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AN ANALYTICAL TREATMENT of the PROBLEM of TRIANGULATION

by STERECPHOTOGRAMMETRY

ABSTRACT

An analytical solution for the basic problem of triangulation by stereo-
photogrammetry is derived. The most general case is defined as -the problem of
determining similtaneously the orientations of the two cemeras, whereby all 18
unknown parameters of the orientation are considered with no limitations on the
camerae orientations. The process of triangulation is treated as the computation
of spatial coordinates as functions of the elements of orientation and the
corresponding plate messurements. The least squares solution derived is based
on rigorous methematical expressions which connect the plate measuremsnts with
the unkmown paremeters. In contrast to the conventional approach, the separation
of the orientation problem into the two phases of relative and absolute orienta-
+ion is avoided. This analytical solution can be based on a few baslc theorems
of solid analytical geometry. Because the observation method - monoculsr or
stersoscopic - does not influence the formulas expressing the rigorous geometry,
it 1is possibls to make use of ebsolute control points vhich are not common to
the area covered by the two photographs under consideration. Thus more favorable
geometry is introduced into the problem of the double-point intersection in space.

The least squares solution derived is suitable for eny number and any com-
bination of absolute, partially sbsolute ard relative conirol points. In additionm,
any one of the elements of orientation - iacluding the base line components - may
be enforced in the solution. By applying the concep!: of pseudo-residuals and by
introducing cross-weights, it is possibls to treat the lzast squares solution
like a problem involving independent; indliect measurements. Furthermore, .. is
shown that the normal equation system can be formed step by step. This method has
merit ~hen electronic computers are used since the number of points carried in
the solution has only a slight effect on the amount of memory space needed.

The introduction of rotational auxiliaries which are essentiaslly Airection
cosines and the combination of these with the plate coordinates as linear
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auxilisries render the coefficlents of the ocbservationsl equations ¢ pertial
¢ifferential quotients in terms attractive for ean analytical treaitment. The
process of triangulation is trested as a part of the process of crlentation as
well as an indepen dent compuiational procedure.

A special chapter deals with the determination of the mean errors ¢of the
observatlions, of the eiements of ordientation, and of the triangulation results.

Finally, the application of the proposed anslytical method to the problem
of control extension is discussed in principle. It is shown that the method used
on the universal plotters for a strip triangulation procedure is an appro«imate
solution only, because it is based on incomplete conditional equations.

The rigorous geomztry for the problem of extension is interpreted 28 the
condition that rays originating from three consecutive camera stetlons have to
intersect for at least one point located in the area common to the three photo-
graphs under consideration. The corresponding conditionsl equetions are derived
and the coefficients of the corresponding observational equations are given. It
1s shown that it is now possible to include in the extension,models which are
formed by the combination of photographs taken at every other camera positiocn.
~The thus extended base line provides for a favorable base-height ratio ctherwire
obtainable only by convergent photography.

As stated befcore, the final normal "equation system can-be formed step by
step. Attention is called to the fact that the matrix of the unknown parameters
is filled in the neighborhood of the diagonal only, thus making it 1ussible to
use an iterative subroutine.

The method presented for a strip triangulation is useful in a least squares
treatment of a block triangulation also.



1. INTRODUCTION

 Photogrammetry may Y.e defined as the sclence in which geometricel properties
of objects are analyzed in quantitative terms from their images recorded on
vhotographs. Stereophotogrammetry, in particular, deals with the triangulation
of pencils of rays originating from two cainera statione by epplying the technique
of stereoscopic observation.

The process of triangulating two carresponding pencils of rays consists of
the restitution of the orientation of the two photographs under consideration.
and the reconstruction of the model. The analytical equivalent of the restitution
of the orientation is the determination of two sets of nine degrees of freedom,
namely, six translations and three rotations for each of the two camera stations.
Exprers~d analytically, the reconstruction of the model is the process of tri-
angulstiing individual points whereby each triangulation is based on the 18 ele-
ments of orientation and four corresponding plate messurements.

Approaching the problem analyticslly, for the general case the 18 elements
of orientation are obtained from a least squares adjustment based on a sufficient
number of conditions of intersection {relative orientation) and on independently
established control points (absolute orientation). Thus the general photogram-
metric rroblem is easentially an interpclation procedure by which eystematic
errors may be eliminated and the propzgation of residusl errors in the final
triangulation procedure decreased. Depending upon the arrangement of the triangu-
lating pericils of rays (nurmal case or cblique cese) and upon the type of photo-
grammetric instrumentation used (aerisl cameras or phototheodolites), the number
cf independently given orientation elements will vary. lowever, this fact does
not eliminate the basic necessity of computing the remaining orientation elements
by a least squares adjustment as stated above. Thus, it appecars to be unnecessary
to distinguish between different types of photogramnetry because the methods of
sterecphotogrammetry applied to all measuring problems, e.g., in geodetic and
industrial work, are based on essentially the same geometrical and physical prin-
ciples. L

A genersl theory for the error propagation deals with the mean error of an
observation of unit weight, with the errors cf the elements of orientation and
their propagatior into the mean errors of the spatial coordinates of the model.

II. GENERAL REMARKS

The concept of measuring should always ircluis the prineiple of overdeter-
minastion. Therefore, a final determination of the urlmown persmeters should be the
result of an adjustment. The significance of such an answer is determined by the
computed estimates of the precision. In general, 1t is possible to obtain approxi-
nate values for the unknown paramsters without difficulty. Conmsequently, in the
process of adjustment, corrections to the approximate valuzs must be ccmputed to
render the firal result. The process of a rigorous adjustment requires that the
weighted sum of the squares of the residuals of the original measurements be a min-
{mum. It the measuring errors sre normslly distributed, the result represents the
most probable valucs for the unkmown parameters. The precision of the result is
computed from the weight coefficients obtained from the adjustment and the mean er-
ror of unit weight, which may be either independzatly determined or computed from
the sum of the squares of the residuals. The specific least squares adjustment is
given by rigorous msthematical expressions which cormect the original measurements

-
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with the unknown parameters. If these functions are not linear, 1t is convenlent ic
lipearize them by applylirs the Taylor series, neglecting second amd higher ordez
terms. In guch cases it may be necessary to compute a series of corrections by on
iterative process. in order to achieve a desired accuracy in the final result,

In an anslytical treatment of any triangulation problem - including photo-
grammetric problems - the above mentioned procedure must be considered as a part
of a least squares adjustment.

Before analyzing our prcblem in detail, let us stete the objective. The sole
purpose in topographic photogrammetry, and in numerous non-topographic applications
of photogrammetric measuring methods, is the reconstruction of the object photo-
graphed. In accordance with such an objective the efforts in research and practi-
cal application are often limited to problems of production and quality of the
sterecscopic model and of 1ts evaluation. In such cases, a limited amount of empha-
sis is put on the geometry and the physical conditions existing during the process
- of taking the photographs. In various non-tcpographic applications, however, photo-
graphs are taken either to celibrate certein physical parameters of the cumeras
themselves or to determine absolute values of the orientation elementsl. Typical
examples are: a) the determination of position and attitude of an airborne camere
from photographed ground control pointa for the purpose of trajectory Aetermina-
tion of airplanes or grlded miesil&s and b) the calibration and orientation of .
photographs taken with ground based camzras for the purpose of providing a refer-
ence datum, where such cameras are mounted rigldly in relation to other measuring
equipment. In addition, a rigorous mathematical treatment of the problen of tri-
angulation is necessary for a study of the propagation of random and systematic
errors in both single models and extensions.

In genersl, asn approximate solution, thougn useful for a specific case, will
ot necessarily be adaptable to other cases. Bowever, a general and rigorous ana-
lytical treatment of the simulteneous orientation of two photogrammetric cameras
will be applicable to any measuring method based on the stereophotogrammetric
principle. Approximate solutions which may be desirable for economlc reasons in
special ceses can be derived from a general solution by introducing certain
assunmptions peculiar to such cases. Therefore an enalytical treatment should be
sufficiently generel as to the least squares procedure and the code for electronic
computers to permit the use of the method for a wide range of stereophotogrammetric
measuring problems.

ITI. THE GEMETRICAL ANALYSIS

Tn making & rigorous geometrical analysis of the simultaneous orientation of
two photogrammetric cameras, we shsll first coasider the method of deriving the
orientation used in any optical-mechanical stereoscopic restitution instrument.

The spatial position and orientation of a camera with kmown optical characteristics
are defined by six parameters, namely, three translations and three rotations.
Consequentiy, for the two cameras under consideration we are desling with 12 un-
mown perameters.

Two bundles of projective rays can be oriented with respect to each other

ef. [8)]. (References at the end of the paper)
2 cef. (9]
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from nmeasurements made on the photographs without reference to absolute control
data. Five pairs.of corresponding rays are necessary and sufficient to establish
this relative orientation which is equivalent tc the construction of a true model
of the object photographed by the two cameras. In the process:-of dei.rmining the
remainming seven unknowns we mist find the scale and the absolute orientation of
the modele The Latter sstablishes the model with respect to a given control
system by three additional rotations and translations which ars equivalernt to a

coordinate transformation,

The separation of the orientation problem into the two.fundamental processes
of relative and absolute orientation has been predominant in practical photo=~
grammstry and, consequently, has greatly influenced the related error theory.

The separation of the two processes of orientation has been strictly based upen the
practical methods of restitution. From the standpoint of both practice and error
theory, this separation has its disadvantages. The model obtained from the
"relative orlentation - even if it were flawlesas = is of interest in very =
speclal cases only. The relative model usually has to be transformed into an
absolute one., During this process absolute control in excess is often used to
improve the preliminary relative orientation (compensation for model deformations)
as well ag to uinimize the influence of existing tensions within the given
control. In any case the absolute control must te considered to be of greater
inportance than the relative information.

In an analytical treatment the absolute orientations of the two projective
bundles of rays under consideration are functions of the positions of photogiraphed
imoges on the plates. This conception automatically includes the relative as
well as the absolute orientation of the model. In additlon, the sum of the
squares of the weighted residuals of the original coordinate measurements on the
photographs must be minirized., Therefore, the orientation problem may be expressed
by formlas explicit in terms of the measured plate coordinates and preferably
80 arranged that & minimum mumber of measurements and residuals appears in each
of the cbservational equations,

It is of further interest to note that in an analytical treatment the method
of observation - monocular or stereoscopic ~ does not influence the formulas
.xpressing the rigorous geometry. 1iIn other words, monocularly and/or stereoscopical=
1y observed coordinates may be introduced inio vhe computation so long as the
"condition is satisfied that the sum of the squares of the weighted residuals of the
original measurements is minimized, Consequently;, an analytical method may use
absolute control data outside the field common tc both photographs. Thus an
extended basal area is obtained for the double point resection in space, a fact
which will make it possible to use the favorable geometry which is characteristic
of the single spatial resection”. .

In order to obtain a general solution for our problem, the least squares
adjustment must be suitable for all munbers and types of reference points and
their corresponding plate measurements - provided that the informatioiu is
sufficient for a unique solution and satisfies the principle of the relative
orjentaticn. The three types of reference points are: 1) absolute control
points given by their spatial coordinates; 2) partially absclute control points
given either by their Z coordinates or ©y itheir X and ¥ coordinates, and 3)
relative control points. Points of the first type are not necessarily restricted
to the areca common to voth photographs but the twe latter types of points must
lie within this area,

3 ef. [9] 7
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' ’I'he basie gemmtry necessa.ry to meet the e.bove men‘bioned requiremente is
5imple ‘Assuming a unique solutlon, we see from F‘Xgure 1 that the copAition for,
correct orientatich with respeact to an absolute cé)ntrol point R; given by X, Y, 2,
is aq_uivalent to the condition that the: center of proaection 0, the image point r
~ and the control point R are collinear. In case the absolute control point is located
" within the arec common to both photograrhs, the condition of collineaiity is valid
for both the left and right photographs. In such a case, the condition of inter-
section of two corresponding rays - namely at point R - is autamatically satisf.ed.
The fact that the left and right camerus are fully independent in regard to the
condition of collinesarity simplifies the least squares adjustment. Furthermore,

- thies fact is interesting from the standpoint of error theory. A similar gecmetri-

cal condition may be obtained for relative control points. Also from Fgure 1 we

. sea that condition that two corresponding rays intersect is equivalent to the
condition that the two centers of projection O' and 0", together with two corre-
sponding image points r' and r", are ocoplanar. In darivins the necessary formulas

ve shall ses that the two goomtrioal conditions mentioned above are mqmto for
the solution of our prodlem. :

From Plgure 1} we obtain:

= g ,
= u'r )
e el . (1)
ard R" ® p'"p"

vhere W' and 4" mie scale fuctors. The prime and doudble prime hxucu refer to
left and right stations, respectively. |

Correspondingly 1 -
T eXl+plut oX3 o ua*
TaX!+plv e X o pive : (?)

] ] L] "
2-2’9;1" -Zoo“"v |
Bach of e triplets of formulas (2) 4s the analytical expresaion for the condition
that the points O', r'. R and 0", r", R, respectively, lie on straight lines. Be-

onuse the point R ie common to both triplets, these lines satisfy in addition the
condition of intersection at the point R.

Frca formula (2) followe:

L L

T
v e z' and w-%ﬁ vhere Y- T (1) (3)
Z)! )" |
AN v e 2 -2 « (2
L—%—“ m o * (2)
From Flgpure 2 we read
O‘fic “ ' N

Felu+ iy eiuolxodv
R = 1(X) ¢ 3(T) « k(2)
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y flo(; - ’p) day ¢ (y - )‘p) 000!.

(

\\‘

~ Further ve obu;n'? ?‘- ¢ and by formulas (1)~p§? -i’l: and, therefore, '
- N . R
Rk . v
“--—9—- ’ ’ } g T (5) i
With the transformation marix of ths two veator triplets:
12 3 %
--1/1@,- G
spat o s}
X \k? DO -4
and from formulas (L), we obtain | , | ‘:
Sk) sin a cos @ + (Y) sin e + (2) cos a cos (65
S
and - - Y W
ueXcosavysinasinw+osinacosm
veyooswe+osine (M
wreaxosina-y 000 68N ¢+ 0 008 G COB
In formla (7) we have from Figu'd )3
Xweo(x=-x)ooot «{y=y)siny
Y 4 (6)

We now introduce auxiliaries which are used throughout the repard,

1
» =008 G 008 ¢

o
'
]

-008 @ siny
ki ;
sin s coey 4 00aawnm

"
H

® gin @ CO% @

S S i &

- CcO08 Q@ CO® W

8in a ,

(=] g
]

ain x

+ 8ip a sin w0 8iny

12-
B, *
Ca ®

=008 G sing =~ sin & &in @ coey

L}
008 @ 008 X, x

#in a Eny -Mlnnu‘ou(“

sinasine
(9)

Qo8 ®

cos & sin ®
.

cos a

Hz » o8 X

\\..
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By substituting (9) into 6)

. '(!)Dlaf (:.:)El + (), }; | | | (10)

and by substituting (8) inte (7), using Qm expressions ‘(9)
| 'n-(x-%)ﬁf(y-yp)lg*wi |
R L
T we (x - ::p)c1 ¢+ (y=- yp)c2 ¢ urlﬂ-
Substituting :og-ui.- (10) and (1) 1;to (2) and (3), and using

)4 -.‘22! X and Y ..‘!l! * X | : (12)
v ° ‘ ' L4 9

wa have for the left and right stations:

{( ‘e (Z-Z;) [(x'-%i)q » (y'-yj‘,)lé - o'ﬂl vxr

(:“'g)ci L APREL IR

(z-z;) [(x'-x;)hi . (yn.y;)q N °'"i] ] //ﬁ'_}
| | .
oy ey e ol

.. uap[uu5m1+w~gm5¢wghr' ()
(x'=xp)Ci ¢ (y'-yploy eatby  °

_ (2 - 2%) [(x*-;g)n; + (y"-y2)ny + o'Ei]‘ o
gy < Gy ey

and . c! [(X~X;)ki > (I-Y;)Bi + (2'25)01] '
Xt w q' 1, ﬁ) |
e [(exodny < (1-xi)my o (2-23)c}) .,L
Y' = - ' ) + yp
whers '

) (1h)
<R = (X=X - (Y=g 3)Ey - (2-22)F)




Xt w

y

CLI

o f(x-xm)ag o (rrm)ny o (a z-)c5]

o" [(x-x;)nl"”# (Y—Ig)Bi + (z-zg)cﬂ

vxy o
) (lh‘cento)

- v

whare

"c'i

I

q" - (x-x*)ng . (r-r-)xg + (z-z*)r-

A more detailed derivation of the.formlae (13) and (1) may be fourd in [a]"

The coordimtu of R my be on'.ty partially given, either with its elevation

G orwith iis location X
formuls (2), in case Z is given

25\1'\:' - z:u'w' * bxw'v"'

z-' —.

uty® - utw!

and in case X and Y are given .
U - - "
X ou A xau'v ' b'\;' u

x= Cutw? - Q&fu'

!:v'v‘ - Io'v"v' - b‘v'v“.

Yea
vyt - viw!

and ¥, 'Wa ohtain from the three equalitiss 11:

Sy I R sy
v - vt

.y‘ﬁ u - ; kl&),

In formulas (15) and (16) we have introduced the base line cowmn//

@amn

Formilas (15) are obtained by equalizing the X and Y coordinates of paint R

from the left and right stations.
of intersection of ti

Thus, for a given value of Z, the condition
two corresponding rays is satisfied, Similarly, formulas’

(16) are obtained by ejualizing the Z coordinate of point R from the laft and

right station,

the comiitivn of intorocction 42 again aatisfied.
and (16) may e written a= a conditional ejuation.

If we introduce fhe given values for the X and Y coordinates,

Each equation in formlas (15)-
From formula (15) we obtain.
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N¢ALNL IR & ARITLIVL bwhwt « 0 o '
and’ B ) | ' (18)

(Z)*viw? « (Z2)tv'wn o byv'w‘ -0
Frou formilas (16) ve derive:

(X)rtutw! = (X)"u'w* = b u'u" -0 :
, , (19)
(Y) tvhwt = (Y)®viwP & b.v'_v" =0 M

Finally, we shall ‘consider the case in which the absolute position of
paint R is unknown and only the condition of mtoruoct.ion ie givon. Froa the

equality in formula (15) we obuim o

b (v'v“ - Vi) + b (n"\r' - U'w¥) + b (n'v" - uiv!) = 0 . (20)

‘rhin squation may be directly obt.umd by & different uppmah.s . The condi-
tion of intarssation for any two coriesponding rays is satisfied if the two
rays lie in a piane (basal plans) with the base line 010", (Ses Mgure 1),
This condition is equivalent to the condition that the four points O!, O%, y!
and r* are coplanar, The coplanarity of these four points is utiltlod it
the detarminant forwad by the spatial coardinates vmuhu. With respeoct to -
the (x), (Y1), (2) - systm\ ve hu'u o o a

0 . 0 0 b §
bx by b" 1 co
! v! w! b ‘
b +u" b eV b +ur 1
Y 3

This dctornlnnnt 1s identical with the conditional oquation (20), !eulnln
(20) represents the Lasic axpression for the relative orientation for the
goneral case. If both b’ and b are equal to sero; Ve haves
v! v
wt T ¥

or from formlas (12)

ik = i (22)
Ny )
For the case in which b‘ = 0, the elevations of the stations Zs and Zg are

equal, and consejuently (Z)' = (Z)*. Thus we may write (Y)! « (Y)*, which ie
the traditional presentation for tle condition of relative orientation as

given by v, Oruber.6 Tha conditicn of equality for the (I) coordinates is
used in the process of relative orienta‘icr of independent pairs of photcgrephs
in the optical-mechapnical restitution equipment. Actually, the cbservation

of any (Y) coordirate makes it necessary to iatroduce a.corresponding (2)
"D’)r‘.lllldbb. Conou {u.t,no.\‘y, the JIUCESS of relative oricntisticn 4c act‘\.:-ll;' b::Cd

on formula (€2) wr:och may be written aes

5 et (10}'

@




<N

troyetande . e ¢}

N is the spatial-d }ns :le formed by an arbitrarily chosen refemnce plane
‘containing the base line and a seconi plane containing the base line ard.

the corresponding target ray. -Thus, A°is the polar bearing of K. Equation
(23) svates that the two polar bearings of R as obtained from the left ard
right stations must be equal, a requirement which is identical with the abave
mentioned general condition thai the two corresponding rays, with the base
line, lie in a plane. In this connection, it may be mentioned that e.g. in
Finsterwvalderts’ formula (10), given as the basic formula for the relative
orientation, the [first quotient equals tan A" and the second Quotient equals
tan A', Thus, his formula represents the s echl case of the relative
onemauon as expressed by our rormulas (23). .

Sumarising the rcsults obtained so tlr, we pee thati

a) Each absolute conurol point, defined by its X,Y,2 coordinates, gives
rise to two independent equations for each nodal point position from which the
control point js photographeds Thus, if the abasolute control point lies in
the area common to both photographs, we obtain four independent equations .
and in addition sat* afy the condiﬁ.on that the two corraapunﬁirc Tays lntersecte
(Formilas (1L)).-

b) Each partislly absolute ocontrol point, ‘given by sither its 2 .
cooniimto or its X and Y coordinates, gives rise to two independent mauom
which satisfy the condition of intersection of twc corresponding rays.

(Formulas (18) or (19), respectively). ) ,

6) Bach relative control point gives rise to one independent equation
,?nd);-puaonts the condition that two corresponding rays intorseot. (Fermlda
20 .

From the results given in (a) to (c) above we conclude that for & unique
svlution it 1s nccessary and sufficient to rave, for example, for the
determination of twelve unknowns: a) two absolute control points which are
aituatad in the area acommon to hoth photographs giving rise to eight
squations and satisfying two conditions of intersection; b) ome partially
absolute control point giving rise to two additiomal equations and inoreasing
the rurbar of enforced intersections to three; o) in addition two relative
control points increasing the number of equations to the necessary twelve and
establishing the fourth and fifth intersections of corresponding pairs of rays,

These requirements are identical with those necessary and sufficient to
solve the problem in the conventional way, which consists of dividirg the
orisntativin provlem into the phases of relative and absolute oricntation as
stated at the beginning of this chapter. '

In applied aerial photograrmetry the difference in flying height between
two successive photographs -.the tase componert bz =« 13 often determined

independently ' y Statoscoupu vepistration, and cxperience has shown that it 1ia
somatines desirablc to enforce this reasurerent in the process of orientation,
Amlytlral y spuaking, tler: e\dﬂs in such a case an additdoral conditional

n"n'\fi Ay af the foye




Bccause of the siup]icity or ..hia formula it seems advissble to write ) A
2" = 2! +b, _-}\ o : S - (2h) v

_ and substitute this expression into the rormh%(m), (13), (19), and (20),

Simlarly, the same procedure may be rolloued for the b and by conponenta.

The tormlaa 1ntroducing the unknowns b, - b, and b are ¢1ven bolou.

0 {mui . mrui i
q' P
o e [ (X)1ag + (x)'aé (2)'05]’ .
Q" | 4.
whero
q! = (X)' 1 . (Y)'Ei + (2)'!‘1

d EE onﬂ(x)- qu] q . [(r)- -b ] ag [(2)"5.] Oi}ox; (1) .

| o-{[(x)'-b] Ay + [(Y)'-b]B%*[(Z)'-bJ cg}
e q

P
e N (TR ]ng JCTRY [(z)' »b.] n
” ;nd “ - (2) (u"v' - \x'w") = but! + b wh" = 0 ( (18‘)
4 (2)' (vt = y'w") -‘b.v"w' . byw'w' e 0 \
(x)'(nﬁ' = u'w') + bulw® - butet =0 ) '
" (25")

()1 (v™w" = vtu") o byv'w" - b v'v" = 0

Forsmla (20) remains unchenged.

In order %o enforce any or all base line componeﬁta in the orientation
process the corresponding unknown parameter corrections need only to be
eliminated from the computation,

W
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A. The process of ortentation

R

IV, THE LEAST SQUARES ADJUSTMENT

1) The least squares solution

. Formulas (1L), (18), (19) and (20) oxpress the functional rehtd.ona!ﬂ.p
buiveoen thw plaie coordinates aid the given control data for ths process of
Consequéntly, theseé

formulas may be considered as the basis for a rigorous least squares adjust-

orienting two photogrammetric cameras similiansouslys

ment. In formulas (18), (19) and (20) more than one chservation is involved, .

leading to more than one residual, Moreover these observations together ¢ .

vith the unknown parameters of the solution must satisfy certain cond:ltions.

Therefore we must deal with the general problem of a least squar
A ompleto treatment of this protlem was firet prepared by Helme

' The forn of the linearized conditional equations for- the . different types -
of control points is shown in the cbservational equations (29).

a8 adjustmont. )
5,

The l.ctun.l

values of the' cosfficients will be dealt wnh in A htcr chlpter9.

Formalas (25) show that for absolute control points only one. obaemti.on
appears in each equation &nd no observation appears in more than one obsurva-
fficient. mtrix of the residuals for these

- tional equation.
- equations is dlagonal and, in

Hence, the ¢

act, 13 equal to the unit matrix.

m-themré, o

tho conditional equations for each station have only .those ccefficients wh:l.ch

correspord to the elements of orientation of their respective stations, -As ... .-

already mentioned on page 10, for a case in which no, partially absolute and no

- relative control points are present, the steroo-or.lontation lr.lll reduce to LETE

. two independent camera orientations,

In the equations arising from partially abaolﬁtc eonhrol‘pointa‘, four .

obsorvations appear in each equation.
in ohly two oqmuona.

Finally, in the equations arising from relative cont.rol pointa, four

However, the same observations appear
The coeffioient matrix of the residuals ls therefore
a diagomally Arqmod sequence of non-overhppixg 2l submatrices,

observations appear in each equation and nons of these appears in any other
Thus, the coefficient matrix of the residuals is a diagonally

equation,

arranged sequence of non-overlapping lxi uubultrices. :

e R

For the partially absolute amd relative control -points the ‘elements of

orientation for both statione

filled,

© of. 'S] pp. 215 - 222 .

9 of.

PP

29 - 3

appear in the corresponding conditional
‘equations and, consequently, the coefficient matrix of the parametera is.

18
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uaunug the observations to be independent and mrnn.y dis trlbutod, the

. most probable values are cbtained by minimising VPV, where P denotes the

weight mtr:l.: ,

oy e a0
- 0 Pz ..‘_ . 0 : . _ ;
P~ v“. . . e« 0 “ . o s (28)

0 S

v P.h

"where the p'l are the wdghto of the observati q'f& \\m tntrothction of weight-

ing factors my becoms necessary to express va }m degrees of precision with

_which the original observations have been cbtainsd due to the method of msasurirg.

or dus to a varylng imege quality caused e.g., by loss of definition towards
the adges of ‘the photograph. In case the cbservations all have f.hc same
weight, it is convenient to consider P as the unit mtrix.

A direct oolution of our prablem is obmmd, as llohln bas -ham. by
minixising the following functions -

viPv2 k' (AveBA-L) i | (%)
wherell denotes a veotor of unknown Lagrange multipliers or correlates.
&tm sach of the dittoronud quotients for 71, '2,0000 o'n, Al’ Azp

| esees O oqual to sero, we cbtain (n + u) equations which, together with the

puviomb mentioned r conditional equations (fommulas (26)), are mecesyary and
sufficient for the det~rmination of the n residuals (v), the u uninown
paramter corrections ( Aj and the r oorrelates (k). e differentiation

:01' '1, Va,ooooo' dm.

Py-AK=0 or  v=PIaT (%)
The differentiation fO!'AI,‘ fal gseseee A\l gives: _
| 8'k-0 . ()

Substi tuting tanum (30) into (27) and uung ror-uhu (31), ve obhin the
{r + ») normal cguations:

APl ATKkeBA-L =0

(32)
. 8%k =0 v
Because the sjuare matrix AP-1AT is non~singular in our probhn, we my
solve for K 1nterm of A,
ke - (APIAT )‘1(nA L) ‘ (33)

3

L1 Y

0N




- Substituting (33) into (31) we cbtaln the final syatem utmm equations for
the pam\eter corrections ) o

[a'( AP“A’ )‘ls] A- a'(AP"lA" )'1L -0 W

The ‘mean error of an observation of \m:lt weight is

el e

The foaaib:llity of this solution depends upon the faot that the rxyr ntﬂx,
AP™*AT , is essentially diagonals :

"If the A matrix can be part.itionud 1nto diagomlly mmged Ai

mtrices, as indicated for our problem with formulas (26), it can. bo :hmm that
“the aquntion (3&) mAY be written as »

s 2 _
2 [I'(AP'IA' )la] A--E a" (Ap A" )11_] (36)

where the 1ndu 1 refers to the elements of the 1“ group. " Thus it u cbvious -
-that for computational convenience the final set of normal equations may be -
obtaimed by adding separate sets of partial normal equations formed for each -
of the five gm a. The aot of partial norml equations for the 1%R group is,
according to ( C : oo ‘ '

[87ap~iaT 28] 1 A- [o%apta™ > ], -0 1

In analogy, it s possible to subpartition the matrides in (37) into units
gcorresponding to the individual condition equations 'for 4 specific grouwp,
provided the submatrix A N is diagonal, Then the set of pareial noml

equati ozs (37) may be written as

”\/

2 [o’(n‘ln')'la] 1y - }: [n*(u‘h’)'ll.]“-o (38)‘

where the 1ndu J refers to the elements of the J nm in the 1 group.

Formuia (38) shows that a sei of puruiul normal squatlons for a spealfic graup

(formulas (37)) oan be subpartitioned into as many sub-sets of partial normal
equations as the cor-esponding A , matrix can be subpartitioned into diagomally

arranged A submtrices. Therefore the formation of the final normal

‘aquation systen can be accomplished by adding step by step the partial narmal
© eqdations computed for sach of the subgroups. There is an advantage in using
this piocedure on electronic computers, because the amount of memory space: ‘

needed is almst independent of t.he runber of points carried in the solution. !

In order to conclude our investigation a study shall now be made of the
characteristics of the partial normal equations for each of the smallest
possible subdivisions within the five groups of observational ejuations as .
given by formilas (26). As men tioned above the mtx‘iceskl and AZ are |

A
o
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unit matrices. Therefore, for bom groups tor each individral conditional

-équation we have -

(AJ"i;'A')l-pd ” | (%) -

Simtlarly ugroup 5 the. ‘S matrix is a diagonally arrenged uqmm of
ma-ovarhppim 1k submatrices. !‘her-'em, ve have for esch individual

- corditional aqutium in this ¢roup

3 ' gy )J (10)
,@é, ,m':, R {.g,, | mq (-3,
Finally, we mst oomidor groups 3 and L which are tomd uulogm];. Iutud
of associating & set of partial normal squations with each individua) ohserva=

Tyl
(AJP AJ)

_ tional equation as is poesidle in groups 1, 2 and 5, such a set must be

associated with a of cbservationmal equations bou\uo the A utr.leu tor
both groups 3 and mﬁuondlymdmmootwn— ‘

 submatrices, For the Jth pnr ot obumtiml equations, e.g. 1n m 3.

we have:
(t)l(t)z(.al $a)y,
A, =] 7
S FORCRONON
»
and oonsequantly " | o )
s (@) [l

Ay Ay ® ,
33733 HEa)w)] * ke)w)) "

Mtum the derivation and ueing the notation of formulas (25) s the following
set of partial normal equations can be formed for each pair of corresponding
observational equations in groups 3 and 4, rupoosinl,y. ‘

A}

23




R

S

RG)

@
B o %uxsaw ?38@ cenes o WY mu:saw m.:s.

A%

c / os. 33 QENE . »e:sv - [@@o -
R 3 (i « 2t - e..:mx&
el m3~§~3 Y@ - ey
QSNSNS +Timim) - (o)

) odnl.-bu uyp exoJursqy
~ eauypod Toxqm00 ITFFoeds

aSuug-Sﬁ%g!u!i%ino!ai%g 388%5% s WL

%33&_ m.xs&v

* L 4 [ J

R 333J cesee o (@] - [B)EX . ww([mmm] - mmo)
- = (e - o)

N




v

The ueighting £actora (g)l, (“)2 &nd (3)1 p AFe Q)

n.nduulogouoly . (8)x

_(‘)1’,2 -_-—..“._J- p) : “ _,(l)x,!"

“J

e s ) - e )

- ) A/” M
Ny - C‘)x(‘)x) (o,(a),) { .),m ,""g

l"ron (h2) it is obvioua that this set of purt.:la.l nornl oquuou”
may be further partitioned by forming sets of partial normal equations
vhiclp 1ncorpomto only t.ho firs: or seoond terms of each o: the cootticionu.

Cer

: For an analytical trutnnt the Qcouw of the least lqulru aolntion
. 1s an important factor, Therefore the information so far cbtained is
summariged and the least squares solution for the procese of orientation

'i# sarranged’in the following waye. By introdwmg PEOMIO=F aa...uuﬂ@\l we /f e

uy denoto 1n L \) L

S group

.......................................

L= “ 1 and 2 k' - s\ | “
e e
S AYOQ- .{X} - “

e L34 ) Y ) Qé‘ . . - Lo
N "(}7 |\|\ . R “ N . Ci, . . R
2, i Lo




The observational equations (26) may now be written as follows

N - vedghting factors
v [a ] [es] ] e
T W 8, Lo P
3 || ~les|a -|us ©) ana @ wn)
S L I R e Y (@) @) |
s [W 8] |bs] L1

In terms of formlas (25) the obaervational oquat:lons ‘are uhm ‘on the next
page. . .

The paoudo—naiduna (().), and (A} ) are linear combinations of the'
original residuals v (formlas (k6) )o They have been
introduced solely for the purpose’ or sinplifying the computational procedure.
The system (48) resembles a set of cbservational equations for independent
indirect measurements. In the last column the corresponding weighting factors

are recorded. As the first step in the process of forming the normal equations |
a set of partial normal equations is computed for &ll r obssrvational oqut‘..ozw

lccording to ‘
| }:( o' ), }; (a‘r L )1 . (19)

p* denot.u the cuagomlly arranged voight.img fact.ora, where (g)y, (3)2, (8)1'
(g)lr (g} are formed by formlas (LO) and (45)e The index J. denotes the
elemonts &:t the 1*" 14ra.

Now it is necessary only to take into account the fact that in groupo 3
and § the pseudo<residuals () by pairs are linear combinations of the original
- residuals., Denofing the number of pairs of such equations included in the r

observational equations by s, another set of partdal normal oqmuons my be
formed according to ,

gz-;( By F*id'aji) kB ?—.1-‘ Bli Pl Ly k=0  (50)

where P 13: - P*Ji - (g)i j denotes the cross weighting factor for a pair of.

eorresponding observational equations. The submatrices B,;and B 44 are the -
. . J o .

" matrices of the coefficients of the unknown parameters in the pair of observa-
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tional ei}ual;ious under consideration. ! _
_arranged according to the 1j or Ji aequ‘enc& of the lines i and j, respectively.

The two Tows of these matrices are

The conrormity of the two sets of partial normal equatiana (h?) and (SO)
contrihutes markedly to the econonw of the mimerical solution. The final

systém of normal ejuations is the algebraic aum of tha two sets of partial
normal equations and may be .,ymboli od by S ‘

aTPaA-aTPL-o )

Byﬁlintrod\xcing BTPB N - - “(52)
‘ﬁuwe o‘oﬁin . A= N ‘T"L . . - (53)

N-)'ls the matrix of the weight coefficients of the paramsters. The mean
_error of an observation of unit weight is computed from (35), where the
mmerator is cbtained durirg the reduction of the normal ejuations., The

modernized Gaussian algorithmn

is suggested for this procedure, The individual |

v's for the absolute control points are then computed directly from the rirst
two groups of the observational equations (L8) by formu}as (L6) as

ver o s

From the third, fourth and fifth groups of equations (48), the (1) amd
?} values are obtained. The Andividual v's are then computed by formlas (30}, -
33) and (L7). Thus we\obt.ain for a partial control po:l.nt., in the case where

Zisglvem ()1 {olyky
':':,4 Py
o T () kg *+ (b)yk,
y Py
) v; - ( ) ) 6‘;(~) e
)k + () Kk,
v; - hkl; P}t— = ”

N

ere k= = (N(g)y + ()

‘ (55)
k2 .- (1)2(8)2 * (1)181.2" .

and in the case where x and Y are given:

v « (33K ¢ (ay)iky

o )
o {/)~," (ag)pky + (‘x)zkz
W 'y = pl
. (‘x)3k1 * (‘ )3k
Vx T |
k
o« iy fﬂf‘r)hkz
y P
n o, (1) “

’ (56)

n

3
28 o |




)

(1 + v) and '#v'

. 7
Finally, for relative control points we ocbtains

viw ulk . .
vy = k ; . T
sz where k = = {A} « (& : (s7)
"' - ;.)3“ AR |
During the oémputationa the usual checks are madas o ‘
[Apv] -0, [pr] «0, etc. (58) andy'Pye= [I.L . u] , ('5‘9) '

) where [LL ) u] ias obtalned during t.he process or reduoing the normal oquntiona.

~ The final check is ocbtained by ¢ sing the tinal oriontation ehmnts amd
formulas (1), (18), or-(19) and (20), where either the adjusted observations = -
{ mist cheok (formilas (1)) or where, by introducing the
corresponding adjusted observations together wir.h the final values for the
unknowns, the corresponding oondit.ioml equntiona mst be satisfied (rormha

"'(18); (19): (20))0 .

The mean errors of the unknown paramaters are conputed by mluply.lng the
mean error of unit weight, which can be obtained from formila (35), by the ‘
square root of tlé corresponding weight ooetgciont which is obt?inod from
the matrix of the weight coefficients N"

If formilas (14%), (18"), (39%)" and {20) are used as the basis for a’
least (squares treatment, the arrangement of the sero-elements in the matrix -
of the coefficients of the observational equations is changed. The correspord-~
ing system of cbservational equations is shown on the following page. (formilas (W\).

:The inorease in zero elements in the third, fourth and fifth groups of the
observational equations in formuias (LB82) in comparison to (48) is desirable
since the presence of weighting factors causes the computation of .the
coefficienta of the normal equations in these three groups to be more conpl:lcnted
than that for the first two groups. Moreover, thé relative comtrol points are
usually more numerous than 4he absolute control points. Therefore, the systenm
(4B8") provides a more economical ‘solution. The main advantage of formulas (L83),
howsver, is that any independently obtained base line component may be introduced
in the computations simply by eliminating the correapondiw, Ab from the least
squares computation, .

2) The derivation Pof the coefficients of the observatioml equatiom

The setting up of the observational equations (hB) or (hB‘) réquires
compniting the coefficients of. the matrices of the unknown parameter corrections
and of the residuvals. In addition, the abtsolute terms and the weights must
‘ - W ' ) . o A
12 _ . .

_ef'\ Chapter C pse 38 e
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In casc the base’ line comgonehts are introduced as unknowns, the coefficients

Lol the system of formlas (L8

) are the same for formulas (148) as for formlas

(14) excopt that the arrangement has been simewhat changed. For formulas
(182), (193) and (20), however, a.few coefficient changes occurs

~ for fomulga“ (18%)

(D)]_ " e
®,=
(F)l s «II

' (F)z. +1I

(66)

o o «
oaly -y -ly

for formlas (20)

for formlas (19‘)
O -z B

Wy o1y B e
(‘ (F)yg = . . F) = "
(]‘)! - .

(68)

¢

‘The ‘sbsolute terms are corputed with

L]

=8, =x -1,

ITe(2)0 » @] ,..‘

‘(A)l
“(0)2
~(8)y = T1(x)1 + 2] w

-(Q)Y - -(I.(Y). . (1] "'l)

-{8) -1 +1mp - C

The wo"ighung tldt&q ‘are computed with toxa\\ahl (4O) and “(hS).

- Pormula (20) expresses the general case of ths relative orientation, It
may be of interest to consider the coefficients when conditions valid for the
normal case are introduced. With a = 180°, @ = 0° and X = 0° we have from

Ay -+ 1
B‘% )
. 01 °
Dl -
B -
R
. 0, -
H -

- formulas (9) and (11)s

"0 O M@ O O © ©

Ay= O and n'-(z-r.p)
By * +1 | vely -//yp)
Ch= O : Wwewg
D, = 0

82-#1,

.02.-1

Hy = +1

N

“(Te(2) + (2] w9 e
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wnd fmu fornulas (60) and (8):r ) ‘ L e o .

v g0 Cu ey x ®=(x - x))
v, "o ‘ Ve ® x ;' (y - yp)
o ,;/‘ ) Qm v "( =0 '

The nmdnlriee givsn w:l.th formulas (61) are, with b -b, = 9, xp . y. "0,
ct = o* and b, = um tys ‘ ' P

1 soy-y) Q] =0 “D*] = 0
I es(x* -x) \[2] - B e
IIT = (x'y“ - x.yc) (3] o [63 yl

Thus, the coefficients (given in rornuha (65)) neceeury to form thn oornlpond-
ing observational equation are: o

{l} - y*x! iJ}_

- -
(B) =-(c?+yym (K} =(c2+yy") =~ (B}
{} = ox! S LR

W) w@i=0 (@) =-@ym0

aj = '[‘}2 =< {ﬁy - -{.}h - o

and the corresponding cbservational equation 19, using the last nno of tomhl
(25) and (L8%), and formulas (69): . ; ) ,

. o(v" - v') = oy'x! Aal ¢+ (02 ¢ y')"‘)&w' - ex! I o . (' )
At 70
. - wyix® Ba® - (0% y'y") Ot + ou:' o - o(y" - y')

Introducing y* = y! = p, and v; - v;, = Vs W have since yiau y*

Cone - o
-’r-—cx' ?a" - l__c'x' 06! ¢+ x" ax® = x'gy' = c() ¢L,-:_ Yoo -Qu') =Py, (n)y

Thés equation is identical e.g. with R. Finsterwalder's formla (13)13 for the
observational equation in approximately normal photography.

13 :
cfofl] pp. 154, 155.
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| are available for.both stations, During the final check or the least squares

B. Tha process of trlahgulat.ion
1) The trlangulation as part of the process of orienutiom.

Like any other triangulation procedurs, the stereophotogrammtrlc meuuring
.>thod 13 mainly a means of determining the coordinates of certain target points
by intersecting corresponding rays. As distinguished from intersection photo-
grammetry, stereophotogrammetry does not nccessarily separate the orientation
procadure from the trisngulation phase. In fact during the similtaneous
orientation of turo camera positions & sufficlent number of the target poinis

" to be determinad are included as relativa control points in the process of

orientation in order to improve the over-all acouracy. The inclusion is based on
the fact that any two rays which created the images on the respective plates.
originated from a common point and, consequently, must intersect again after the
orientation is restored. Thus, by increasing the angular field of the lens the
internal accuracy of the nrientation is increased and, equally important, the
presence and physical naturo of aystemauc errors may be determined. The
residuals of the plate measuremsnis are oblained during the least squayres
adjustment for all relative control points which were included in the orienta-

tion procedure and, thus, “the adjuatod obsorvations x = 1 * v and y » 1y + \ry

adjustment for the orientation procedure, the corresponding u, v, ¥ values for

both stations must be computed in order to check the conditional equation (20).

These values can be used in order to obtain the corresponding X,Y,Z coordinates
directly from formulas (15) and (16), By means of the amdliariel from (61)

we have: , o
Z w2 <Pyt a2 o Wt e 2% . W' , : :
B GRL TS CELES . SN Cm
or - ZU-" Zz o@u“ -zZoQV"'- Zgog}w“

From formulas (72) and formulas (2) we cbtain
x . 0

R
and , hn e Y. {?- 1@ | | \ | |

 In order to obtaln the more exact numerical answer, the computation of the

scaling factors u' and u* should be done with awdliaries which do not vanish,
Assuming goventional geometry, the use of the auxiliaries (2}, (5], and II is

" therefore suggested, From formulas (2) we now have:

X ~X!+ plu' = X%+ whut

Ta g et ey N (R

AR L V! = ZN & gh
2y 1 W ot K
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. " The computation of the mean errors of t.he nml ooordimteu u:lu be -
discussed in a aa;arate chapter.

2) The trhngulation u an indopendcnt co:putatioml procoduu.

s Occuiomny, during the procou of orionuuon, 1t is not dos;ublo to
carry as relative control points all the points whose coordinates are to be .

- determined. For those points not included in the process of orientation, an

indeperdent coordinate determination is necessary. The positions of the corre-
_sponding rays are determined by the elements of orientation as cbtained from a
least squares adjustment and the four measured plate coordinates. It is
obvious that, because of unavoidable measuring errors, these rays will not
intersect,  They muot.be made to intersect so that the sum of the squares of
the ocorrections to be applied to the original plate measurements is a minimunm,
Such a least squares adjustment of conditioned observations may be based om -

: formlas (20)s, Since there is only one conditional equation present, we have
~ only one normal equation which is used to determine the correlate k. Then the

residuals are easily computed according to formulas (57). The final check is.
cbtained by imtroducing ths adjusisd obssrvations into the origine) conditdonal
‘equation (202 From here the procedure of computing the final X,Y,2 codmdimtu
by- formulas 7h) follows the steps cutlined in the preceding paragreph,

" The conditional equation for the trianguhtion adjustnent is, uaiu
formulas (25), (61), (65) and (69)1

AR 2yt Wy e ® hv" - (o) = 0 o s
and the cormspondim noml equation is ’ . . . ,
M=y . ' | | - (76)

. or e _@_ S . /j; | : N » {17

K
where N 'Emﬁ'ﬂ : o (78)

As in formulas (57) the resdiuvals are:

" P k - " ' ) |

' a ’ (79)

L { }2 . vV a —a‘. .

y Py : y Py | o
A .
We have the check: _
The cowutation of the mean errors of the final coordinates will be .

discussed in the ne).t chapter. \
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Ce The doterminution-cf the mean -erbors of the' obsemtions of- tbe elemntl
of orientation and of the triangulation resultu. :

The mean error of an observation of unit weight. donotad by nis comuted
~from formulas (35) . . .

V’Pvmy be obtained direotly from the reductd.on of the normal oqultionl
according- to formuls (59) or by adding the squares of the individual weighted
. values. Thus the mean error of an cbservation 1 befors adjucimsnt is

m ® o— o+ Sometimes Yhe compntationa of m diroct.ly from the or.i.ginil ‘

measuremnents o.g., using the Jdifferences of mnlt.iplo observations, may lead
to a value of greatep physical signifisance., The disorepancies between the .
m values computed by the different mthoda provide means to 1nvcstigato tho
presence of systematic errors.

. The 1nv_orao'or the matrix of the coefficients in the final norml equation
system (52) is the matrix of the weighting factors, The diagonal elements
are the squares of the weighting taditors of the eorresponding -unknown para-
: meters, Multiplying.these weighting factors: by m'gives the correapondiu

" mean erTors,

Often it will b, ot .mtorut. to know t.ho mean eiror o!' a function of the
unknown parameters,* ik Ve ny cons:ldor the function

Moy wtegp oo, a0 T

© In case the funotion is not linear, we apply the Taylor series., This gives '

. A f * flaat..... + The f1 values are thus the part.hl differential

quot.ienta of F with respect to the nnknown purmtera. If we 1ntroduoo tho
vector .

(flfz [XXIXR fla) "' . . (82)
the wo:lght of the fuﬁctiou F denoted by PP’ togethor with rormh (52), 1a
| Po= N ‘. (83)
The mean error of F denoted by m, is thua

B

By applying the nbd#e prdcednre, we may determine the mean error of any «
fupction of the orientation elementa. For example, for b the function F
is : , _ |

Faxtoxt " - | (8%)

1 _
4 ot 18] ppe 99 - 20

SR A
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" aftervards deternined by a least squares adjustment based on four independent /; y

ey

and, according to formula (81), we obtain \d.th thl.heéugnce used in formlas (ljB)
f13 = 41 A1l other 1'1 = values are Sero, - -

) "rhe Mght P, and the mean error ‘b are now colput.cd by tormlu (83) and

b
(84), rupectdvo];. If the base une components b_, by and by hno b«n
considered as unhwwn paramtera (of. formilas (h&)l ), the toru ?—" »

- ,— and ,—— are obta:lmd direct]y fron the oorroaponding dmoml tom ot

y Oy
tho utrix of the 'éighting fnctora.

‘rho mean errors of. the tmmulatqd X, !, z eoordiutu are donoted by
Bys By and Mye The procedure of computing these mean srrcrs depends upon

whether the point was insluded in the least squares adjustment of the oriests-
tion process as a relative control point (see B/l) or whether the point was

plate msasurements together with the independently computed elements of T
ordentation (see (B/2). .The latter case may be treated by analogy tv the already
discussed problen of dotormtnd.ng tho mean error of a function of the unknown -

" parameters, After the adjustment by formulas (75-79) sach of the spatial
‘coordinates X, Y; Z may be expressed by formula (74) as a function F of the

eloments of or.lonut:lon and four independently adjusted plate measurements.
Denoting the partial differential qnotienta with respect to the elements
orientation and the plate measurements by. o}u f2"'“f18 and Fl,l'z, F3 a:h\

| , I‘h. respectively, we may introduce the vect

{- “1‘2"’ oofla) ” o
o - " 87
and F'- (F1F2F3Fh) ( )

' ' ji _
The propagation of the errcrs of t.he olemnts ot omnuuon :Lnto thn : ’& :

function F is, with (8L) o ”
-l(t) s m ( 'T“-I' ; R A Q%f) . ) . (88) .

The propnuum of tha arrors ot the 1ndapend.e'rt -ddz.st‘d plate r-asur*mnt:
ie , o

) 2 e L .

vhere Q( D&iw be obtained in the usual way “during the mduction\ of the

corresponding normal equation, Since the orientation parameters are not* :
correlated to the plate measurements used in the triangulation phase, the-
corbined mean error of F is computed by the Gaussian law of propagation o

LN

Y

mF‘ = (Q,(f) + Q(F))i
39 8
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- In appraximately normal photograply ‘he influence of tle slememts of
interior orientation on the determination of X, Y, Z can be neglected
because in such cases ‘the elements of exterior orientation compe lgto for
the effect of the errors of the elemsnts of interior orientation, .
Bowever, the accuracy of the elementa of interior orienmtation is inporuﬁ «

in mterpreting the. mean errora of the elementa of exterior orientatd on

It the ‘point. to be tr:\.angulated 18 included as & relative control point
in ths process of orientation, wa must detarmine the mean error of a function
of the unknown parameters as well as ﬁ the ad:juated observations. This
problem was treated first by Helmert,.l .

For a detalled preuntaﬁon or this problen 1n mtr.lx notation see [_2] .
. It !‘ollova that ve may 1ntmduca the vector R :

' - (fl’ fo, 0.¢ocr18’ F'l’ Fz’\\ F1, Fh) ' . ) (91) w .

where the t and F values hive the same meaning as in formha (87).
. The mean error of the function F is now gi‘nn by R

wontfred : S (é'z,)'

where R denotes the covar.lance matrix of the vector of the ad:)usted para-

‘meters and the adjusted obsexrvations, The numerical mat.ment of -this

provlem is quite cumbersome,

The analytical method permits the use of a lirgol'mmber‘or rolati and
absclute control points. The matrix of the weighting coefficients (e.g.

.formla (88)) decreases as the overdetermination increases. ' Thus ha

strong overdetermination the result obtained from formula (90) provides a
satisfaotory approximation for the determination of the mean arors of the

triangulated coordinates, making the utilization of formls '(92) umoconu-y.

‘Vo THE APPLICATION OF THE ANALYTICAL METHOD .
TO THE PROBLEM OF CONTHOL EXTENSTON

- The- procus of atrip triangulation on the reatitution instruments is based -
upon the tedhnique of orienting”individual photographs so t at the orientation
of & preceding photograph and the apatial position of at ladst one point of

the precediig model are enforced. This procedure, as well as tha aepamtion of

o
18 . ef, [1) 4

B oar [

1o oty (5] poe 215 - 222

16 cte {'_23 p~7-€= u"
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rélative and absolute oriéntation in the matitution of an J.nda.nmul adel,
is dictated by the physical properties of the restitution equipment, The
enforcemsnt of the above mentioned parameters in an aerial triangulation is.
comparable to a procedure which breaks up the least squaras adjustment of &

triangulation net into a series of adjustments. of individual configurations,

enforcing the result of one configuration, with respect to orientation and
scale, into the following one. However, the application of such a precedure
does not meat the error theoretical requirements. In order to carry the

- orientation and scale over a strip of overlapping photographs it is necesairy

to satisfy the condition thai ruys origlnatling from thrse conscoutive camera

. stations intersect for at least one point located in the area common to- thres

photographs, Analytically, such a poipt gives rise to three independent condi- .
tional equations. - If we denote three consecutive photographs by (n-1), n, (nel),
an obvious method of setting up the three conditional equations is the triple :
application of .formula (20) which expresses the condition of intersection for
pairs of rays originating from the stations (n-l) and n, n and (n+l), (p=1) and

(n+l)., However, this method does not lead té a result if the three rays are

located in or closa to a plane. - This situation is comron in strip triangulation.
From Figure Ly we see that three independent conditional equations can be G
ohtained by applying twice the above mentioned condition of:intersection
expressod by formuia (20), &g t‘or (n-l) and'n, and n and (n+1).

'rhe condition t.hat Thesy tuo 1n,t.er.sect.ions occur at & common point is
equal to the condition that the- vector K is pommon to the two loops
K,-% - b = 0/and ® R-R,q- bm_l. = 0, Thus, with formulas (1) we
have the condition that “nF in the first loop must equal the oarresponding
expression in the second loop. Because. the vector r 1s identical in both

loops, an independent corditional equation 1is obtained by equalizing the
scale factors (W obtained from the two loops. Denoting the oomponnn'ha of

tho tirat and second loops by the 1ndices 1l and 2, respeotively, we have:r

K. W . - o (93)

‘Formlas (73) give for each scale factor ji three quotients correspond=-
ing to the projection of the vector R into the coordinate planes., If we e
arrange the ground reference in such a way that the X-axis pointgapproximate- = 4
1y in the direction of the strip, it is obvious that the terms involved “in the.
suxiliaries[2] , (5] and I1, respectively, (fsrmlas (61)) will always be . - C
different from gero. Therefore we choose &s the third conditional- eqnltion \min g

() i1, +(8) T, = 0 >
The coefficients of t.he corresponding observational equation are obtaiﬁed .

from forrula (9L) as the partial differential quotient.s with reSpect to the ;
unknown parameters, : .

. N
(V] 2




: Ve intreduce the Iollouin, auy*ll* arlne, which are simlar to tholo
devcloped in-formlas (61): ,

: (ulun + H'“") - Iv “

(b + o) = (3 C enpewun - B
(bue vor) = (§ »“(w%fww@-‘&q
FOURIY N R g vy = B
. batobuy e pd 0 weway e RF
(b} - bout) = it o (u'Fy = weny) = (2] ~ (95)
(b - ) = 03 U el UL o
(o Fy - b_ni) - 03 S (wcy -wral) - (23

et S B
"mfﬁanﬁ)i@ﬂ;?:#7”ﬁ75<“%"“p'agﬂ
(bei . b’q) . [19 | '-'”; - ',.?-.x(“'cé - U'Ié) ‘- E"BJ .
ooy -vay s B ” LT
m;~-bu)-@§u“ ’ o R
© Thus, if arranged in the sams sequence as in formilas (6531 "h‘ °°‘“ ents
of the corresponding observatioml .equation are: R ‘
- T, - By, -
B - Oy, o (20,0,
. ,;{C}i H' - [11] et [232 E""’Jl - b

;i L. .
* " (8-1)*" photograph’
o
-/

RN




\\\\ l/

AY

)

s
{J} - - (5] Iv2 + [2]21\7

{x} =+ (9, @QZ - [232[}531

1y ee (9,09, @,RD,

M} = - <yzn +wIl,) U .
me i photeg
{o}-»nzn +n1112 :

o0, Bl,- B,BY,

» "‘53 - Q.- (], R4, [0, S “
, -{.}h {R} - - [5]1 @qz + [2]2[?ﬂ 1“ : N vv;,v‘)}v. . “ (96) 00“.

© (8} =+ (5,1v, - (8,1,
.- )R, bd 11,
RSN PR SN
(V) =+ wi11, _; T L N
("} . R (»nol)fth‘ photograph
. X} - _“?I . o S g .
{t} = - ml‘?gz + [ 1,
~layg = {2},= ¢ (5] [?gz' b4 1,

g = @y v 1, B, - B

The oorresponding - {o} valuc is comuted from (92)

XY

-t -[23211 + 8,1, " | S (7

I ‘should te noted that all ths components used to forn the nmdlimu gim -

by formulas (95) are already avajlable from the setting up of the othor two
observational equations based on fomhl (20).

Ln analytical trntmant of the two methods of extension shows the

difference between & similation by instruments and the least squares adJult- '
ment. Assuming a strip of approximately vertical photographl flown with

2/3 overlap, the unique solution may be considered first. The aontrol is
uchemticany manged as shown in F:lg'm 1 forn = 6 photoguphl.
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From Figure 5 we obtain the 1ollmng mdependent oossrvat.iuxml eqntionae

point no.  type of control number of  rumber of tormha deecrihd.u
point »‘ observational ~conditions of simlation
S : equations = dintersection. by least squares
: .satisfied " instrument | adjustment
1 ) & - L 1. - (k) (1)
2 & Lo 1 () ] ()
3 o) 2 2 (20) | (203
L o - 2 2 (20) - (20)
s w b b 2 8) & (w) (8
6 o’ 2 2 20y ] (20) -
7 X 3 2 (20) & (1) (20) &(91;)-;
8 o 2 2 LT (20) (20)
9 o 2 2 () | (20
10 B 3 2 (20) & ()] (20) & (Qu)
1 o 2 2 ] d20) -} f(20) o 0
1 -4 3 2. | (20) & (ai)] (20) & (9!;),
13 o 1 1 (20) - - (20), -
A Lo 1 1 (20) | (20)
.18 “o R I ¥ (20) |- (20) -

;‘h“‘a ta.buhtion shown tnat in both oASes we have 36 observational equations for .
o .. the determination of the mxt orientation paramat‘bru, n being 6 in our case,. .,
Foome S Furthemom,mfive pairs of rays witbin" each ‘pair of oonsecutive bundles mat
-~ -intersect in order to aatisfy the rigowus geopatvy. Thus, 4f n denotes the - Lo
_-nunber of photographs in the strip, weinesd (n~1).s 5 oonditions of mtersa(;t:lon.
ST  For. 4 u 6, twenty-five oond}tions oi‘ 1ntersaction msﬁ be satiszfied as ahown A
e VT in t.ha tabulauom N R 2

f . In Fizum 6 the 36 crbaervational equationa are.‘

,,From Figure S we aae that five points are co/n/mn ‘% ;'bwo photographs 1n

' aaeh of. the end models ‘and ten’ ‘points are cohmion to thrée: ‘photographs. in the :—‘; :

gntral portion of the strip, .- UonseQnently, allqning two, vesiduals for ‘dach.

poink, wa have2{5.2 +:10s3) ~ 8 resfdusla.; in Figure € thesd residuals. .

repxéese@}ited An the oty st;m.xding A matrix. oy opén” ¢iréles or dots,. respect= =
ependiz’mg upon; whether tlie eorrespondinn ‘ohservational: equation belongs "~ - -

eapt _quaras SOIution or 0. 8 se Qf ,je uat.i -si' ‘lating the eqctensicm-w- L v
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: procedure as perromed on restitution oquﬂ.pmnto Corresporﬂing]y, the uquenco”

" .of the coefficients of the unknown parameter corrections is given by thin

and hoavy lines in the B matrix. It is obvious that the gonventional method
of strip triangulation is divided into a sequence of independent extensions,
thus allowing for the computation of the six unknom elements of orientation
for each consecutive photograph separately (heavy lines), Correspondirgly,

the A matrix is a sequence of disgomally arranged none ggrhpping roN vectors
~ (dots). However, such treatment will be correct only i ? case .of a uniqua’
solvtion where all residuals are equal to zero and, tharsfore, the mumerical
solution will not be influenced by incomplete conditional equations. A least

squares adjustment, however, imst be based on the rigorous condiﬁonn oqutioub

desigm\ted by ciroles and t.hin lines in Figyre 6.

Aaubmtrl.oea (aohemtic) for aontrol point cammon to
Type of ontrol | a) two photographa ‘ b) three photographu'

pAnt : . a,mhol synbol

I o)
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kel

Ths corrosponding system of observatioml equa.tions can be written in -
analegy to formila (26) as follows: . .

(.
— — - - - 1 - -
Al 0 0 [ . 0 '1 31 Ll
0 0 A3 -+ . 0 Nyl |83 LR
. A=l | =0 (98)
® [ ] L] [ ] 0 * [ ] . [ ] ) [ ]
00 0 0 « . A v, | |8, L,
S, " . ' . ) ” i-J - .._1 wd ) - 1'_4 - 1-.

. Whare Ai are the cdotﬁéiaht’ matrices of tho residual vestors v, coriespond-

irg to tho i 'control points involved, It is seen from Mgure 6 and Figure T

‘that six different types-of A 1 submatrices exist, depending upon what type

of oontrol point is used and whether the point is oomuon to two or thrn
photographs, o

The A submatrices of the types I,» TI, and III_ are obvicusly identical
with the oormeponding expressions in fornulu (25). R '

. It follows from formula (98) that the gomtrio canditi ons in a strip can
ve simlated by a set of conditional equations explicit in terms of the - -
residual vectors v. Any muber of any type of control point situated at any
portion.of the strip can te handled readily. In addition any nunber of '
independently dotemined orientation paramst.ors can be enforced in the solution
at ary time. .

To show the procedure of a atrip triangulation based on a least ‘squares
solution, let us consider a strip of 5 photographs with 2/3 overlap and a pass
point distribution as shéwn in Figure 8. )

Tuelve points are common tu two photographs and 18 po1nts are common to .
three photographs, Consequently, we have (12¢2 + 18.3)x2=156 residusls, vhich
are arranged in A submtrices acecording to Figure 7. : \Yz

0 '\

L9




2

a

K

(X ‘ol' .
] X ; o
o X0\ X X 200 3G |
i ) o”v‘ “
. .”

3 e ' . .
1% :‘ X9 M| X6 y0u] D ”
’ 7 A

N

r




k4

¢

] ,.‘.W.,..”“ \I\M-IW.!M
. , . o : P . "
= RERERRERTE
: - c—— - __ G-H "ﬁ
. ‘gsibﬂﬂ““! m'.rl.-- - SLa
o IR0 4
.w s o‘ xah‘
S . p—— — - .\,,XNQ
e e —— = K
— , | e Xz
‘ — - X &
2 = xi» %]
= s X .
. b —————em—eey ,“
v . . ‘ x t‘\
A7 S —— ] -1 «.&
“ - == - - , X -;1.
- : 7 &
. = - 3 X W,.
E p— | X !
B + N
¥ o Xlo
N - - m.
= | - xe]
T — . =N X7
= - Tl
—_—% - = N
= - = Hea
~ - - 1 — ‘aj €}
b Ng /1 : e STYT
| (R olwis!
= L AR
m ” ] A L e
—y ’ ~ @ % W 5 ¥ % a7 2 A

—s

{

g

»
X1

- PSR

-

me...@

. t,
-

®

R

St ..




N

s

- The punber of obae‘rvgfioqnzp aq\ntions is given by: -

 point wo. | type liq‘ rurber Gf - pbi;;i no. type

#

i

equations RN

17 > .8
» |
5
A
22
23 -
- 25 'ol
26 - | e
eT - o
8 0
29 _—
I a

=

o.

o of o

Q

Q
¥ X X X XX

3 N

X W XX xR R KA

)
m‘.
R E e M e W owow w w W oW o gt;

T O W OW W W W W W RN B

«can be formed by adding ‘se

.- Thue there are 77 cbservational é‘\.ationa forn. 6«5 + 6= 30 unknown

With the symbols used in Figure 7, the A and B matrices of the cbserva-

".tiioml equations are schematioally shown in Figure 9. The A matrix consiste

of diagonally arranged 'A% submatrices, Ths final set of normal equations
]

22 an® 23, Thue the analytical treatment of 2 lsast squares solution for a
strip triangulation is reduced to the problem of inverting a symmetrical r x r
mtrix, the coefficient matrix of the jinknown orientation parameters. Since-
the general case deals with six unknow; parameters for each photograph we have
for a strip of n pigo‘t,ograp}is, . = 6n. j The feasibility“cf the proposed

i

of partial normal equations as outlined on pages

\
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approach to the problem of aerial triangulaticn appesars, t.herefore, to be e
~  based upon the possibility of inverting large matrices. This problemwill be .~ wo
- ‘simplified because +the individual 8 matrices in formula (98) include only I
coefficients corresponding t) the unknown parameters combined in the individual
vectors A, Thus the r x r mtrix of the coefficients is only partially filled,
narely, in the neighborhood of the. diagonal as shown in Figure 10, This fact
suggests the application if the relaxation technique of Gauss-Saidel or a
similsr approach, ' The determination of the roots of the normal equations can
be based upon an iterative process which takss placc as 2 aubv-m.tine \-ﬂthin
each cytle or iteration of the general solution. . B
‘ \ SR SRECOIN
If the pass points are selsdted in such a way that at hav[ 5 xvlltivo ‘
gontrol points are common to each section of triple overlap, those models
formed by the combination of photographs taken at every other camera position .
‘are included in the/computations, ‘The favorable geometry of the thus extended
base line is otherwise obtainable only by convergeiit pho'oograplw. “If we.
assums 2/3 ovorlap between the corsacutive photographs (see Figure 8), the
triangulation strip consists of a series of sections with tripla overlap. o
Consequently, as a general rule, we will obtain about 3 times as many cbserva-
tional equations as we have relativeé“control pointss In addition to having .
favorable geomefry, we have a redundant number of points which are used to
~ distrubute the errors of . shiservation and therefore increase the accuracy and
-reliability of the result. Fhotographs tuaken with lenses ‘of hyper-wide angle .
of view (1200), which are expected to be available in the future, should provide -
the necessary econonv in a strip with 2/3 overlap.

‘The basic idea underlying the solution presented for a atrip triangulation
can.obvioisly be applied to the problem of a least squares solution for a ..
block adjustment. Depending upon the degree of side lap, the pattern of the

A submatrices will vary according to the change in the number of photographs
which have in common the images of certain control poirts, However, the
matrix of the final system of ohaervational equations will again consist of ‘a
sequence of diagonally arranged A  submatrices, so that the final rormal
equation system may bé formed stepwise. It should be noted that the spplica-
“tion of formula (20), a3 explained on page L2, for the purpose of comkdming
adjoining models can now be ugsed advantageously because in this case the rw!/\

to be.corbined do not lie in or close to a plane. . o / e 3\
. . I

VI, CONCIUTING REMARKS

. The feasibility of the presented analytical fmatmem. of a photogrammtric
evaluation problem depenis upor. the availability of electronic computing . , Q
‘maclhines with large computing capacity and large storage facilities. The high .
speed with which sach computers are able to perform a multitude of arithmetic. A
operations supgrests the nracticability of iterative processes.. 'Therefore, the
‘least squares solution 1s advantageously based on equatlons which yield first
order différential correctjors to approximate values. of the unknown parameterg
the. reduction being repeated until the solution has converged to a pre-estabi) &f(z- 7
ed accuracy luvel, Tne large computiny capacity nmakes 1i Deasible to design “\\ v

. Y/ . - o e g

” . . R I




N

" shreooomntor will provide a solution of maximum precision

. )) " h ‘ ) ir

the sclution for the moat gemnl case, thue elimimtixg the need for epooh;.

solutions. In addition, the overall accuracy can be increased by over-
determining tha solution through a redundent numbér of cbservations. Any. type
of given information in the form of paaa points or orlenution olomonta oan
be rerdily introduced, @

T !hneroua hsnd computed exaw‘loa have been carried out for the nthod . ww
described in ihis report. At present a universal code is being prepared at.
Ahe Ballistio Rerearch Laboratories for the problem of orienting individual L

* ' models and trimguhtim the spaml coordinates of 1nd1v1dual pointa on such

models,

It 48 aemd ‘that such: n;; codo _together u:lth an antomtistlly recording
and sconexy. -
It appears that such a solution is applicable to all photogrammetrio problems
in which either the elements of orientation or the apauul cwhhni w8 O
muerous target points mist be dotemimd. ‘ &
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