AD NUMBER

<table>
<thead>
<tr>
<th>TO:</th>
<th>UNCLASSIFIED</th>
</tr>
</thead>
<tbody>
<tr>
<td>FROM:</td>
<td>CONFIDENTIAL</td>
</tr>
</tbody>
</table>

CLASSIFICATION CHANGES

LIMITATION CHANGES

TO:
Approved for public release; distribution is unlimited.

FROM:
Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; DEC 1954. Other requests shall be referred to Army Armament Research and Development Command, Picatinny Arsenal, NJ.

AUTHORITY

ARRADCOM ltr 19 Nov 1979; ARRADCOM ltr 19 Nov 1979
THIS REPORT HAS BEEN DELIMITED AND CLEARED FOR PUBLIC RELEASE UNDER DOD DIRECTIVE 5200.20 AND NO RESTRICTIONS ARE IMPOSED UPON ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.
EXCLUDED
FROM GENERAL CLASSIFICATION SCHEDULE
IN ACCORDANCE WITH
INFORMATION SECURITY PROGRAM REGULATION
DATED - JULY 1972
DOD 5000.1R & EXECUTIVE ORDER 11652
(EXECUTIVE ORDER 10561 AMENDED)

BY

Defense Documentation Center
Defense Supply Agency
Cameron Station
Alexandria, Virginia 22314

DEC 1972
EXAMINATION AND EVALUATION OF FOREIGN FIRE CONTROL INSTRUMENTS

GERMAN PERISCOPE TYPE PVE 68-1

by P. R. Yoder, Jr.

Ord. Proj. THL-1055D
DA Proj. 513-01-006

Fire Control Instrument Group
FRANKFORD ARSENAL
PHILADELPHIA, PA.

28 Dec 1954
NOTICE: THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 and 794. THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.
EXAMINATION AND EVALUATION OF FOREIGN FIRE CONTROL INSTRUMENTS

GERMAN PERISCOPE TYPE PVE 8B-1

Prepared by
F. R. Yoder, Jr.
Physicist

Reviewed by
F. B. Patrick
Chief, Optical Design Br.

Approved by
W. T. Abell
Chief, Ground Weapons Div.

W. S. Carlson
Chief, RAD Department

PRYoder, Jr/ms/6213
15 December 1954
ABSTRACT

The purpose of this test was to examine and evaluate the German Periscope, Type PVE 8B-1.

The important optical and mechanical features of this periscope were listed. The approximately 43° field of view could be adjusted through 360° in azimuth, and from -30° to +135° in elevation. The magnification provided was about 1.8 power. The image quality was not so good as expected.

The reticle, which was projected into the field of view, could be moved horizontally and/or vertically by a complex mechanism involving handmade three-dimensional cams.
BACKGROUND

A German Periscope, Type PVE 8B-1, which is believed to have been used during World War II for observation and gun sighting from an aircraft, was obtained through the courtesy of the National Bureau of Standards, Washington, D. C., for examination and evaluation. This report summarizes the important optical and mechanical features of the instrument.

DISCUSSION

The instrument (see Figures 1 and 2) is essentially a periscopic type of sight with a movable head prism to permit the line of sight to be rotated through 360° in azimuth, and depressed or elevated from -30° to +135° referenced to the horizontal, at any azimuth setting. Movement of the line of sight in azimuth and elevation is accomplished through linkages to an external control unit. Observations are made through a spherical glass dome of excellent optical quality containing the head prism mechanism.

The optical system (see Figures 3 and 4) provides a true field of view of approximately 1° at a magnification of approximately 1.5 power and with a clear eye distance of about 1.0 inches. The eyepiece design used is a "wide-angle" type, characteristic of instruments having a large apparent field of view.

The reticle of this instrument is illuminated by an incandescent lamp and is viewed through an auxiliary microscope system superimposed upon the target through a beam-combining ocular prism assembly. The reticle pattern is a pair of crossed lines with a circle at the center (see Item 1 of Figure 7). A neutral density optical filter is provided, which may be inserted into the field of view by moving a filter control lever.

The optical image quality of the instrument examined was not so good as expected for this type optical system. The image definition was good only within about 6° of the center of the field of view. It could not be determined positively whether this condition was inherent in the optical design or caused by some hidden defect (or mis-alignment) within the system.
Details of the mounting of the optical components and the complex mechanism used to move the reticle horizontally and vertically are illustrated in Figures 5, 6, and 7. The reticle mechanism permits ballistic data to be fed into the instrument by positioning the control knob (see Item 3 of Figure 1). The three-dimensional cams are of particular interest since they appear to have been handmade to close tolerances.
DISTRIBUTION:

20 - Commanding Officer
Frankford Arsenal
Philadelphia 37, Pa.
Attn: Chief, FCIG (1)
 Deputy Chief, FCIG (1)
 Chief, FRE (1)
 Chief, FGE (1)
 Chief, FSE (1)
 Chief, FFE (1)
 FRE (8)
 FRA (1)
 FRL (1)
 FRG, W. T. Abell (1)
 FRG, F. B. Patrick (1)
 ER, Library (1)
 EW, Dr. Smith (1)

1 - Office, Chief of Ordnance
 Washington 25, D. C.
 Attn: ORDTT

1 - Office, Chief of Ordnance
 Washington 25, D. C.
 Attn: ORDTR

THRU: ORDTT to ORDGU-IN

1 - Office, Chief of Ordnance
 Detroit Arsenal
 Center Line, Michigan
 Attn: ORDMX-ECCF

1 - Commanding General
 Aberdeen Proving Ground
 Maryland
 Attn: D & PS, Bldg. 313

1 - Commanding General
 Air Materiel Command
 Wright Patterson AF Base
 Dayton, Ohio

2 - Armed Services Technical Information Agency
 Document Service Center
 Knott Bldg.
 Dayton 2, Ohio
 Attn: DSC-SA
Figure 1. Front View of Periscope

1. Dome
2. Dessicators
3. Control Knob
4. Eyepiece
5. Rheostat
6. Electrical Connection
Figure 2. Side View of Periscope

1. Dome
2. Dessicatosts
3. Filter Control
4. Eyepiece
5. Sockets for Azimuth and Elevation Control Linkages.
Figure 3. Schematic View of Optical System

Confidential
Figure 4. Exploded View of Optical System

1. Head Prism
2. Objective Assembly
3. First Erector Lens
4. Dove Prism Assembly
5. Second Erector Lens
6. Filter Assembly
7. Ocular Prism Assembly
8. Eyepiece
9. Microscope Objective Assembly
10. Prism

Reticle not shown
Figure 5. Exploded View (Front)

1. Dome
2. Head Prism
3. Objective Assembly
4. Gear Housing
5. Linkages
6. Reticle Mechanism
7. Microscope Objective Assembly
8. Prism
9. Housing
10. Dove Prism
11. Filter Control
12. Rheostat
13. Eyepiece Assembly
Figure 6. Exploded View (Rear)

1. Dome
2. Head Prism
3. Objective Assembly
4. Gear Housing
5. Linkages
6. Reticle Mechanism
7. Reticle
8. Three Dimensional Cams
9. Housing
10. Dove Prism
11. Filter
12. Erector Lens
13. Ocular Prism Assembly
14. Eyepiece Assembly
Figure 7. View of Reticle Mechanism

1. Reticle 2. Three Dimensional Cams 3. Cam Followers