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ABSTRACT

By means of geometrical optics the refraction of light traverslng
8 cone is investigated. It is hoped that this study will aid in the
interpretation and treatment of information from shadowgraphs and
interferograms used in the-investigation of the axielly symmetric
airflow about sharp-nosed projectiles in supersonic flight.

In Part I, after the necessary formulas are derived, applications
to shadowgraphs are made. {Applications to interferometry will be
considered in Part II.)

A simple physical model is assumed: a cone of index of refraction
n, located in & space of constant index of refraction n; (¢ n2) with

parallel light impinging on the cone perpendicular to its axis. The
main reason for choosing a cone is that it has simple geometrical pro-
perties; however, many of the general ideas developed will be applicable
to any rotationally symmetric shock wave. In Parts I and II a further
simplification is made; n, is considered constant. (Part III will con-

sider a variable n, appropriate to Taylor-Maccoll flow.)

With n2 constant the ray tracing problem is feirly simple since no

differential equations must be solved. Snell's law and some analytic
geometry give the "exit functions". These designate the location and
direction of light rays emerging from the cone and are used to
calculate light patterps on shadowgraphs. (In Part II they are used
to calculate fringe shifts.) Since considerable labor is involved in
calculating them, the exit functions have been computed on the ENIAC
for a wide range of cases, where the parameters are the cone angle and
ratic of refractive indices.
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I INTRODUCTION

Optical methods are used extensively for examining supersonie flows.
In order to interpret the resulting photographs of the flow it is necessary
to study the behavior of the light wiich passes through the supersonic
disturbanee . Several studies of the optical problems involved in this in-
terpretation are reported in references [1] , f?] [5 , and [P] . Adadi-
tional references may be found in [1] . In this report we shall study
some of the optical problems arising in the interpretation of shadowgraphs.

In Part II refraction effects in interferograms will be considered.
The schlieren method will not be considered in detall. (The shadowgraph,
interferogram, and schlieren methods of examing supersonic flows can,
in thelr gross effects, be separated. Lowever, there are usually small
effects of one method mingled with the gross effects of another. For
exemple, a shadowgraph of a free flight projectile was taken using a
small rotating mirror to stop the motion. This shsdowgraph exhibited
several fringes behind the shock wave and some schlieren effect where
one edge of the mirror acted as a "knife edge".)

Consider the problem of light ray tracing in the supersomnic conical
flow field about the nose of a cone cylinder at zero yaw with an attached
shock wave. We shall assume parallel light traveling perpendicular to the
axis of the conical shock. Tae rays pass from a medium of refractive
index n,, through the conical region of refractive index n2(x,y,z), and

into the original medium again. There they are recorded on a photographic
Plate placed normal to the initial beam of light, producing an interfero-
gram or e shadowgrapn according tc the arrangement of the experimental ap-
paratus.

Since the change in index ¢f refraction, after the inltial Jump
across the shock wave, 1s small for large reglons of the flow fleld, it
is not too unreasonable to take the index of refraction to be constant.
This simplifies the problem cf ray tracing consideradbly since the path
will be & broken straight line. The difficulty of solving sets of
differential equations is eliminated.

With the simplificaticn of a constant index of refraction the cal-
culations required are straightforward but still rather lengthy. One
reason for this is that the problem iz three-dimensionsl. Some additional
assumptions can be inteoduced to redure the problem to two dimensions as

. HoweVYer, some significant differences between the results of
[2 and the three-~dimensional treatment were found in a preliminary
investigation. Hence the present study was underteken.

From the ray tracing study reported here qualitative explanations can
be obtailned of some of the charactarisiics of shadowgrephs for large values
of the psrameters Mach number and firee stream density. The explanations
are qualitative mainly because i%{ is necessary to consider rays other then
those in a small neighborhood of the grazing ray so that the constent in-
dex assumption is not strictly Justified. The calculated width of the



shedov at & shock wave agrees fairly well (twenty per cent) with measured
values. Equally good agreement can be obtained by making the further
assumptions necessary to reduce the problem to a two-dimensional one

[2] , [5] ) except in some cases. These cases are those in which R/D
is eilther very small or very large, where R is the radius of the osculating
circle of [2] and D is the distence from the disturbance to the photo-
graphic plate.

II DETERMINATTON OF THE EXIT FUNCTIONS

A cone of refractive index n, is imbedded in a space of refractive
index n,, vhere n,4n,. The half-angle of the cone is ¢§. A beam of rays

verpendicular to the axis enters the cone, 1s refracted, and proceeds to
a photographic plate. We choose the coordinate axes so that z is the

axis of the cone and the rays travel in the positlve x direction (1 J, and
k denoting unit vectors in the X, ¥, and z directions, respectively).

Fig. 2.1 1llustrates the coordinate system and the path of the light.

Fig. 2.1

If T denotes the position vector of a point on the cone, the
equation of the cone 1s

r.kez=| 7 lcos g,

or in rectangular coordinates --

X + y2 = 2% tan® " (2.1)
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Let p be the unit vector in the direction of ¥ , i.e., p =7/|7 l
Then § - k = cos §f

les in the plane

The unit normel vector N at the point T
+ N=1and N . p =0 the

containing p and k. From the conditions N
outward unit normal is found to be

N=cotfp-cocfk (2.2)

At a surface of discontinuity in refractive index the refracted
ray lies in the plane contalning the incldent ray and the normal to
the surface. Pig. 2.2 1llustrates the refraction of a ray with angle
of incidence @ 1 and angle of refraction 62

(where EJ is a unit vector along the incident ray and ?2 & unit vector

along the refracted ray). Snell's law states that

sin 62 = (nl/nz) sin 91 (2.3)

Let p = - 71 + N = cos 91 (2.4)



Fig. 2.5 shows the projection of the optical phenomenon in the x,

Yy plane. We shall let z = zl-be the equation of the incident plane beam

of light, and we shall use p in the equations as the parameter identi-
fylng the individual rays.

p=20 __""""(Y_“_ Photographic
= Plate
M
p=cos @ ___  ______
(§:3i: ’ZP)
Flg. 2.3
The equation of an incident ray is 11 =1.
From eqns. {2.2) and (2.4) p = - ]1 . ﬁl =-cot ¢ (T . El)
Since 31 = (in + ylﬁ + ziﬁ)/(zl sec @),
P =~ (x; cot ¢J/(zl sec @)
From this equation and eqn. (2.1) we get the coordinates of P. in terms

of p and zl: 1

, = -z,P tan @ sec §

=z, tan g1 - p2 sec” ¢ (2.5)

2

bad
[
1 |

N
[}

1

Because of the symmetry we need only study the incident rays in the
upper half of the plcture, though rays from the lower half will be taken
into account when we consider th 1light pattern on the photographic plate.
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As P1

zero to cos #.

moves from y, = ten § (grazing ray) to ¥, =0, p varies from

%

L]
Let p be the coslne of the angle of exit, that is, the angle that
the emerging ray makes with the normal at the point P2' In terms of the

1} *
initial conditions p 1s glven by

. . 2 2 ,
(@' = (1/6°) [(a - pp)? ( @ - ot %7)2 - (- sa)} (2.6)

l- 52 + cot

vhere B

nl/n2

Q

o - A8+ (-6 (2.7)

For the grazing ray p = 0, and egqn. (2.6) reduces to

(p )% = - (4/6%) [(1 - 8%)2 cot? ¢:|/(1 - 8% + cot? 9)%,

vhich shows that p' i1s imaginary end consequently the tangential ray exceeds
the critical angle upon leaving the cone. One would then expect a small
bundle of rays in the neighborhood of the tangentisl ray to be totally
reflected. (In all cases considered this bundle is so small that it has a
negligible effect on the shadowgraph.)

In terms of initial conditions the c¢oordinates of PE’ the point of exit,
are found to be (as derived in the Appendix)

:(2/z:L = (1/4) (tan § sec @) [ea cot § - p (ex cot ¢ -I-cl)]
¥o/z, = (1/a) (tan P41 - p° sec® § ) (et cot @ # ) > (2.8)
ze/zl = (1/4) | ‘J
where d = (cot2 ¢ - aa) / (1 - 52 + cot® @)
5 o (2.9)

e =-2(a-pB) cot P/ (1L - B° + cot” §)

The exit ray is designated by the unit vector
Z,=2T+ p3+ vk (2.10)

3

= -
See Appendix for derivetion.



The direction cosines ., p, and v are

eI {eBcot 8- (e cot § + a)}- (3 - o) |
p = {(1/8) [cos 4/l - p° sect ¢][a' (et cot ¢ + d) + cx] > (2.11)
v = (1/8) [-(a +a') sin ¢] )

vhere o =pp - (1-8) +62p%, (2.12)

1
taking the positive root of p in eqn. (2.6).

Eqns. (2.8) and{2.11) show that the location and direction of the
reys leaving the cone can bte cbtained by computing a set of functions of
p only, which will be applicable for any incident beam of 1light of the
form z = constant. We shall denote (x2/zl), (ye/zl), and (za/zl) by Fl(p) ,

Fe(p), and Fa(p) respectively and refer to them and A, 4 and v as exit
functions,

Exit functions were calculated on the ENIAC for a serles of cases
*
(1.e., pairs of @ and p). The combinations of @ end P were chosen to
correspond to a comprehensive range of supersonic conical flows.
ITI THE SHADOWGRAPH
The image of the shock wave, defined by the undeflected grazing rays,
is 1its projection on the photographic plate (TE in Fig. 3.1, which is a

cross-sectional plcture). Consider a refracted ray which strikes the

Photographic
Plate
X = const. - 3 >
Fig. 3.1

conical shock at Pl' This ray leaves the cone at Pé with direction

coeines )\, U, v and intersects a photographic plate located a distance ¢

*
These functions are avallable in the files of the Airflow Branch,
Exterior Ballistics Laboratory, 10



(2]

from the cone axis at the point §, Yps

P:
yp/t = 6, (p) (2,/8) + 6,(p)
(3.1)
z2p/8 = G5(p) (2,/8) + G (p)
where G, = F, - (W/A)F, g, = (u/)
(3.2)
Gy = Fy - (v/x)Fl, Gy = (v/\)

The functions Gl’ GE’ G5,

with the exit functions.

and Gh vere calculated on the ENIAC together

It is convenient to regard the coptical phencmenon as & mapping of a
plane x = constant, the object plane (Fig. 3.1), in the uniform beam onto
the plane of the photographic plate, the imsge plane -- in other words, a
transformation from the 295 ¥y plane to the Zps ¥p plane.

Equations (2.%) show that the curve in the object plane for a constant
value of p 1s y; =(zl tan ¢)(l - p2 sect 1) )1/2, a straight line through the

origin, corresponding to a plane sheet of incident rays passing through the
vertex of the conical shock. Its image, from egn. (3.1) is

yp/e = (6,/65) (2p/¢) + (G685 - GG, )/Cs, (3.3)

a strailght line also, in general not passing through the origin. 1In
particular, if the shock 1s attached to a conlcal projectile of half angle
ec’ the locus of the rays grazing the projectile is given by ean. (3.3)

for the value of p, derived in the Appendix, given by

p = sec BCJ%E sin2¢ - sineé% /(B tan @) = constent (3.4)

Hence the image of the cone is a straight line which does not
intersect the image of the vertex of the shock wave, as shown in Fig. 3.2.

From the computational standpoint it is convenient to study the
refraction of rays by determining the images of stralght vertical beams;
for moving from one beam to another then merely involves changing zl/g in

ean. (3.1). Fig. 3.2 presents the transforms of the upper halves of a

series of z, = const. curves for one of the cases (¢ = hho, B = .99727;
*

with 8 = 35°) computed by the ENIAC. From this dlagram one can learn

& number of characteristics of a shadowgraph.

*
This case corresponds roughly to a flow of Mach number 3.2 over a cone of

half angle 590 at five atmospheres free stream pressure (Fig. 3.h4).
11






Note thet non-dimensional coordinates zP/t and yP/E are uged.

These are convenient, since the optical effects of placing the
photographic piate at different distances can now be studied by
means of one graph. Experimentally the plate distance can be
varied by using e lens to obtain a "focused shadowgraph", Ordin-
arily, all the phenomene illustreted by a graph such as Fig. 3.2
are not seen on one shadowgraph. For large & only the part of the
graph for small zP/! 15 seen because the large values of zP/§ are

actually out of the conical flow region; for small £ the larger
values of zP/E come into the picture, and compression of the picture

causes loss of detail in the region of small zP/g.

We consider a particular curve of the family, say z /g =

and designate it by x' L H G . (This is in the range of larger
values of z,/&. For very smsll z,/4 (< .0>) the phenomena are somevhat

different.) This curve, roughly drewn in Fig. 3.3 (b}, is the image

of EKGF in Fig. 3.3(a). K corresponds to K, the ray with the smallest
value of p that will give & real value (namely, zero) to p . Ae P

yl/§ 3P/§

A
T E Ashock ‘
X wave
L
BConical
¢ ProJjectile
0 < . - zl/g 0
{a}
Fig. 3.3

increases (i.e., the object point moves from K to F in Fig. 3.3 (a))

Tt ot 1
the image polnt moves through KL BEG ., G corresponds to G, the ray
which grazes the conical body. All further rays, G --- F, are blocked

L |
out by the solid cone; thus the G F segment of light in Fig. 3.3(b)

|
does not appear on the shadowgraph. K L 1s visible, however; thus
some light falls within the shadow of the projectile. This will be
discussed below.

The dark apace between the projection of the shock wave and the
l/ﬁ = const. curves is the shock wave "shadow”, and its lower boundary

15



is the envelope of these curves {MN in Fig. 5.2). It is seen from the
behavicr of these curves that the inverse transformation (yP,zP to yl, zl)

is double valued over a lerge portion of the region considered and 1is
singular along this envelope. The shock wave shadow boundary corresponds
+o the locus of points in the object plane for which the Jacoblan J =

B(yP, z )/B(yl, z, ) is zero. Setting the Jacobian equal to zero yields
the following relationship between zy end p:

where the prime denotes differentiation with respect to p. One cen then
in principle caelculate the boundary of the shock shadow by differentiating
the G functions numerically and applying eqn. (3.1) to give the boundary
curve in parametric form. However, in practice this would be a very
laborious calculation. In Fig. 3.2 the inner boundary of the shadow was
simply sketched in. Nevertheless, two general conclusions can be drawn

to compare with the results of (2] . (1) as zP/§ epproaches zero the

width of the shedow (measured perpendiculer to the outer boundary) does
not approach zero. /Lewy's approximation in [?] glves a shadow width
/3
P *
fully below.) (11) As zP/§ increases, the shadow width increases very
But eventuaslly this decreases,

proportional to z (The image of the tip reglon is discussed more

nearly as the one-third power of Zp
becomes zero, and thereafter there is no shadow. In (2] a monotonic
increase 1s predicted. The fact that the shadow width does not increase
monotonically is not illustrated in Fig. 3.2. However, this can be seen
by consldering the slopes of the straight lines p = constent given by eqn.
(33). The slope is always Gl/G5’ and it is found that for the first ray

thet emerges from the cone (and a small bundle or rays in the neighborhood
of 1t} & /G is always greater than tan @. Hence eventually this bundle

of rays is imaged outside of the true shock wave. Thus for zP/E (or R/D

in the notation of [2] ) small end large the approximations of [é] are not
valid.

Practically, to have a large enough zP/§ for a zero shadow width

it would be neressary to have a very small § obtalned by focusing on a
plane inside the disturbance. In fact this would be closely realized in
taking an interferogram where the plane of focus is slightly off the
median plane. A note of caution in interpreting Fig. %.4: the zero
shadow width where the shock begins to curve is not related to the above
discussion. This arises because of the expansion fan from the shoulder,
and 1s discussed in [5] .

Further information cen be cbtained from a study of the illumination
of the shadowgraph. Let Il be the illumination per unit area {assumed

constant) in the beam before entering the disturbance, and Ip (yP, zP)

14



th 1illunination per unit area on the photographic plate. If light from
the area dyi . dzl 11luminates the area dyP . dzP on the plate, then

Ipdyplzp= 1) dyy dz) = T) [3(yy, 2,)/3(vps 2p)] avp dzp
Hence L =1, [y, 2)/3rp 25)] =1, 7,

1
where J 1s the Jacoblan of the transformetion Ypr 2p to Yyr 2p- Actually

we should sum two Jaccblans %o account for the fact that this transformsation
is double valued. This addition should take account of the phase

difference also, However, we shall not examine the interference effect
here.

Since, as we have just seen, the Jacoblan J = l/J' is zero at the
boundary of the shock shadow, geometrical optics predicts infinite intensity
Just behind the shock wave on the shadowgraph. Although this condition 1is
not realized in actuality, the intensity of the illumination in this region
is very high.

By locating the images of a series of rays equally spaced on an
initial beam of light, one can obtain an idea of the distribution of light
on the shadowgraph. Thus, e.g., rays 1, 2, 3, ete. on EF in Fig. 3.2 are
teken at intervals of 1/20 th of the affected beam (i.ew, 1/20 th of EF =

) T - . : 1 t t et rt
(z, ten @)/t). Their imeges sre points 1 , 2 , 3 , etc. on KLHF . It
is seen that about three-fourths of the light is blocked out by the conical
body. Only about one-fifth of the remeining light illuminates the segment

t v 1
KLH; and since most of this light must be concentrated near the shock,

most of K'L! (rays for small values of p) recelves very little light. Thus
one would still expect the conicel body to be Imaged sharply, although a
small amount of light does enter 1ts shadow. Furthermore, interference
fringes due to optical path length differences beiween the corresponding
reys of two beams will be noticeable only where both beams have comparable
intensitles, nemely, near the shadow of the shock wave. It can be seen
from Fig. 3.2 that for zl/§ € .0y light from the upper half of a bean

is imaged in the lower half of the picture. Since most of the image curve
corresponds to a very smell fraction of the length of the beam, the
illumination in the lower half of the picture due to rays from the upper
half of the initial beam can 4n large part be neglected.

The quantity & determines the portion of the non~-dimensional picture
(Fig. 3.2) which is applicable to & given shadowgraph. Thus for a range
of very small zl/§ a somevhat unususl pleture 1s obtained. The shadow-

graph shown in Fig. 3.4 (Qc = 5,°, g 44®, Mach no.s 3.2 at 5 atm.)
involves conical flow only to about zl/§ = .024, and Fig. 3." shows the

14
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light patterr computed for an approximation to thls case., Only the light
from the upper rays (yl:>0) which falls on the screern 1s shown. The

small circles represent the transforms of equally spaced points on the

2, = const, lines., The shock wave shadow by itself 1s not visible here.

This shadow coalesces with the shadow of the conical body, and the line

0'B' outlined by the light is the image of the conicel body. Since e
very small segment of the vertical light beam falls within the shadow,
and the brightest portion is cut off by the conical body, the illumination
is small. Light can alsc be cbserved along ¢ C ahead of point C, the
point of intersection of the cone shadow wlth the zP/E axlis., The same

light pattern with Yp replaced by minus Yp is produced on the photographic
plate by the yl< 0 rays.

Thus the image of the boundary of the conical body 1s outlined by light
rather than the absence of light and the nose ol the body 1s imaged into two
nappes of a cone. These conclusions ere illustrated in Fig. J.». The second
nappe 1s just barely visible because of the smell illumination as dis-
cussed above. (The measured and the computed values of OC (Fig. 3.5)
differ by sbout fifteen per cent.)

This "inversion” of the image caused by the shadows coalescing
and the large deviation of rays near the tangential ray is in general
verified by the shadowgraph, Fig. 3.4. However, the illumineted region
inside the shadow of the projectile 1s not of uniform intensity; there are
alternate light and dark bands. The following explanation 1s offered for
this phenomenon: A smell roughness along the conical body will produce a
week curved shock wave. This will be Imaged into a dark band followed by
& bright band. One side of the image can be calculated by a means of eq.
(3.1). The procedure is very similer to that for finding the image of the
conical body. One simply finds the set of rays which graze the wavelet
(weak shock) surface. This gives & relatiomship between.p and z9) and

the image curve is then given parametrically by eq. (5.1). In order to
get the other side of the image, the rays which penetrate the wavelet
surface would have to be considered. It does not seem necessary to
consider this further complication.

For simplicity, the wavelet surface was taken to be a cone
(straight shock wave) forming a Mach angle with the velocity vector
at the intersection with the main shock weve. This surface depends on
the perameters a a.nd_ﬂlr_, vhere a is the z coordinate of the vertex and

¥ is the half-angle (i.e., x2 + y2 = {z-a}2 tan2W). The set of rays
which grazes this surface is given by

zl/a = [fCE +C5 - clc%L/él (3.5)

18



Cl = sec2 ¢ [pzsetan2¢ - 62 sin2¢ sec2¢ + tan2 %]
Cp = tan” ¥ [ofp tan’p - 1] '
Cy = tan® ¥ [a2 c052¢ sect ¥ + 1 - a2]

The relation {3.95) between z, and p comes from solving a quadratic

equation, the minus sign being ignored since this wowld give the rays
which graze the upstream neppe of the cone.

The image was calculated for the conditions of case no. 27 {(f = u4°,
B = .99727), with ¥ = 61° 35' and various positions of the wavelet. Th s
are shown in Fig. 3.6 for a/f = ,0L, .0lH, .02, .03. As previcusly
remarked, the conical flow region extends only up to about z/§ = .02k
in the comparison of case no. 27 with Fig. 3.4. Thus only the first
three velues of a/f are epplicable, and the wavelet imsges agree qualita-
tively with Fig. 3.4. The dotted curve, labeled "envelope", ia the
inner boundary of the main shock wave shadow, which is very bright.
Fig. 3.4 confirms the conclusion that only a smell portion of this bright
region is visible. Actually, on the basis of & constant index of refraction,
we can calculate only one image, since getting a second image requires
knowledge of rays that have passed through a wavelet. However, since the
discontinuity in index of refracticn across a wavelet is small, fhis cen
be neglected in calcwlating the images of other wavelets. Fig. 3.7 is a
shadowgraph taken under different conditions (M=2.92, ¢=55°, 5 atm. free-
stream pressure) from those of 3.4; 1t is included because the phenomena
discussed sbove are more noticeable.

In Fig. 3.6 for a/f = .0% the wavelet image starts on the imsge of
the conicael body and bends arocund back into the body. This 1s to be
expected for the larger values of zl/E (smaller £). However, 1t would

be difficult to observe this bending back because the wavelet image
would become practically invisible when it is near the bright region of
the envelope.

Another application of the calculations reported here lies in
estimating the "schlieren effect" on shadowgraphs and interferograms
which are taken by means of a rotating mirror placed at the focus of
the camere lens. The "schlieren effect” arises because some of the
refracted light is deviated sc far from parallelism that it is not
focused on the mirror. In an interferogram this causes the fringes to
b "weshed out" in some regions. One can use the calculated deviations
to determine the minimum size mirror which reduces the schlieren effect
enough so that good quality fringes are obtained.

19
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APPENDIX=DERIVATION OF EXIT FUNCTIONS AND SHADOWGRAPH EQUATIONS

A unit vector along the refracted ray lnside the cone, 32, has the

form (see Fig. 2.2)
- (A-1)
?2 =al, + 611 ,

vher ¢ and p are constants determined from egns. (2.3) and (2.4), and
the conditions:

2,.3, =1, 2, N

o * p * Ny = -cosd,

The result is B = nl/n2 and

22 2!
a = gp -, /6%° + (1 - 8) (a-2)
With eqne. (2.2), and (2.%), and (A-1), and the relation 11 =1 one
can Xxpress 72 in terms of 1ts cartesian components:

12 = (p - ap)i + (& cos ;?5,/1 - p° sec® 931)3 - (o sin #)k  (A-3)

The refracted ray strikes the cone at P2 (see Fig. 2.3) with position

vector r, and normal NE' Since Tss

can be written

1> and 72 ere coplanar, Eé (= ?é/ l?é p

;2 = dp, + €, (A-4)

vhere d and e are the constants defined in eaqn., (2.9) and determined from
the following conditions:

De'b2=l; j’k

0

P, * Xk = cos @, 7, K=o+ k=-qasinf

Since |?1l =3z, sec $ and |§é| = z, sec P it can be shown, using eqn.

2
(A-4), that za/zl = 1/d and

?é = ?i + (e z, sec g/a) 12 (A-5)
From eqns. (2.,), (A-3), and (A-5) we determine Fi; Fy, and F,, the exit
functions listed in eqn. (2.8).
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If a ray proceeds from a region of n, to a region of ny where n,
7 n,, ean. (A-1) will give the final ray here also. For this simply
replace '22 by (-72) and El by (-'El), and solve for Il‘
7 . .
7, = (1/B) (@ Ny + T

where ' has the same form as ¢, but with a new value of p, say p'.- In
particular, consider the point PE (Fig. 2.3) and let 22 describe the ray

in n, and 33 that in n,. Then

75 = (1/B) (o' §, + 7,) (A-6)
where a' =B p! - W. - |32 + 52 p'2 (A-T)
and p' = Iy N (A-8)

1.e., p' 1s the cosine of the angle between the emerging ray and the
normal to the cone at the point of exit. N, is obteined from egn. (2.2).

N,

From egns. (A-6), (A-7), (A-8), end (A-9) ---

=cot fp, -csc Pk (A-9)

(Bp' -a) =7, . 2=cot¢72.32-csc¢72.f
l/(l_ge)+52p'2=cot¢-fe.EE-CBCQ’EQ-E

From eqns. (A-1l), (A-3), and (A-h) ---

\/1- B2 + 32 1:»'2 = cot @ 12 . (dTa‘l + efe) - csc @ (-« sin @)

=dcot¢('fe.31)+ecot¢+a

(a+ecot¢)+dcot¢(aNl.pl+B£l.pl)

(@ + e cot g) + Bd cot @ (fl . El)

Since Il . Bl =T1T. | l:-(zl p tan @ sec @) T + ylj + zl’E:l /(z1 sec @) =
= - p tan @,
then 629'2 = Ea + e cot @) - de] 2. (l-Be)
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1
This last relation yields eqn. (2.6); then & 1is determined from eqn.
(A-T). N, can be obtained in cartesian form from eqn. (A-9) @ applying

eqns. (A-bk), (2.9), and (A-3):

ﬁe = [; pd + e (B - ap) cot ¢] 1 + [ﬂd + e cot @) cos @-

J1-D seczﬁ 3 +Ed cot @ cos @ - ex sin @ cot @ -
csc ¢] k

From eqn. {(A-6) we then obtain the direction cosines of the emerging ray
listed in eqn. (2.11).

The equation of the line P.P in Fig. 3.1 is

2
(g = xe)/k = (yP = y2)/u - (ZP = 22)/V,

where A, ¥, v are given in egn. (2.11). Remembering that F, = xg/zl,
F, = ye/zl, Fy = zz/zl, one then obtains eqn. (3.1).

For a shock weve attached to & cone of helf angle 90, the first step

in determining the image of the cone is locating the intersection of the
light rays with the cone. The equation of the refracted ray within the
shock can be expressed, using eqn. (A-3), in terms of the parameter s as
follows: ‘

"
[}

x, +(8-ap) s
yp o+ (¢ cos ¢q/l - p2 sec” d) s (A-10)

z, - (@ sin @) s

2
I

N
It

To find the intersection with the cone set x, y, z equal to Xor Yor 24

respectively and apply the equation of & cone, namely:
2 2 2 tan26

X +* =2
yC c c

This leads to the gquadratic equation in s

As2 + Bs +C =0 (A-ll)

vhere A=1-d° sin° ¢ secEEL
B = 2z, sin $ (c sec2 GL - pB sec2 @)
C = 2,° (tan® § - tan’g)

The condition for the tangent ray is the requirement that egqn. (A-11)

?ave)only one solution for s; 1.e., 32 - JAC = 0. This then ylelds ean.
50“ ]
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