

\[
Z' = \frac{z'}{b},
\]

\[
t^* = \frac{t}{\eta},
\]

\[
T^* = \frac{T - T_\infty}{\Delta T_{ref}},
\]

\[
\Delta T_{ref} = \frac{Q}{\rho C_p b},
\]

\[
I = \int_0^{t^*} \frac{q}{q_m} dt^*,
\]

\[
Q = \int_0^\infty q dt,
\]

\[
\beta_s = \tau \beta^2 = \frac{h_c b}{k},
\]

\[
\tau = \frac{h_c \eta}{\rho C_p b},
\]

and

\[
\beta = \frac{b}{\sqrt{a \eta}},
\]
In terms of the dimensionless quantities defined above, the heat conduction equation is written as:

$$\frac{\partial^2 T^*}{\partial z'^2} = \beta^2 \frac{\partial T^*}{\partial t^*} \tag{10}$$

with the following initial and boundary conditions:

when: \(t^* = 0 \), \(T^* = 0 \);

at: \(z' = 0 \), \(\frac{\partial T^*}{\partial z'} = 0 \); \tag{11}

and at: \(z' = 1 \), \(\frac{1}{\beta^2 \frac{\partial T^*}{\partial z'}} = \frac{q^*(t^*)}{l} - \tau T^* \).

The solution to equations (10) and (11) is:\(^2\)

$$T^*(z', t^*) = \int_0^{z^*} \frac{q^*(\lambda)}{I} \sum_{n=1}^{\infty} 2 \left[\cos \frac{\lambda z'}{l} \cos \frac{\lambda}{y} \cos \frac{\lambda}{y} \right] \exp \left[-\frac{y^2}{\lambda^2} (t^* - \lambda) \right] d\lambda \tag{12}$$

where

$$\tan \frac{\lambda}{y} = \frac{B\lambda}{y}$$

This solution was evaluated for the front surface temperature rise and the temperature difference across the plate utilizing the heating function shown schematically in Figure 2. The front surface temperature is expressed as:

$$T^*(1, t^*) = \int_0^{z^*} \frac{q^*(\lambda)}{I} \sum_{n=1}^{\infty} 2 \left[\exp \left[-\frac{y^2}{\lambda^2} (t^* - \lambda) \right] \right] d\lambda \tag{13}$$
The temperature difference across the plate (front surface temperature minus back surface temperature) is:

\[T^*(t^*,t^*) - T^*(0,t^*) = \int_0^{t^*} \left[\frac{1}{f^*} \sum_{n=1}^{\infty} \left(\frac{1 - \frac{1}{\cos \frac{\lambda}{f^*}}}{1 + B_i(1 + B_i)} \right) \exp \left(-\frac{\rho^2}{\beta^2} (t^* - \lambda) \right) \right] d\lambda \quad (14) \]

Each temperature response evaluation was made for given values of the heat transfer parameters, \(B_i \) and \(\beta \), as shown schematically in Figure 3. These curves are presented in the appendix for a range of \(B_i \) and \(\beta \).

FIGURE 3 SCHEMATIC TEMPERATURE-TIME RESPONSE FOR A FINITE PLATE
THE THERMAL FORCE AND MOMENT

The Thermal Force and Moment were developed as logical connecting parameters between the isotropic heated plate equations and the heat conduction solutions. These have been defined as:

\[N_T^* = \frac{1}{1 - \nu} \int E a (T - T_\infty) dZ \]
\[M_T^* = \frac{1}{1 - \nu} \int E a (T - T_\infty) Z dZ \]

When the mechanical properties of the material can be considered constant across the plate thickness, the neutral axis occurs at the plate center. This coordinate system is shown in Figure 4.

![Figure 4 Coordinate System for Heated Plate Equations](image)

In terms of this coordinate system with the origin at the plate center, equations (15) and (16) are normalized to:

\[N_T^* = \frac{(1 - \nu) N_T}{E a \Delta T_{ref}} b \int_{-\frac{b}{2}}^{\frac{b}{2}} T^* dZ \]
\[M_T^* = \frac{(1 - \nu) M_T}{E a \Delta T_{ref}} b^2 \int_{-\frac{b}{2}}^{\frac{b}{2}} T^* Z dZ \]
The dimensionless thermal moment, M_T^+, and thermal force, N_T^+, are functions of the heat transfer parameters Bi and β. Typical plots of these functions are shown schematically in Figures 5 and 6. These curves are presented in the appendix for the range of heat transfer parameters considered.

Figure 5 Dimensionless thermal moment

Figure 6 Dimensionless thermal force
DISCUSSION OF RESULTS

Comparison of thermal force and moment curves with temperature curves show that M_+^* and N_+^* are similar to T^* and ΔT^*, respectively. The maximum value of $N_+^* = 1.0$ corresponds to the case of no convective cooling. This is the limiting case where all the input energy remains in the structure. The peak values of N_+^* occurs approximately in the range of $t^* = 1.0$ - 6.0 and for the case of no cooling occurs at the end of the input. The dimensionless thermal moment was found to peak at short times ($t^* = 1.0$ - 2.0) with a maximum value of approximately 0.27 for the range of heat transfer parameters (Bi, β) considered. The sequence of events, for a plate exposed to transient heating is as follows: (1) The plate is subjected to a maximum moment with a relatively small thermal force; (2) then a large thermal force occurs with a small moment; and (3) the thermal force and moments then decay as elapsed time increases.

In order to illustrate the utility of these curves for the determination of the response characteristics an illustrative problem will be given. The following quantities must be assumed or determined from other analyses:

Properties

\[
\begin{align*}
\eta &= 3.00 \text{ sec} = 8.33 \times 10^{-4} \text{ hr} \\
\rho &= 173 \text{ lb/ft}^3 \\
\beta &= 44 \text{ Btu/ft}^2 \\
k &= 66.7 \text{ Btu/ft hr } \circ\text{F} \\
\rho c_p &= 0.23 \text{ Btu/lb } \circ\text{F} \\
\alpha &= \frac{k}{\rho c_p} = 1.67 \text{ ft}^2/\text{ hr} \\
h &= 3/16 \text{ in.} = 0.0156 \text{ ft.} \\
k\alpha &= 130 \text{ psi/ } \circ\text{F} \\
\nu &= 0.33 \\
\end{align*}
\]

From equation (9)

\[
\beta = \frac{b}{\sqrt{\alpha \eta}} = \frac{0.0156}{\sqrt{1.67 \times 8.33 \times 10^{-4}}} = 0.42 \approx 0.4;
\]

WADC-TR-55-192 Vol 1 7
From equation (7)

\[Bi \ = \ \tau \beta^* = \frac{h_c b}{k} = \frac{42 \times 0.0156}{66.7} = 0.01; \]

and from equation (2)

\[t = \eta t^* = 3.00 \ t^*. \]

Equation (4) gives the reference temperature

\[\Delta T_{ref} = \frac{Q}{\rho C_p b} = \frac{44}{173 \times 0.23 \times 0.0156} = 70.8 \ ^\circ \text{F} \text{ (above ambient)} \]

The actual thermal force and moment can be calculated from equations (17) and (18) as:

\[N_f = \frac{Ea}{1 - \nu} \Delta T_{ref} b^\ast \ N_f^\ast = \frac{Ea Q}{(1 - \nu) \rho \ C_p} \ N_f^\ast \]

\[N_f = \frac{130 \times 70.8 \times 0.187}{(1 - 0.33)} \ N_f^\ast = 2460 \ N_f^\ast \]

and

\[M_f = \frac{Ea}{1 - \nu} \Delta T_{ref} b^\ast \ M_f^\ast = \frac{Ea Q b}{(1 - \nu) \rho \ C_p} \ M_f^\ast \]

\[N_f = \frac{130 \times 70.8 \ (3/16) \times b}{(1 - 0.33)} \ M_f^\ast = 460 \ M_f^\ast \]

Reference to Figures A-1, A-4, A-7, and A-10 in the appendix indicates that maximum values of the dimensionless quantities and their
associated dimensionless times are as follows:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Maximum Dimensionless Value</th>
<th>Dimensionless Time((t^*))</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Surface Temperature</td>
<td>0.77</td>
<td>5.5</td>
<td>54.5 °F</td>
</tr>
<tr>
<td>(Figure A-1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front-Back Temperature Difference</td>
<td>0.035</td>
<td>1.0</td>
<td>2.5 °F</td>
</tr>
<tr>
<td>(Figure A-4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Force</td>
<td>0.75</td>
<td>5.0 - 6.0</td>
<td>1844 lb/in</td>
</tr>
<tr>
<td>(Figure A-7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Moment</td>
<td>0.0031</td>
<td>1.0</td>
<td>1.43 lb in/in</td>
</tr>
<tr>
<td>(Figure A-10)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Inspection of the above table shows that for the particular example, the thermal force is the predominating factor, the moment being quite small.
CONCLUSIONS

In summary, the results indicate the following:

1. The uniformly irradiated plate is subjected to a combination of thermal moment and force at each instant due to the transient temperature distribution.

2. The maximum thermal moment precedes the maximum thermal force with both quantities decaying as time progresses.

3. The maximum possible values of M_x^* and M_y^* are 1.0 and 0.27 respectively for the range of variables under consideration.
REFERENCES

APPENDIX

The appendix contains a series of graphs for the front surface temperature, T_f, the front-back temperature difference, ΔT, thermal force, N, and thermal moment, M, as a function of time t. The range of parameters for which the numerical results are applicable are as follows:

$$Bi = 0.001 - 1.0$$
$$\beta = 0.01 - 20$$

The Index for the Specific Graphs

<table>
<thead>
<tr>
<th>Figure</th>
<th>Front Surface Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1</td>
<td>$Bi = 0.001$</td>
</tr>
<tr>
<td>A-1</td>
<td>$Bi = 0.01$</td>
</tr>
<tr>
<td>A-2</td>
<td>$Bi = 0.1$</td>
</tr>
<tr>
<td>A-2</td>
<td>$Bi = 1.0$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Figure</th>
<th>Front-Back Temperature Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-3</td>
<td>$Bi = 0.001$</td>
</tr>
<tr>
<td>A-4</td>
<td>$Bi = 0.01$</td>
</tr>
<tr>
<td>A-5</td>
<td>$Bi = 0.1$</td>
</tr>
<tr>
<td>A-6</td>
<td>$Bi = 1.0$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Figure</th>
<th>Thermal Force</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-7</td>
<td>$Bi = 0.001$</td>
</tr>
<tr>
<td>A-7</td>
<td>$Bi = 0.01$</td>
</tr>
<tr>
<td>A-8</td>
<td>$Bi = 0.1$</td>
</tr>
<tr>
<td>A-8</td>
<td>$Bi = 1.0$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Figure</th>
<th>Thermal Moment</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-9</td>
<td>$Bi = 0.001$</td>
</tr>
<tr>
<td>A-10</td>
<td>$Bi = 0.01$</td>
</tr>
<tr>
<td>A-11</td>
<td>$Bi = 0.1$</td>
</tr>
<tr>
<td>A-12</td>
<td>$Bi = 1.0$</td>
</tr>
</tbody>
</table>
DISTRIBUTION LIST

SECTION I

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>Address</th>
</tr>
</thead>
</table>
| Two | Commander
 Wright Air Development Center
 Wright-Patterson AFB, Ohio
 Attn: WCLS |
| Three | Commander
 Wright Air Development Center
 Wright-Patterson AFB, Ohio
 Attn: WCOSI-4 |
| Two | Commander
 Wright Air Development Center
 Wright-Patterson AFB, Ohio
 Attn: Maj. Andrew Boresko, WCOE S |
| Five | Director
 Armed Services Technical Information Agency
 Document Service Center
 Dayton 2, Ohio |

SECTION II

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>Address</th>
</tr>
</thead>
</table>
| One | Chief of Naval Operations (OP-36)
 Navy Department
 Washington 25, D.C. |
| One | Commander
 Operational Development Force
 U.S. Naval Base
 Norfolk 11, Va. |
| One | Commanding Officer
 Naval Air Test Center
 Potomac River, Md. |
| One | Commanding Officer
 Air Development Squadron Five VX 5
 U.S. Naval Air Station
 Moffett Field, California |
| One | Commanding Officer
 Air Development Squadron Three VX 3
 U.S. Naval Air Station
 Moffett Field, California |
| One | Commanding Officer
 Naval Air Special Weapons Facility
 Kirtland Air Force Base, New Mexico |
| One | Office of Operational Research
 Johns Hopkins University
 Fort Leslie J. McNair
 Attn: Brig. Gen. L. O. Flory
 Washington 25, D.C. |
| One | Commanding General
 Aberdeen Proving Ground
 Attn: Mr. A. B. Weiss
 Maryland |
| One | Chief of Research and Development
 Department of the Army
 Washington 25, D.C. |
| One | Deputy Chief of Staff Operations, Hq. USAF
 Attn: Assistant for Atomic Energy
 Washington 25, D.C. |
<table>
<thead>
<tr>
<th>No. Copies</th>
<th>Address</th>
<th>No. Copies</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>One</td>
<td>Deputy Chief of Staff Operations
Hq. USAF
Attn: Dr. J.C. Mouzon, Rm SD-870
Washington 25, D.C.</td>
<td>Two</td>
<td>Deputy Chief of Staff Development
Hq. USAF
Attn: Development Planning
Washington 25, D.C.</td>
</tr>
<tr>
<td>One</td>
<td>Director of Operations
Hq. USAF
Washington 25, D.C.</td>
<td>One</td>
<td>Deputy Chief of Staff Development
Hq. USAF
Attn: Director of Research & Development
Strategic Air Group
Washington 25, D.C.</td>
</tr>
<tr>
<td>One</td>
<td>Director of Operations
Hq. USAF
Attn: Operations Analysis
Washington 25, D.C.</td>
<td>One</td>
<td>Deputy Chief of Staff Development
Hq. USAF
Attn: Director of Research & Development
Aeronautics Division
Washington 25, D.C.</td>
</tr>
<tr>
<td>One</td>
<td>Commander
Strategic Air Command
Attn: Chief Operations Analysis
Offutt Air Force Base, Nebraska</td>
<td>One</td>
<td>Director of Intelligence
Hq. USAF
Washington 25, D.C.</td>
</tr>
<tr>
<td>One</td>
<td>Commander
Tactical Air Command
Attn: Chief, Operations Analysis Section
Langley Air Force Base, Virginia</td>
<td>One</td>
<td>Director of Intelligence
Hq. USAF
Attn: Physical Vulnerability Division
Washington 25, D.C.</td>
</tr>
<tr>
<td>One</td>
<td>Commander
Air Defense Command
Attn: A D M A R - 2
Ent Air Force Base, Colorado</td>
<td>Three</td>
<td>Commander
Air Force Special Weapons Center
Attn: A F Atomic Energy Library
Kirtland Air Force Base, New Mexico</td>
</tr>
<tr>
<td>Three</td>
<td>Commander
Air Research and Development Command
Attn: R D T D A
P. O. Box 1395
Baltimore 3, Md.</td>
<td>One</td>
<td>Executive Secretary
Weapons Systems Evaluation Group
Office of the Secretary of Defense
The Pentagon
Washington 25, D.C.</td>
</tr>
<tr>
<td>One</td>
<td>Commander
Air Research and Development Command
Attn: R D G T
Col. D'Ettore
P. O. Box 1395
Baltimore 3, Md.</td>
<td>One</td>
<td>Director of Military Application
U. S. Atomic Energy Commission
1901 Constitution Avenue, N.W.
Washington 25, D.C.</td>
</tr>
<tr>
<td>One</td>
<td>Commander
Air University Library
Maxwell Air Force Base, Ala.</td>
<td>One</td>
<td>Director of Research
U.S. Atomic Energy Commission
Washington 25, D.C.</td>
</tr>
<tr>
<td>One</td>
<td>Deputy Chief of Staff Development
Hq. USAF
Attn: Lt. General D. Putt
Washington 25, D. C.</td>
<td>One</td>
<td>Chief
Armed Forces Special Weapons Project
Attn: S W P T E - 2
Washington 25, D. C.</td>
</tr>
<tr>
<td>One</td>
<td>Deputy Chief of Staff Development
Hq. USAF
Attn: Major Beavers
Washington 25, D. C.</td>
<td>Four</td>
<td>Headquarters Field Command
Armed Forces Special Weapons Project
Technical Training Group Library
Attn: Miss E. Pauline Dunlavy, Librarian
Sandia Base, New Mexico</td>
</tr>
<tr>
<td>One</td>
<td>Commander
Air Force Cambridge Research Center
Attn: Robert Chapman
Geophysics Research Directorate
230 Albany Street
Cambridge 39, Mass.</td>
<td>One</td>
<td>Army Field Forces
Department of the Army
Directorate of Special Weapons Development
Fort Bliss, Texas</td>
</tr>
<tr>
<td>One</td>
<td>Chief
Bureau of Ordnance
Department of the Navy
Attn: K E - 9
Washington 25, D.C.</td>
<td>One</td>
<td>Assistant for Operation Analysis D C S / O
Hq. USAF
Attn: John Intlekofer
A F O O A
Washington 25, D.C.</td>
</tr>
</tbody>
</table>
SECTION III

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>Address</th>
</tr>
</thead>
</table>
| Two | Dr. Alvin C. Graves
J-1 Division
Los Alamos Scientific Laboratory
P.O. Box 1663
Los Alamos, New Mexico |
| One | Director
NACA
Attn: Richard Rhode
1512 H Street, N.W.
Washington 25, D.C. |

SECTION IV

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>Address</th>
</tr>
</thead>
</table>
| Forty | University of California
Department of Engineering
Engineering Research
Attn: Prof. Walter C. Hurty
Los Angeles 24, California |
| One | Massachusetts Institute of Technology
Department of Aeronautical Engineering
Aerelastic and Structures Research Laboratory
Attn: Mr. J.C. Loria
Cambridge 39, Mass. |
| One | Allied Research Associates, Inc.
Attn: Mr. Lawrence Levy, President
43 Leon Street
Boston 15, Mass. |
| One | Massachusetts Institute of Technology
Department of Mechanical Engineering
Attn: Prof. H.C. Hottel
Cambridge 39, Mass. |
| Two | Rand Corporation (Thru: W O S I)
Attn: Dr. E. H. Plesset
1700 Main Street
Santa Monica, California |
| One | Vitro Corporation of America
Attn: Dr. C. T. Molloy
P. O. Box 146
Verona, New Jersey |
| One | Bell Aircraft Corporation
Attn: Chief Engineer
Niagara Falls, New York |
| Two | Boeing Airplane Company
Attn: E. Wells
Chief Engineer
200 W. Michigan Avenue
Seattle 14, Washington |
| One | Chance Vought Aircraft, Inc.
Attn: Chief Engineer
Dallas, Texas |
| One | Consolidated Vultee Aircraft Corp.
Attn: R. H. Widner, Chief Engineer
Fort Worth Division
Fort Worth, Texas |

One | Consolidated Vultee Aircraft Corporation
Attn: Chief Engineer
San Diego Division
San Diego 12, California |

One | Douglas Aircraft Company, Inc.
Attn: Charles Strong
300 Ocean Park Blvd.
Santa Monica, California |

One | Douglas Aircraft Company, Inc.
Attn: J. C. Beckwiler
Chief Engineer
3855 Lakewood Blvd.
Long Beach, California |

One | Grumman Aircraft Engineering Company
Attn: Chief Engineer
Bethpage
Long Island, New York |

One | Lockheed Aircraft Corporation
Factory "A"
Attn: Jerome C. McBrearty
P. O. Box 71
Burbank, California |

One | Glenn L. Martin Company
Attn: Chief Engineer
Baltimore 3, Md. |

One | McDonnell Aircraft Corporation
Attn: Chief Engineer
P. O. Box 516
Municipal Airport
St. Louis, Missouri |

One | North American Aviation, Inc.
Attn: R. L. Schleicher
Municipal Airport
Los Angeles, California |

One | Northrop Aircraft, Inc.
Attn: Miss W. J. Sommer
Librarian for Mr. Mangurin
Chief Engineer
Northrop Field
Hawthorne, California |

One | Republic Aviation Corporation
Attn: Chief Engineer, Farmingdale
Long Island, New York |
<table>
<thead>
<tr>
<th>No. Copies</th>
<th>Address</th>
<th>No. Copies</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>One</td>
<td>Cook Research Laboratories Division of Cook Electric Company 8100 Monticello Avenue Skokie, Ill.</td>
<td>One</td>
<td>Boeing Airplane Co. Wichita Division Attn: Messrs. B. Hodges and K. K. Holtby Wichita, Kansas</td>
</tr>
<tr>
<td>One</td>
<td>Johns Hopkins University Operations Research Office 6410 Connecticut Avenue Chevy Chase, Md.</td>
<td>One</td>
<td>California Institute of Technology Guggenheim Aeronautical Laboratory Attn: Prof. E. E. Sechler Pasadena, California</td>
</tr>
<tr>
<td>One</td>
<td>University of Dayton Division of Research Attn: Dr. K.C. Schraut Dayton 3, Ohio</td>
<td>One</td>
<td>Columbia University Department of Civil Engineering Attn: Dr. Bruno A. Boley New York 27, New York</td>
</tr>
</tbody>
</table>