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SUMMARY

This report is a2 continuatlicn of RM~1399, Differential

Games II: The Definition and Formulation. \

Its essential contents are: the differential equation
technique for solving differential games (at least "in
the =mall"”) end the Verification Theorem, & device which
enables one to prove that the anawers obtalned are the

correct solutions.

!
§
y
{




TABLE OF CONTENTS

The Nature of a Solution. . . .
The Mein Equation . . . . . . .
Semipermeable Surfaces. . . . .
Ihe Verification Theorem. . . .
The Path Equations. . . . . . .

The Retrogression Principle . .

Solutions in the Small. . . . .

Page

RM—1411
-11-




AA

RM-1411

| -

DIFFERENTIAL GAMES I1I: THE BASIC PRINCIPLES
OF THE SOLUTION PROCESS

oy

Rufus Issgacs

(This work 18 & continuation of RM-1391, which we will refer to

as II.)

1. The Nature of 8 Solution

When we aneglyse a differential game we shall be interested
in three goels: the optimal tactics of each player and the value

of the game. We shall say the game hss a solution when all three

items exist; collectively they are the solution. We will have
solved the gome when either we have found a solution or, in case
none exists, when we have become as enlightened as the situstion

permits.

The term optimal tactics used above refers, as already dis—

cussed in II, to such $(x) and Y(x) as may appear in all K—strategies
which are £ -strategies for all sufficiently small positive £. One
must bear in mind that the utility of K-strategies 18 for proofs;

for practical purposes we are concerned with the optimal b(x),

¥(x) (henceforth denoted by $(x), #(x)) themselves. We sre not

far wrong 1f we conceive of them directly as optimal strategies

and in the future we will often sveak in such terms.

We recall that the date of a game include & particular
starting point in & and that we have used the term "game" rather
freely for what should be &8 family of games. When we speak of
the solution of a game fovr ¢ certain subset €' of €, we will jj

refer to alli games with starting points in £'.




ihe process of solving & game 8plits into two phases. It

Zenerally Lurns out that ti.e reglon € is to be divided into »

number of parts separated by surfaces which we shall later call

singular suxfaces.’ In each part the solution will be smoctih;

that 1s, V will be of class C; and the $ and ¥ will be contlinuous
functions of x.

On the s=ingulsr surfaces (or singuler manifolds

of lower dimension) various kinds c¢f specisl behaviour will take
place.

fhere are 8 number of possibilities. [he whole subject

of singuler surfaces is difflcult and sometimes thelr study 1s

the essence of the problem.

They shall be deslt with later.

We shall use the term in the small to refer to the "smooth” |

parts of the solution found between the singulasr surfaces. The

problem of identifying the singular surfaces and assemblying the

"smooth" parts into the total solution will be described by the

phrase in the large.

We shsll see thast the technique in the small is one of
differential equations.

This phase of the problem plays & part

in full solution somewhat analogous to that played by the Euler

equations in the calculus of varistions. In fact, for some one

person games the approaches become 1dentical.

There is nothing
radically new in the concept of a singular surface.

They appear

in some classical problems, but inconspicuously. Motives for em—

phasizing them appesar only when we introduce the second player

There may also he singular manifolds of dimension < n-l; such

of course cannot sepesrate the components of 2
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»
and look at metters zsme theoretically.

It 18 not possible to make & categorical statement as to
which of the phases is the more important. 'There are examples
where the solutlcns in the smsll are extremely simple (for
example, the psths may be straight lines traversed at constant
speed) while the assortment of singular surfacea 18 abundant
and involved. On the c¢ther hand, there may be few or no singulsr

surfaces, but we may encounter involved differential equations.

2., The Main Equetion

We suppose that the value of s differential game exists. It
will depend on the starting point x and we denote it by V(x). We
shall show that V(x) satisfies a first order partial differential

equation, to be calied the main equation, whenever V(x) 18 of

C * %
class 1°

For gemes with integral payoff the msin equation is

(1) Min m&-x E>5 \'foJ(x,¢>,‘~?) + a(x,$,4)J = 0

and, for gzames with terminal payof?f,

(2) . min max T V, £,(x,¢,¥) = 0 .
4 3 %5

* LExample 2 of.the following chapter will illustrete this point.

## Tat 18, V has all 1t3 first psrtisls and they are continuous.
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From the minimax assumption, 1t makes no difference if the

min and max in (1) snd (2) are reversed.

we shall glve two proofs. The first will follow lmmediately.

It is frenkly heuristic. DBut 1t 1is instructive,

For example, 1t

is possible to solve differential games approximately by discrete

methcds. The first proof will polnt the way.

We utlilize what we have called the tenet of transition. The

germ cf the idea 1s that we are desling with 2 family of games

based c¢n different sterting points. Let us consider an interval

of time 1n midpley. At its commencement the path has reached

some definite point of . e consider all possible x which may

be reached st the end of the interval for all possible navigational

choices by both players. We suppose that, for each endpoint, the

game beginning there has already been solved; in other words, V
is known there.

Then the payoff resulting from each choice ¢, ¥

durinz the interval will be known and the nsvigation variables

are to be 80 chosen as to render it minimax. When we let the

duretion of the interval approsch zero, the result yields a dif-
ferential equation.

We couch the sbove reasoning formally.

First let the payoff

Let V be known at x in € which has been reached in
a play at time .

be integral.

A short time later — let us candidly label the

interim dt — the play hss progressed to the (varieble) point x'.
Then

} (3) P =« payoff et x = \/Zt"'dt G(x,¢,4)dt + v(x')
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*
(in the lenguaze of primivive calculus )

Cote, ) + 2 v, £,(x,4) Jac
J

f + Vi(x) .
J

The ¢ and 4 In the last line are, cf ccurse, their values

at x. To mlnlimax (P, they must be chosen

to minimax the bracket.
(Theilr values will then be those of an optimol tactic at x.)

But

when thls is done, che payoff{ will be the value; thus, to make

the equation balance, the bracket must be zero. We have (1).

when the payoff 13 terminsl, almost the same reasoning
applles.

In this case optimsl play during the interval means that

V will be unchanged during 1t; we can suppress the integrsl in (3)
and proceed as before,

This proof instructs us as to a distinction between gemes with
the two kinds of payoff.

Where the optimal path of x is differen—

tiable, 2long it

y av T ;
(%) F=V-= ilxfoJ(x,¢ﬂV) .

By examination of the bracket sbove we learn:

when the payoff is integral the paths of optimal play

* %
penetrate the surfaces on which V 18 counstant; when it is

The reader speaking a more sophisticated tongue (mean value

theorems, etc.) cen readily translate ocur 1dea into terms of
sreater rizxor.

except, of course, when G 1s O during ar interval



.‘ integral, che pauns remain chroughout the play in the same sur—

face 2£ constanut V.

The seccnd procf of the maln equatlicn depends on 8 new con-

cept.

3. Semipermeable Surfaces

We take 1£ that each small portion oif the surfaces under
discussion separate the neighboring space, Aa orientation is
germene to our purpose, we distinguish the two directions 1in
which the surface may be penetrated, calling them the P-— and
E-directions. The "slde" of the surface reached after penetration
in the P-[E~] direction will be called the P—[E-] side. We take a

‘ point x on a so oriented surface and visualize the full vectogram

at x. We will say the surface ls semipermesble at x when the

following 13 true:

There 18 at least one value § of ¢ such that if ¢ = §, no
vector in Y-vectogram penetretes the surface in the E-direction.

Similarly, there 1is a Qﬂ which prevents penetration in P-direction.

A surface having Shis property at each point will be called

semipermeable,

Suppose the fi ere all separable. Then we observe that 1if
b = Fand ¢ 4 ¢, there will be strict penetration in the P-direction.

It is this fact that causes, in the separable case, optimal

» F[&# ] will ve used interchsngeably Lo denote a value of $é[ ¥ ]

with the described property or the set of all such values.

.
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R




RM~1411

strategies to be bes! strategies.

We have already seen that we can transform a game with
integral payoff into one with terminal psyoff. Consider en in-
stance of the latter which we supposed solved, and for which V(x)

hag at least two values.

Any surface which separstes the parts of & where V > ¢ and
V <c (c, any constent) must be semipermeable with V decreasing
a8 the surface 18 crossed in the P-direction. For if, at some
point x of the surface, there were no ¢, P could not prevent E

from pulling x into the side with the lsrger V. Similarly, there

is a &.

[he criticel reader who demands more precise reasoning than
this will see in the next section how it may be supplied. There
the reasoning is based on K-strategies which we have accepted as

the sole thoroughly rational bulwark of the theory..

Now suppose in a certain subregion cf C, V is of class Cl.
'hen the surfaces on which V i8 constsnt will be semipermeuble.
The vector grad V -,{in}, 18 normasl to such surfaces. Wwhether
a moving point penetrates the surface in one direction or the
other or not at all depends on the sigzn of its veloclty component
along this vector. That 1a8, in the case where V is of class Cl’

the semipermesbllity condition for the surfaces of constant V 1is

mtn %ix f infl(x,¢ﬁ¥) - 0

But this 1s the main equation,




Suppose we had begun with an integral payoff case and per-

formed the transformation in II §3. We see that if we compare

the games emanating from two pointa which differ only 1in their
values of x

n+l (1let d be this difference) the games will be 1.ien-

ticsl except that there is a difference 4@ between pairs of corres—

ponding payoffs. Thus V = 1,

Xn+1
values into (2), we obtain (1).

Also fn+l = (. Putting these

)"’o

The Verificiation Theorem

We do not purport to give an existence theorem for differential
games,

Our interest lies in solving problems. In the sequel we

shell explsain methods and exhibit examples. But what we do need

is a technique for showing that the results of our methods ac-—
tually are solutions,

Such 18 provided by the subject theorem.

It 1s actually no more than a sedulous application of the semi-

permeable surface concept of the last section. 1Its advantages

are, as the reader will later see, that it verifies our solution
methods almost automatically.

In fact, it may be quite possible
to construct an existence theorem from the solution technique and

the present theorem for a properly delineated class of games.

Let u3 suppose that we have found an alleged solution of a
certain game with terminal payoff.

We suppose firat that it is
a game of degree, reserving the other case for later,

By this

we mean H is a continuous function on C.

ported value.

Let V(x) be the pur—
There may be a subdivision of &€ by singular sur-

‘ faces.

Experience haa shown thet the only types of such surfaces

on which V fails to be differentiable

are onea that sre never



crogssed by the optimal paths.* Wwe will suprose trils tc be the

case here and we shall either remove any such (slleged) singular
surfaces from &, or think of them as "slita" so thst on the "cut"

€ we may expect v ¢o be of class Cl. There may also be & part of

€ 4ith the property that the eplleged optimsl paths beginning there
do not terminate.

If so, we remove it from &, What 1s left of &

after both these kinds of surgery we will call &€'. Generally it

fulfills the hypothesis of the

verfication Theorem.

If v(x) 18 of class Cy in £, If 1t
satisfies(2) and equals H on G, then V(x) is the value of the

gome, provided the sssumptions made in passing from € toc & are
correct.

The optimal tactics coneist for those classes of func—

tions of x such et each position they provide the min snd max in

(2).

Proof:

We can, as we have seen in II, without changing the

nature of the geme, arrsnge that all veloclty vectors in each

full vectogram have at most unic length. We do so.

Let us select a tactic $(x) for P such thet for each x, §
is minimizing in (2).

We let E play any K-strategy; let ¥(x) be .
bl
its tactic. Play starts from x°. Given en € > 0, we are going

tc complete P's K—strategy by constructing s o, - We shsll speak

83 if P were to play Indeflinitely; of course, we need but curtail

cur schcme when C 1s reached.

#*

Example 3 of II1 L8 an lnatance.

Although there sre infinltely

many singular surfaces, V = Xy
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Divide time into intervals Im(m {t<m+1l, m=0,1, »+-). 1In
Im, X cannot be further than m + 1 from the atarting position x°.
We can take 1t, that for x so bounded, each VxJ and rJ is uniformly
continuous in x, the uniformity holding for all ¢, Y. The same is
true of I V_ fJ = Q(x, ¢, ¥). From the bound on speed, we can
complete S, by subdividing Im into Imp such that, during each, the
change 1n Q < EE%T . The Imp may be further subdivided into Impq ’
by the t! of o/. In each Impq ¢ and V are constant (= bmp and thq) !
and so %%: = Q. Let x' be the position at the start of Imp and x

mpq” Then :

be a point reached during I
and, 8s bmp gatisfies (2) at the start of Imp’

mi/x Q(x'9 bmp! ‘k) = 0

we have

av 3
qe during Inpg = A%, bpps Ypq) < @ -
:

As thils inequality holds through Im’ the galn there of V < EE:I

and so the total gain < €. But when C 13 reached, V = H = payoff

and so the latter < V(x°) + €.

Likewise we can construct a o' for E insuring a payoff > V(x°) —-£.
t

Thus V(x°) 1s the value.

Above we have tacitly sssumed the gsme will terminste. Whether this
is true 1s a question of a game ¢ degree. Suppose that the answer
assures us of termination; it generally happens that 1t 1s occasioned

by the optimal tactics.

S

»
forrward time derivative
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Now let us conslder the singular surfaces slashed from € in
the construction of €'. If no velocity f(x,¢,¥) leads x onto such
& surface from sufficiently proximate points.then the asssumption

of the surface being uncrussed during optimal play 1s corroborated.

Suppose besidea 8 part £", in which it was alleged that
optimal play did not terminate, was removed from €. It may be
that neither player can invoke termination from €". In that event,
€" might well have been discarded at the outset; 1t has hardly a
legitimate claim to belong to € in the first place. More usual —
this being a game whose essence 1s conflict — one player will
strive for termination; the other will oppose it. The boundary
between &' and €" will be semipermeable; the details fit into a

discussion of thia subject still to come.

We now turn to gemes of kind. We already know that our ob-
Jective here 13 to divide € into discrete parts corresponding to
the discrete payoffs. We can generally consider €" as one of
these parts. This 1s certainly true if we decree a stop rule
(see II, section 3); the case where we don't will be treated in

a subsequent chapter,

The sallent point is that the boundaries of this subdivision

are sppropriately oriented semipermeable surfaces.

Verification Theorem (Games of Kind). If semipermeable sur-

faces with continuously turning tsngent hyperplanes exist in € such

that they meet Cat the loci where H changes values and they are

correctly oriented (that is, the P-side corresponds to a payoff
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lower then that of the F-8ide), themn, 1f these surfaces separate
6, the value of the game will be constant in esch component and
equal to the of H on C therein. We sssume that for each component

of &€, except possibly &", the game will terminate.

Proof: If S 1s one of these surface we can imbed 1t in a
family of semipermeable surfaces whose union 18 & thin layer con-
taining S. We define a furction Vl(x) over the layer constant on
each surface, of class Cl' and decreasing in the P-direction.
This construction amounts to a8 problem in partlisl differential
equationa and its solution is known to exist. If the reader de— ‘
mands sn explicit construction we can easily infer one from our ‘

solution technigques to be explsined later. *

We reason about this layer Just the way we did about &' in

the preceding proof. We find, say, thut 1f x is on the P-side

of S, say at & "distance" € from S, by playinz a suitable K-strategy

P can keep x from crossing S.

5e The Path Equations

We work with integrsl payoffs, the other species being handled
by suppressing G.

Being confronted with a particular problem let us write (2)

and ascertain the maximizing ¥ and minimizing ¢ as functions of
*

the Xy snd Vt . Let them be

# We will henceforth write Vy in place of Vi, * Vy will stand
i
for the vector {Vi} (= grad v).

o
-
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‘ (5) };: .6(X:Vx) ’ iF=iF(x,Vx) *

If there 1s a choice involved in (5), select §, ¥ to be continuous
functiona of their 2n arguments insofer as 1t 1s possible. (ihe
last clause generally acqulires 8 definite meaning in a particular

example.) Substitute (5) irtoc (2):

(6) f Vi(x)fi(x:$n¢) + G(X,&’?) =0 .

We have now a true partial differentlisl equstion fcr V in

' (6). It alsc shall be referred to as the main equation.

We differentiate (6) with respect to each X, now thinking
of V as 8 function of x. Doing so in accordsnce with the rules
of eiementary ceslculus, we examine the components a&s they arise.

Firat we have

(7) Z Vv f

which can g8lso be written

).k, =V
k x1 i

(8) 2(v "
v that is, the time derivative of Vk over 8 direct optimel path.

Next we have

(9) 2 Vi *+ O
4‘ * We are not really overwcrking these symbols. When V becomes

known as & functicn of x and sc substituted in (5), 1t is clear

that we will have our old §, ¥. '

-~
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If,

where f,k(x,u,v) = 5;—(x,u,v) and G, =
“ k

Q.

~
a
XK

‘hen we encounter

Q-

d$
10 ¥ 9 (=
(10) Ty (i V,£,4G) a;i

Each bJ 1s supposed subject to constant bounds such as (10)
of II. The minimizing 65 occurs either interlor to the constraining
intervsl or at an endpoint. If the former, the 9 ( ) term of -
abJ
(10) 18 O because of the minimizing property of §; if the latter,

b

the éil-is O as $J is constent. In either case then (10) vanishes.
k

The same 18 true of the remalning terms devclving on the 4&. We

conclude

{

(11) Ve m TV " F(x, V), #x, v ) + o (x,8(x,V, ), #F(x,v, ).

Rewriting the K.E. , slightly speclalized,

(12) *k = fk(xot(xnvx'): i(xtvx)) . |

This set (11), (12) of 2n ordinary differential equations in

the 2n unknowns X Ve shall be called the path equations. It 1s
not necessary to presuppose the existence of second partisls of V
such as sppear in (7) and (8). Actually (11), (12) are the charac—
teristic equations of (6) (slightly special in that the terms (10)
are nullified). Solutions of (6) can be bullt from integrals of

(11), (12) in the standard manner,*’ a procedure which we shall

» We shall use such obvious abbreviations henceforth.

*# See, for example, Courant-Hilbert, Methoden der Mathematische

Physik, T.II.

-
o




shortly adapt tLc cur purposes,

6. The Retrogression Principle

When solving a game we reverse time; we start at ( and work

backwards into €, The motivation can be easily understood if the
Zame is quantlzed,

Let us replace the K.E. by approximating difference equa-—

tionas. The exact menner i3 not criticel for cur present ends;

we'll settle for any reasonable discrete facsimile. Consider
starting x 80 near C that it can be reached in one move by each
player.

What we have here 1s a one move discrete game; the navi-

gation variables are chosen as the optimal strategiea for it,.

This settles the value of the game 1n a certain thin psrt 51 of

3 berdering €. Next we similarly investigate the starting points

from which El can be reached after one move each by the players.

Inssmuch &8 values at the end of the composite move are known,

we again can formulate matters as & one-move game. (What we are

doing here 1s applying the tenet of transition; compare the first
proof of the main equation in Section 2.)

Thus the value becomes

known in & second layer 52 bordering Ei. We proceed thus, filling
€,

The value of' the game 13 thus determired by a chain of causes

and consequences that proceeds counterchronologically frem C.

Accerdingly, we let U= —~t and use the symhol f for g%-, 80
that ¥ = -,

For reference, we rewrite the P.E.:




RM—-1411
—16—

m (13) o/k = f Vlrik(x';"W) + GK(XO$J¢)*

(14) X, = 1, (x,5.4) .

T. The Solution in the Small

The surface € furnishes a natural seat of initlsl conditions
for these retrogressive equations. But an importent detail calls

for attention first.

Ccnsider & position very near . One or the other player
mey be able to force or deter an imminent termination despite
E any opposition from his oppcnent. Let V= CV&,...,I%) be vector
normal to € from point x on @ and extending into €. If, say,
® (15) min max Zvifi(x,¢),4‘) >0
¢ ¥ 1
then E can prevent immediate termination from a poaition sufficliently

near x. If (15) holds with the inequality reversed, P can compel
immediaste termination. '

There is the question of whether a player will benefit from
the exercise of such power. Sometimes the answer is obvious. We '
cite the case of termination time payoff; clearly E will defer
termination whenever he can. But in other instances E may see
that avoldance of the frying pan now will only lead to the fire

later. We leave the intricacles of such quesations to individual

‘ * jor terminal paycf! gKames, we merely suppres: the G.




cases. DBut we muat crystalllze one concept,

The above situation can imply that only a certain part of ¢
wlll be effective under optimai play. We call it the useable
part. It 1s the residue of C when we remove the rortions where
one player can — and profitably can — forestall termination from

nearby pcints.
Now we formulate the initial conditions for (13). (14). Let

be a parametric representation of €. On G, V is known. Let it be
V(s). If the payoff is terminal, V(s) = H; if integral, V(s) = O.

We need to know the velues of the V, on ®. we have

oh
(17) ;g}— V(s) = 2 vy ﬁ-} (f=1,...,n=1)

which are n-1 equations for the n unknowns Vi‘ The remaining
equation is the main equation (6). Wwe need only solve this sys—
tem for the U.P, of ¢. Sometimes a double solution will appear.
The resson is that there 13 nothing in our anslysis tc distinguish
the two sides of ¢. It i1s not hard to do 8¢ by other means and

then discard the solution not pertaining to €.

Thus the values of Xy and v, #111 be known on the U.P. cf
C. They are tc be emplcyed 2s initlal values in integrating (13),
(14). The solutions furnish (reversed) paths xi(T,sl,...,sn_l)
extending from the points 8 of C into &. should they fi111 &

univalently (exsctly one path throuzh each point) the same 1is

virtually solved. T"he elements of the scilution can be cbtalned
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by rouitine calculation and tie verificatlon trneorem will s:ow 1t
13 correct.

If € 18 not so fllled, we cu. 8till expect to obtain & solu—
tion in part of €.

It will be the {irst step of tne solutlion in

th.e large.

As trne later portions of t:.e solution are constructed,

we may find ourselves repesting the w.ole procedure with new sur—

faces playing the role here allotted to C.

Although we wish to segrezste the 1ln-~the-large phases to

later psragraphs, it will be iustructive to mention cone simple
type of singulear surface now.

Suppese the functions ¢, ¥ of (5)

f
are not continuous; but, for example, ? has a8 simple discontinuity

when a certain function u(x,vx) changes sign.

Oon C we will know

tre 8lgn of u and can construct the paths accordingly. From these

solutions of (13) and (14) we will know the value of u along a
path.

Let us say that, for each s (that is, path) there occurs a

value of T where u ceases to have the favorasble sign, and all such

points together constitute a surface T 1n €. Thus our solution
construction is halted at J.

But J may well be a transition surface,

that 18 one crossed
by the optimal paths but on which at least one of the optlmel tactics
is discontinuous.*

lo find out, we need but proceed with the con-

struction.

We use J 83 a8 new seat of initial conditions and on its
far side solve the path equations enew.

Xy Vx

These initisl values of
sre of course obtained from the esrlier paths, but we uti—
b

l1ze for § the new value sscertalned from the changed stizn of u.

*

For an instance see EFxsmple 7 of I1.



Gugerve Lhdl . remains clas3 Cl acrosl J.
t chapter will consist of varlous exsmples that can

e nex
present state of knowl

be handled with our edge.
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