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S U I 11 A R Y

A method is presented whereby the 'Slender Body
Theory' can be applied to the determination of the unsteady
aerodynamic forces acting on slender wings and wing-body
cambinations experiencing harmonic deformations in a com-
pressible flow. The analysis holds for subsonic
and supersonic speeds, subject to restrictions which are
stated and discussed.

A simplification of the method is also introduced
which is applicable to many practical cases and calculations
are performed on this basis which lead to numerical results
for:

1. 'Equivalent Constant Derivatives' for a deforming
slender delta wing using modal functions which are
polynomials of the spanvise parameterl

2. 'Rigid' Force Coefficients for a pitching and
plunging, slender, wing-body combination.

These results are given as closed expressions and
in tabular form and some of the results are also shovm in
graphical form.

Both the de-'ivatives and the 'Rigid' force coeff-
icients are defined in such a way as to agree with the usual
British Sign Convention.
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ILST OF STOOLS

The use of a 'bar' over a symbol denotes that it
is the amplitude of the harmonically oscillating quantity
represented by the symbol itself.

Symbol Description Defined in
Section

A,B portmanteau symbols in eqn. to Appendix I
reference axis

F(x) function of II(x) 7

0 constants in H((8) 4

H(8) torsional mode 4

L unsteady lift on rigid wing or body 6

'Rigid' force coefficients 6

L, L

constants in series expansion for 0 3

I unsteady moment on rigid wring or body 6

'Rigid' force coefficients 6
IA, Mai

H 10 freestream Mfach nuniber 2

Ne (2) modified Mathieu function of the third
n kind 3

O( ) 'of order'

Pn constants in series expansion for 3 3

Lagrangian generalised force 4

R(x) local radius of body of revolution 7

R Maximum' ' ' ' ' 7

S planform area of ving Appendix I

T factor giving length of ving-body
combination forebody as proportion
of vwing root chord Appendix VI
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freestream velocity 2

V factor giving total length of vwing-body
combination Appendix VI

AR wing aspect ratio Appendix I

a speed of sound in free stream 2

b maximum vdng span Fig. I

CCrC m  local, root and mean chords Appendix I

f(x,y) deformation functian 3

gr constants in h(8) 4

h(8) flexural mode 4

k frequency - Ilach No. parameter =V 3

equivalent constant derivatives Appendix II

mIfdistance of reference section from rf ing
root Fig. 2

I B length of body of revolution Fig- 3

(TIz)rs,( )r

(m~r,(r ? equivalent constant derivatives Appendix II

m'PmcPm b  factors giving position of reference

axis for ring, ving-body combination
and body respectively Appendix VI

Pn constants in series expansion for $ 3

P, P 0  local and freestream pressures 2

p differential pressure 3

qS Lagrangian generalised coordinates 4

r polar, radial, coordinate 7

r,s indices and suffices in modal functions 4

s(x) local wing semispan Fig. I
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so b/2

sen Mathieu function (periodic) 3

t time

u,v,w perturbation velocities 2

wwith suffices - various upwash
conditions

x,ysz right-handed Cartesian coordinates Fig. I

xo(y) equation of reference axis 4

z amplitude at reference section in

flexural mode 4

T (x) local cross-sectional area of body 7

Afactor giving length of conical nose
on body Fig. 4

II = -;' i  7

a 0 amplitude at reference section in
torsional mode 4

#n functions of X Appendix III

Yrs ,brsCrs flutter force coefficients 4

8 non-dimensional spanwise parameter 4

a dimensionless amplitude or thickness 2

elliptical coordinate; polar angle 3 and 7

elliptical coordinate 3

< - - - 7
a s

delta planfonn factor Fig. 2

angular frequency 3

local and freestream densities 2

- ratio of max. body radius to
So max. wing span 7



position of reference section

z.b/2 Appendix I

perturbation velocity potential 2

WjOr,% local, root and mean frequency
parameters 2

VC
r

r-U ,etc. Suffix c is used for
wing-body combination
in place of 'r' Appendix V

I. Introduction

In this paper a method is given whereby the aero-
dynamic forces can be calculated for slender, low aspect
ratio wings deforming harmonically in a compressible flow.

The method is applied to a slender, cropped, delta
vring and certain flutter modes are assumed which take the
form of polynomials in the spanv.'se parameter. Freedom
of the iwing root is allovwed for so that body freedoms can
be included. In the latter part of the paper the acrodyn-
amnic forces on a pitching and plunging, slender, wing-body
combination are evaluated.

The basis of the method is the 'Slender-Body Theory'

which has been applied in cornection with the (quasi-steady)
stability derivatives for slender, wings and wing-body com-
binations (refs. 1,2,3,4,5,6).

The application to an oscillating and defo.Lming
wing has, very recently, been studied by Ierbt and Londahl
(ref. 8).

The solution of the 'cross-sectional' problem,
for the wing, is analogous to that of a two-dimensional
flat plate oscillating in a compressible flow and has been
treated by Tirmnan* (ref. 9) and Reissner*(ref. 10).

The use of the 'Slender-Body Theory' allows the

* Only the regular part of their solution is required
in this case.
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analysis to apply at subsonic, and supersonic
speeds subject to c-rtain restrictions on Aspect Ratio, Mach
number, Frequency Parameter, Slenderness, Validity at oubsonic
dpoods depends on an a.pprozniate satisfaction of the Kutta-
Jov&owski condition.

The assumptions of linearised, thin aerofoil theory
are used, the fluid is perfect, the flow irrotational and
harmonic motions are considered throughout.

2. The Slender-Body Theory

The coordinate system used is shovn in Figure I
where right-handed rectangular axes are dravn from an origin,
0, fixed in the wing, with the x-axis parallel to the main
stream and the z-axis upward. It is assumed that the wing
is a thin, flat plate oscillating about its position of zero
incidence in the plane z = 0, but always lying in the
immediate vicinity of the plane.

The perturbation velocity potential, 0, satisfies
the equation

2 =1 + ") 2

2at

The conditions holding at the surface of the wing
are specified by a prescribed 'downnwash' w(x,y,O,t) and
the stipulation that the relative normal velocity of the air
and of the wing is zero.

Applying the assumptions of the 'Slender Body
Theory' implies that the x-derivativesin equation (2.1) are
neglected and the tvo-dimensional flow at any cross-section
is then given by the wave equation,

0 .......... 2.2)0 + Oz = 12 " "' '" '*"
yy a

The approximation equation (2.2) is satisfied
(ref. 1,3,5) if:

I i - 2 ')<<1 1 <(......(2.3)aell

where M C1. is the freestream Hach number and s is the
local semi-span, or for a triangular wing if

he ARi < < i

where M is the aspect ratio.



If the influence of the time-derivative term in
(2.2) is so small that it can be neglected the equation
reduces to Laplace's equation, as for steady flow, and the
difference between the unsteady and steady flow cases mani-
fests itself entirely in the linearised Bernoulli Pressure
equation,

p - Po - U 30 +

This implies that the root frequency parameter
must be small (see ref. 11 cases 2 and 5).

3. Solution of the Potential Equation

Assuming harmonic motion of angular frequency, v,
equation (2.2) becomes,

2
+ 7. + L_ 7 = 0 ........ •...(3.1)
yy a

where

S(x,y,z) eiVt= $(x,y,z,t)

The potential is subject to the following
boundary conditions t

(a) 0 is bounded everywhere in the flow and at
infinity all disturbances should disappear in the
proper manner, thus,

22i) 0 as y 2 + z

ii) The solution at infinity should represent
waves travelling outwards fran the origin.

(b) At any point on the wing the prescribed normal
velocity must be equal to the normal derivative
of g at that point.

Let the motion of the point, (x,y)i on the
wing be represented by,

z = f(x,y,t)

i(xy) ivt

F(x,y) vill be referred to as the 'deformation
function.'

II
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According to the usual assumptions of the
linearisea theory the vertical velocity of the point
(x,y) is given by,

dz az az

= iv (x,y) + !,Jx(x,y)] e~ t ,-

or,
*

TV(X) = iv ?(X)y) + Ur ......... 3.4

The condition is satisfied overthe projection of the
wing in the plane z = 0 and takes the fona,

7(x,y) = 7z(x,y,O) = iv?(x,y) + x(xY) .. (3.5)

(c) Outside the wing and outside the wake (x,y,z,t)
must be continuous in planes, x = constant, and
since it is antisynretric in z must satisfy the
condition,

g(x,y,o,t) = 0

By transforming equation (3.1) to the Elliptical
Coordinates, (,n), where,

y = s cosh T cos

z = s sinh n sin

and s(x) is the local semi span, Merbt and Landabl (Ref 8)
have derived a solution in terms of Mathieu functions.

Usingr che notation of reference 18 the solution
takes the form,

7(x,,)= > Pn Ne(2) (,],k) se (4,k)
n= n n

viith k VS

* The use of a 'bar' over a symbol denotes that it is the
amplitude of the harmonically oscillating quantity represented
by the symbol itself.
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where the coefficients, Pn, are to be determined fran
boundary condition (b), equation (3.5) which becomes
in elliptical coordinates,

(x,0,4) = s(x) v (x,s cos 4) sin 0666600.8)

Differentiating (3.7) with respect to n and
putting n, = 0 (on the wing) gives.-

.-- Pn ses (,k)~n=1

writing,!i pn(  a #N (2 ,\
P(k) =pn -n '. (3.10)

Nov if 7v(x, ) is bounded and is a continuous
function of , the series representing ,(x,0,4) in (3.9)
will be uniformly convergent.

1ultiplying (3.9) by sen (4,k) and integrating over
the range, 0 to 7, the coefficients P may be determined
in an analogous manner to Half-Range Fourier Coefficients
since an orthogonality relation exists for the 11athieu
function sen(4,k) (see ref. 16).

The P are thus given by;
n

2s

Pn(k) = (x, ) sin 4, sen(4,k) &Y (3.)
UOC) o

and finally the Pn fromn (3.10).

The solution, (3.7), is now completely determined
and the Iressure distribution on the wing will be given from
(3.7) with n = 0.

As discussed in section 2 it is possible, under
certain conditions, to suppress the time- dependent term in
equation (3.1) an te solution (3.7) then reduces to.-

i IL_ e"n L sin nr 4.......312)
n=1n
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where the Ian are given by,

-n x) 2s 7v .sin "sin n?., 9,-n an = P'(x) = T" -si

UJ 0

On the wing, PI
,-.-,." p3

= - L.,.,- . sin x-4
n= 

n

The differential pressure across the wing plane
is given as,

p 2 + (7 7x + o

4. Symmetric Flutter Characteristics Typical of a Slender
Delta Wing

The simplest, pointed, low aspect ratio wing
satisfying the assumptions of the tSlender Body Theory' is
the slender "delta wing.

Accordingly the analysis as developed in section 3
is applied to the wing shown in Figure 2.

To describe the possible flutter modes of the wing
a reference axis, xo(y) is used (see Fig. 2) given by the
equation,

2c
x + ( -') (b - m) ly! ......... (.1)

The applicability of an axis such as this to delta

wings is discussed by Woodcock (ref. 17).

For any particular flutter motion it is then
prescribed that sections parallel to the line of flight will
twist about the reference axis according to some modal
function, such sections remaining themselves undistorted.,
wvhilst the reference axis itself translates according to
another modal function, each degree of freedom so involved
being associated vith a Lagrangian generalised, coordinate, q,.

* Details of the wing are given in Appendix I.
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The generalised coordinates are defined at reference
sections given by

lyl (

and all motions are measured relative to the mean position
of the wing (plane, z = 0).

A non-dimensional spanwise parameter, 8, is
introduced such that

y -

and 1I = I at the reference sections.

Each degree of freedom will lead to an. equation of
motion and a generalised force, Q, ;daich can be expressed
conveniently in terms of force coetficients as (omitting eivt),

* Qr 2

---- 2A ('rs ' rs m rs)
........... 5.0

on the assumptions of the linearised theory, where,

z = r uniber of degrees of freedom

and W = mean frequency parameter

Yom  Note.- cm  is the mean chord of the,
U " half-wing. See Appendix I,

In what follows the suffices + and - will indicate
whether a function applies only for y>O or y< 0
respectively.

4.1. Uncoupled Hodes

Let there be one uncoupled mode in flexure and one
uncoupled mode in torsion described by the modal functions,
h(8) and H(8) respectively, so defined that,

jh(+ 1)1 = H(± 1)) =. (

If zeivt represents the translation of a point
on the reference axis, measured from the mean position,

The generalised coordinates and forces are amplitude
functions but the bar notation is not used in their case.
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ivt
positive upwards, and ae the rotation, positive leading
edge dvma, of the section through that point, then,

z= z 0 h(8) )

and a=ao(

where z and a are the amplitudes at the reference

sections, y = + 2.

Now, if the generalised coordinates are chosen so
that,

z 0
q= T" ),..... 7

cmand q = 2 ao

then the deformation function (x,y) of equation (3.3) takes
the forn,

( 8)
h + (x-xo)  - Hq2

m

It will be convenient, for the aerodynamic problem,
to consider the functions, h and H, each to be polynomials
in 8: thus, for symmetrical modesl

. I.. . .

r,s = 0,1,2,

Equation (4.8) becames, for the half-wing for
which y >0,

+_\, ' + (x-x) -  a

It is now required to find the tm generalised

forces QI and Q2 "

Thus,

6p. (x (y 4(4.11)
S
+

'S ' indicates that the area of integration is over the
+ wing planfonm for which 0 < s(x)y ily,
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where A p dx y I is the total (incremental) aerodynamic
force at the poin. (x,y) on the wing and is given by
equation (3.15) when the velocity potential derived for the
assumed deformation function is substituted.

From (4.10),

and the force, QI' is seen to be built up from a sum of

integrals of the form,

Q = ax d §p. r 8 r " ..... (4.12)
S

+

In the same way the force, Q is expressed as a

sum of integrals of the form

= I (x-x, p. c. 85. dx 3) (.'3)

It will be clear that many of the integrals (4.12)
and (4.13) will be identical, apart fron constant factors.

4.2. Coupled Modes

The deformation function, , now takes the forms

= t1h(8) + i- ...
Srt m oJ

there now being r degrees of freedom.

The functions h and H are as defined before in
equation (4.9) with r = s so that equation (4.14) becoames,

= . Z r-x ... (4.15)
r m

and. Q is given by :

Qr "8% = p (8? +) y

S+
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Finally, frm (4.15),

ir i12 6- (x'X°+)
Qr =  i. kP + Cm r 8r ,, ax a6

S+ .......... (416)

This is a sum of integrals like (4.12) and (4.13).

5, Calculation of the Velocity Potential and the Generalised
Forces for the Assumed Modes of Paragraph 4

The coefficients, Pn, in the series representation

of 7 are given by (3.11) and since ?(x,y) is expressed
in polynomials of (16, and hence of Yly, integrals of the
following type are met with:

I cos r sin 4 sen(41$k) d01 . .......... (5 1

Such integrals can be vitten as the sum of integrals
of the form

jsinzl . sen(r1,k )  .

Using the Fourier Series expansion of sen( ,k)
integrals such as (5.2) become;

B(n) (k) sin r?, * sin p , dY1  (5-3)r= -r

When s is even (equation 5.1), the limits on
(5.3) are 0 to , quite straight forv;ardly, as indicated
by equation (3.11 and only a finite number of terms is
obtained for (5.1). When s is odd, oving to the
assumption of sy netry, the limits on (5.3) reduce to 0 to n/2
(or W2 to R) and an infinite series is obtained for (5.3),
and hence for (5.1). However, only a few terms need be
retained in practice.

The velocity potential on the ving, %7, is now
fully determined and the corresponding loading is given by
equation (3.15).

The generalised forces give rise to integrals like
(omitting constants),

+ 8r dx d8

S+
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and J x + T;J7 8 d8

S+

These integrations must, in general, be done by a
graphical or numerical means, except when the time-dependent
term in the potential equation (3.6) is suppressed and the
Mathieu functions take on their degenerate 'forms.

The application of the analysis to antisymmetric
flutter modes follows the some general lines as given for
symmetric modes.

5.1. Equivalent Constant Flutter Derivatives

By analogy with the flutter derivatives of two-
dimensional (strip) theory it is possible to define a set
of 'equivalent constant derivatives'.

These derivatives are constant over the span of
the wing and give the correct generalised forces when inter-
preted in the conventional sense.

The lift and moment on a strip of unit width are
defined in terms of derivatives such as

zD amz, m , ma, m& (ref. 16)

where the 'stiffness' derivatives include the 'inertia'
derivatives., Z T, mr. P , ZSm&..*

Equivalent constant derivatives,

(Z) , (11) S
rs rs

et.

rs rs

are defined from the force coefficients of equation (4.4) in
Appendix II.

As with the force coefficients the first suffix
refers to the generalised force and the second to the mode.

* See Appendix II for discussion of sign convention.
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Apart from the analogy with 'two-dimensional'
derivatives the concept of equivalent constant derivatives
is useful in that it facilitates direct comparison of sets
of derivatives derived for different modes. For example,
direct derivatives in one freedon are made independent of

modes in other freedoms. (See Appendix III).

6. Representative Results

The preceding analysis has been applied to the
case of a triangular wing (Fig. 2, k = 0) using uncoupled
modes.

Equivalent Constant Derivatives have been calculated
for the flexural modes;

h(8) = 16}r r = 0, 1, 2.

and torsional modes;

H(8) 1 ; s,= 0, 1.

TIodes such as these have been taken in pairs, one

in flexure, 18j
r l and one in torsion, 181 I , giving six

'sets' of derivatives.

The accompanying table of numerical results (Table I)
shows the order of the derivatives and their signs (for m = )
and a set of general expressions for the derivatives is given
in Appendix III together with the results of a calculation on
a cropped delta for r1 =sI =0 only.

The 'damping' derivatives 1 , mI and ma are

plotted against 'im' in Figs. 8 9 and 10

By taking r, = sI = 0 and m = I the derivatives

are obtained for a rigid pitching and plunging wving referred
to the trailing edge - use of the usual transformation
formulae then refers the derivatives to any other axis.

This has been done for a triangular wing (X = 0),
a cropped delta (7, = 17) and a rectangular wing (& = I)
for an axis at 0.500 cr  and the results are presented in
Table II.r

In Fig. 11 the'cross-damping' derivatives m ,

1 have been plotted against 'im' for these wrings.

In this case of a pitching and plunging wing the
generalised forces and have simple interpretations
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and do in fact represent the unsteady lift and moment
amplitudes on the ocpmplete ring, i.e.,

L Q1 I2
2 - U , (+ve upwards)

and M Q2 2

2 - X - (+ve nose donrd, s2p, USo 3 c
4yj r r

The expressions for lift and- moment wvill be in
terms of the dimensionless amplitudes,

(o

l0C and a

and the relevant frequency parameter will be,

It is convenient in this connection to define a
set of force coefficients for rigid motions only since in
later paragraphs unsteady lifts and moments on rigid bodies
and wing-body combinations are considered.

Coefficients Lz, L, ... etc. are defined by the

expressionsl

L -(~~~)() (L + im L) a

2 z r

( 2 S -) +  ) +" (M + i :r  ) ao

and these will be referred to as 'Rigid' force coefficients.

As for the definitions giving the equivalent
constant derivatives (Appendix II) these rigid force coeff-
icients are signed to agree with the normal British flutter
sign convention
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TABIE I

I. ()-R + I (m)-1

0 11 _ 0 1 2

0 .0296 .007681.00374 0 .781 .996 1.18I 2 - 01
1 .0296 .007681.00374 1 1.00 .955 1.00

i ( )-_ m a (_)z 1

___ 0 1 22 0 _ 2

0 00376 00431 .00450 0 .0530 .0530 .0530

:002641 .00214 .00200 1 .0334 .03341 .0334

+ 1 (m) -  + la (I)1

11 0 1 0 ,,,2

0 .786 .954 .981 O .735 1.02 1.30

1 .786 .954 1.981 1 .915 .905 .817

m, ( )I-ma (Az)-

.r
- 0 1 2 ,0 1 2

0 .0542 -. 0225 -. 135 0 .114 .114 .114
1 .0900 .o0379 -. 0405 1 .195 .195 .195

Derivatives f or m = 0.2; = 0.2
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TAKE II

Equivalent Constant Derivatives for rigid wings plunging and

pitcldng about an axis at -

Equivalent Triangular Cropped Rectangular
Constant Wing Delta Wing

Derivatives (A=O) (k=I/7) (h=1
2 2" ° m2 - m

-(.524) m (785)

( +.785
(.785) (o785)

2 7r
I2 a +  -. 245% +.785 +
(.262) (.785)Am (.785)

+ +1 07

2 0

m T2 .245 W 20
Z (.262) ___m

-. 0845
(.197) (.392)

2 2 45 ° 2

m2w 2  -- 1372 0845 ) + 8

(.17) (.97!  )(655(.392)

7 -. 386 16
& (.392) (.197)

NOTE' Figures in brackets are decimal equivalents of
fractions of x.



7 *The Pitching and Plunging Slender Body of Revolution

A set of flutter force coefficients for a pointed
slender body of revolution can be calculated in an analogous
manner to those of the wing by adopting polar coordinates
instead of elliptical coordinates when solving the potential
equation and in the specification of the boundary conditions.

Probably the only case of interest is the rigid
pitching and plunging body and accordingly this case vill
be dealt with. The cartesian coordinate system for the
body is the same as for the wing and is shovn in Figure 3

In each cross-section, x = const., take polar
coordinates;

y = rcos

z = r sin

then the potential equation (3.6) transforms tol

r r (r ) -2 * 2 2
r a

Consider the body movements to consist of a
vertical translation (+ve upwards) and pitching about an
axis,

= Xo mB 'B

parallel to the y-axis (nose-dvn pitching +ve).

By analogy with equation (4.6) we define z to
be the amplitude of the displacement of the point, 0
x = x0o on the body axis and a° to be the amplitude of

the inclination of the body axis to the Ox axis. Then
the motions produce at a point, x, on the body axis the total
upward displacement,

(z0 + (x-x0) a0) ei V,

Taking the body length, IBP as a reference

length the vertical velocity (equation 3.4) is,

.(x) = iv B +I(;-x + iv .,......(7.4)

Writing r(x) for the local cross-sectional area
of the body, the potential near the body takes the foxn;
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r ---R

The pressure at any point on the surface of the,body is

p =., + ?.II U

where 1(x) - 77(X) T..(X)

The unsteady lift and moment, L and Mv follow
by integration of (7.6) along the body.

The 'rigid' force coefficients of equations (6.2)
have been calculated for a cylindrical body, with a conical
node as shovm in Fig. 4. These are based on the Aspect
Ratio of the geometrically sioiler wing having its root-chord
equal to tho length of the body and

b o (see Figure 7)2 a'

where R is the maximum (base) radius of the body.

The coefficients are given in Appendix IV.

By putting o = I and / = (I-,) it will be
seen that the expressions of Appendix IV are identical with
those that would be given for the rigid cropped delta wing
using the equivalent constant derivatives of Appendix III
with B = 0 and equations (6.1),

8. The Slender Wing-Body Combination

8.1 The rigid pitching and plungiag combination

A set of 'rigid' force coefficients will now be
derived for the slender wing-body combination shown in
Figure 8,

This problem will be dealt with rather differently
from the wing and slender body cases in that the velocity
potential will be found, not directly as a solution of
Laplace's Equation, but from the two-dixnensional. potential
for incompressible flow normal to a flat plate.

The required potential will not generally satisfy
the two-dinensional wave equation (2.2) and hence the
solution will be subject to similar restrictions as the wing
solution for k- 0.
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Using the Joukowski Transformation (see Fig. 6)
the velocity potential for the flow around the body config-

uration of Fig. 6 (see ref. 4) due to a motion w of any
section in a fluid at rest can easily be found and conven-
iently expressed in two parts,

/2 / R 1,2 1R2 y2
B J) =2) + -4.y+ .

V S
and..

)2 R 2 ( R%

where B(O) is the potential on the body (r=R) and w(O)
i, the potential on the wing (4 = O or R, y =r).

It will be clear that the force coefficients for
the wing-body combination of Fig. 5 can be considered to be
the addition of two sets of force coefficients; viz.,

(i) the force coefficients for a triangular wing on
a cylindrical body, downstream of the lateral
plane through the wing leading edge and body junction.

(ii) the force coefficients for a pointed body upstream
of the wing leading edge.

The coefficients (ii) have been calculated in
sction 7 (Appendix IV).

The coefficients (i) can be calculated using (8.1)
with the axes and notation of Figure 7.

For the combination, the velocity, Ti, will take
the same form as for the body alone, i.e. equation (7.4),
thus, ..- .

;(X)=iv, Ic(-) - xoao + Lao + a x (8.2)

The loading distribution is given by the pressure
equation (3.15) and lift and moment by:

L (ip)'dy + (6,p).vdy dx

'0.0 O R:I

and r""
I (A p ), . dy ( -x° d xM \ (A r )dy + .. 0 )

Otr L2J 'R ...... (8)
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Complete expressions for lift and moment on the
clyinical body ead triangular wing lead to the 'rigid'
force coefficients which are given in Appendix V. These
coefficients like those of the body are based on the
triangular ving having root chordo cr, and maximum
semispan so = b/2 = Ro/

The force coefficients for the whole wing-body
cambination of Figure 5 are given in Appendix VI and the
variation of the 'damping' force coefficients L , La P 1,'
IM with a is shown graphically in Fig. 12.

In adding the appropriate coefficients of
Appendices IV and V the definitions of Figure 5 and Appendix
VI were used and again the triangular wing is used as a basis.

9. Discussion

The use of the 'Slender Body Theory' for tusteady
flow problems leads to a solution for the aerodynamic forces
vhich does not involve long computation and many geometrical
and other parameters can be carried along in the analysis
without having to be specified definitely at the outset.

The restrictions of the theory as discussed in
section 2 seem to be somewhat severe but there is evidence
to show (ref. 8) that for a rigid triangular wing of aspect
ratio, 1, at a Mach number of 1.25 and for a frequency
parameter, w , up to 6, the theory appears to be quite
valid. Furthermore, results for an aspect ratio of 0.5 show
that when the time derivative terms are neglected the results
differ from those given by the complete solution only if

> 2 for a Mach number range of 0 - 1.25 (rigid triangular

Owing to the need to evaluate several terms of
the 11Mathieu fuction series when deriving the full solution
it is ruch longer than the simplified case (for snall root
frequency parameter) and it would always be vorthvhile to
question whether the full solution is really necessary in
any specifidecase.

With the type of wing to which this analysis can
be applied, it is very unlikely that the root frequency
parameter will exceed about 0.5 so that in many cases the
simplified approach would suffice.

The force coefficients y,b,c of equation (4.4)
are dependent on Mach number and frequency only through the
parameter, k, in the general solution, consequently, in
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the simplified case which implies that k-- 0., the coeff-

icients are independent of frequency and 1Jach number.

It has been found, both experimentally and
theoretically that the variation of flutter force coefficients
iith frequency decreases as aspeot ratio decreases so that.

this is not a surprising result from a theory vdhich is correct
fcr PR -- 0,

The preceding remarks can be taken to apply equally
well, in pr .nciple, to the wing-body combination.

It is interesting to note that the analysis used
by Lawrence and Gerber (ref. 19) (subsonic) when taken to
the limit AR--e. 0 gives results for a rigid wing which
agree with those found here and by Garrick (ref. 14).

In this connection it is also interesting to study
their results vhen plotted against aspect ratio. The slopes
of the curves (force coefficients) at zero aspect ratio are
ccrrectly those given by tSlender Body Theory' but, in
general, the curves depart from their original tangents
extremely rapidly. It might be suggested therefore that
force coefficients derived using 'Slender Body Theory', if
applied outside their range of reasonable validity, will
give magnitudes which, in general, will be very different
from the 'true' values. (See also refs. 2o and 21 for which
A 3).

Fig. 10 shows that for an axis at the trailing
edge of the wing, no matter which torsional modes are chosen,
the direct damping derivative m& is zero indicating that
an undamped pitching oscillation wrould be possible - for all
axis positions 0 < m < the derivative gives positive
damping.

When ---> 0 the 'rigid' force coefficients give
the values of lif and moment for the steady case as found
by Jones, Spreiter and others (refs. 7 and 4.)
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APPENDIX I

The Cropped Delta -

Definitions and Geometrical Properties

See Figure 2 • -

Mean chord, c = c (I + W) (I)

Area, S = b cm  (2)

b 2  b()
Aspect Ratio, = (3)

local seispan s = b x for,
0 <x -(-c r  (4)

Reference section position, I T. (5)

Spanwise parameter, = (6)

2c
Local chord, c =--- ( -(7)

Ratio, - 2 (8)
cm 2

2c
Reference Axis, xO =mcr + # (1-&)(1-m) lYo r (9)

=A + B 181

A -2mthus, Ac 2

bB 4(1 -XI(
m ( 

()
vc

Frecuency parameter, Cm - U )
(Hean) u
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APPENDIX II

Equivalent Constant Derivatives - Definitions

The folloving equivalent constant derivatives are
appropriate to a system with the usual British sign convention
i.e. z-axis dovward, lift positive upIvards, moment and angle
of attack positive nose-up.

(a) Uncoupled 1odes

i. One mode in flexure, one mode in torsion

=- I h2 .d8( 21 + c11 ) z '

- J 0

w2 +401 c Ha
(-Y122 + 12) = Z 0

(-,,2l1m + 021) = (-i,) £. H.h d5

*0

2h+. . d8(_22'M + 22) (-ra) C 2

b w = w. c h- h 2 d8
11 m in

b 12 m % mas (z H.h d8

i, torsion

Derivatives such as (I Z) , and (m.)i
XT sr
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will be defined in the same manner as in (i) by integrals
such as,

hr hr , d8 and H . h d8 respeatively.,)o d o r m r

(b) Coupled Modes

2 ~~ (1 h h a
Yrs Om +Crs z rs hr s

2 pllC.
('¥rs Wm + crs) J -- h H d8

aa rs ')i

zrs "jo k,"

etc. - by analogy with (a)i.
A term such as ( W-r 2 + C is obtained from

(-rs m + rs) bandfo

the real part of the term in the total expression for Qr

which involves both h and h ; and (b )
hr Srs %) is obtained

from the imaginary part of the same term: other terms are
obtained in a similar manner.
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APPENDIX III

Results of a calculation. using uncoupled modes

(a) Equivalent Constant Derivatives for Triangular Wing (X=O)

Flexural mode h(8) = 181r , r = 0,1,2

Torsional mode H(8) = 181 s = 0,1.

r=O, s=O
2Zz  = O~m A,

= + - m

42

(.863 1.3i) 2-
a -- m 4f

+ I (1.82 -1.15m) R

in = . (.288-.)55m) w2.2

rnm ~ (*121 -. 288m) AZ

M 3zt 2(.0710 - .200m + .182 w)

L im

- (.21+3 - .576i)( .2

(-.353 + 703m- 354n2 )

r;1 I s=O

zM =+2
rE 0

Z 3( 139 + .205in) w2 + 33 Rn .333
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Za =+3 (.516- .349m) JR

m = 3 (.139- .205m) 2 " m

Ml 3 (.182- .349r,) Al

m = . (.142 - *400M + .317m2) 2

.+ (- 121 + .288m) M

ma = (- .353 + .703m- .354I,2 ) M

r=2, s=O

IiI 1 2 AR

178 =+I .

+ 1 
-7 ,02. .

=-6,x . (.490 - .690m) 2

a Irz =+ (.69o-.9m) a

m = 3 (.082 - .115m) 2 A

m = - (.0730 - .123m) A?

ma = 2(.0711 - .200m + .158M2) 2ma = (.r

- (121 - .288m). A ?

m - A (.178 -. 35hm + -.176m2) R

02 s

z i

I~ =+ .A
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1o - 31(.220 - .353m) - .333!

= + 3 (.44 - .27hiv) E

mz  = 3 (.110- .176n) m

ml = 3 (.107- .274m) M

8 (.00359 - 010 n + .00800ni) 2

_ A (.0430 - .093M)[ JR

2

a= 30 (-.0250 + ,0492m- *02432 ) J

r = 1. = + 1.

a ~1 4(.05920 - .118m) M" 4 J
S= +. 2 (0.540) - 0,355m) JR

in= 6 (.0395 -. 0612m)w 2 R
mzm

a (.0287 - *o80m + .0640m2) 2
ma = 2

- + (.0430 - .0930m),!

M = 30 (- .0250 + .0492m - .0243rZ) JR
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r =2, s= .

z wm "

Z =-Ij .AR

(- (.0792- .117m) 2 1. A

a ' (.206 - .194m) IR

m =- 40 (- ,00495 + ,00733m) 2 R

mI = 30 (- .0359 + .0691m) IR

a (.0287 - .0800m + .064Om2) 2

- ! (.0130 - .093()r IR

ma 30 (- .0250 + .0492m - .0243m2 ) IR

(b) Equivalent Constant Derivatives for Cropped Delta
(, general)

r = 0. a = 0 only

z = 1Im

=+ -

2 ,e 1 - AB2 A)

~a 3 (i+m I Cc 2) %

1 +X+72  cm  3 M

m A b B # 2= I( - c m
m mn
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%.= 4 (1+x) 2 )L., + in

K.!
,A bB

ma = 4 l~ 2 .(2" ,

A 
2.

In in

(B Ab B B

+A, + + b

.P T v +  6,x .__.lo
_ 0 b B

ma2(1 + 3.+.) (7+~ 4 -1c~ . 5

1 
oA, (2 2 b B

3(I~x) -(37" -

w 
+

1  + ?-.

15(1+17 612 ) 2 ~wee= I + 2X?.2

4(1+X.)2

4(1 + X

(1 + 2?-, + 2/3 )

3 ( 2?)

P6 1 5 (1 + .)
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2

(1 + 3- /2 X

9- 2

15( + 4X)

Expressions far the above derivatives when W 1 /7 are:

1z = .5 85 w2 .R

7 =- (.l 4 1 - .226m) w 2  _ K R

la + .211A(1.86 - 1,12m) m

mz = %(.141 - *226m) 0 2 A,z m

m = - .8457 (.0944 - .281m) IR

( .2) 2

M = .845A (.159 - .384m + .284a) 2

- (.0944 - .28tl A

m = .645x (- .325 + .650m - .325m2 ) AR
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APEIIX IV

'Rigid' Force Coefficients for a Slender Body of Revolution

with conical nose
(see Figure 4)

Definitions:

Length of body = LB

Length of conical nose = "/ LB

Reference axis at distance nB ZB from nose

Frequency Parameter B = v i-a/tX

The force coefficients are based on the wing having
a geometrically similar planfori to the body, thus;

Ro -= and IB = or

so that (;B) = (s) and - U

h --+rL--
2x 2

+ a2 2 -, -.

Ti C- 2.,mB +_ 2L~ a3+4-2T1B 4/B "

+ (2 2A \
z3 B 2

02 2 JR 1 ~= (-----(%)
a 4 3/B

li,2 2BMa 4 _1-R8
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APDIX V

'Rigid' Force Coefficients for Triangular Wing on Cylindrical

(see Figure 7)

Wc =r "

U z + 3 c

S=+ - 2 )2

La 2oi~(1 -2 +a- 4 - 4a 7n:r)

-me,

- - a 2 , 3

c c+S2(1 -) 2

M&,

(+ I- %

Lc ( -2 !0 w2A

a 4 -- -



-440-

APEMDIX V1

'Rigidl Force Coefficients for a Slender Yling-Boy Conibination

(see Figure )
Definitions.-'

Total length of combination = Vc r T

Ratio of body length to winlg root chord - T
r r (2)

But Vor (IB + cr(1- r) ), , se figure 5,

so that fran (2).

T = V - 0 • (3)

Also, (7o) =G )= (2)(2.

Br

and
= T ..c (5)

Vc
rU

It is essential that the position of the reference
axis should be unique when measured from the apex of the wving
(mc cr) and from the nose of the body (B . 1B). This

requires that (see figure 5) :

MB 'B = 'B " Tcr +mccr

i.e. (cr-rn (6)

V- 1+m
or B c (7)or m -V-1+cr

Length of conical nose I AB / Tc (8)B r

This gives nose-length as a constant proportion of body length
ahead of wing root. If a nose length which is a constant
proportion of total combination length is stipulated then
must be replaced by an expression of the form;

3 - 4V - v+ 0 const. (9)

Note: In the above def inLtions: T 4 0
V , (1-0.) (i0)



'Rigiad Force Coefficients, based on the triangular
wing, for the ving-body combination of figure 5 are then:F " 2, -+Oj
L 7c )4 3 3 o"

L c

a, -, ( - ,

(M " T) - ( Z .-  -" -+'

T3- 21 +2
+O rT - Y +4m

C.-.$,

+ 1" -+. n4

Mi
-To 2+- )

3, 33 4 , oi.

i, = (I "3/ - ) 3 _ , "

+ -. lm + m Jc "LT, c



,-4q.2-

+ m( + O- -(I2t + _. 2 2
a- 2/S' A2

33 3 1

2\ 2 {~/2)

-1 . A2 J

+ T -3 ',,) I

+ )2 m 1  -2 2- )2 "

3 2m T (I- ) T (I .3 2

m~L c 2rn 2TA

Sm I - ) + (1 - .2

+ L., m C2
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