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PREFACE 

The purpose of this study is to provide an introduction to a class of mathematical 
techniques required to treat the problems that arise in the planning of multistage processes, 
many of which are of day-to-day importance to military and other government workers. 
These are programming problems, to use the terminology currently popular, and I have 
introduced the adjective "dynamic" to indicate that they are problems in which time 
plays an important role and in which the order of performance of operations is all- 
important. This differentiation is not merely one of nomenclature, but is definitely 
conceptual, and we shall see that, properly interpreted, it furnishes us with a powerful 
mathematical tool with which to treat these problems. 

The multistage processes in which we are interested are composed of sequences of 
operations in which the outcome of the preceding operations may be used to guide the 
course of the future ones. There are two types of operations that we can distinguish 
immediately: those in which the outcome is completely determined, and those in which 
the outcome is predictable on the basis of a probability distribution. Depending on the 
point of view, either type may be considered to be an approximation to the reality repre- 
sented by the other. Although we shall see that mathematically the two viewpoints are 
not far apart, in any practical situation the two philosophies may clash violently. 

Any realistic treatment of investment and replacement theory, of scientific sampling 
and testing, of learning theory, of industrial production problems—to mention only a few 
areas of importance—must involve to a greater or lesser extent problems of dynamic 
programming. From this it follows that however important planning has been in the 
past in the face of the riddles of an uncertain future, it must inevitably assume a role of 
greater and greater importance as an increasing population with increasing technological 
demands faces the challenge of a world with shrinking resources. 

The theory has particular relevance to government planning, ranging in scope from 
the study of actual operations to questions of the procurement and replacement of equip- 
ment and to problems of the training and allocation of personnel. 

Since most of the problems that arise are of an entirely novel type frequently offering 
formidable mathematical difficulties, we shall restrict ourselves to a consideration of 
the simplest problems possessing a germ of reality in order not to obscure by extraneous 
analytic and algebraic complications the techniques we employ. 

The realistic problems that confront the theory of dynamic programming are in order 
of complexity on a par with the three-body problem of classical dynamics, whereas the 
theory painfully scrambles to solve problems on a level with that of the motion of a 
freely falling particle. Nonetheless, there is no cause for discouragement. Consider the 
case of the nuclear physicist. In attempting to explain the behavior of heavy atoms, he is 
forced to treat of an «-body problem infinitely more complex than the above only- 
partially-solved astronomical problem. Nevertheless, by combining the exact results of 
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the one-body problem and the two-body problem with the results of experiment and 
observation, he is able to construct an imposing theoretical structure, albeit one with an 
occasional blind alley or barred window, that is amazingly useful in predicting and 
explaining experimental results. 

Similarly, in discussing the exceedingly involved planning problems of economic life, 
further complicated by sociological and psychological problems, we must combine in a 
skillful fashion the exact results of the simple models with the intuitive theory derived 
from experience. The fashion in which this is to be done is beyond the power of the 
mathematician to describe. It must be realized that however elegant the mathematical 
theory, however consistent and economical its axioms, eventually the point of meta- 
mathematics will be reached at which someone will have to say, "I prefer this theory." 

In order not to increase unduly the size of this study, I have been forced to omit any 
mention of a number of important and interesting investigations and to include only a 
part of the results known concerning the topics included. 

To begin with, I have not included any treatment of the mathematical theory of 
learning as formulated by R. Bush and F. Mosteller, jointly, and by M. Flood. Extensive 
results in this field have been obtained by T. Harris, H. N. Shapiro, and the author, and, 
independently, together with generalizations, by S. Karlin. 

Nor have I included results recently obtained by S. Johnson and S. Karlin concerning 
processes in which the distribution of outcomes is only partially known. These are prob- 
lems of great importance in statistical applications and arise in other connections as well. 
A description of problems of this type will be found in an expository paper by H. Robbins. 

Because of the difficulty of adequately summarizing his results in any brief space, no 
mention has been made of the extensive theory of pursuit games created by R. Isaacs. 
These games are related to the games of survival briefly discussed in Chapter 6. Both 
types of games belong to the general class of multistage games, which has not been 
touched upon here, although there are many interesting results known concerning these 
games, as, for example, the results of D. Blackwell and the author concerning games of 
bluffing and elimination of randomization and the related results of A. Dvoretzky, 
H. Wald, and J. Wolfowitz. 

Finally, I have not included the recent investigations of I. Glicksberg, O. Gross, and 
myself concerning the important and novel variational problems that arise in connection 
with problems of economic and mechanical control. 

In connection with the computational aspects of the theory of dynamic programming, 
I have not discussed any applications of the "simplex" method of G. Dantzig that has 
proved of such great value in the theory of linear programming and yields the solution 
of many important classes of dynamic programming problems. 

It is a pleasure to acknowledge my indebtedness to a number of sources: First, to the 
von Neumann theory of games, as developed by J. von Neumann, O. Morgenstern, and 
others, which shows how to treat by mathematical analysis vast classes of problems for- 
merly thought far out of the reach of the mathematician—and relegated, therefore, to the 
limbo of imponderables—and, simultaneously, to the Wald theory of sequential analysis, 
as developed by A. Wald, D. Blackwell, A. Girshick, J. Wolfowitz, and others, which 
shows the vast economy of effort that may be effected by the proper consideration of 
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multistage testing processes; second, to a number of colleagues and friends who have 
discussed various aspects of the theory with me and have contributed greatly to its 
clarification and growth. 

In particular, the last section of Chapter 6 is taken verbatim from an unpublished 
paper by M. Peisakoff. Section 2.12 is from an mpublished paper by S. Karlin and 
H. N. Shapiro, as is also Section 3.12, while Section 3.11 is based on a personal com- 
munication from H. N. Shapiro. A partial solution of the problem in Section 3.11 had 
previously been given by O. Gross, using a different approach. The solution of Eq. (3.1) 
was obtained while collaborating with M. Shiffman; the solutior- of Eq. (5.45) was 
obtained in collaboration with D. Blackwell; and the formulation in mathematical terms 
of games of survival was obtained in collaboration with J. LaSalle. 

The optimal inventory problem mentioned in Chapter 1 and discussed briefly in 
Chapter 4 was first studied by K. Arrow, T. Harris, and J. Marschak. Following this, an 
extensive treatment, together with many generalizations, was given by A. Dvoretzky, 
J. Kiefer, and J. Wolfowitz. 

I should like to thank Oliver Gross, who read the final manuscript through with great 
care and made a large number of valuable suggestions and corrections. 

Finally, I should like to record a particular debt of gratitude to O. Helmer and E. W. 
Paxson, who early appreciated the importance of the study of multistage processes and, 
in addition to furnishing a large number of stimulating problems arising naturally in 
various important applications, constantly encouraged me in my researches. 
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SUMMARY 

Dynamic programming is a mathematical theory devoted to the study of multistage 
processes. The multistage processes discussed in this report are composed of sequences of 
operations in which the outcome of those preceding may be used to guide the course of 
future ones. Operations of both deterministic and stochastic types are discussed. 

After an introductory chapter, in which a number of representative problems are in- 
vestigated, and a succeeding chapter, in which some general mathematical results are 
obtained, the remainder of the report is devoted to the study of equations of particular 
types that arise in various applications of the theory. 
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CHAPTER  1 

FUNDAMENTAL CONCEPTS 

1.1. Introduction 

We propose in this chapter to discuss a number of representative problems in the 
theory of dynamic programming, emphasizing their conceptual and analytic aspects. In 
place of any discussion of an abitract type, which at this stage would necessarily remain 
rather vague, we shall begin the chapter by posing a number of simple prototypes of 
general problems that fall within the domain of our theory. Following this we shall 
present various mathematical approaches to these problems and introduce the reader to 
the functional equation technique which we shall employ throughout most of the study. 
Since both the class of problems we shall encounter and the techniques we shall employ 
possess certain features of novelty, we shall not hesitate to be repetitious to a certain 
extent, feeling that, in an introductory work, sins of repetition are of lesser magnitude 
than sins of omission. 

1.2. Some Problems 

PROBLEM 1.1. We are given a quantity x > 0 that may be divided into two parts, 
y and x — y.- From y we obtain a return of g(y); and from (x — y), a return h(x — y). 
In so doing we expend a certain amount of our original resources and are left with a 
new quantity, ay + b(x — v), 0 <_ a, A < 1, with which to continue the process. How 
does one proceed so as to maximize the total return obtained in a finite, or unbounded, 
number of stages? 

PROBLEM 1.2. We are given a quantity x > 0 that is to be utilized to accomplish a 
certain task. If an amount y, where 0 < y < x, is used on any single attempt, the proba- 
bility of success is <<(y). If the task is not accomplished on the first try, we continue with 
the new quantity x — y. How does one proceed in order to maximize the over-all 
probability of success? 

PROBLEM 1.3. We are informed that a particle is in either state 0 or 1, and we are 
given initially the probability x that it is in state 1. Use of the operation A will reduce 
this probability to ax, where a is some positive constant less than 1, whereas operation L, 
which consists in observing the particle, will tell us definitely which state it is in. If it is 
desired to transform the particle into state 0 in a minimum time, what is the optimal 
procedure ? 

PROBLEM 1.4. At each stage of sequence of actions we are allowed our choice of one 
of two actions. The first has associated a probability p1 of gaining one unit, a probability 
p2 of gaining two units, and a probability p3 of terminating the process. The second has a 
similar set of probabilities /»', p?, p'3. What sequence of choices maximizes the probability 
of attaining at least « units before the process is terminated ? 

I 
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PROBLEM 1.5. We are fortunate enough to possess two gold mines, A and B, the 
first of which possesses an amount x of gold, while the second possesses an amount y. If 
the only gold-mining machine we have is used in A, there is a probability /»j that r per 
cent of the gold there will be brought up safely, the machine still being usable, and a 
probability (1 — p^ that the machine will be damaged, will mine no gold, and will be 
of no further use. Similarly, mine B has the probabilities ^, and (1 — ^j) associated with 
it. How does one proceed in order to maximize the total amount of gold obtained before 
the machine is defunct? 

PROBLEM 1.6. Let us consider the above problem in the case in which we know only 
the expected amounts of gold in each mine and the expected amount mined each time, 
without being able to observe the results of individual operations. 

PROBLEM 1.7. Two players, A and B, the first possessing x dollars and the second 
possessing y dollars, play a modified coin-tossing game described by the matrix 

Assuming that each player is motivated by a desire to ruin the other, how does each play? 

( 

1.3.  Enumerative Solutions—Deterministic Case 

Having posed the problems, let us now consider what we shall accept as an answer. 
Clearly, what we desire is a rule that, when given the initial parameters, the allowable 
operations, and their outcomes, yields a sequence of actions which achieves, or attempts to 
achieve, a designated goal in a fashion that is optimal in some previously specified sense. 

One way of obtaining this rule is to list all possible rules, calculate the effect of each, 
and then choose the one best suited for our purposes. This method we call the "enumera- 
tive" method. 

Let us pursue this technique in the case of Problem 1.1, which is deterministic, begin- 
ning with the case in which exactly N operations are permitted. Let >i, >,2, • • ■, y^ be the 
sequence of choices. The total return will be 

fOu y*,"-, ytf) -S^ + v *0 >.). (1.1) 

where the variables are constrained by the conditions 

(a) 

(b) 
0< yi <*:,, 

X;   —  X, 

x2 = ay^ + *(*! — jf,), 

Xf, = ^w-i + *(xv-i — Jw-i) (1.2) 

The problem is now to maximize / subject to the above constraints. Since several of 
the yi may be 0 or Xj (end points of die allowable intervals), any naive application of 
calculus is somewhat hazardous. 
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For N infinite, which is to say that an unbounded number of operations are permitted, 
the problem is one involving an infinite number of variables, and rather more discussion 
is required. Let us observe that the case of infinite N, which is meaningless in any prac- 
tical situation, possesses a very important invariance property from the mathematical point 
of view, since after any finite number of stages there still remains a process with an 
infinite number of stages. This fact will be of great utility in our subsequent discussion. 

1.4.  Enumerative Solutions—Stochastic Case 

In Problems 1.1 through 1.7 the outcome of any action is indeterminate, specified only 
by a distribution function, which we take to be known. Problems of a second order of 
difficulty, overlapping the domain of sequential analysis, arc those in which the distribu- 
tion function is only partially known. Third-order problems would perhaps be those in 
which it is not known whether or not a distribution function exists. We see from this 
brief listing that it is possible to construct a hierarchy of problems ranging from the 
blissful state of complete determinacy to the inferno of utter ignorance. In this intro- 
ductory treatment we shall consider only first-order problems. 

In order to understand what an enumerative solution of a stochastic decision problem 
involves, let us discusss Problem 1.4, considering the simple case in which only two 
stages are allowed. 

In the general case in which N stages are allowed, we require 2 - 4V-1 listings in order 
to enumerate all possible rules. If N is infinite, which is to say that the process is 
allowed to continue until it terminates of itself, the number of possible rules is non- 
enumerable.* This fact will make any direct application of the enumerative method some- 
what tedious of execution. 

The possible sequences of choices may be illustrated graphically by means of a tree, 
as shown in Fig. 1.1, 

Fig. 1.1 

The eight possible rules are 

A(l)A, A{2)A, /1(1)B. Ai2)B, 

B(l)A, B{2)A, ß(l)ß, ß(2)ß. (1.3) 

• We recall that an infinite process which allows one of two choices at each stage yields a set of 
possible sequences that may be put into 1 — I correspondence with the dyadic expressions of the real 
numbers in [0, 1]. 
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where, for example, A(i)B means that A is chosen first, /' units are obtained, and B is 
then chosen. If the process terminates with an initial choice of A or B, there is, of course, 
no further need for decision. 

We now require a method for comparing the outcomes of different rules. Since we are 
dealing with stochastic sequences, let us use the metric of probability theory and consider 
the expected return. In general, let us note, it is not the expected return that is important, 
but rather the expected value of some function of the total return. In the case of Problem 
1.4, this function has the form, if R is the return, 

m) = R>», 

R<r>, 
(1.4) 

since the expected value of f(R) is precisely the probability that R > «. 
It is now not difficult to calculate the desired expected value and to compare the eight 

numbers obtained in this way to obtain the optimal policy. Although feasible for small N, 
this technique is impossible of execution for N of even moderate size. 

We shall see, subsequently, that the enumerative method possesses theoretical value in 
some cases and computational value in others. In general, however, it is inferior to the 
method we shall employ throughout most of the study. 

n 

< 

1.5. Enumerative Approach—II 

The problems above lead to a complicated enumeration of cases because of the fact 
that a policy consists not merely in a selection of choices of A or B, but actually in a 
selection coupled with actual occurrences. Hence, in place of the four policies AA, AB, 
BA, BB for the two-stage process, we have the eight policies of the form A(/)B, B(j)A 
to consider. 

In Problem 1.7, in which the results of an individual choice cannot be ascertained, we 
need consider, in the two-stage process, only the four choices A A, AB, BA, BB. Let us 
observe that a policy such as AB is to be interpreted to mean that B is used on the second 
trial, if the machine survives the first trial. 

It is interesting to note that analytically there will be no difference between (1) the 
above problem, in which we do not know the precise outcome of any individual action, 
(2) a similar problem in which we do observe the effect of each choice, provided that 
the effects are of sufficiently simple type, and (3) a similar completely deterministic 
problem. 

The enumerative approach here leads to a very interesting geometric treatment of the 
problem, which we shall present later in Chapter 3. 

1 A. The Functional Equation Approach 

Let us begin by observing that the problems posed above have the following features 
in common: 

1. The state of the system is described by a small set of parameters. 
2. The effect of a decision is to transform this set of parameters into a similar set. 
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3.   The past history of the system is of no importance in determining future actions, 
a Markovian property. 

We have purposely left this description rather vague, since we feel it is the spirit of 
the problem rather than the letter that is significant. It is extremely important to realize 
that one cannot axiomatize mathematical formulation and legislate away ingenuity. In some 
problems the state variables are forced on one; in others there is a choice, and the 
mathematical solution will stand or fall depending on the choice that is made. Experience 
alone helps in the setting up of useful mathematical models. 

In addition to the above facts, we require the following simple PRINCIPLE OP 
OPTIMALITY: An optimal policy has the property that whatever the initial state and 
initial decision are, the remaining decisions must constitute an optimal policy with regard 
to the state resulting from the first decision. 

We shall now apply this principle to obtain functional equations whose solutions will 
yield the optimal strategies. 

PROBLEM 1.8.   Let us set 

/(x) = total return obtained using an optimal policy of allocation of 
resources at each stage, where an unlimited number of operations is 
permitted. (1-5) 

If the initial allocation is y and x — y, the return from this division will be 
i(.y) ■+■ b(.x ~~ >'). W'Ü) ay + £(*■ — y) remaining to continue the process. From the 
definition of f(x), paying heed to our fundamental principle, above, it follows that the 
total return from ay + b(x — y) will be f[ay + b(x — y)]. Consequently, the total 
return derived from an initial allocation of y and x — y will be 

R(y) = g(y) + K* - >) + fUy + *0 - >)] ■ (1.6) 

The maximum  return will  be obtained  if y is chosen  to maximize i?(>). Since this 
maximum return is, by definition, /(x), we obtain the functional equation 

/(*) Max  {JO-) + hix - >) + fray + *(x ->)]). (1.7) 

Since we have no a priori assurance that /(x) is continuous, even if g and h are, it is 
better to write 

/(x) =  Sup {£(7) + *(* - >) + Kay +*(*->)]) 
0<i/<jr 

(1.8) 

and then to prove, under certain assumptions, that the supremum is actually attained. 
For the N-stage process, we have, using an obvious notation and taking g and Ä to be 

continuous. 

Max  [£O0 + Ä(x - >)], 

/.v(x) =    Max fcO) + *(* - >) 

+ /.v-1|>;y+*0-;y)]}.      N = 2, 3, (1-9) 
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We now see the advantage of the mathematical fiction of taking N infinite. In place 
of the sequence of functions, (/wC^)}. given by (1.9), we have one function /(*) satis- 
fying (1.8). There is, naturally, a close connection between the sequence {/»(*■)} and 
/(JC), which we shall subsequently exploit. 

Having a functional equation for /(x) that under certain simple natural conditions 
determines f(x) uniquely, as we shall see, the question naturally arises as to how this 
function is to be used to determine an optimal policy. Turning to (1.7) we see that y is 
the quantity, or a quantity, that maximizes ^(y) + ^x — y) + /[<*> + ^(-f — y)] in 
[0, x]. This quantity y is a known function of x if /(*■) is once found. 

It is clear then that there is an equivalence between the optimal policy and the solution 
of the functional equation. We shall subsequently discuss this in more detail. 

PROBLEM 1.9.   Let us set, in similar fashion, 

/(*•) = over-all probability of success using an optimal procedure. (1.10) 

If we use an amount y on the first try, our probability of success is ^iy). If we fail on 
the first try, an occurrence with probability [1 — a(y)], we use an optimal policy starting 
with the residual amount x y. Hence, /(x) satisfies the relation 

fix) =  Max  {d(y) + [1 - *(?)]/(* (1.11) 

The problem is much simpler mathematically if we consider the probability of failure 
rather than the probability of success. 

PROBLEM 1.10.   Let 

/(x) = expected time, using an optimal procedure, to transform the particle 
into state 0,  if the probability that it is initially in state 1  is x. 

(1.12) 

If we observe the system, we find it in state 1 with probability x and continue with that 
knowledge; whereas, if we find it in state 0, the process terminates. Hence, if f^x) 
denotes the expected time spent if we observe on the first move, we have 

^(x) = l + x/(l). (1.13) 

On the other hand, if we act, we have 

M*) = H-/(«)- (1.14) 

Combining these two results, we see that 

ri + x/(l)-| /00 = MinLl+/UJ' 0<*<1, 
/(0) = 0. (1.15) 

PROBLEM 1.11.   Let 

/(«) — probability of obtaining at least n, using an optimal procedure.     (1-16) 

Enumerating the possibilities relative to each choice, we obtain 
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/(w) ^ Max l^/C« - i) «>2. (1.17) \Pxf(.»- 1) + P*Kn- 2) 
0+?2/(»-2)J 

The reasoning behind this equation is as follows: If one obtains k on the first step, 
one continues so as to maximize the probability of obtaining at least n — k on the follow- 
ing steps. For » = 1, we have the same equation with the convention that /(—£) = 1, 
*>0. 

PROBLEM 1.12.   Let 

f(x, y) — expected amount of gold obtained using an optimal sequence of 
choices. (1.18) 

If choice A is made, we have 

whereas, if choice B is made, we obtain 

M^.y) = p,{siy + fix, (l - sjyl), (1.20) 

where r, = r/100, jj = J/IOO. 

Hence, 

a      ^       ™     p: Mr.x+ /[(!-Ox, y]}-l 

PROBLEM 1.12'. Let us consider the same situation in which it is desired to maximize 
not the expected value of the total return, R, but the expected value of <i>(R), where ^> 
is a given function. 

In this case it is necessary to introduce another state variable, namely z, the amount 
already mined. If we set 

/(x, y, z) = exp #(/?), starting with an amount z, using an optimal policy, 
(1.22) 

we obtain for / the functional equation 

/(x, ,, z) = Max |_B: ^[jf (1 _ ^ z + ^ + (i _ w^(jr) J. x, , > 0, 

/(0.0,z) =*(2). (1.23) 

PROBLEM 1.1 J.   Let 

^(x, y) — expected amount of gold obtained using an optimal sequence of 
choices when A has expected amount x and B has expected 
amount 7. (1-24) 

If choice A is made, we have 

/x(x, y) = p1[r1x +/[(!- Mx, j,]}. 

while choice B yields 

(1.25) 
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Hence, 

/»<«. y) = ^.{-riy + fix. (1 - JO^]}- 

/(x.y)=Max|_ß:Mji>+/[;c>(i_ji)>]}J. x, > > 0. 

(1.26) 

(1.27) 

We see, as noted above, that the two problems, 1.12 and 1.13, yield the same func- 
tional equation, although quite different in structure. This will only be true in the 
simplest versions of Problem 1.12. 

PROBLEM 1.14. Since the total amount of money in the game remains constant, e, it is 
sufficient to specify the amount of money, x, held by the first player. Let 

/(x) = probability that B is ruined before A when A has x and B has c — x 
and when both sides use optimal strategies. (! 28) 

If A uses the strategy p = {pu p2), where pi and p2 denote, respectively, the frequencies 
with which the first and second rows of M are played, and if B uses the strategy 
a = (^1, y2), the frequencies with which B chooses the columns, we obtain, for 
0 < x < f. 

/(«) = Mi/(* + i) + p&fi* - i) + Mt/C* - 2) + P&H* + 2)- 
(1.29) 

Let us denote the right-hand side of this equation by T[p, q, /(*)]. If both sides play 
optimally, we have 

/(x) = MaxMinT^, y,/(x)] = Min Max r[/>, ^/(x)] , 0 < x < f, 

/(0)=0, x<0, 
/(x) = 1.        x>f. (1.30) 

This is equivalent to saying that /(x) is the value of the game whose payoff matrix is 

(fix + 1) /(x - 1) 
^/(x - 2) /(x + 2) 

)■ 

(1.27) 

1.7.  Discussion 

It is important to observe that in all these problems the functions—the solutions of 
the functional equations—are essentially secondary, since the optimal procedures are the 
items of primary interest. Actually the two are equivalent, since a procedure defines a 
function, and, conversely, a solution of the functional equation defines a procedure. Fre- 
quently the procedure is quite easy to describe, whereas the function is quite complicated. 
From the point of view of application, the function yields little or no immediate informa- 
tion as to the structure of an optimal procedure, whereas the individual steps in the 
process may illustrate some valuable principles that may be applied in heuristic fashion to 
the more complicated problems which frequently and almost maliciously defy exact 
analysis. 
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The plan of this study is first to formulate some general mathematical problems of the 
type discussed above with the concomitant existence and uniqueness theorems, and 
then to discuss a number of interesting simple representatives of the general problem. 

It is not too difficult to subsume the problems we discuss under a more abstract frame- 
work. However, it is important to postpone this inundation until a large number of indi- 
vidual problems have been formulated and solved, since certain indigenous features' of 
each problem in its native setting will facilitate its solution. It is further important that 
we consider problems that arise naturally in the external world, since, in general, it is only 
these that we can expect to possess solutions with simple and easily discernible structures. 
Particularly in a theory involving non-linear functional equations are the signposts of 
nature most valuable in preventing us from wandering desolately in the trackless wilder- 
ness of existence and uniqueness theorems. 

1.8.  General Mathematical Formulation 

Let p be & point in an abstract space, a "phase space"; let f(p} be a function of p, 
whose values lie in another abstract space; and let Tk be a set of operators applicable to /. 
The general class of functional equations in which we are interested has the form 

/(/>)= Max [n(/)]. (1.31) 
k 

Minimization problems are included in this formulation, since they may be converted into 
maximization problems by a simple change of sign. The index k may run over a finite, 
infinite denumerable, or non-denumerable set. 

The simplest examples of such operators are furnished by the class 

? r»(/) = **(/') + > .hi(P)nsklp), (1.32) 

where p is & point in «-dimensional space, £&(/>)• ^*J(/0 
are scalut functions, and ski is a 

point transformation. Examples of equations connected with such transformations are 
(1.7), (1.11), (115), (117), (1.21), and (1.27). We shall consider only equations of 
this type in this study, except in Chapter 4, where some simple integral operators appear. 

Problems leading to equations of this type arise from both deterministic and 
stochastic models, with slight differences of form, as we can see upon comparing Eq. 
(1.7), which arises from a deterministic model, with Eq. (1.11), which arises from a 
stochastic model. These slight differences force us to use different techniques in estab- 
lishing existence and uniqueness theorems. 

In this section, devoted to a mathematical formulation of the problems occurring in 
one phase of dynamic programming, we shall discuss various types of general problems 
that lead to the diverse classes of functional equations we shall consider in the remainder 
of the report. 

1.8.1. Deterministic Investment Problems. At each stage of a sequence of opera- 
tions we are permitted to divide our resources, of total amount x, into k parts 
*i. Jf»." ■ • . **. where Xj > 0 and Xi + xa + • • • + xk = x. The return from this parti- 
tion is given by ««(x,, x2, • • ■, xk), and a total quantity ^(x,, x2, • • •, x») will be available 



c 

10 THE THEORY OP DYNAMIC PROGRAMMING 

to continue, repeating the process. If we define 

/(x) = total return obtained using an optimal policy, with an unlimited 
number of operations, 

we obtain the functional equation 

/(x) = Max {«(Xi, x2 .>fn)  + /[*(^l, ^2. •■ ".^n)]}. 

(1.33) 

(1.34) 

x. The where the x* are subjected to the conditions x4 > O^ Xj + x2 + • • ■ + xB 

boundary condition is /(0) = 0, assuming, naturally, that a(0) = 0, ^(0) = 0. 
1.8.2. Stochastic Investment Problems—The Gold-mining Problem. There are 

» sources of profit having respective total yields Xj, x2, • ■ •, x„. We are allowed an 
unbounded number of operations and a choice of one of a set of possible actions on each 
operation. Associated with the ^th operation there is a distribution function of returns: 

Pih — probability of a return of £" **i, (1-33) 

where we assume that 2; Pik < ^i < 1 for all k. This means that associated with each 
choice of an action there is a non-zero probability of not being able to continue the 
sequence of operations. If this kth operation yields a return of 2 "«/**/• ^le remaining 
total yields are now x;(l — ^i,-*), ; = 1, 2, ■ • •, ». Hence, if we set 

/(xj, x2, • • - , xM) = expected yield employing an optimal policy, (1-36) 

we obtain for / the functional equation 

/(*1, *2. , xB) = Max   X^ pilt \ y^ ai: 

+ /C*i(l - diifc) 

kXj 

,X„(1   —  /«{„*)] (1.37) 

(1.38) 

1 

The simplest example of this is furnished by the equation 

/(x,, x2) = Max        , ,_       ., Nil- 

Here ^4 is the probability of receiving rjXj and being allowed to continue the operations. 
1.8.3. A Testing Problem. A system is known to be in some one of N + 1 different 

states, which we denote by 0, 1, 2, • • • , N, with an initial probability {/>»} that it is in 
the ifeth state. By means of the following operations, we wish to transform it into a given 
state, which may as well be 0, with the certainty that it is there in a minimum time: 

L: We observe the actual state of the system and proceed with that knowledge. 
This requires a time tL. 

A: We perform an operation Ai that converts the original probability distribution 
{pk) into a new distribution {pu}- This operation consumes a time /(. 
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1 
Let us set 

P = 

Pa 

Pi 

Ps 

rlp = 

'Pol' 

Pu 

Pxi 

xk i = 0,l,2,---,N, (1.39) 

where the "1" occurs in the kth place and define 

f(P) = f(Pi' pat'" t Pn) — expected time required to have the system in 
state 0 with certainty, using an optimal policy. 

(1.40) 

Then / satisfies the equation 

/(/,) = Min 

Ar- H + fiTlp) 
P=£xo, 

/(X.)  =   0. (1.41) 

There is a natural discontinuity at x0, since for p ^ xQ, no matter how close it may be, 
we must look or act, either of which consumes a certain non-zero time. 

1.8.4. A Production Problem. Let us suppose that we are given initial amounts 
*i. x2,---,xn of substances Au At, ■ ■ • , An with the knowledge that at each stage of a 
sequence of operations each substance may be used to produce both more of itself and 
more of the other substances. If it is desired to maximize the amount of one given 
substance we possess at the end of a fixed number of stages, a question arises as to the 
allocation of resources at each stage. 

Let us consider a simple case in which there are only two substances, A and B, and in 
which a quantity x of A yields c^x of A, if used to produce A, and c.^x of B, if used to 
produce B. Similarly y of B produces drf of A and J2y of B. Assuming that at each 
stage we are allowed only these operations: 

7V 
B 

A 

A' 

A^>A 

B-^B' 
T,: 

B->A 
T4: 

B 

B 

B 
(1.42) 

we see that if the initial amounts of A and B are x and y, respectively, at the end of the 
first stage the results of the various operations will be 

'•cm o )■ <Hr,)o 
T,\y) = \c2x+<i4y)- (143) 

■ 

. 
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( 

The effects of various choices T^ T2, T3, T4 are equivalent to matrix operations: 

M: :■)■ -■=(: :> *■< ;■)■ M: ;.)• 
(1.44) 

If, given the initial vector x0 whose components are x and y, we wish to maximize 
the final amount of A, the problem is that of choosing the sequence of matrices 
2*«, Ti. ■ ■ •, Tin so that thex-component of 

"=(Br-> (1.45) 

will be a maximum. 
In general we may wish to maximize some linear combination of the final amounts of 

the various commodities, which is to say, the inner product of x with a fixed vector 
c, (x, c). If we define 

<j>„(x) — (xn, c) = value of the inner product obtained using an optimal 
»-stage procedure, (i-^ö) 

we obtain the functional equation 

<j,n(x) = Max ^n-iCT^x, 0, » > 1 • (1-47) 
k 

This problem is complicated by a lack of invariance in time, i.e., « —> « — 1. If an 
invariant formulation is desired, we may be able to obtain this in certain cases by using 
the following device: We may suppose that we are performing these operations in order 
to meet some contingency that has a certain probability of occurring between stages of the 
sequence of operations. 

Let 

4>(x) = ^0*,, x2) probability that the contingency can be successfully met 
with current quantities x1 of A and x2 of B. 

probability that the contingency can be successfully met 
whenever it occurs, given initial amounts of Xj of A and 
x2 of B and using an optimal allocation policy. 

p = probability  that  the contingency occurs  between two 
stages. (i-^S) 

Then 

f(x) = p4>(x) + (!-/>) Max/(7» . (1.49) 

1.8.5. An Investment Problem. In the previous problems we have been dealing 
with expected values and the maximization or minimization of these values. Frequently, 
however, the actual purpose of a program is not so much to maximize the expected value 
of a critical variable as it is to maximize the probability that this variable is above a certain 
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level. Consequently, it is of interest to compare the optimal strategy derived from using 
the expected-value criterion with the strategy corresponding to the more realistic criterion. 

There is an additional reason for studying alternative criteria. It is possible that the 
strategy which yields the maximum expected value will have an undesirably large variance 
associated with it which makes its use quite risky. On the other hand, it is to be expected 
that the strategy associated with the criterion of maximum probability will automatically 
possess a smaller variance. 

Let us consider a situation in which there is an infinite sequence of operations to be 
performed. At each stage we have a choice of one of the operations A^ A2, • • •, Ak. If the 
/th operation is chosen, there is a probability pi), 1 </<»■. of receiving an amount /, 
with Sy-i Pa < ! for *!! it an<l a probability of terminating the sequence of operations 
equal to the remaining probability 1 — 2;=1 Pa- 

If we define 

/(») = probability of obtaining a return greater than or equal to «, 

then clearly /(«) satisfies the equation 

/(«) = Max Y^Pufi»- i)l 

(1.50) 

(1.51) 

since, if one obtains / on the first operation, one continues so as to maximize the proba- 
bility of obtaining at least n — j. 

This is the general case of Problem 1.8.4, discussed previously. 
1.8.6. An Optimal Inventory Problem. Let us assume that we have a quantity, x, 

of merchandise on hand, and that there is a probability ^(y) dy that at some specified 
time we shall be called on to deliver a quantity y of this merchandise. To meet this 
potential demand, we may order an additional quantity, z, of merchandise at a cost of 
^(z). If the demand, y, exceeds the total quantity, x -\- z, the request for merchandise is 
satisfied as far as possible, and a penalty cost of M. is levied. Assuming that this situation 
repeats itself indefinitely, and that future costs are discounted at a fixed rate, a, deter- 
mine the ordering policy which minimizes the over-all expected cost. 

Let 

/(x) = expected total cost using an optimal ordering policy. 

If z is ordered initially, the total expected cost will be 

(1.52) 

r(»./)=,f(«) + -f[iK + «(o)] !%(>)-/> 

+ 
Jfx+z 

x + z- >)</>(>) dy\ (1-53) 

Since z is to be chosen to minimize the total cost, we have, for our functional equation, 

/(x)=:Inf[r(Z,/)]. (1.54) 
»>0 

^ 
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CHAPTER  2 

EXISTENCE AND UNIQUENESS THEOREMS 

2.1.  Introduction 

In this chapter we shall discuss the questions of the existence and uniqueness of the 
solutions of the various functional equations formulated in response to the problems 
posed in Chapter 1. 

We shall first show how that general factotum—the method of successive approxima- 
tions—yields, under assumptions that are natural to the problem, existence and uniqueness 
theorems together with information concerning the dependence of the solution on the 
variables and parameters in the equation. 

Using these facts, we shall turn to a discussion of the rigorous concept of a solution 
and then to various questions concerning computational and approximate methods. This 
last is of great practical importance, since the non-linearity of the equations reduces the 
number that may be resolved purely by analytic means to a woeful handful. 

' 

(. 

2.2. The Equation tip) = Max \ gk{p) + hfc{p)«TAp)l 

In Section 1.6 we encountered the equation 

/(*•>) =M.xLMj]y + /[x(1_Ji)X|}J. 
in connection with a gold-mining problem. 

This is a special case of the more general equation 

" "I 
fit) =  Max    gk(p) +  V^CMIV)   . 

where /> is a point in N-dimensional space, £y, and Tikp is a transformation taking p into 
another point in £y. To simplify the notation we shall assume throughout that Al = 1. 
It will be quickly seen that this is no essential restriction. 

Our first result is 
THEOREM 2.1. Consider the equation 

/(/>) =  Max [^(/0 + Afc(W(3»]. 
i<k<» 

(2.1) 

where we assume that 

(a) The point p is restricted to a region R with the property 
that p €R implies that Tkp t R, 

15 
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<" 

1 

(b) 0<£ftO)<fi        forpeR, 

(c) 0 < bk(p) < cz < 1        forpeR. (2.2) 

Under these conditions there is a unique bounded solution to (2.1). 
As we shall see below, conditions (2.2b) and (2.2c) could be replaced by I ^ I < f j, 

L^* I < ^z < 1 without affecting the validity of the final result. In most applications, 
owever, (2.2b) and (2.2c) will be realized, since hh represents a probability and g* an 

expected gain. Our first application of successive approximations will rely heavily upon 
(2.2b) and (2.2c). 

There are several ways of applying the method of successive approximations that are 
distinct not only analytically, but also conceptually. 

The first takes its origin in the viewpoint that an infinite process is only sensibly 
defined as a limit of a finite process. We consider, then, that at first we are allowed 
only n stages. If we define 

/„(/?) = return obtained using an optimal policy when at most n 
stages are allowed, (2-3) 

we obtain the recurrence relations 

/„(f) - Max^/O], 
ft 

/^(/O = Max [#-.(/>) + M/O/nCn/O]. » = 0, 1.2,-   •. (2.4) 
k 

Let us show that the sequence {/„(/O) converges to a solution of (2.1). Since 
gk, hie > 0, it is clear that /,(/») > foip) for all p in R. From this it follows inductively 
that /n+1 >/„>•• /i > /o> 0. If we set »„ = SupRf„(p), we obtain from (2.4), 
using (2.2a), 

< f, + c2un. (2.5) 

which shows that «„ < ^/(l — ^2). « = 0, 1, 2, • • •. 
It follows, then, that for each p € R, the sequence {/»(/>)} converges to a function that 

we call /(/»). It remains to demonstrate that /(^) is actually a solution of (2.1). 
Turning to (2.4), we see that the monotone character of /„ yields 

/n+1(/7) < Max [£*(/>) + hk{p)HTkp)], 

whence 

/(/,) < Max {pif) + hk{p)f(Tkp)-[. 

Similarly, from (2.4), 

/(/») > Max [£*(/,) + hk(p)fn(TkpK, 

(2.6) 

(2.7) 

(2.8) 

whence 

I' 
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tip) > Max ooo + hipmnp)!. (2.9) 

Comparing (2.7) and (2.9), we see that we must have equality. 
Let us now demonstrate the uniqueness of this solution, fCp). Let F{p) be another 

bounded solution satisfying (2.1): 

P(p) = Max [gk(p) + V/O^W)] • (2.10) 

Let Jk = k(p) be an index which yields the maximum of £&(/>) + fok(p)f(Tkp), and let 
m = m(p) be a corresponding index for £*(/>) + hk{p)P{Tkp). Then by virtue of the 
maximum property we have 

Hence, 

KP) = gkiP) + hkip)i(Tkp) > gm{p) + hm(p)fiTmp), 
HP) = imiP) + K(P)F(.Tmp) > gkip) + hkip)F(Tkp). 

HP) - HP) > Mm/(*W0 - WM 
<i>K(p)[Knp)-p(TkpK, 

which yields the result 

\HP) -F(/-)|<Max 

If we define 

5-Sup |/(/;) 

hnip)\fCTmp)-PiTmp)h 
hiP)\KTkp) -F(Tkp)\   V 

HP) |. 

we have for a p for which \f(p) — FCp) | > ^ — c, 6 small, from (2.13), 

S — e < r25. 

(2.11) 

(2.12) 

(2-13) 

(2.14) 

(2.15) 

Since r2 < 1, this leads to a contradiction for e sufficiently small, unless S — 0. This com- 
pletes the proof of the uniqueness. 

The second application of successive approximations proceeds upon the basis that the 
physical origin of the equation is of no interest. We choose, consequently, an arbitrary 
non-negative function, fo(p), uniformly bounded over R, as our first approximation. 

The recurrence relation is now 

/„«(/>) - Max [gk(p) + t,k(p)fn(Tkp)-],        n= 0,1,2, (2.16) 

To show that the sequence {/„(/')} converges, we use the device of (2.11), above. Let 
k = &ip) denote an index that furnishes the maximum for fn_1, and let m = m(p} de- 
note a corresponding index for /„. Proceeding as in (2.12), we obtain, for « > 1, 

| /,«(/>)  - fniP) | < M« H M%*1  - /-jj-^jil- t2"1^ 
K2 1 Tn(.Tkp) — fm+lMlHtr) IJ 
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If we define 

( 

*n = Sup !/..(/»)  - /,„(» ]. « = 1, 2, (2.18) 

we obtain, from (2.17), «„+1 < fg«,,. Hence, if cx = SupÄ/0(^), we obtain finally the 
inequality *l,+t < c**^^. This shows that the series 

y> /») (2.19) 

converges uniformly in R, and thus that the sequence {/„} converges uniformly in R to a 
function /(/>). 

It follows from this that /(/>) will be continuous if each /„(/>) is a continuous func- 
tion of p. This will be true if £*(/>) and hk{p) are continuous in />, and if /o(^) is chosen 
to be continuous. 

We have thus demonstrated 
THEOREM 2.2. Under the conditions 

(a) Sk(.P) i* a continuous junction of p in R, 

(b) t>k(P) it * continuous function of p in R, and | hk{p) [ < f2 < 1,       (2.20) 

the solmtion of (2.1) is a continuous function of p. 
Furthermore, if gidp} and hk{p) are continuous functions of a set of parameters, q, 

f(p) will be a continuous function of these parameters. 
In Section 2.7, below, devoted to approximate and computational techniques, we shall 

show that a combination of the above two ideas can be used in many cases to furnish quite 
useful initial approximations. 

2.3. The Equution f(x) = Max {a(xlr x2, - ■ - , x„i 4- f [b(x„ *.%,"•, x„) |} 

The exirtence and uniqueness theorem in the previous section does not apply to 
the equation 

/(x) = Max {£00 + b{x - >) + /[<> + *(« - >)]}. (2.21) 
0<»<jr 

encountered in Section 1.6 in connection with an investment problem. To remedy this, we 
shall prove 

THEOREM 2.3. Consider the equation 

/(x) = Max {d(x„x2, • •• ,x„) + /[^(x,, x2, •••.x^)]). (2.22) 

where R = R(.x) is defined by xk > 0, ^ i xk = x. 

If 

(a) <«(xi, x2, • • ■, xH) is continuous over R(x) for 0 < x < x0 

and non-negative, a{Q, 0, • • -, 0) = O, 
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(b) £(AI, x2, • • •, xB) is continuous and non-negative over R, and 

n 

K*ly ^2. *    • . ^n) < f ^^2, X*' 0 < r < 1, 
1 

in Rix0), 

(c) 2r=o A(f,xo) < oo, where 

Ä(x) =  Max [Max a^x^ Jf2, • • •, xn)], 
0<l/<«      B<») 

(2.23) 

/A^r* is a unique continuous solution to (2.22) for which /(0) = 0, for 0 < x < x0. 
PROOF.   Let /o(x) be the value obtained by choosing x^ = x, x2 = x3 = • • ■ xn = 0 

repeatedly. Then 

/„(x) - <x) + ^(x)] + (2.24) 

where we have set a{x) — a(x, 0, • • •, 0), h(x) = ^(jf, 0, • • •, 0). The series on the 
right is majorized by 

oo 

s h(clx0), 

and hence converges uniformly. 
Define 

/B+1 — Max «Xj, x2> • • •, xw) + /„[^(x!, x2, 
B(I) 

.^)]}- (2.25) 

From the definition of /„, it follows that /, > f0, and hence that /„+, > /„. Let Mn{x) 
=  Max /„(>). Then, from (2.25), 

o<v<x 

Mn+1(x) <*(x) +MB(fx)> (2.26) 

whence /MB(x) < 2*o^(f,Jf)- Therefore, /n(x) converges to a function /(x) for all x in 
[0, x0], which, as above, is readily seen to be a solution. 

The technique utilized above is readily adapted to show the uniqueness of a con- 
tinuous solution, /. If g is another continuous solution, we obtain, for a pair of points 
(x,, x2, - • •, xn), (jk, >2, • • •, )„} which yield the respective maxima, 

/(x) = ^(X!, x2> • • •, xw) + f[Kxu X2, • " •, Xy)] 
> aiy^, y2, • • •, yN) + /[*(>!, y2, • • •, yw)]. 

g(x) = ^(y,, y2. • • •, >„) + g[Hyi. y«. • •. y*)] 
> ««(x,, x2, • • •, x,,) + ^[^(x,, x2, • • •, xw)] , 

whence 

| /(x) - ^(x) | < Max {| /IXx,, x2, • ••, xw)] - ^[^(x,, x2. • • •, x,)] |. 

| /[*(yi. y2, • •, y^)] - ^[*(yi, 72. • • •, yi»)]|} - 

(2.27) 

(2.28) 
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«(«)=  Max I/O) -^)|. 

M{x) < M(cx) < M(c»x), «=1,2, 

(2.29) 

(2.30) 

Since Af(x) is continuous and Af(0) = 0, we obtain Af(x) < 0, which means that M(x) 
is identically zero. This completes the proof. 

Let us note that all we have actually proved at this point is that there is a unique 
bounded solution to 

/C*)  = Sup {*(*!, X2, • • • , *„) + /OC*!, *«.••. -^n)]}. 
M 

/(O) = o. (2.31) 

since, at the moment, we have no assurance that the maximum is assumed. The simplest 
way to ensure that the maximum is assumed is to prove that / itself is continuous. This 
fact and the corresponding results concerning continuity as a function of parameters may 
be readily derived by using the modification of the method in Section 2.2, Eqs. (2.17) 
through (2.19), given above. 

2.4. The Equation Hp) = Min [1  + SJU P*H*kh 1  + '">)] 

Let us now turn our attention to the more complicated functional equation involved in 
the testing problem discussed in Section 1.8.3: 

fip) = Min J 1 + V Pkf(xk}, Min [1 + /(!»] 

/0*o) = 0, 

where / runs over the set / = 1, 2, • • • , .M. Here, we set 

(2.32) 

P = 

Po 
Pi 

Tlp = 

"0"| 

[poll ' 

ptl 1 
■ 

Xk = 0 

>•«. 
_0_ 

(233) 

where pki = pkiipo, pi,' ' ', pn), the "1" occurring in the kth place, and take f(p) to be 
a scalar function of p. That f(x0) = 0 is a consequence of the fact that x„ is the desired 
state and that no action is taken when p — x0. 

We shall prove 
THEOREM 2.4. // for each transformation Ti it is true that 

1 
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( i*M) 

for all // inch that 2».,)/'* — 1. Z'* > 0, then there exists a unique houndtd paxith« sfih 
lion to Hif. (2.32). 

I'HO«»!'. WC »hall once more employ the method of successive approxiimliom. f !omtiilrt 
Ihf proccilure 5, represented by LT^LT^ • • •, which means that we look, (hen m», if p h 
not .v,,; look, »tt; and so on, repeatedly. Similarly, define J, by 1\L'I\L- • • . J( id »Iriit 
from Minplf considerations of the probability theory that the expected time» Pt(p), /'»(/') 
ir«|niml to d.msiomi f> into x0 with certainty are finite for both stratc^ici. 

T» ittUulatr Px(f>) — fs,(p) and FL.(/») = /«.(/'). we employ the equation« 

<*»} 

k IHWI^ 

i 

W 

3C,) = 2 -S-   V" ^4: M«») = Ft(*«). /= 1.2,---,i», r? *«> 

Sx*,^ v> ^v V^ t J^vO;><--.< t. the ieternHaatK «>t the innrem <iö« ft*>r w»ft«4*v *M rty« 
>*s*f«t* 6kks * t«M<pt« Milieun. netessirly ptsstcne, is we see: hy ial-'ing irtnrrf.ty rfir> f,% 
•J*SK<*t*ittv*i F- { Vt>- wir ÄEb&lw isÄerrmne F i 7) lad Fjj*}. 

yi p*iJ**$v 

-  - '.< T ß 

- fiV). 

C^woifem^:  ne rcktcst paMcccs x -im -rnmrnwr Jawariwa.   r  s tear haf - *>';  <r 

dCH.   UNKfV*kU       III Mil 1» 

rf*^   — 5t-«*i ■ <_*fnt1& ~£tfi >- 

•*~~>m*, Tfe. 
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(a) 

(b) 

(c) 

n 

HP) = i + 

n 

s PkfiXk), 

g(P) = 1 + giTip), 

g(p) i + y^pkg(xk), 

(d) /(?) = i + /(ri?). 

Consider first the case corresponding to (a). We have 

s /(/») - gipy = > . ^[/(*») - *(x»)]. 

whence 

| /(/») - giP) | < Max 1 /(xfc) - $(**) |. 

(239) 

(2.40) 

(2.41) 

Therefore, for all /? for which (a) holds, the assertion of the lemma is correct. The equa- 
tions of (2.39a) will hold whenever p is close enough to x0, since /(/>), gip) > 1 for all 
p =£ x0, whereas 1 + 2jJ=1 pkf(xk) and 1 + SaU/'itfC**) are close to l lor P close to ^o- 
Thus, 1 + f^Tjp) and 1 + g(Tip) will be dominated by the observation moves for p 
close to x0. 

This is an important point, since the crux of our proof is the fact that (2.39a) will 
always occur after a finite number of moves, by virtue of Eq. (2.34). 

Now consider Eq. (2.39b). We have 

Hence, 

HP) = 1+ 2^ M^ ^ 1 + HTiP)' 

n 

giP) = 1 + «(*» > ! + 52 ^(X*)- 
k-o 

| HP) - giP) | < Max CM« | /(^) - H*ä \' 

(2.42) 

Sup\f{Tlp)-giTlp)\].        (2.43) 
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and similarly for (2.39c). For (2.39d) we obtain 

Sup | fip) - g(p) | < Max [Sup j /(!» - g^p) |. 

Supl/CTV/O-^TV/Op. (2-44) 

We now iterate these inequalities. For any fixed p, T*, T^, • • •, Tijf will be in the region 
governed by (2.39a) for r large enough. Consequently, we obtain 

Sup | fip) - gift | < Max | /(x») - j(*>)| • (2.45) 

This completes the proof of the lemma. It remains to show that Maxfc I /(jfk) — ^(x») I 
= 0. Let K be an index at which the maximum is assumed. It follows from the functional 
equation for / and g that 

/(**) = 1+ /(!>,).        / = /(*). 

g(*K) = 1 + giT,^),      /' = l'(K), (2.46) 

and that 

/(*r) = 1 + KTIXK) > 1 + f(.T,.xK), 
g(xK) = t + g{Tl.XK) > 1 + ^(r^) . (2.47) 

If both inequalities are proper, we obtain 

|/(^) - *(**) | < Max [j/Cr,*,) - giTlxK) |, 
1/(2*,.^) - g(Tl.xK) | ] < Sup | fip) - g{p)\,        (2.48) 

p 

which contradicts (2.45). Thus, for / or /' we have 

/(**) = 1 +/(?>*), 
g(xK) = 1 + ^(TV*). (2.49) 

This means that the first moves can be the same. 
Consider now the situation for second moves. Using the same argument, we see that 

the second moves, i.e., the equations for f(TixK), g(TiXK), can be the same, and so on, 
by induction. 

Let pn = pn(xK) be the distribution achieved after « moves, where the (» + l)th 
move puts xK into the region governed by (2.39a). The same argument as that above 
shows that both / and g may be put into this situation at the same move. Then 

n 

/(**) = (« + 1) + V pknf{xk ). 

gixK) = («+!) + Pkng(xk) . (2.50) 
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Therefore, 

n 

By assumption, pan > 0. Therefore, 

|/(^) - *(*«) | < (1 - ?*,)|/(*») - ^(^) | 

(2.51) 

(2.52) 

implies that \f{xK) — g(xK) | = 0. This implies that /(/») — g(p) wm 0, and completes 
our proof. 

2.5. Th« Optimal Inventory Equation 

Let us now treat the equation that occurs in connection with the optimal inventory 
problem discussed in Section 1.8.6, 

.(*) = Inf \giy -x) + 4«(0)[1 - F(y)] 

+   C'0 *(v,y)äF(v) +   f* *(!-») dF(*))\t (2.53) 

where we shall assume that 

(a) ^(0)=0.        giy)>0 {oiy>0, 

(b) C* dF=l, dP> 0, 

0<rf< 1, 

0 <   j      ♦(!», >) </F(v) < f, < oo for all jr > o. 

(c) 

(d) (2.54) 

Under these assumptions we shall prove 
THEOREM 2.5. There is a unique uniformly bounded solution to (2.53).* 
PROOF. We shall, as before, employ the method of successive approximations. Let 

«0(x) = ««{«„(0)[1 - F(x)] +   P0 ♦(«% x) rfF(*) +   P «0(x - »-) iV{v)\ , 

+   f"*(l',j)rfP(«')+   r  «»()-- ^^("^l- (2-55) 

* This mult is contained, along with a multitude of other results, in the paper of Dvoretzky, 
Kiefer, and Wolfowitz referred to in the Preface. The method of proof given here is, however, dif- 
ferent from theirs. 

1 

r 
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Setting x = 0, we obtain 

«o(0) = 
_ {/; ♦ (f, 0) dP( .] 

(1 -a) 
(2.56) 

Substituting in (2.55), we obtain an equation, the "renewal" equation, for »oOO» 
which may be readily solved by Laplace Transform techniques or by simple iteration, 
since 0< * < 1, and f* dF = I, dF > 0. 

Referring to (2.55) again, we see that 

*) + *.0')] 

Since 

Inf ig(y *) + *o(7)] < ^(0) + »oW = Uoix), 

(2.57) 

(2.58) 

we obtain the important result that *I(A-) < «o(*)- From this it is immediately dear, 
using the recurrence relation in (2.55), that uz < «,, and that, generally. 

*o > «i ,>•••> *„ >0. (2.59) 

It follows that for all AT > 0, the sequence {«„(x)} converges to a uniformly bounded 
function «(x). Using (2.55) again, it is clear that »(x) satisfies (2.53). 

It is not difficult to use the methods of the previous sections to show that the con- 
vergence is actually geometric, i.e., I »(x) — *n(x) I < c^a", for some f2 > 0. 

To establish uniqueness we proceed as before. Let us assume that there are two solu- 
tions, u and w, both bounded in any finite interval [0, x]. Let y = y(x) and z = z(x) be 
two decision functions that yield values of »(x) and «»(x), respectively, within €1 and €, 
of the actual infima, where e^ and e2 are small positive quantities. 

Then we have 

//(x) = T{u, >)+£,< r(*, z)+€3, 

wix) = T{u>, z) +€2< T{w, y) + €4, 

where e:i and €4 are again small quantities, and T{u, y) is an abbreviation for 

g{y - x) + a 

(2.60) 

*(0)[1 - F(y)] +   r *(;»&<*) 

+ f u(y-v)dF(v)\. 

We have then 

u(x) — w(x) < e3 e2 + T(«, z) - T{w, z) 

€4+'/(*,y)-r(u'>y). 

(2.61) 

(2.62) 

Since 
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f 
I TO», *) - r(w, z) = a  C' [«(z - v) - «/(z - »/)] rfF(f) 

+ 4«(0)-«;(0)][l-F(z)]. 

the inequalities in (2.61) yield 

| «(x) - «;(x) | < Max j«, + a  C' \u(z - v) - w(z - v) | dF(v) 

+ <|*(0) -W(0)|[l-F(z)], 

es + <»   I    | «(^ — *) — «;(> — f) | ^(v) 

+ 4|«(o) -«-(0)11:1 -Piyn 

(2.63) 

(2.64) 

Let x be chosen to be a point at which I u(x) — «>(*) I is within e6 of its supremum, J. 
Then, since 

p | «(z - «') - «»(z - f) | dF(v) 4- | «(0) - tt/(0) | [1 - F(z)] 

< d   C'dPiv) + dil - F(z)] = d, (2.65) 

we obtain, from (2.63), 

d - €e <€t + ad. (2.66) 

which yields d(l — <«) < €5 + €6. Since 1 — d > 0 and e5 and c6 may be chosen arbi- 
trarily small, d must necessarily be zero. 

2.6. Definition of a Solution 

We have shown that the functional equation in (2.1) possesses a unique bounded 
solution. It is clear that this function defines a strategy S, since the first choice will be 
Aj,, where k is the index that maximizes gkip) + t>fC(p)f(Tkp), the second choice being 
similarly determined by the expression for f(Tkp), and so on. 

The question arises as to whether or not this is actually an optimal strategy, and, if so, 
as to whether or not it is unique. That it is an optimal strategy we see by the following 
argument: Suppose that we have another prescription Sa for determining an optimal yield. 
This prescription defines a function 4>(p) that must satisfy the same functional equation, 
(2.1), because if it did not, it would not possess the necessary optimal continuation 
policy. Hence, ^(/>) = /(/')• Since S yields /(/>), we see that no other policy Sa is 
preferable. 

It is not necessarily true that S is unique. This arises from the fact that for various p's 
several choices may be equivalent, although the continuations from equivalent choices will 
be quite different. We shall subsequently meet a very simple example of this. We observe, 
however, that the functional equation permits us to obtain all optimal strategies. 

» 
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Another question that arises is one as to the precise a priori definition of fip). The 
definitions given in the Imroductjon are loose, since it is not dear that the required 
optimal procedures exist. 

There are several alternative procedures, corresponding to the techniques of spcressivc 
approximation that we employed. 

We may define, by ukase, fip) to be the solution of our functional equation, using the 
existence and uniqueness of the solution as a. Je facto justification. Or we may define 
fit(p), unambiguously, as the maximum return «dien only N stages are allowed, and set 

/(/0 =  Lim M/0 (2.67) 

whenever this limit exists. Or we may ambitiously consider the space of all sequences of 
decisions S — Aa>A*i • - •, remembering that the exponents, a,, axe, in general, random 
variables depending on the pattern of events and not merely fixed in advance, and define 

HP) Max f„(p), 
s 

(2.68) 

when it exists. In general it will be dear that Sup8 /«(/>) exists, and an essential part of 
the problem will be to show that the maximum is actually attained. That the maximum is 
actually attained may be demonstrated by use of the functional equations or abstract 
topological techniques, which we shall not present here. 

From the mathematical standpoint it would seem that (2.67) is a preferable definition, 
since it furnishes a stronger hold on /(/») than does (2.68). However, since the two 
definitions lead to the same function, it is actually convenience that decides which to treat 
as fundamental in any particular problem. 

' 

2.7. Approximate and Computational Methods 

At this point it must be confessed that in the theory of dynamic programming, as in 
most other theories treating of the physical world, the majority of the functional equations 
that arise will be resolutely, if impartially, insoluble by analytic means, as far as explicit 
solutions are concerned. Consequently, the theoretical and practical development of the 
theory requires that efficient and readily applicable approximate and computational 
methods be developed. 

In theory there is only one method that may be used to approximate the solution of 
a functional equation, namely, the solution of an approximate functional equation. In 
practice the variants of this technique differ greatly. 

Let us write our functional equation in the form 

/ = T(/.P)) (2.69) 

where / represents the unknown function, T is the transformation induced upon / by the 
physical process, and Pisa quantity representing various parameters that occur, constants 
and functions. 

The method of successive approximations in its usual guise relies on solving the fol- 

1 
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lowing approximate equation 

- 

1 

f™ = nfH,p), (2.70) 

where /„ is a suitable first guess at the solution. In more refined applications, (2.70) is 
replaced by 

/..+,-*(/«♦,) = *-(/... ?)-*(/„). (2.71) 

where R(f) is a transformation so chosen as to force /„ to possess certain desired proper- 
ties or so chosen as to increase the rapidity of convergence. 

In place of the above approach, we may consider the equation 

f=T{f,P'), (2.72) 

P* represents a modified set of parameters so chosen that the solution of (2.72) 
may be obtained in a simple way. Thus, for example, in the theory of differential equa- 
tions, the treatment of non-linear and linear equations with variable coefficients depends 
to an enormous extent on the fortunate circumstance that linear equations with constant 
coefficients are explicitly solvable in terms of exponentials. Similarly, in the considera- 
tion of the functional equations occurring in the theory of dynamic programming, any 
icsoits that may be obtained under the simplifying hypotheses of linearity, convexity, and 
so on are extremely important, insofar as they furnish guides to the behavior of the actual 
solutions. The justification, from the larger point of view, of searching for complete 
solutions of simplified equations lies precisely in the hope and expectation of using these 
special solutions as approximations—not only quantitatively, but also qualitatively—to the 
solutions of the more realistic and complicated equations. 

The functional equations that we treat of afford yet a third approach, which arises 
from the duality between function space and strategy space. In place of the original class 
of transformations, we may consider a subclass obtained by restricting the permissible 
choices. Thus, for example, in place of infinite processes, we may consider finite proc- 
esses; in place of three-choice processes, we may consider two-choice processes. 

Employing the optimal policies for the simplified model, we obtain approximate poli- 
cies for the larger model. A computation will then yield an approximate solution to the 
functional equation. It is clear mathematically and intuitively that if the method of suc- 
cessive approximations is now employed, the convergence will be monotone, an important 
fact from the computational standpoint. 

The essential idea behind the preceding method is that we obtain suitable first approxi- 
mations most readily by approximating in the strategy space rather than in the function 
space. It is in this fashion that the physical process generating the functional equation 
can best be exploited, and that experience and intuition gained by solving simpler prob- 
lems can be most efficiently utilized. 

2.S. A Geometric Technique 

Let us now describe an interesting approach particularly applicable to a certain class of 
problems of deterministic type, in particular to equations of the form 

I 
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ftx.y') = Max  [^ Piix, y) + ^/(^x, J^)] , 
l<i<Jf 

(2.73) 

O < fi, s^ Ci < 1, where Pi{x, y) is a homogeneous polynomial in x and y. Since the 
solution ■will be homogeneous in x and y, it is sufficient to consider only values of x and y 
for which x -\- y = 1. 

For any given x and y we may write 

- _     y 
y       x+ y' K*.y) fix, y) 

i* + >)» 
(2.74) 

x + y' 

Any strategy in (2.73) has the form 

S~A*ui$--. (2.75) 

Employing this strategy, we obtain 

/«(*.?) ^IO. >) + •••. (2-76) 

a homogeneous function of x and 7. This function /s(x, y) may now be regarded as a 
function of one variable, x, 0 < x < 1, /s(^. j) — /s(^)- To each strategy, 5, in conse- 
quence, corresponds a continuous curve /«(■*■)■ 

If from all these curves we now form the envelope, above, we obtain a new curve, 

£(*) = Ei^M*), (2.77) 
s 

which must necessarily be /(r, y) = fix). 
Although in general the envelope will be difficult to obtain explicitly, various qualita- 

tive features of the solution may often be obtained readily. An example of the application 
of this technique will be given in Section 3.12. 

In the important case in which the Pj (.v, y) are linear functions of x and y, the enve- 
lope curve is convex, a result of great utility in the application of the method. 
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CHAPTER 3 

THE GOLD-MINING EQUATION 

3.1.  Introduction 

In this chapter we turn to a more detailed study of the "gold-mining" equation, begin- 
ning with the simplest representative. 

f(x, y) = Max A: M> + /(0, y)-\ + p^c.x + /Ovf, >)] 1 
B:  Itiy + fix, 0)] + ftlJj + fix, ^)]J ' 

(3.1) 

where x, y > 0, and the constants that appear are subject to the following conditions: 

(a) 0 < />„ /72, ^ ^ < 1,        pi + p,<l.        ^, + f2 < 1. 

and 

(b) 0   <   <"!, ^x   <   1 , Cy + c2 = I, d^ + d2 = 1 . (32) 

The origin of this equation was discussed in Problem 1.3, page 2, and the required 
existence and uniqueness theorems were given in Chapter 2. 

We shall begin by presenting a solution to (3.1) and also some generalizations. We 
shall then consider the equation 

/(x, y, a) — Max 
rA: />,/(<), y,a + x) + p2f{c2x, y, a + c-.x) + p^d) "j 

\_B:  ?,/(*, 0,a+ y) + qj^x, d2y, a + d^y) + q:i^d)\' 
3) 

x, y, rf > 0, with /(0, 0, a) — <t>ia)> which arises when we use as a criterion function 
<t>(z) in place of z, where z is the total yield. 

This equation may be solved explicitly in the case in which ^(z) = z, as above, and 
in the case in which ^(z) = e1". The asymptotic form of the solution for large x and y 
will be given in this latter case. 

After this we shall discuss briefly some extensions of (3.1) that are at present obdu- 
rately resisting analytic -.olution. 

Turning from this analytic treatment, we shall then present an interesting geometric 
treatment of (3.1), using the ideas of Section 2.8. 

3.2. Tho Solution of Equation (3.1) 

The purpose of this section is to provide an introduction io the analytic techniques 
we shall employ throughout the chapter and to demonstrate 

THEOREM 3.1. Consider th* functional equation 

31 
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/(x, ^f) = Max (3.4) 

where 

(a) 

(b) 

(c) 

1 >^. 
x, ^ > 0. 

4+f»=«+4k=i. 

Ti&s optimal choice oj operations is the following: If 

.v 

n ^> 
2 M* 

i - 2 #» 

(3.5) 

(3-6) 

choose A; if the reverse inequality holds, choose B.   In case of equality, either choice is 
satisfactory. 

To simplify the notation and the Jgebra, let us consider first the simpler form of 
(3.4) given by (3.1). As noted above, we already know from Chapter 2 that there is a 
unique solution to this equation. Let us turn, then, to a discussion of some of the simpler 
properties of /(x, >). Since pi + p2 < 1, ^i + ^ < 1> it follows that /(0, 0) = O. 
From the fact that f(kx, ky) and kf{x, y) satisfy the same equation for ifc > 0, it follows 
that f(kx, ky) = kf(x, y), for k > 0. Setting y = 0 and using /(f,x, 0) = <■»/(*■, 0), 
we obtain 

/(*.0) 
IM:  (p, + ptc^x + /»a<r2/(x, 0)-| 

IB:   (qi + q*m*.0) J 

whence 

and, similarly. 

Max 

ipx + p2Ci)x + p2c2fix. 0), 

«'••>" %^5^ 

f(0   y)  =   (?1 ± ftgt)j 

(3.7) 

(38) 

(39) 

These results are, of course, obvious if we consider the process generating the func- 
tion. On these grounds we should also suspect that A would be employed whenever y 
was  sufficiently   small compared with x.  This  fact  follows  from the continuity of 

' 
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/(■*> y) (compare Section 2 2), since the inequality 

fix, y) > (?, + ftdjy ■+■ qjix, 0) + <f2f(x, d2y) (3.10) 

must hold for small positive y = y(x), for x > 0, seeing that it is valid for ^ = 0. 
It follows then that there are two regions, close to the x and y axes, in which the 

optimal choices are, respectively, A and B, whenever (*, y) is contained in either of these 
regions, as shown in Fig. 3.1. 

It is reasonable to suppose that the solution has the form shown in Fig. 3.2. The 
meaning of Fig. 3.2 is that A is employed whenever (x, y) is in RA, the region between 
the x-axis and L, and B is employed in the complementary region. On the line L either A 
or B may be used. 

"1 * 

Fig. 3.1 Fig. 3.2 

That the boundary curve, if it exists, must be a straight line follows from the homo- 
geneity of /(x, y). Assuming that the solution has this form, we shall show that the equa- 
tion of L may be calculated from the fact that it is an indifference curve. By this term we 
mean that for points (x, y) on the curve, the value of the function /(x, y) is the same 
whether we employ A or B. 

Observe that the effect of employing A is always to drive P into RB, whereas the use 
of B sends P into RA. Consequently, if A is used at P, the next choice, in an optimal 
policy, must be B, and vice versa if B is used. 

This alone would not be sufficient to determine L, were it not for another fact. Since 
the operations A and B operate on x and y alone, there will be a certain symmetry in the 
results obtained by using A and then B, or B and then A, which plays a decisive role in 
the solution. 

Let us now do a small amount of computing. Using the values of /(x, 0) and /(0, y) 
obtained above, we have 

/(*. y) = MB« 

A: (* + Mx + Mf_+;^ + /-/(<•-. y) 
(311) 
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To simplify the notation, let us denote the coefficients of x and y in the above equation 
by a,, a, in A and by ßi, ß3 in B. If we employ A, we obtain, using an obvious notation, 

hi*, y) = «i^ + «2? + p2f(c2x, y). (3.12) 

Following this by £, we have 

/*«(*. >) = («i + ßip^2)x + (a2 + p-iß2)y -I- p^ii^x, dtf) . (3.13) 

Similarly, the result of B and then /I is 

JBACX, y) = (ßx + ft«i)x + (/?2 + q2aj2)y 4- p2q2iic2x,d2y).        (3-14) 

If (AT, y) lies upon L, we must have /AB = JBA- Equating the two expressions, we ob- 
serve that the unknown function f(c2x, d2y') disappears. Consequently, we obtain for L 
the equation 

0,0 - f2) + ßtip*, - i)]>f = K(^2 - i) + ^2(i - P^y.    (3.15) 

Using the precise values of «„ /S,, ar2, ß2 as given by (3.11), we finally obtain, as the 
equation of L, 

(pi + g.fi)* _ (yi + ^1)y f3l6) 
1   —   Pi   ~  P2    "    *   -  <?l   ~ 12   ' 

I This is a remarkably simple equation, since, as we observe, the coefficient of x de- 
pends only on the A operation, while the coefficient of y depends only on the B opera- 
tion. Furthermore, each coefficient admits of a very simple interpretation as the ratio of 
the expected yield of the operation to the probability of termination of the process. 

Let us insert a word of warning: Although this elegant result holds for some generali- 
zations of the functional equation, it does not hold in general, as we shall subse- 
quently see. 

Let us now prove that the solution actually has this simple form. To make the previous 
argument rigorous, we observe that below L, the procedure consisting of A, B, and an 
optimal continuation is superior to B, A, and an optimal continuation, and that the re- 
verse is true above L. Referring to Fig. 3.1, let ^ be a point above the known ,4-region 
and far enough below L so that any outcome of a 5-choice transforms Q(x, y) into the 
known /(-region. 

To show that A is used at Q, we argue by contradiction. Suppose that B were used; 
then tbe next choice would necessarily be A. However, we have seen, above, that below 
L, the procedure consisting of B, A, and an optimal continuation is inferior to A, B, and 
an optimal continuation. Hence, A is used at Q. It is clear that we may continue this 
argument until we have demonstrated that the region between L and the x-axis is an 
A-tcgion. Similarly, starting from the known ZJ-region, we may demonstrate that the 
region above L is a ^-region. 

We have carried through the proof for the simplest case of (3.4). There is no diffi- 
culty in verifying that the argument is general. 

Geometrically, the pattern is as follows. When (x, y) is in RA, A is employed until 

L 
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the resultant point is in RB, at which time B is employed until the point is again in RA, 
and so on. 

3.3. A Generalization 

There is no difficulty in extending the above analysis to the following «-dimensional 
equation 

/(*„ x.2, ■■■ ,xn) = Max \ y^ pikiCitX; 

+ /(.*!, x2 , ■ ■ •, c'^i, • - • , xn)] . (3.17) 

where 

(a) 

(b) 

(c) 

•"20- s fik < 1, /= 1, 2, • • • , «, 

1 > cik > 0,        c,k + c'ik = l, 

x, > 0. (3.18) 

The decision functions are again the ratios of expected gain to probability of termi- 
nation, namely. 

DiixO 
2 Pik^ik 

i-S^1- (3.19) 

If Max D^Xi)  is attained for / = L, then the Lth choice is made unless there is 
equality, in which case any one of the maximizing choices is optimal. 

C 

3.4. The Form of Hx, y) 

Having obtained a very simple characterization of the optimal policy, let us now turn 
our attention to the function f(x,y). In general, no simple analytic representation will 
exist. If, however, we consider Eq. (3.1), which we write again as 

fix, y) = Max 
FotiX + a2y + p2f(c^x, y) "j 

lßlx + ß2y+ q2jixyd2y)\' 
(3.20) 

we shall show that if c2 and d2 are connected by a relation of the type (" = d*, m and 
« being positive integers, we shall obtain piecewise linear representations for /(x, y). 

It is sufficient, in order to illustrate the technique, to consider the simplest case, 
c2 = d2. 

Let (x, >>) be a point in the .^-region. If A is applied, either (JT, y) goes into (0, y), 
in which case B is used continually thereafter, or it is transformed into {c2x, y), which 

i 
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may be in either an A- or a B-region. Let Lj be the line that is transformed into L when 
(x, y) goes into {c^x, y), let L^ be the line transformed into L* and so on. Similarly, let 
M1 be the line transformed into L when (x, 7) goes into (x, «/a^). and so on. In the 
sector LOLj, ^ is used first, followed by B, as shown in Fig. 3.3. 

Fig. 3.3 

Hence, for (x, y) in this sector we obtain 

/(*. >) = «i* + «"^ + pjiczx, y) 
= a^x + arf + piißtc^x + ß2y) + p2q2fic2x, c2y) 
= («1 + pißiC*)* + (a2 + p2ß2)y + p2q2c2f(x, y) . (3.21) 

This yields 

n ' ^ 1 - p^2 
(3.22) 

for (x, y) in LOL^ Similarly, we obtain a linear expression for / in LOM^ Having ob- 
tained the representations in these sectors, it is clear that we obtain linear expressions in 
LTOLZ, etc. 

3.5. The Problem for a Finite Number of Stages 

Let us now consider the problem that arises when only a finite number of stages are 
allowed. If we set 

then 

/*(•*. >) :=: expected return using an optimal N-stage policy, (3.23) 

hix.y) = Max [(/>, + p2c1)x, (^ + f^i)/). 

/^(x. y) = Max {B:  ^ + ^ o)] + ft[^ + ^ ^^ } .     (3.24) 
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We know from the results concerning existence and uniqueness in Section 2.2 that, 
as N -> oo, /»(*•, y) —> fix, y). However, it is not reasonable to suspect that for each N 
the optimal policy will be that of f(x, y). Furthermore, it is clear that, in general, the 
policies will not be the same for N = 1. 

It does, however, follow from our previous argumentation that if for some N the 
decision regions of /»(*, y) and /(.*, y) coincide, they must do so for all larger N. 

To show that the regions need not coincide for N = 2, consider the following sim- 
ple example 

fax + pfNicx, y) 
N = 1,2, (3.25) 

where a, /S > 0, 0 < f, rf < 1, 0 < /), ^ < 1. For N = 1, we have /j = Max [ax, ßy]. 
We may take a — ß, since this is equivalent to changing the x or y scale. The boundary 
line for N = 1 is then x = y, which we call L,. For N = 2, we consider the possible 
strategies AA, AB, BA, BB. We then have the following boundary curves: 

c 

L,:    A = B, x= y, 
AA = BA, y= (l + pc 

BB = BA, 
X 

AB = AA, y = ex. 

AB = BA, r - 0 - *) 
■'     /i  #.\ 

<j)x. 

(326) 

If c > (1 — ^)/(l — p), the lines will have the relative positions shown in Fig. 3.4. It 
is clear then that for N = 2, the decision regions will be as shown in Fig. 3.5. 

x        0 
Fig. 3.4 Fig. 3.5 

Let us now show that decision regions for /* converge toward that of / as N —» oo, 
f and that there will always be an Nu with the property that for N > N0 the regions will 

coincide. 
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The proof is very simple. Consider the situation for N = 3, as in Fig. 3.6. 

Fig. 3.6 

( 

Let L2(/4-1) denote the line that is transformed into L2 when (x, y) goes into («:, y). 
Let Q be in the sector between L2 and L2(/4-:1). If A is used at Q, then ß is used next, 
since the transformed point is in the i?B-region for N = 2. li Q is above /,„, we know 
that AB is inferior to BA, regardless of JV, as a set of first two choices. Hence, B is used 
at Q. This shows us that the B-region for the N-stage process is at least that containing 
the sector bounded by the y-axis and L2(y4-1). This process continues until Z*^-1), 
for some k, lies below £,„,, which must necessarily occur after some finite number 
of stages. 

The argument is general and applies to the general equations discussed above. How- 
ever, we cannot assert that the convergence is monotone, as we suspect, until we know 
more about the A- and B-regions for the N-stage process. It is probably true that there 
are two regions for each N, but this is a result that has only been demonstrated in the 
case of the simple equation (3.20). 

To show this result, we use the fact that this equation arises from a model in which 
the results of an operation are known only as far as the expected outcome is concerned. 
Any N-stage policy has the form, therefore. 

SN = Aa,B\ ■ ■ ■ A'tB"*, (3.27) 

where the a; and Aj are 0 or positive integers. There are now two cases: Sf, is either 
equal to A" or B", or it has the form AkB • • • or BlA • ■ ■ , where k,l<N. 

Referring to Fig. 3.6, consider a point Q above Lx. If an optimal policy has the form 
AkB ■ • • , /fe < N, which may be written A*1 (_AB) • • •, it may be improved by replac- 
ing AB with BA, since A iterated any number of times maintains Q above L,,,. It follows 
then that in the region above Lm, either B is used first or A is used repeatedly; and, 
similarly, in the region below Lm, either A is used first or B is used repeatedly. 

Since A* is clearly the optimal policy for points sufficiently close to the x-axis, and 
B* is the optimal policy for points sufficiently near the y-a.xis, it follows from the 
analytic form of the yield for any S,v—an expression which is linear in x and y—that if 

mm i m i m 
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A* is used at g, it is used for all points below the line OQ, and similarly for B", "below" 
being replaced by "above." 

It follows that there are always two regions, separated either by AB — BA or by a 
line of more complicated form, if AN or By are still dominant. For large N it is dear 
that A" and BN become less and less influential, so that eventually AB = BA emerges 
as the sole dividing line. 

3.6. A General Utility Function 

We have in the previous sections considered only the case in which the utility of a 
total yield z was proportional to z. Let us now turn to the more interesting case in which 
the utility is measured by a function </>(z). 

The non-linearity of ^(z) will, in general, require the introduction of a new state 
parameter—the quantity obtained as a result of the preceding operations. Denoting this 
quantity by a, we obtain the equation 

p*: pifiO, y,a + x) + p4(c2x, y, a + c,*) + p34>{a) 
/(*, y, a)      Max ^  ^ Qa+y) + f^(x> ^ a + d^ + q^a 

/(0, 0, a) = ^O) , 
ft 

(3.28) 

as noted in Section 3.1. 
This equation is more difficult to treat of than that occurring for ^>(z) = z, and we 

shall only be able to present its solution for certain classes of functions. 
We have 

n ' y' a) IB:  ^/(O, 0,a + y)+ f,/(0, d2y, a + d^ + ^( J- (3.29) 

Since j{x, y, a) > /(0, 0, a) = c^(<»)   for x, y > a, with strict inequality if x or y is 
positive, it follows, since /^ 4- /^ + /^ < 1, that 

/(0, y, a) = q^ia + y) + qM") + ^/(O, d,y. a + d.y) , (3.30) 

and, similarly, that 

fix, 0, a) = p^ia + x) + p34>ia) + ?2/(f2x. 0, ^ + c-,x) . (3.31) 

For given ^>, these equations may now be solved by iteration for the functions 
fiO,y,a) and f(x,0,a). 

Let us again proceed formally before turning to a justification of our operations. It 
is clear from the conservative nature of the processes involved that the quantity 
x + y + a remains constant throughout the sequence of operations. Consequently, the 
effect of any choice is to transform a point in the region R: x + y + a = c, x, y, a^O 
into another point in the region, as shown in Fig. 3.7 on page 40. 

The problem that confronts us is that of determining the set of points in R in which 
A is used and the set in which B is used. If we assume, as before, that these sets con- 

i 
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stitute connected regions having a bcundaiy curve P, we may proceed to find the 
boundary as before, using the fact that the boundary is an indifference curve. 

Fig. 3.7 

I 
t 

" 

However, we must assume more about the boundary curve than previously, where the 
fact that it was a straight line resulted in considerable simplification. Let us assume that 
the result of applying A to a. point P on the boundary curve is to transform it into the 
B-region, and vice versa. 

Having provided ourselves with a cushion of assumptions, let us now go through the 
calculations. If A is employed, we obtain 

fix, y, a) = />,/((), y,a+x) + />2/(r2*, y,a + c,x) + p3^a) . (3.32) 

Employing B at (0, y, a + x) and (c2x, y, a + fix), we obtain 

/(*. y, a) = /»iCf i0(^ + x + y) + q2f(0, d2y, a + x + d.y) 

+ q^(,ä + *■)] + M^i/C^*, 0, * 4- i\x 4- y) 
+ frfi^x, d2y, a + c^x + d^y) 

+ q3Ha + f»*)] + pAd") ■ (3-33) 

A similar expression is obtained by using B and then A. Equating the two, we obtain, for 
the equation of the boundary curve, 

fifdK' + x) + P*t*+i* + cix) + PAi») 
= qipM* + y) + frpsH« + Jiy) + qM*), (3.34) 

which may be written 

PilaW* + *) — *('«)] + p2q3[H
a + cix) - «/»C")] 

= f&lH* + y) - «(«)] + ftpJM* + ä1y) - Ha)]. (3.35) 

In  order to establish the result rigorously,  we must ascertain whether or not the 
boundary curve has the desired transformation property. 

What we actually require is 
PROPERTY T. // 

Fix, y, a) = p44.4i* + «) - *(")] 
+ MsIX" + MO - *(")] - 1+JiH* + y) - K«)] 
- WtW/t + d,y) - Ha)] > 0, (3.36) 

■ 
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( 
then F{c2x, y,a + c^x) > 0. // F(x, y, a) < 0, then P(x, d2y, a + dtf) < 0. 

Unfortunately it seems to be difficult to present any simple criterion which will 
ensure that a general utility function ^(z) will satisfy Property T. It is not difficult to 
show, for example, that ^(z) = z2 does not satisfy it for all values of pi and q^ 

Let us now demonstrate 
THEOREM 3.2. // 

(a) 0(z) W strictly increasing and continuous, 

Hz) > 0, 
(b) Property T is satisfied, (3.37) 

then the solution to (3.28) is given by 

fix, y, a) = pjio, y,a + x) -f pjiw, y, a + c^) + p^ia) (3-38) 

for F{x, y, a) > 0, and by 

fix, y, a) - qjix, 0,a + y) + q2f(x, d2y, a + dj) + q^a),        (3.39) 

for Fix, y, a) < 0. 
The optimal policy is to apply A when P(x, y,d) > 0 and B if F{x, y,d) < ©- 

When there is equality, it is a matter of indifference as to which choice is made. 
PROOF. The proof is carried through in two stages. First we show that there is a 

region in the plane x + y + a = c where A is always used, namely, a region close to 
7 = 0. Then we consider what happens at a point Q in the region defined by 
F(x, y,a) > 0 and x + y + a = c. 

Let us assume for the moment that we have already established the existence of a 
region where A is always used. If B is used at Q, it follows from Property T that the 
transformed point is again in the same region. It cannot be true that B is used repeatedly, 
if x > 0, since eventually the y coordinate will be so small that the point will be in the 
A-teg\on. Hence, if at Q an optimal policy employs B for the first k choices, the sequence 
of moves has the form 

S = BB-(k times)   ■BA. (3.40) 

On the basis of Property T, we are still in the region F(jf, y,a)'>0,x + y + a = c 
after employing B (i — 1) times. The next two moves, B and then A, cannot be 
optimal, however, since the region is defined by the property that AB plus optimal con- 
tinuation is superior to BA plus optimal continuation. This shows that at Q, move B 
cannot be used first in an optimal policy. 

It remains then to establish the existence of the ^-region mentioned above. Since 
f(x, y, <J) > ^(<«) for x, y > 0 and one at least positive, it follows that 

pifiO, y,<* + x) + pif^c^c, y,a + ^x) + frK*) 
> qjtd, 0,a + y')+ q2f{x, d2y, a + dj) + q^d) , (341) 

which holds at ^ = 0, must by virtue of the continuity of the functions involved, for 
any x > 0, hold for some interval 0 < y < y{x, a). 
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I 
3.7. The Exponential Utility Function 

One way of obtaining utility functions that have the desired property, T, is to make 
the boundary equation independent of a. If we wish this to be true for all values of 
the parameters pi and y4, we must have 

Ma +x) - 0(x) = G<ix)H(a), (3.42) 

which yields, using standard arguments, under the assumption of continuity,* 

or 
(3-43) 

(a) 
(b) 

^>(z)   = »»2 +  «, 
^(z) = ceh*. 

We have already considered the first utility function; let us now consider the second. 
The important property of these utility functions is that a policy which maximizes 

the expected value of ^(z) proceeds at each stage without regard for the amount already 
obtained, being dependent only on the remaining amount to be obtained. 

If we set, for £ > 0, 

g(x, y) = Max Exp (***) 
p 

("Exp" denotes here "expected value," not "exponential"), 

we obtain for g the functional equation 

(3.44) 

g(x, y) = Max 
FA: p^giO, y) + pt&fgie*, y) +P 

:]■ q,e"Vg{x, 0) + q2e
hi^gix, d2y) + q 

As a special case of Theorem 3.2, we obtain 
THEOREM 3.3. The solution of (3.45) is as follows: For 

pije»* — 1) + p2{ebc^ — 1)       ^(g"" —1)+ q,(ebd,« - 1) 
pT > *. ' 

(3.45) 

(3.46) 

use A; if the reverse inequality holds, employ B; if equal, either is applicable. 
Observe that, as should be true, the limiting solution as ^ —» 0 is exactly that ob- 

tained from ^(z) = z. 

3.8. Asymptotic Behavior of g(x, y) 

We now turn to the problem of determining the asymptotic behavior of g{x, y) as 
x and y —* oo. We begin by deriving the asymptotic behavior of ^(x, 0) and ^(0, y). 
From the equation we obtain, for large x, 

g(x, 0) = fr*» + pt + ptf^iicfic, 0) . 

This equation may be solved by iteration: 

g{x, 0) = (^ + ps) + p^'ips + pyMfi) + 

(3-47) 

(3.48) 

'This requirement of continuity can be considerably weakened. 

: 

■ 
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To obtain the asymptotic behavior, however, we must proceed differently. Set 

it*' 0) = rhj^ + H*)*bx. (3.49) 

where Jb satisfies the equation 

t>ix) = p:te-"* + p2h{c2x), (3.50) 

as we see by direct substitution. Although iteration yields 

h(x) = p:le-b* + ptptftV + ■ ■ • , (3.51) 

the asymptotic behavior of h{x) is still not apparent. We shall show that h{x) 
— x-a*(x)[\ + o(l)] as x-* oo, where ^{x) = *(c2x), a = (log l//'a)/(log l/c2). 
To accomplish this, set t>(x) = k^yx-". Then Jk satisfies the simpler equation 

Jk(x) — k(c.,x) = p-^e-1" = <K*) . (3.52) 

The essential fact about tj> that we shall use is that 2°0_ <t>(x/c'!, ) converges for each x. 
From (3.52) we have 

which yields 

Lim k(^) = k(x) + y\ J£) = ♦( 

(3-53) 

(3-54) 

From   the  form  of  the  limit  function  or  from  the  equation  for  k(x), we see that 
♦ (x) = ^(ca) for all x. If then we write y ~ x/c* for I <. x <l/f2, we have 

Hy) = *(^) = ♦(*)[» + on)] = *(^)ri + o(i)] 

= *0)ri + o(l)], (3.55) 

as ^ —> oo. 
Collecting the previous  results, we see  that the asymptotic behavior of g(x, 0)  is 

given by 

«(*.0) = T~^ 
ebT + f^r1 [1 + 0(1)] ■ (3.56) 

where 

(a) 

(b) 

'i'(x) — ♦(r^r), 

8 77 

(3.57) 
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The corresponding result for ^(0, y) is 

^(o,,) « -j-JL*. + ^1 [i + o(i)]. 

where 

(a) 

log 
(b) ft *, l0«i 

Turning to the equation for g(x, y) we have, for x and > large, 

^(x, ^) = Max 

Setting >&(x, y)^'**» = ^(x, >), we obtain 

ä(X, ^) = Max 

f»? 
1-f, 

1- + /»^(^x, >) + 

^i^ l- + ^2Ä(x>^) + 
11 -p 

To simplify still further, we set >&(x, ^) = a + /fe(x, y), obtaining 

°(^)J 

a + k(x, y) = Max 

Li -p. 

If or is chosen to be the common solution of 

1 -7 
h /;2a + />2^(<:2x, y) + 0 \~i~j 

(e-i>y\ 

T^: + ^ = T£?t + ^ 
namely, ^tft/(t — ^i>(l — fa). (3-62) simplifies to 

/fe(x, j/) = Max 

/»^(r2x, >) + 0 f-Tj-j 

(e-bv\ 

(3.58) 

(3.59) 

(3.60) 

(3.61) 

(3.62) 

(3.63) 

(3-64) 

To estimate k(x, y), we use the fact that the solution may be obtained by means of 
successive approximations: 

«M "Bim 
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t 
*II+I(*. >) = Ma» *O(ä-, >) = T7 xr + /•' (3.65) 

considering, for our purposes, only values of x and y greater than 1. The exponent r 
will be chosen in a moment. 

If we have an inequality of the type ^„(x, y) < un/(x
r + yr), un being a constant, 

which inequality is certainly valid for « = 0, we obtain 

*»+i(x, y) < Max 

p2un f*^"} 
f!(*,+V) + 0 Vl^-/ 

L^j(x' + r)     V ^. A 

(3.66) 

Choose r so that /^/fj < V6, f j/</J < %. Since ««j, *1 > r, we see, since x'e-'"' < dr for 
all x, that «-»•/y1 < dr/xryT < dT/(x

r + JC), for x, ^ > 1. Hence, we have 

^(x, >) < Max (3.67) 

for some constant <«2. If we take »n+1 = %(«n + <*%)> the inequality is preserved for 
«r»«. Since »n as defined by the recurrence relation is uniformly bounded, we obtain, in 
the limit, i(x, y) < aa/(x

r + f). 
Knowing the form of the function, we readily obtain the optimal policy, deriving in 

this case the slightly paradoxical result that, asymptotically, as x and y —> oo, it makes no 
difference which move is made first. 

Collecting the above results, we obtain 

'"■» " c - we'- g + "(^ry)• <»-' 
3.9. A More General ProbCem 

We have, in the previous sections, considered the equations resulting from situations 
in which two choices are available at each stage. Let us now discuss a three-choice 
problem, as represented by the functional equation 

/(x. y) = Max 

A: /»tlViX -I- /(J,x, y)] 

B:  M^ + Kx.^y)] 
C. paOaX + r+y + /(jjX, *#)}_ 

(369) 

MM» «* 
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where 

0<pl,pi,p3<l,        0 < r« < 1, ^ + jj = 1, = 1,2,3,4. 

It might be suspected, on the basis of the previous results, that there will always exist 
three sectors, RA, RB, Rc, as pictured in Fig. 3.8, which determine the choice of the 
A, B, or C moves. Unfortunately, this is not true for general values of the parameters, 
since it has been shown that there is an equation of the form of (3.69) for which the 
decision regions are as shown in Fig. 3.9. 

Fig. 3.8 Fig. 3.9 

From the fact that there exists a problem whose solution involves four decision 
regions, it follows immediately that the general solution of the multidecision problem 
cannot have the simple form of the solution in Section 3.2. 

At the present time, although little is known about the general solution of the ^-choice 
analogue of (3.69), it seems fairly certain that its general solution will possess a compli- 
cated and extremely unintuitive structure. It is not even known whether or not there is 
always a finite number of regions for any particular equation, and, if so, whether this 
number can be arbitrarily large or must be bounded by a number depending on Jk. 

We shall illustrate a number of partially successful approaches by considering the two 
equations of special form 

/(*•, y) = Max B Pti'tJ + /(*, W)] 
_C: pA[sx + *?+ /('*,/>)]. 

(3.70) 

and 

'*'>* ^1*7+ ***)] (3-71) 

Before turning to a discussion of these equations, let us note that equations of this 



n 
THE GOLD-MlNmC EQUATION 47 

< 
type also arise in connection with testing problems of an interesting type. 

Consider the simplest version, in which we are given the information that a ball is in 
one of N boxes, and the a priori probability, pk, that it is in the kth box. Assuming that 
each observation consumes one unit of time, it seems intuitively clear that we look in 
the most likely box first, in order to minimize the expected time required to find the ball. 
Note, however, that, for the case of two boxes, if we are merely interested in determining 
which box contains the ball, it makes no difference which box we examine first. If, 
however, we want to obtain the ball or to observe it, then it is best to examine the 
most likely spot. 

Let us now consider the more general situation in which observation of the kth box 
consumes time tk, and in which there is a probability ft that if the kth box is observed, 
one is unable to examine its contents or to obtain them. 

THEOREM 3.4. // we wish to obtain the ball, the optimal policy is to examine the box 
for which 

(3.72) 

is a maximum. 
If we wish merely to locate the box containing the ball, the box for which (3.72) 

is a maximum is examined first or is never examined. 
More interesting and difficult problems arise in situations in which the testing 

disturbs the probability distribution. For a two-box model, this leads to functional 
equations of the form 

/(/»„ p2) = Min 
Px+   (1   -K)[l   +/Ol*.'22)] 

Pz + (1 -/'2)[1 +/(*n. <*«)]] 

which is easily resoluble. However, for three boxes we obtain 

HPvPrP») = Min^ + (1 -?«)[/(«,.«,.««)}>. 
{ 

(3.73) 

(3.74) 

where 

ft«    ■-  "lafc + *v£» 
'" 1  - pr 

Plr = 
a-iipi + *i2*pi 

1 ~P* 
ft,   _ "-.upi + a™p* n*       1 _ ?i (3.75) 

and so on. 
Functional equations of this type occur frequently in the theory of sequential analysis, 

in connection with problems in which the distribution is unknown and each observation 
yields additional information concerning it. 

• 
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3.10. A Simple Three-choice Equation 

Equation (3.70) may be written 

/(*■. y) = Max 

Piir^x + /(.r1*-,.y)] 

M'IJ + /(*:.-rij')] 
ptitx + sy + tfix,y)] 

(3.76) 

by virtue of the homogeneity of /(*■, y), and, as a consequence, in the simpler form 

A: prl^x + /(J,X, >)] 

fix, y) = Max 

1 - PJ 

(3-77) 

For this equation we can prove 
THEOREM 3.5. // 0 < ft, s, t, fa P*» PM < 1. »"i + ^i = 1. rt**» «w"« <»' WOJ/ /Art* 

decision regions. 
The proof, which we shall merely sketch, is more interesting than the result and is 

applicable to more general situations. The basic idea is to employ a continuity method, 
using an appropriate parameter, which in this case is s. For s = 0, there are actually two 
regions, as we know from the previous results. It is now not difficult to show that as s 
varies between 0 and 1, the number of regions does not exceed three. 

3.11. The Equation Hx, y) = Max [x + Hax, by), y + Key, cfx)] 

As another example of an equation in the case of which special techniques are ap- 
plicable, let us consider 

KX'y) = M™lB:y + KchdX)\' 
(3.78) 

where we shall assume that 0 < a,b,c,d < 1. Under these conditions we know that 
there is a unique solution. Actually, these conditions are too strong, since 0 <<-</< 1 is 
sufficient to ensure existence and uniqueness. 

The principal result we shall obtain is 
THEOREM 3.6. All optimal strategies are periodic from some point on. 
Let us note that an ^1-choice sends (*, y) into (ax, by), and that a /J-choice sends 

(x, 7) into (cy,dx). We observe that the motion induced by B* sends (x, y) into 
(rt/x, cdy), or, more precisely, if the optimal policy is B20 (read B* optimal), then 

H*.y) = (y + dx) + cdKx.y). (379) 

From this we conclude that if B20 is an optimal policy, then B'O — B (C denotes the 
fact that, for any C, the sequence of moves represented by C is repeated periodically); 
and in fact for a point (x, y) where this takes place. 

/(x.>)=/,(x,>)=|±^, (3.80) 

mm 
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Next, suppose that for a point (x, y) the optimal strategy has the form AkBA*BO. Then 

/(*, y) = x(l + 4 + 4» + • • • + a»-1) + **y + /(«:*»>, rf<«*x) 

1 — <«* 1 — <«* 
1—<» ' '  1 — a 

+ **</<«*x + f^b^cdx, tPVcdy) 

= P(>:, >) + Wcdjix, y) . (3.81) 

From  this  we  conclude  that if AkBAkBO is optimal, then the A^B pattern repeats 
periodically, i.e., 

AkBAkBO = AkB. 

Similarly, if BAkBAkO is optimal, we obtain 

BAWAXO = RA*. 

Also, in this case. 

iE^i*, y) = o + »dX){i - c^-^j 
a — cädkbk 

(3.82) 

(3.83) 

(3.84) 

We are now in a position to classify completely the optimal strategies. First, broader 
classifications are obtained, and from these obvious eliminations are made to achieve the 
final list. As a first crude classification for the optimal strategies beginning with A, 

AO = 
(1) [*], 
(2) [^»S], 
(3) [^«JO] 

(3.85) 

(we put brackets around a strategy when no further subciassification will be made using 
this form). Considering those strategies of (3), above, which are not in (2), we have, 
since B20 = B, 

AO = AlBO = AlBAO; 

then. 

AlBAO = 
(3')      04'B/l], 

(3.86) 
(3")    AlBAkBO. 

Next, in case (3") we have two cases according as I > k ot I <. k: 
CASE 3" (/ > k) 
In this case we have, if AO is optimal, AO = AlBAkBO = Al-k{AkBAkBO); and since 

at the state reached after I — k applications of A, AkBAkBO would he optimal, the above, 
together with (3.82), implies that 

AO m /1«-M*B = [AlBAk, / > /fe] . (3.87) 

;' 

"a» 
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CASE 3" (/ < k) 
This case leads to three subcases: 

AO = AlBA*B0 

(3'/)    AlBA*BÄ, 

(3'/)    AlBA*BArB0, 

(3'3')     [/4'ßy<*ß]. 

Subcase 3" 
This subcase implies that, since I <. k, 

AO - Al(BAkBAk0) = [/I'äS*], 

(3.88) 

(3.89) 

via (3.82). 
Subcase 3? 
In this subcase we again have two cases, according as jfe > f or jfe < r. 
If A > r, we have AlBAkBArBO = A^A^iA'BA'BO) = /4lBy4*-r^B = {AlBAr 

BAr, k > Max (/, r)]. On the other hand, if k < r, AWAtBA'BO = ^l(ßy4*Sy4*0) = 
[/I'B/l*]. 

Collating the classification carried out above, we see that a list which includes all 
optimal strategies beginning with A is 

(a.) Ä, 

(a,.) A'B,        / = 1, 2, • • • , 

(a:,) /l'ß/r, / = 1, 2, • • • , 

(a.) A'BA*, /=1. 2,--; ife = 1, 2, • • • , 

(a,) AlBA*B, I <l<k, 

[ (a.,) /l'ß/4*ä^,        k > Max (/, f) > 1. 

Next we consider optimal strategies beginning with B. It is quite clear that either 
BO = ß or BO = BAO. Thus, we see immediately from (3.89) that a list of possible 
optimal strategies beginning with B is 

AO (3.90) 

■ 
* 

(b,) B, 

(b.) BA'B, 1=1,2, 

(ba) BAl, 1=1,2. 

(b.) BA'BA*, k<l. 

(bO BÄ. (391) 

Although it is now possible to obtain the decision regions explicitly by computing the 
results of the allowable optimal strategies, the amount of effort required is so great that 
another technique is employed. In place of this approach, a combination of the geometric 
treatment discussed in the next section, together with the analytic approach already em- 

gMlBr—^—>—- <-*"■■ ■« - 
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ployed, yields the information concerning the number of connected decision regions. Since 
the proof requires a detailed investigation, we shall omit it here. 

3.12. An Illustration of the Geometric Approach 

Let us consider the equation 

/(x, y) = Max 
FA: ax + rf(bx, y)~\ 

IB:   ey+ J/(*. dy)} (3.92) 

and obtain its solution by using the geometric techniques discussed in Section 2.8. As we 
know, the solution will be to employ B whenever 

z> aP 0 
(1 - r) 

(3.93) 

and to employ A whenever the reverse inequality holds, assuming, as we shall,  that 
0 <a,b,c,d,r,s < 1. 

To prove this result, we consider first the set of all strategies of the form ABT and 
construct their subenvelope from above, EAB — EnvTL{ABT). Similarly, we form 
EBA = EIWRL^BAR). Then let E = Env {EAB, EBA}. For a given strategy T, 

JABrix, y) = ax + rcy + rsj{bx, dy), 

fßArix, y) = cy + sax + rsj{bx, dy), (3.94) 

so that L(ABT) and L(BAT) intersect at the normalized point }■, corresponding to 
y/x = «»(1 — s)/c(l — r), x -\- y = 1. (More precisely, j, = a(l — j)/[f(l — r) 
+ <J(1 — J)].) Note in particular that y is independent of the choice of strategies. 
Furthermore, for y> yu L{BAT) lies below L(ABT). Thus, £ consists of EIB for 
y < yi and of EBA for y > y1. Hence, with respect to the strategies included in the sub- 
envelope E, A is an optimal initial choice to the left of yu and B is optimal to the right 
of ^j. To complete the proof of the theorem, we need only show that this property is 
preserved after we pass to the full envelope by taking the envelope of E and the lines of 
the strategies not yet considered. These lines are of the form L(AkBT), L(BkAR), /fe > 1; 
LiA*-) and L(ß'B). 

If a line L(AkBT), k > 1 touches the envelope £ at a point >„, L{ABT) also touches 
the envelope and to the right of y0, since A transforms the decision at (x, y) into one at 
(bx,y), and the normalized (bx, y) is larger than the normalized (x, y). Thus, if 
yu > jr„ L(ABT) would touch £ to the right of yu which is impossible, since L{ABT) 
li^s below the subenvelope E for J > ^i- A symmetric argument disposes of the L{BkAR), 
k > I. As for the two lines L(A°°) and ^.(ß00), these are limits of the L(AkBr), 
L(BkAR), respectively, as i —» oo, and they can in no way affect the ultimate envelope £. 
In fact, clearly /400 is optimal only at j = 0, and B00 at ^ — 1. This completes the proof of 
the theorem. 

The problem considered above has a finite analogue, as discussed in Section 3.5, whose 
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solution  constitutes  a  more precise  form of the above  result.  Namely, letting N — 
I, 2, • • •, we consider 

/(/V, x, y) = Max [* 
ax + rf(N - 1, bx, y)~\ 

cy + sf(N - l,x,dy)j' 
(3-95) 

where /(0, x, y) mm 0. Determining /(N, x, y) for each N reduces to considering strate- 
gies jy of N steps, each either A or B, and calculating f8 (N, x, y) via (3.95) and then 
determining which of these is largest. Thus, for each point (x, y), /(N, x, y) is the maxi- 
mum of l" numbers. Again we wish to characterize the optimal initial choice, which now, 
of course, depends on N. 

THEOREM 3.7.  There exists an N0 = .N0(ä, d, r, s) such that for N > N0, the optimal 
initial choice for (N, x, y) is A if y <. y1 and B if y > y1. More precisely, we may take 

N„ = Max 2 + logg 

log-* 

,   loe e' 
2 + -—,2 

log-r 

(3.96) 

where 

= (1 - r + sd)(\ - J) 
1 - r 

_ (1 - j + r*)(l - r) 

* 

Furthermore, this is best possible in the sense that given a, b, c, d, r, there always exist 
values of s such that (I) N0 is as large as we please; and (2) for all N,2 < N < N0 

there are points to the right of yx = ^(J) at which A is an optimal initial choice for an 
N-step strategy. 

PROOF. For N — I it is clear that one always chooses A at (x, y) if ax > cy, and 
chooses B otherwise. For N = 2 we see that L(AB) and L(BA) intersect at y^, and thus, 
for N — 2 the optimal initial choice would be -^ to the left of y* and B to the right, ex- 
cept possibly for interference from the strategies A2 and B2. That is, it may be that A2 

appears in this '^-envelope" to the right of yu as in Fig. 3.10. Since L(A2) is above 
L(AB) at y = 0, this would mean that L{AB) is completely dominated. 

Also, the intersection of L(A2) and L(BA) that occurs at y2 is to the right of y1. This 
is numerically equivalent to 

a '       f(l — r) 

(3.97) 

i 
The symmetric situation for B2, i.e., L(B2) intersecting L(AB) to the left of y^, entails 

d> 
— I — s 
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i Since b and ä lie between 0 and 1, both of these phenomena cannot occur simultaneously. 
For convenience we shall suppose henceforth that if one of them occurs, it is for A2, i.e., 
* > 0 - J)/(1 — 0. so that L(A2) dominates L(AB) as in Fig. 3.10. 

i 

■ 

I 

LiBA) 

We now proceed to consider any fixed N > 3. The subenvelope of the lines of the 
N-strategies of the forms 

AtBS^u&AR,,*.»        £>!, (3-98) 

is again separated into two parts by ^ such that, insofar as these strategies are concerned, 
A is the optimal initial decision for y < y1, and B lot y > yx. There remains then to 
account for the two strategies A" and B". If B" appears in this N-envelope to the left of 
y,, B2 will appear in the 2-envelope to the left of yu which is not the case (according to 
arrangements made above). Thus, B" does not alter the character of the initial decisions 
as determined by y^. The last possibility to consider is. Does A1* appear in the envelope 
at a point to the right of ^ ? If it does, then A"-2 moves this point to one farther to the 
right, at which A'2 appears in the 2-envelope. This last point, of course, must then be to 
the left of j.,. Translating these statements into numerical terms yields 

g*. £^7<'-' + '*>• 
or 

(r ^ ^ s + rb){\ - r) 

(3.99) 

(3.100) 

\i e < 1, then this is impossible, and we may take the N0 of the theorem equal to 2. On 
the other hand, if * > 1, we have N < 2 + (log e)/[log (1/*)]. Thus, in general, re- 
moving all asymmetries, we may take 

N,, = Max 2,2 + log£ 

logT 

2 + logfH 

logij 
(3.101) 
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where 

(1 - r + sd)il - J) 

To demonstrate the "best possible" part of the theorem, we observe that given a, b, c, 
d, r and taking s close to 1, e, and consequently N0, can be made as large as we please. 
We may ensure in the following manner that there are points to the right of y^ at which 
A is an optimal initial choice for N < N0. 

We first arrange for I.(B2) to intersect L{BA) to the right of y^. This is equivalent 
to a/c(l — s + rb) < a/cd or \/d > 1 — J + »•£. This last, of course, is satisfied for s 
sufficiently close to 1. Then, for N = 2, A* dominates all BAT to the left of y2, and, 
moreover, /42 dominates all BS to the left of >2, where y-^ > yx. Now assume k — I 
< No — 1, so that y4-<*-1>)i2 = jk > jfj, and assume also that (l)fc-i: A*-* dominates all 
ABTk.3 to the left of yk, and that (2)^,: A*-1 dominates all BTk.2 to the left of >*. We 
observe that under the conditions provided for earlier, for k >3, (l)t-i implies (2)^,. 
We now wish to complete the induction by deriving (l)it. That is, we must verify that Ak 

dominates all y4Brfc_2 to the left of yfc+1 = A-1^). This, however, is equivalent to /l*-1 

dominating all BTk-2 to the left of Ay^ — yk, which is precisely (l)»_i. Since k <N0) 

>fc+i > ft, and the induction is completed. 
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CHAPTER 4 

THE FUNCTIONAL EQUATION 

f(x) — Max {g(y) + hlx — y) + flay + b(x — y)]} 

AND RELATED TOPICS 

4.1.  Introduction 

In this chapter we shall study a number of equations possessing a common structure. 
Since these equations are intractable analytically unless we make some simplifying assump- 
tions, we shall devote our efforts to showing that certain simple hypotheses yield a number 
of interesting and important results. 

We shall begin with a discussion of the equation 

/(x) =  Max {g(y) + h{x - y) + flay + ^x - jy)]}. 

whose origin is described in Section 1.6, Problem 1.8, and continue with 

(4.1) 

/»(*•>) =  Max  [pMy + CkZ) + (1 - Pk)fk*x{x -z,y + Ot«)"!, (4.2) 

devoting some time to presenting a simple dynamic programming problem that gives rise 
to the above functional equation. 

After this we shall turn our attention to the equation 

/(x) =  Max [g(y) + h(x - y) +   f f(y - s)k(s) ds~\, 

and to the equation of optimal inventory 

«(x) = Min \g(y - x) + a[M + «(0)] [1 - f (>)] 

+ a  f" H(y- s)Fis)äs\, 

discussed in Section 1.8.6. 

4.2. The Equation Hx) = Max {g(y) + h(x — y) + f[ay + b(x — y) |} 

Let us, in this section, consider the functional equation 

fix) -   Max {g(y) + Ä(x - y) + flay + *(x - y)]}, /(0) » 0. 
0<»<« 

55 

(4.3) 

(4.4) 

(4.5) 

1 



*mr** 

- 

56 THE THEORY OP DYNAMIC PROGRAMMING 

1 
F 

■ 

H 

We shall begin our discussion of (4.5) by proving 
THEOREM 4.1. // 

(*) 
(b) 

(c) 

^(0) = Ä(0) = 0, 
g'(x), h'(x) > 0.        £"(*), A"(x) > 0. forx> 0, 

<   00, 

00 

2 A(fBx> <   00, (4.6) 

where c = Max [rf, 4], /äS« the optimal policy consists in choosing y = 0 or x at 
each stage. 

PROOF.  Let /(x) be defined as above, and define, in addition. 

fx(x) — return obtained using an optimal policy when only N stages are 
allowed. 

We 

and. generally. 

/,(*) - Max lg(y) + h<ix-y)-]. 

/.v+1(x) =  Max {g(y) + h(x - y) + jv\_ay + b^x - y)]}. 

(4.7) 

(4.8) 

(4.9) 

forN > 1. 
As we know from Section 2.3 of the chapter on existence and uniqueness theorems, the 

limit of jri{x) as N —>• oo is /(x), the unique solution to (4.5). Let us now demonstrate 
that the hypotheses of (4.6) yield the result that ^(.f) is monotone increasing and convex. 

To establish the result for N = 1, we observe that the convexity of g and h yields the 
convexity of g{y) + h(x — y) as a function of y in [0, *•]. Hence, the maximum is at- 
tained at an end point and 

/,(*)= Max [£(*), £(*)], (4.10) 

which is monotone increasing and convex. Let us now argue inductively. If the result has 
been established for N, it follows that g{y) + h^x — y) + fii[_ty + b(x — y)] is con- 
vex and thus that its maximum occurs at y = 0 or x. Hence, 

(4.11) /„..(*) = Max lg(x) + {„(ax), h(x) + /w(Äx)], 

which shows that /JV+1(x) is monotone increasing and convex. 
Letting N —» oo, we see that 

fix) = Max [£(x) + f(ax), -&(*) + /(Äx)] , (4.12) 

which shows that the optimal policy is to choose y = 0 or jf. Alternatively, we could use 
the convexity of fix), obtained as a limit of convex functions /w(x), to establish (4.12) 
directly from (4.5). 

Prior to a further study of (4.12), we shall establish a similar result for the equation 
in (4.6). 
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4.3. A Result Concerning Equation (4.2) 

Consider the following problem: We are given initially x dollars and a quantity ^ of a 
serum, together with the prerogative of purchasing additional amounts of the serum at 
specified times /i < /2 < ■ • • . At the /6th purchasing opportunity, t*, a quantity c^z of 
serum may be purchased for z dollars, where ffc is a monotone-increasing function of k. 
Given the probability that an epidemic occurs between /t and /Ä+1, and the condition that 
if an epidemic occurs we may only use the amount of serum on hand, the problem is to 
determine the purchasing policy that maximizes the over-all probability of successfully 
combating an epidemic, given the probability of success with a quantity w of serum 
available. 

The condition c^ > c^.^ is imposed to indicate the cheaper cost of serum at a later 
date because of technological improvement. Let 

pk = probability that the epidemic occurs between /Ä and ^+1, assuming 
that it has not occurred previously, 

^(w) = probability of combating the epidemic successfully with a quantity 
w of serum, 

/*(•*■' >) = over-all probability of success using an optimal purchasing policy 
from tk on, given x dollars and a quantity y of serum on hand. 

(4.13) 

Invoking the principle that an optimal policy must possess an optimal continuation 
after any initial action, we obtain in the usual manner the functional equation 

/»(x, y) = Max ipk^y + chz) + (1 - W/^iO -x,y+ <v0] .      (4.14) 
o<0<ir 

In order to state the following result in simple form, let us assume that pk — p. We 
have then 

THEOREM 4.2. // 

(a) ^.(0) = 0, 

(b) ^("0 is monotone increasing and convex, for all values 
of w that occur, (4.15) 

then the optimal policy consists in purchasing no serum at /,, t2, • ■ ■ , tk^x and in using all 
available money at tk, where k is chosen so as to maximize 

[i - (i - pY'^iy) + (i - py-^iy + Ofcx). (4.16) 

The proof is obtained in very much the same manner as above, employing the function 

fic,nix, >) — over-all probability of success using an optimal purchasing policy 
from tk on, given x dollars and a quantity y of serum on hand 
and exactly n subsequent purchasing times, (4.17) 

which satisfies the functional equation 
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/*,nO. y) =  Max  [p4>(y + ckz) 
0<Z<X 

+   (1   - /O/^.n-iO - 2, > + OtZ)] . (4.18) 

The case in which this convexity property fails is much more difficult to resolve and 
will usually require a purchase of a certain quantity of serum at each purchasing point. 
A simpler problem of this type is discussed in more detail in Section 4.5. 

4.4. The Equation fix) = Max \ gM + fiax), hlx) + f(bx) | 

Let us now turn to a discussion of the equation 

f{X) = Max [g{x) + fiax), h{x) + /(far)]. (4.19) 

It is difficult to obtain any analytic representation for the function /(x-) or any descrip- 
tion of the optimal policy, unless one makes some further assumptions concerning g and h. 
We shall pursue the analysis to the point where these assumptions are required and then 
illustrate the genera! method of attack by proving the following result: 

THEOREM 4.3. The solution of 

f{x) = Max [ex* 4- f{ax), ex' + /(far)],        /(0) = 0, 

subject to 

(a) 

(b) 

is given by 

where 

0 <a,b <l, 

0<d <f, 

f(x) = cx* + f(ax), 

= ex' + f(bx), 

' c -1 

1 — a' 

- 
Ü — *J 

c,d> 0, 

0 < x <xu 

x„ < x, 

~\U(f-d) 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

We shall represent by A the operation of choosing g(x) + f(ax) and by B the opera- 
tion of choosing h{x) + f(bx). A solution corresponding to an optimal sequence of 
choices may be represented symbolically by 

S = A<;Bb,Aa*BK ■■■, (4.24) 

where the a-, and £; are positive integers or zero. 
We suspect from our previous work that the x values where 

AB + optimal continuation = BA + optimal continuation (4.25) 

will play an  important role in determining the solution. If A  and then B is used, 
we obtain 
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/(*) = £(*) + H**) + /(***). (426) 

while B and then A yields 

/(*) - K*) + gV*) + /(***) • (4.27) 

The equation corresponding to (4.21) is then 

gix) + Um) = Ä(x) + g(bx). (4.28) 

Let us now make the simplifying assumption that this equation has exactly one non- 
zero solution, x, and that AB > BA fot 0 < x <'x and that AB < BA for x>x. With- 
out some condition of this type it seems very difficult to obtain a general solution. 

Let us now show that either A*0 or B00—that is to say, A ot B repeated indefinitely— 
is the optimal sequence in [0, x]. Let 

S1 = BM»JPi • • •, 

be an optimal sequence for some x in [0, x]. This may be written 

B\-i(BA)Aa,-1Bb, ■■■ . 

(4.29) 

(4.30) 

Since the result of applying 5 is to decrease x, after {b1 — 1) applications of B, the point 
x will still be in the interval [0, x]. In this interval, BA plus optimal continuation is in- 
ferior to AB plus optimal continuation. It follows, therefore, that Si is majorized by 

52 = B\-l{AB)A*,-1Bb2- (4.31) 

If £>! — 1 ^ 0, we may continue in this way until we arrive at an optimal sequence for 
which A is i first move, provided that ^ is not oo, which is equivalent to saying: pro- 
vided that A is used at all. 

We see then that A is either used first or not at all. It follows that it is only necessary 
to compare B00 and A^B™, of which a special case is /400, in [0, x]. The return corre- 
sponding to B00 is 

H(x) « Ä(x) + Ä(fex) -\ , (4.32) 

whereas AkB'x' yields 

G*(x) - ^(x) + • • • + K**1*) + «(***) • (433) 

If for 0 < x < X! we have H(x) > ^(x) + H(«xr) = G^x). then dearly H(x) > 

^) + [f<*0 + H(*2*)] - G2(x). 
In order to continue, we must now make an assumption concerning the solutions of 

//(x) = ^(x) + H(dx) and similarly of the equation G(x) = A(x) + G(bx). Impos- 
ing the condition that there are unique non-zero solutions, and proceeding by a systematic 
enumeration of cases, we may obtain the solution to (4.19). In place of a detailed account 
of the results in the general case, let us consider the simpler equation represented by 
(4.20). The equation AB = BA takes the simple form 

ex* ex1 

1 - al~\ -b*' 
(4.34) 
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whose unique non-trivial solution is x = x0, as given by (4.23). The equations H(x) 
= £(*) + H{ax), G(x) = Ä(x) + G(bx) turn out to be equivalent to (4.34). 

Since we have assumed f > d, it is clear that A will be the best move for small x, 
where 0 < x < x2. If jf2 < x < Xo, and close enough to x2 so that A and B both trans- 
form it into the interval [0, x0], it is clear that B at x implies that BAm will be the opti- 
mal sequence, whereas A implies /400. Since BA* < A* in [0, x0], it follows that B is 
not chosen at x. Continuing this procedure, we see that A is used throughout [0, x0]. In 
exactly the same way we see that B is chosen for x > x0. 

A result of this type is useful for approximation purposes, since an increasing func- 
tion of reasonably smooth growth can be approximated to some degree of accuracy by 
rx4. Approximation of ^(x) by ex* is equivalent to approximation of log ^(x) by log c 
+ </logx, and, finally, to log^(^u) by a straight line f, + d^u. 

Let us point out, finally, that the change of variable 

/<#») -.£(«), 

converts (4.19) into the form 

*(«) = Max [fl(#) + «K« 

^(—oo)=0> «>—oo, 

(4-35) 

(4.36) 

which is also an equation of an interesting type. 
It would be of some interest to determine the simplest conditions upon g and h 

which would ensure that an optimal policy always has the simple form shown above. 

4.5. The Functions g and h Both Concave 

Let us now return to the equation 

/(x) = Max {giy) + b(x - y) + f[ay + b{x 
0<»<« 

7)]}. /(0) = 0 

(4-37) 

and assume that g and h are both concave increasing functions of x. The problem is now 
much more complex, and, in general, the optimal y will not be at end point. 

We shall prove 
THEOREM 4.4. Let 

(a) ^(0) = Ä(0) = 0, 
(b) ^(x),/&'(x)   >0        forx>0, 

(c) f"00. ^"(x) < 0        forx>0, (4.38) 

and consider the sequence of approximations to f defined by 

/0(x) =  Max [g(>) + *(x - ,)] 

/««(*) - Max {giy) + A(x - y) + f.fc + *(x - y)]}, 

« = 0, 1, 2, • • • .        (4.39) 
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For *<*fÄ », /Ä*rf /J d unique yn — yn(x) that yields the maximum. If b < a, we have 
Ji^ DtHL y*' ' ' ■> and t^>e reverse inequalities for b > a. In particular, if yn(x) = x 
for some n in the case b <. a, then ym(x) — x for m > n, and the solution of the 
original equation in (4.37) will be furnished by y = x. 

This result is important in connection with determining approximate solutions, since 
it is quite simple to determine numerically yu y.t, and even y3. 

We shall begin by assuming that all the maxima occur within the interval [0, x] and 
shall then consider the case in which one yn{x) = JC. Considering the function /iC-*), 
we see that its maximum, y, is determined by the equation 

£'(,) = /&'(*-?). (4.40) 

Since the left-hand side is monotone increasing and the right-hand side is monotone 
decreasing, there is at most one solution. If we assume h'{x) > ^(0), ^(x) > h'{ti), 
there will be exactly one solution of (4.40), which we call y^ — y^x). Differentiating 
(4.40), we obtain 

which yields 

and 

^"OO = (i -JO*"^-^). 

*"(« - j.) 
/i = ro.) + -&"(* - >.) >o. 

(4.41) 

(4.42) 

1 - jrj > 0. (4.43) 

Turning to the expression for /, we have 

/.(*)=^.)+A(*-7.). (444) 

whence 

ftOO = g'iyMx + (i - fxWi* - h) = h\* - yt) • (4-45) 

using  (4.40). Thus, /^(x) > 0 and /"(x) = (i — /Jh'^x — >,) < 0, which means 
that /1(x-) is concave. 

Let us now turn to the function /2(x), 

/2(x) =  Max  {giy) + h{x -y)+ f^ay + b{x - 7)]}. 
o<i/<r 

(4.46) 

Assuming that there is a maximum inside the interval, we obtain 

g'iy) - h'{x ->) + (*- b)f\[ay + bix-y)'\= 0, (4.47) 

which we write 

g'{y) + {a- b^ay + *(x - >)] = h\x - y). (4.48) 

The left-hand side is again strictly decreasing and the right-hand side strictly increasing, 
so that there is at most one solution which we call y2 = y2{x), if it exists. Note that if 
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there is no solution of (4.48), then 

M*) » f(*> + M*). 
Let us, however, assume that there is a solution. Then, 

M«) = fC*) + ^(^ - ») + /ifok + H* - ä)J. 
whence, as above, using (4.48), 

AOO = ^c« - ft) + ^r-ft + *<* - ft)]- 
Using (4.48) again, this may be written 

_ at>'(x - ^) - bg'Qt) 

(4.49) 

(4.50) 

(4.51) 

(4.52) 

This procedure is perfectly general, and we obtain, under our assumption concerning the 
existence of an internal maximum. 

tn 
/ _ ^(x - 7n) - bgiy») 

b 
n = 1,2, 3, (4.53) 

We now wish to show that if b < a, then ft <J ft < • • *. and, conversely, li a < b, 
that Ji > ^2 > • ■ • • The two cases are really one, since we may interchange the roles of 
y and x — 7 if we so wish. Since /' > 0, we see, on comparing (4.48) and (4.40), that 
>! < yz- 

The equation for y3 is 

g'iy) + (a~ b)f2lay +*(*->)]= t,'(x - y). (4.54) 

If we can show that f^x) > /'(•*■). the same argument as that for ^j, y2 shows that 
y3 > y2. Comparing (4.45) and (4.51), we see that f2 > /{, since /J'(X — y2) > 
A'(x - >,). 

To obtain the result for general », always assuming that the maxima occur at inner 
points, we use (4.53). We know that fn(x) > /'„-tix) implies that yn+1 > yn. Since 
the function 

Ky) a- b 
(4.55) 

is monotone increasing in y and yn > yn^, via an inductive hypothesis, it follows that 
fn > fn-i and thus that yn+1 > yn. 

Let us now consider the situation in which some yn(x) = x-. If « = 1, it is easy to 
see that yn(x) = x, n > 1, since ^(AT) = x means that g'(y') > f)'(x — y) for 0 < y 
< x. Since 

~ {g(y) + H* - y) + Ufa + b(x-y)v 

= i'(y) - *(« -ä + U~ WUy + Kx - >)] (4.56) 

and a > b, -we see that this expression is positive if g'^y) > >&'(x- — y) for 0 < 7 < x. 

•.- 
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Hence, ^(^f) = x, and, similarly, 7»(jf) = x. 
Let us now take the case in which ysix) = x, ^(x) =5fcx. Since ^(x) = ^ implies 

that g'iy) - h'ix - >) + (rf - y)f^ay + *(x - ^)] > 0 for all 0 < ^ < x. we 
have, in particular, ^(x) — >&'(0) + (rf — b^f^ax) > 0. Since 

= fix) - 1/(0) + ia- *)/{<*«) + ^'(0) + *f»(««f) 
> *'(0) (4.57) 

and /i(x) = h'{x — y^ < /&'(0), we see that /S(x) > /?(x). This, as above, implies 
that >3 > >2 = *'. and the process continues. 

Let us note, finally, that if g'iy) > Jb'(x — y) for all y in [0, AT], then g'iy) > 
h'{z — y) for y in [0, z] for all z < x. 

In closing this discussion of the functional equation, let us observe that if an interior 
maximum exists, we must have 

and 

^00 - *(* -;) + (*- h-)fiay + *(x - )-)] = 0, 

/'O) = /&'(x - y) + */'[4> + b(x - y)]. 

(4.58) 

(4.59) 

These equations may be solved explicitly for y and /(x) if g and h are quadratic. 
This particular solution also furnishes a useful approximation to the solution of the 
general case. 

4.6. The Equation f(x) =   Max  ! g(/) + Mx — y) +   J'/ fly — s)fc(s) <fs] 
0<»<» 

As another application of the techniques we have developed, let us now consider the 
functional equation 

L /(x) - Max    g(y) +*(*-,)+   /    f(y - s)Hs) r dsj. (4.60) 

where we shall assume 

(») 
(b) 
(c) 

(d) 
(c) 

^(0) = HO) = 0, 
^(>) > 0.        h\y) > 0,        ^'(0) < ^(O). 
A(/) > 0, 

g"(y) > 0,        Ä"(>) > 0, 
h(y) — g(y) is monotone increasing in y. (4.61) 

We shall use the successive approximations defined by 

/e(x)= Max [gO) +Hx-y)-\. 

f^ix) =  Max \g(y) + Ä(x - y) +   (• /„(y - 0*W *']. (4.62) 
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Let us consider /o(•*•). For x small the maximum is attained at ^ = 0, since ^'(0) 
< /&'(0). Furthermore, we see that g(y) + h(x — y) is monotone decreasing for small 
x, as a function of y. Since g'(x) surpasses /&'(0) for x large, g^y) + h{x — y) will 
eventually possess a turning point that is a minimum (see Fig. 4.1). The maximum will 

>.(*) 

stay at >> = 0 until the point AT,, where g{x) = />(*), at which point 7 = 0 and >- = x, 
yield the same value for ^(7) + h{x — y). There is only one turning point, since g'^y} 
— h'(x — y) — Q can have only one solution for 0 < ^ < x. This is a consequence of 
our assumption that g"(<y') > 0, h"{y) > 0, which means that £'(j) is monotone in- 
creasing, whereas h\x — y) is monotone decreasing. It follows that 

/„ = /}(x),        0 < x<x, 

= g(x) . x, <x 
= Max [^(x),Ä(x)]. 

Consider the function /,. We have 

/, =  Max \g(y) + Hx - y) +   \     /„(>' - s)k{s) ds\. 

(4.63) 

(4.64) 

The function *2(j) = g{y) + h{x — y) +   f* ja{y — s)k(s) ds is monotone decreas- 
ing for small y and possesses turning points for the y values satisfying 

£'0) + r« (y - s)kis) ds = h'ix - y). (4.65) 

Since /o(x) is again a convex function, we see that the left-hand side of (4.65) is mono- 
tone increasing for 0 < j' < x, whereas the right-hand side is monotone decreasing. 
Hence, there is again one solution at most. Let x., be the first value of x for which 

*(«) = f(«) + X'^'- s)k(s)ds. (4.66) 

Since /„ > 0, k^s) > 0, we have x2 < x,. 
Furthermore,   since  ^(x) — Ä(x) +    £ /0(x — j)-fe(j) </J   is  monotone   increasing, 

the solution takes the form 

■QM 
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/,(*) = Max ^(x), g(x) +   C f0(x - f)Jk(s) Js~\ 

= b(x)        for 0 < * < x2 

- i(x) +   f  /0(x - s)k(s) ds        forx > x2. (4.67) 

From this it is clear that /, (x) is again convex. In exactly the same fashion we obtain 

fn=H*)' 0<x<xn 

= g(*) + f' fn-i(* - 0*(J) ^.        x>xn. (4.68) 

Since /j > /„, we obtain /B+1 > /„ and x„+1 < xB < • • • x0. The numbers xH are mono- 
tone increasing and approach a limit x. Since /„ converges to fix), the solution of (4.60), 
we obtain 

/ = *(*),        0<x<x 

» gi*) + fj fix - s)kis) ds. X > X. (4.69) 

This proves that x does not equal zero, since fix) — Ä(x) for a small positive interval 
about 0, as we see on comparing 

gi*) £«* s)kis) ds = gix) + 0(x0 (4.70) 

with Ä(x) for x small. 
The number x is determined as the non-zero root of 

*00 = gi*) + 

4.7. The Optimal Inventory Equation 

Consider the functional equation 

Jf*«'- s)kis) ds. (4.71) 

*(x) = Min giy - x) + a [M+ «(O)]^"!' 

+ *   I     ^»"«(y — v)dv\   , 

where we assume 

(») 
(b) 

^(0) - 0, g'iy) > 0,        g"iy) > 0, 
b,M> 0,        0<a<l. 

(4.72) 

(4.73) 

We shall approximate to u by means of the sequence 

- BflHHHHMHB -*-   MB ■   ^«>" I KM 
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«„00 = a[M + «„(o»-^ + * /   r*X(« - v) dv, 

*Ä+1(x) = Min   g{y - x) + a\lM + «„(O)]^6" 

+ *  |    e-hvun{y - v) dv\ \. (4.74) 

The function «o(-f) obtained by setting ^ = x for all x corresponds to a policy of 
never ordering. 

Let us now determine some of the important properties of »„(x). Using (4.74) and 
setting x = 0, we obtain 

*o(0) 

Thus, the equation for u0 takes the form 

aMe''1  .   , 
«oOO I — a 

aM 
I — a 

J     *-»»«„ (x — v) dv, 

(4.75) 

(4.76) 

which is a simple representative of a renewal equation and may be solved explicitly. For 
our purposes, however, there is no need of this, since the properties we require may be 
obtained directly from (4.76). Since the solution may be obtained quite easily, we note 
that it is given by 

»o 
M 

*(1 - *) 

Referring to (4.76), we have 

g-hx^ibx —   1)   + aM 
1 — a 

(4.77) 

<(x) = -abMe"* + ab   \     *-»X(x - v) dv, (4.78) 

which shows inductively or by direct solution via iteration that u'0{x) < 0. Furthermore, 
«'(0) = —abM. Differentiating again, we obtain 

»S'(x) = ab*Me-h' + abe-b*u'0{0) + ab   \    e-hvu'Q\x — v) dv 

= ab*M(l - a^e-1" + ab   j    *-»»*S'(x - v) dv, (4.79) 

which shows that «J'(x) > 0, again directly by iteration or inductively. 
Consider the function 

^x) = Min \giy - x) + *( [M + «„(O)]^" + *   f   r***0 - ») <*"] 1 

= Min [g(y - x) + »„(>)] (4.80) 

inTOaiiiW a int1"*»» 
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Since ^(0) = 0, it is clear that »,(.*■) < ut,(x) for all x > 0. Now consider the function 
*o(y,x) = g{y - x) + »„(>). Setting a*„/9_y = 0, we obtain 

g'iy -*) = -<,(>), (4.81) 

and we are interested only in solutions y > x. hy hypothesis, the function g'(y — x) is 
monotone increasing in y, whereas (4.79) shows that —»f)(>) is monotone decreasing. 

Let us assume that ^'(0) > 0. Let x, be the value of x such that g'{0) =  —n'u{x) 
(see Fig. 4.2). If there is no solution, which is to say 

^'(0) > abM, (4.82) 

then d^u/dy is positive for all ^ > x and all x and the minimum occurs at 7 = jr. Thb 

[*.^(0)] 

y = x hi*) 

Fig. 4.2 

means that the solution of (4.72) is »(x) ^»„(x). Let us assume, then, that tthM > 
^'(0). For x > x,, d^o/dy > 0, and the optimal y - x. For x < x, there is a unique 
x, determined by (4.81), which is equivalent to 

g'(y _ x) = J Mhe-"« -hi    e»*H'n(y - v) dv   . (4.83) 

We have then 

/^(x) = //„(x), x > x, 

= «Oi - ^) + «{r*.[Ä + «„(0)] 

= 0 < x < x,. (4.84) 

For x > x,, we have «' = //J, while for 0 < x < x, we obtain 
- 
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«'(*) = -g'Oi -x} + Aig'in -x)+ «50^)] 
= -g'(y, - x) 

on referring to (4.81). Since jr, > x, and —u'0(x) is increasing, we obtain 

-,Aix) = -«SOO < -*!(*). (4-86) 

From (4.85) we obtain »''(x) = »"(>',)/. Since r/oiji) > 0, the sign of «" depends 
on that of /. From (4.81) we obtain ^"(^ — *)(^ — 1) = —*o'(>,)>^, which shows 
that 0 < / < 1. Hence, «?' > 0. 

Consider now the equation for u2(x): 

[GO - *) + * //2(x) = Min [Af 4- *i(0)]#-*» 

+ *   |     e-hvux{y — p) ävi    . (4.87) 

Taking the partial derivative of the expression within the brackets with respect to y, 
we obtain 

9^, 

dy 
?'(y — x) + ah   I     e-hvri\(y — v) dv — abMe-hv. 

Setting this equal to zero, we obtain 

g'iy — x) = abMe-tv — ab   j    e-^u'^y — v) dv. 

(4.88) 

(4.89) 

Let us consider the function 

We have 

J Mbe-hv — *   I     e-hvu\{y — v) dv \ = <t>2(y) . (4.90) 

<f>'Äy) =  ~ab2Me-b« — abe^u'^O) — ab   j    e-nvuWy — v) dv 

= e-^abl-hM - »U0)] - ab   j    e^i/^y - v)dv. (4.91) 

Since   —//,(0) < — »f,(0) = abM,   the   quantity   -bM — «1(0)   is   negative.   Hence, 
♦WjO < 0- Thus, there is one solution at most of the equation in (4.89). 

Since —u\{x) < —//J(x) for all x, the curve faiy) lies below the curve <^i(>) = 
abMe-'"' — ab f" e-^u'uiy — v) dv for ail y. Therefore, the intersection of 4>3 with 
g'(y — x) always lies to the left of the intersection of g'(y — x) with t^y), as shown 
in Fig. 4.3. 
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J=X 

l 
X > x2 

Let jr, be the solution of ^'(0) = 4>2(x). Then x2 < x^ Therefore, 

u2 = a| *-**[&. + »«(0)] + *   I     ».(x - v^e-^dv   , 

= ^(^ - *) + ♦.to, x) , 0 < x < x2. (4.92) 

From this we conclude that 

«aW = —abMe-'"' + ab   I    u'^x — v)e-bv dv,        x > x^ 

= -f(y* - *).        0 < x < x2. (4.93) 

Comparing the expressions for «J and «J for x- > x^ and for 0 < x < x2, we readily con- 
clude that — «5(x) < — «J(x). For Xi < x < x2, we note that 

^(0) > abMe-1" — ab   j    u[(x — v)e-1>vdv. (4.94) 

Since ^(^ — x) > ^(0), we see that —«J(x) > «5(x) for all x. 
Let us now examine the convexity of »a(x). The difficult region is 0 < x < x2. Here 

we have, using (4.93), 

•S' = -«"(A - x) (/2 - 1) ■ (4.95) 

We see that the sign of «" depends on that of j^ — 1. Referring to (4.89), the equation 
which defines 72, we have, differentiating with respect to x, with y = y^, 

g"(y - x)(/ - 1) = Ä-abWe-»» - abe-^i/^O) 

~ab   r r**S'C| - v) ^f I.       (4.96) 

k 
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Since «{' > 0 and -//'(0) < — <(0) = abM, we see that the coefficient of / is nega- 
tive. Since g" > 0, this shows that / > 0. Referring to (4.96), we see that this implies 
that / - 1 < 0. Hence, «J' > 0. 

We now have all the results required for an inductive proof. The expression for un is 

Jr». 1 
>'„-,{}„ ~ f)e-hvdv (4.97) 

o 

totO <x < xn, and 

un = a r*[M + «„.,(0)] + b j    u„.,(x - pyr-Jp] (4.98) 

for x > xn, where 

0 < x„- ■ ■ < x2 < x,, 
0 <>.,•■■ <y2<yt. (4.99) 

Using the monotone properties and letting n —> oo, we obtain for «(x) a representation 

» - gM*) - «] + rf|^-(,"<I'[Af + »(0)] 

XV(x} 
(4.100) 

for 0 < x < AT«,, and 

» = ale-^lM + »(0)] +    l    H{X — v)e-bv dv   , 

for x > x^. 
We now wish to show that *„ ^z 0. For small x and ^ we have 

u(x) = Min    ^'(0)(> - x) + 4   [Af + «(0)]«'-1"' 

+  *>    I       «•-'"'[»(0)  + 0(>r - t/)] 

B Min (y(0)(> - x) + ^Af - ^Al> + 0(/)] 

This shows that for small x the minimum is not at > = x. 

(4.101) 
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4.8.  The Solution for Linear Cost 

Let us consider the simple case in which g(y') — cy, where f is a positive constant. 
The equation is now 

«O) = Min    c^ — x) + rf] [yVf + «(0)]«■-*" 

+ b\     e-^u^y — v) dv\ \.       (4.102) 

For 0 < x < xx, we choose y = y(x) where 

c = abMe-hi + ah   \     e-hvu'{y — f) dv. (4.103) 

Since the equation is independent of x, the solution, which we know to be unique, is 

y = ^oo- 
The optimal policy is then to choose y = x^ii x <i Xn and to choose ^ = x if x > xx. 

The function »(x) satisfies the equation 

//(AT) = a [M + «(O)]^*" + ^   /     *-*»«(* — v) äv\,        x > x«, 

[M + «(0)]*-61« + £   I" «-""«(x« — f) rf» = ^0*» — x) + rf 

0 < Jf < x«. (4.104) 

For 0 < x < xx, we have »'(x) = —f, whence ä(X) = »(0) — ex in [0, x^,]. Since 
x«, is determined by (4.103), we may use the second equation in (4.104) to find »(0). 
Having determined the solution in [0, x^,], the solution for larger x is found by solving 
the first equation in (4.104), a simple renewal equation. 
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CHAPTER 5 

THE EQUATION u(n) = Max | > . o4,o(n 
i< 

AND RELATED TOPICS 

|_5 o^w(n - p+c* j 

5.1.  Introduction 

In this chapter we consider a number of functional equations that are more or less 
loosely connected. The first equation is 

«(«) =  Max     \     aijU(n — ;') 4- fi (5-1) 

the homogeneous form of which was encountered in Section 1.6, Problem 1.11. After dis- 
cussing the asymptotic behavior of the solutions of (5.1) for the case in which the a^f are 
all non-negative, we shall discuss a problem in production planning that gives rise to 
the functional equation 

Mx) = Max [/y-xO**),/»-!(**)]. N = l>2, (5.2) 

where x is a two-dimensional vector, A and B are 2X2 positive matrices, and /o(*) — 
cxxx + cax2. This problem seems extremely difficult, and we are able only to contribute 
some partial results, which are, however, of interest in themselves. 

We shall close with a solution of the simple testing equation 

^)=M,nLn-/(*oJ" 
m = o. 

x>0, 

5.2. The Equation u(n) =   Max   [^f-i a^ufo — ;1] 

We shall begin our discussion with the homogeneous equation 

»>R, «(») = Max      y^ <*!/»(» — ;) 

where «(/) is a given non-negative quantity for 0 < / < 1? — 1. 
Our first result is 
THEOREM 5.1. Consider equation (5.4), in which we assume that 

(a) "♦/ > o; 

(53) 

(5.4) 
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: 

c 

(b) there is one equation, r" = 2 JLi akirR~i< whose largest posi- 
tive root is greater than the corresponding roots of the other 
equations of this type; 

(c) for this index k, akl=£:0. 

Under these circumstances, the solution of (5.4) is given by 

«(«) 
R 

/). 

(5.5) 

(5-6) 

for n sufficiently large. 
PROOF.   For the sake of simplicity, consider the third-order case with k = 2: 

«(« + 3) = Max [B:  ^^ + 2) + M(w + ^ + f2Ä(w)) . (5.7) 

where «(0), »(1), »(2) are preassigned positive quantities. Let us assume that of the 
two equations 

r* = aj* 4- V + fi. 
r3 = rf2r

2 + *2r + fs, (5.8) 

it is the first that has the largest positive root, and let p be this root. 
Let us first show inductively that 

ep* < w(«) < fpn (59) 

for two positive constants e and /. Consider the lower inequality first. Let e be chosen so 
that the inequality is valid for « = 0, 1, 2. Then, since 

we obtain 

u(n + 3) > <«,«(» + 2) + M(« + 1) + <■!«(«) - 

«(3) > ^Kp2 H- btp + f) = ^P3. 

(5.10) 

(5.11) 

and clearly an inductive argument yields the inequality for all n. 
To obtain the upper inequality, we proceed similarly. The constant / may be chosen 

so that the upper inequality is valid for a = 0,1, 2. Then 

«(3)<Max|_/W2 + ^+f2)</p3J, (5.12) 

where the last inequality is a consequence of the maximal property of p. It is again clear 
that an inductive argument yields the upper inequality. 

To prove Theorem 5.1, we show that the assumption that B is employed infinitely 
often leads to an eventual contradiction of the lower inequality. If B is used for m = 
« + 3, « > 0, we have 

«(« + 3) = a2u{n + 2) + V(» + 1) + f««(») 
(5.13) 
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I 
Using the maximal property of p, we have a2p

2 + b2p + fz < c3p
3, where 0 < f9 < 1. 

Hence, we obtain «(« + 3) < c3fp
n+3. 

Now consider «(« + 4). We obtain 

«(« + 4) = MaxP1Ä(w + 3) + M(« + 2) + f1Ä(« + I)"! 
|_rf2»(« + 3) + M(« + 2) + r2«(« + 1)J 
["^.n+l/-^  ,  _2 _1_   I.  _  J_   , Nl 

< fctP
n+i, (5.14) 

where 0 < f4 < 1, and the constant /f4 is again independent of n. Observe that the 
condition a^^O is essential for our proof. In exactly the same fashion we find that 
«(« + 5) < fc5p

n+!i, 0 < fs < 1. Having established the relation «(w) < cafp
m for 

m = n + 3, n + 4, »+ 5, three consecutive values of m, where f6 = Max (f3, f4, c^), 
it follows from the recurrence relation (5.4), that this inequality is valid for all sub- 
sequent m. 

We see then that the effect of employing B once is to reduce the constant /. It fol- 
lows that a choice of B infinitely often will eventually lead to a contradiction of the lower 
bound «(«) > epn. Consequently, there is a number «0 dependent on the coefficients 
and initial values such that for «>»„,/? is not employed. The proof given above enables 
one to obtain an upper bound for the number of times that B is employed. Combining 
this fact with the easily demonstrated fact that a choice of A for any three consecutive 
values of « implies that it is chosen for all larger values of n, we may obtain a number 
«0 with the property that for » > n0, A is always used. 

The condition that <«!=/: 0 is necessary for the truth of the result in general. It is not 
difficult to verify that if 

FA: *«(«) 1 
«(« + 2) = Max .   , N   .   „   /■ 1   . v y LB:   cu(n + 1) + € u(n)j 

«(0) = 1, 
«(1)  - C + €, (5.15) 

where c2 <. b < c and e is sufficiently small and positive, then the optimal pattern is B 
for odd «, A for even n. 

A finer analysis will show in the general case that the optimal pattern is always 
eventually periodic. 

The case in which at least two characteristic equations have the same maximum root 
is more difficult to hr.ndle. It is easily seen that for large n only those choices correspond- 
ing to largest roots will be used, and it is not difficult to show by consideration of 
the quantities 

,/,(«) = Min [K(«), K(« 4- 1). V{n + 2)] 

♦ («) = Max [K(«). V{n + 1), K(« + 2)], (5.16) 

where K(») = «(«)p-", the first of which is monotone increasing and the second mono- 
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tone decreasing, that «(»)p-" approaches a limit as « —> oo. However, any further in- 
formation concerning asymptotic behavior seems to be difficult to obtain. 

5.3. The Inhomogeneous Equation 

Let us now consider the equation 

«) = Max    V* ctifuin - j) + ^   , *(«) = (5.17) 

for the case in which ttij > 0 and ^ > 0, where again the quantities *(/), 0 < / < 
R — 1 are given positive constants. The most interesting case is that in which 

m 

fort ~ 1,2, ■■■ ,M. 

Since each equation has largest characteristic root equal  to 1, it is the forcing term 
that dominates the situation for large n. 

From the theory of linear difference equations, it is known that the solution of any 
recurrence relation of the form 

«(«) = 2^ '*«•(* — D + gt>        « > K. 

«(/) = fj,        0<l <R- 1, 

where 2f-i aii ~ I» aii ^ 0 ^las t^e form 

«(«) =^i- + ^ + 0C«?). 0 <«.<!, 
2 My 

(5.18) 

(5-19) 

for large «, where </« is a constant dependent on the initial conditions. 
We should suspect, then, that the solution of (5.17) would be determined, for large », 

by the index i for which gi/S, jdn assumes its maximum. This is indeed true. We shall 
prove 

THEOREM 5.2. Let 

c = Max ii 
i   2 Mi 

y=i 

(5.20) 

be attained for the single value i = s. If aai > 0, the solution of (5.17) is given by 

(5.21) *(«) = 2 ***• _ ö + *• 
/or « > «0, where n0 is an integer dependent on the initial conditions and coefficients. 

PROOF. Let us establish first the inequalities 

k 
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nc - K < «(«) <nc + K 

77 

(5.22) 

for all «, with a suitable choice of K. For 0 < « < i?, we may choose K so that the in- 
equality is valid. Let us now establish it inductively for « > R + 1. We have 

'(«) > 2^ **t*(* - D + g. 

R 

> y2*,d(»-iy-*'i +i. 
(5.23) = nc — K, 

using the value for c given in (5.20). 
To establish the upper bound, we use the fact that if the /th choice is made at n, 

we have 

m 

«(«) = ^2 "»"(.n - /) + gi 
R 

<2Z''i'C(W~')f  +  /C]   +gi 

R 

< nc + K + g, - 'Y^ ia'i 

< nc + K, (5.24) 

using the optimal property of the index s. 
Following the same reasoning as that above, let us show that if any other choice than 

the Jth is made at n, the upper bound will be decreased. As before, this will show that 
the index s must be selected for all large «. 

Referring to (5.24), we see that if / i^t j-, we have 

m 

«(«) Knc + K + gi— y     ja,) < nc + k — ät, 

where </, > 0. Consider now the situation at « + 1. We obtain, for some /, 

»(« + i) = ^ rfi,»(« + 1 — ;) + f j 
j=a 

R 

< a.^nc + K - d^ + ^ 0„(l + n ~ j)c + K + g. 

(5.25) 

< (n + l)c + K — aiydx + gi ~ c ^^ iaii 

< (« + l)f + K - d2. 
i=i 

(5.26) 
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where d2 > 0, since if i = x, we have rfsl > 0, and if i ^ s, we have 

MC 

gi 

Continuing in this fashion, we see that for », «+!,•■•,« + i? we obtain a positive 
constant d such that /(«) <. nc + K — d, if /^ J is selected at «. Having established 
this upper bound for R consecutive values, it follows via induction that the inequality 
persists for all larger values. We observe then that a repeated application of choices dif- 
ferent from j cannot yield an optimal policy, since eventually we shall obtain a contra- 
diction to the lower inequality. 

If there are several choices yielding the same c, the above argument shows that we 
may restrict ourselves to considering only these choices. The asymptotic behavior will be 
the same as above, namely, «(«) <—' nc, and the result of varying choices will be negli- 
gible. Nevertheless, it is an interesting open problem to determine the asymptotic form 
of the solution in this case. 

»< 

i 

5.4. A Class of Problems Arising In Production Planning 

Let us consider the following simplified problem. We are given an initial stock x and 
y of two quantities A and B, and means of producing more of A and B using the initial 
amounts. Specifically, we may divide x into two parts, u^ to be used to produce more A, 
and »a 'o be used to produce more B, and y into two corresponding parts, Vj and fs. The 
new amount of A will be /(»i, v^ and that of B will be ^(w2, t'2), where / and g are 
given functions. This operation is now to be repeated N times, and the general problem 
is that of maximizing /&(xw, yy), where Ä is a given function. 

Problems of this type arise in planning production schedules where different tech- 
niques are applicable at each stage of production. 

Since the mathematical problem in its above generality seems to be hopelessly beyond 
our reach, let us consider the simpler situation, where 

g(u, t>) ~ biu + biv. (5.27) 

(5.28) 

and all the coefficients involved are non-negative. 
Another criterion function of interest, which applies to "bottleneck" situations, is 

*(*. y) = Min O. y) ■ (5.29) 

We shall not, however, discuss any of these very interesting and important problems here. 
If we define 

■%(«• y) ~ f** + f2> - 'K^. y) < 
^!ii.x,y) = t)(xN,yN), (5.30) 
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we obtain for W/, the functional equation 

ir*(x, y) = Max [WV^x + a2y, 0), IPV^O, Ä.x + Ä^), 

WV,^!*. *,>). W^-.C^. *^)] (5-31) 

for N > 1, since the linearity of h(x, y) will force «, to be either 0 or x- and, similarly, 
v1 to be either 0 or y. 

We see, therefore, that we are given four matrices. 

M: :)■ M:. :> -=(» :.)■ --a :•) «2 

0 
(5.32) 

(533) 

and the problem is that of forming a vector, 

(;«) = c,c....c.(;), 

where each Cj is an Aj, / = 1, 2, 3, 4, in such a way as to maximize the inner product of 
(•*». ^w) with a given vector. 

In this form the problem may readily be generalized. However, even in its simplest 
forms it seems extremely difficult. If we seek to determine not the actual optimal policy, 
in the general case, but merely the order of magnitude of #%(*. >). the problem is still 
difficult. In the succeeding section we shall present a preliminary result in this direction. 

5.5.  The Problems of Largest Characteristic Root 

In this section we shall present a preliminary result for the following problem: 

Given a finite set {A^} of non-negative square matrices, determine for each 
N the matrix Cj, = BJi2 ■ • • By, where each Bj is an Aj, which possesses the 
largest characteristic root. 

The problem has not been resolved even in the simplest non-trivial case of 2 X 2 
matrices, where the set consists of two non-commuting matrices A and B. 

Let us introduce the notation 

^(^4) = characteristic root of A of largest absolute value. (5.34) 

It is a classical result of Perron that <i>{A) is positive if A is non-negative, unless all the 
characteristic roots of A are zero. To simplify the presentation we shall assume that the 
Ai are actually positive. We now prove 

THEOREM 5.3. X = Limy_>oo^(Cw)1/w exists. 
PROOF. Since C% is a possible candidate for Cjy, it follows that 

*(CW)S = *(Q) < *(C2W). 

netting N run through the values {2*}, k = 0, 1, 2, • • •, we see that 

A(*) = «KC*)^ 
is a monotone-increasing function of k. 

(555) 

(556) 

I 
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To show that it is bounded, let us introduce the majorant, M, of the matrices {Ai}, 
defined by the property that the kith element in M is the maximum of the set of kith ele- 
ments occurring in the {Ai}. We shall employ the notation 

A<<B (5.37) 

to indicate that a^ < bjj for all / and /'. It is known that if A and B are positive matrices, 
then ß >> /! implies 0(B) > ^(^). The converse is, however, not true. 

Since M>> Af, we have iM* >> C.v, whence ^(0) < ^(Mw) = ^(M)". Con- 
sequently, the sequence ^(Cjv)1/iv is uniformly bounded for all N, and thus X(i&) is uni- 
formly bounded. Since A,(ife) is monotone increasing, l.imA.(^) exists as k—* oo, and 
we set 

A. = Lim A.(^) . (5.38) 

It remains to show that ^(Cw)1/*r has a limit. Let i be a fixed large number and write, 
for N > 2*, N = 2*^ + r, where 0<f<2fc — 1,^ and r being integers. 

Since {C2k)'iCr is a possible choice for CK, it follows that 0(C„) > tft^^k^Cr. Since 
Cr >> ai, where / is the identity matrix, for some d > 0, we have (C2i)

2Cr >> 
aiCik)". Hence, 

or 

Letting N —*■ oo, we have 

Lim^(CJV)
1/^ > ^(C^)1'*'. 

(5.39) 

(5.40) 

(5.41) 

Since this holds for every k, we obtain, finally. Lim <t>(Cf,y/N > A. 
In the above proof we have used positivity only in the statement Cr >> ai. A finer 

analysis based on the asymptotic form of (C2£)' for large q will show that non-negativity 
is sufficient. 

To obtain the inequality Lim ^(Cw)1/Ar < A., we write 2* = ^Nm + r, where {Nm} is 
a sequence on which Lim is obtained. Then consider the matrix C^ Cr. We have, as be- 
fore, <l>(C2k) > a<f>(Cy )o, whence 

^(c:^)^>«^[^(c„ )^-]' 

Letting k —* oo, we obtain 

A- > HCmJ**' 

and thus X > Lim. Combining the two inequalities we obtain equality. 
In very much the same fashion, we may prove 
THEOREM 5.4.  Let MN denote the smallest majorant of all the products BiBt 

where each Bi is an Af. Then 

(5.42) 

(5.43) 

BN 
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Lim^Mtf)1/» = M. (5.44) 

It is immediate that M > A, and it is conjectured on the basis of no evidence pro or con 
that /x = A. 

5.6. A Testing Problem 

In this section we shall present the solution to Problem 1.3, posed in Section 1.2. 
Let /(x) equal the expected time consumed using an optimal procedure. Then 

(L:  1 + x/(l)l 
1 >x> 0,        0 <.a<l. (5.45) 

For x close to zero it is dear that /(x) > x/(l), since /(x) > 1 for all x. Therefore, 
in some interval [0, x0] we have 

/(x) = l+x/(l), 

where /(I) is some, as yet undetermined, constant. 
In [x0, x0/<<] we obtain 

/( 
r i + x/ 

r) = Min{i + [i 
1 + x/(l) 

+ *x/(l)]J 

(5.46) 

(5.47) 

Hence, we must compare x/(l) with 1 + axf(l). If we assume that 1 + <*x/(l) < x/(l) 
for x0 < x < x0/a, we turn to the next interval [x0/rf, X0/<J

2
], and so on. Since, even- 

tually, X0/<J* > 1 if x0 ^= 0, we must in this way either cover the interval [0, 1 ] or obtain 
a point x, where 1+x/(1)>1+ /(*x). This certainly is true at x = 1, since 

/(I) - Min j 1 + ^} = 1 + /(„) . (5.48) 

Let us show that A is used to the right of of x2, where x2 is the first point at which 

x2/(l)=/0*x2). (5.49) 

If L is employed for x2/a > x > x2, we have 

Mx) = 1 + x/(l) = 1 + x[l + /(*)] . (5.50) 

If A is used, we have 

M*) = 1 +/0«) =1+ [1 + **/(!)]. (5.51) 

since ax < x2, which means that L is used there. At x = x2, the two straight lines 
y = i + x[l + /(<«)], y — 2 + <*x/(l) intersect. Hence, for x > x2, one is above the 
other. At x = 0, one intercept is 1, the other 2; hence. 

/^ = 2 + *x/(l) < 1 + x[l + /(I)] = fa (552) 

for x2 < x < x2/d. Similarly, we show that fAL < fLA in x2/a < x < x^/a2, and so on. 
Only a finite number of such steps are required. 
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It remains to compute /(I) and x2. Let tfi < xa < tfi-1. Then 

/(I) =* + /(4»)=i+ 1 + ^/(1), (3.33) 

whence 

w-r^i' (5-54) 

Since this is a convex function of k, the minimum occurs at either a unique k or at two 
adjacent k's. Having determined k, we have /(I), and then 

1 - 
(i -*)/(i)-(i -a)(k+ iy (5.55) 

I 

I 
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CHAPTER 6 

GAMES OF SURVIVAL 

6.1.  Introduction 

In this chapter we shall present some results concerning a class of games, which we 
call "games of survival," in which two players with finite fortunes, /, and /2, respec- 
tively, in chips play a normalized finite zero-sum two-person game. The game is continued 
until the fortune of one of the players is reduced to zero, or ad infinitum if this never 
occurs. The payoff in money is (1,0) if player two is ruined before player one, and 
(0, 1) if the reverse holds. 

Another way of viewing this is that each player is playing so as to maximize the prob- 
ability that he will survive his opponent. 

We shall first consider a simple game using the functional-equation approach of the 
previous chapters, and then present a more powerful technique that ut'Iizes more of the 
actual structure of the process. 

6.2. The 2 X 2 Game 

Let us consider the situation in which two players, A and B, possessing fortunes x 
and j, respectively, play the zero-sum game defined by the matrix 

-r: -:)• (6.1) 

where a, b, and c are positive integers, with the purpose in mind of ruining the opponent. 
Since the game is zero-sum, we shall set x -\- y = d and specify the state of the for- 

tunes of the players by x, the quantity held by A. Let us define, for 0 < x < </, x 
integral, 

/(x) = probability that B is ruined before A when A has x and both players 
use optimal play, (6.2) 

setting 

/(x) =0, x < 0 

= 1,        x>d. (6.3) 

If this function exists, it satisfies the equation 

/(x) = Min Max [/»^/(x - 1) + M2/(x + a) 

+ M./(* + 0 + p*q*K* - *)] 
Max Min [■••], 

p        Q 

(6.4) 
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I 

fotx=l,2,--,d—l. 
To simplify the formulas which occur, we shall set K[/(jf)] as the value of the game 

whose matrix is 

(6.5) 

We shall use the notation F(Af) to denote the value of the game whose matrix is M. 
The functional equation of (6.4) therefore has the form 

/(x) = K[/(x)]. x= 1.2. •■•,</- 1, 

fix) =0. x < 0 
= 1. x>d. (6.6) 

Although it is not immediately seen that /(x) exists, there is no difficulty in defining 

/„(x) = probability that B is ruined before A when n rounds of the game are 
played with both sides using optimal play and A possessing x. (6.7) 

This function satisfies the equations 

/0(x) = 1.        x>d 

= 0,        x <ä - 1, 
/»+.W =K[/B(x)]. « = 0. 1. ••-,        x = 1.2,   •,<*-I. 

fn+i(x) = 1. x >d 
= 0. x < 0. (6.8) 

assuming that in the «-stage process A plays to maximize this probability, and B plays to 
minimize it. The situation is unsymmetrical, since there is always in the «-stage process a 
non-zero probability that both sides survive. As « —» oo, this probability approaches zero, 
and the situation becomes symmetrical. 

It is clear that ^(x) > /0(x) for all x, and hence, inductively, that /„«(x) > /„(x). 
It follows from the trivial observation that 0 < /„(x) < 1 for all x and « and that /„(x) 
converges, as « -> oo, for all x to a function that we call /(x). That /(x) satisfies (6.6) is 
a consequence of the fact that the value of a game is a continuous function of the 
game matrix. 

Since foix), and consequently each /„(x). is a monotone-increasing function of x. it 
follows that /(x) is monotone. Let us now demonstrate the important result that it is 
actually strictly monotone. 

We have 

/(i)=K/(o  V) (6.9) 

If /(d) and /(f) are positive, then /(I) > 0. Let us assume, to the contrary, that /(x) 
= 0,1,2, •■■ ,k < d, but f(k + 1) ^= 0. That a k with this property exists is clear. 

Then 
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Since f(i + a) > /(£ + ^) > o, f(i + c) > f(i + I) > 0, it follows that /(*) > 0. 
which is a contradiction, unless Jk = 0. Thus, /(I) > 0. 

Now, 

n) \f(c+2)        f(2-h)J- (6.11) 

Since /(I) > 0, /O + 2) > f(a + 1), /(<■ + 2) > f(c + 1), /(2 - *) > 0, we must 
have /(2) > /(I), unless /(2 — *) = o and the solution of the game is />2 = ^ = 1. 
This is clearly not so, since ^2 = 1 is a better response to /»2 = 1. Similarly, we prove, 
using induction, that 

0=/(0)</(l)</(2)< •••</(./) =1, (6.12) 

with strict inequality at every step. 
With these preliminaries disposed of, we now turn to the question of uniqueness. Let 

us set 

T(p, ?. f) = MJi* - i) + M*f(* + «) + P&fi* + O + Mi/<* - *) •   C6-^) 
Let / and g be solutions of 

/(x) = Min Max T(p, q, /) = Max Min r(/>, q, f), 
Q P P Q 

g(x) - Min Max T(p, q, /) = Max Min T(p, q, f) , (6.14) 
<1 P P 9 

satisfying the boundary conditions 

/(«) = ^W = 0,      * < o 

with the further assumption that g(x) is uniformly bounded. 
Under the assumption that /(JT) ^ ^(x), let 

A = Max|/(x)-1?(x)|. 

(6.15) 

(6.16) 

and let y be the largest integer in [0, </] for which this maximum, assumed to be not 
equal to zero, is attained. 

If we set pi — piiy), qi = q^y), pi = pi{y), qi = qiiy) to be sets of values for 
which the min-max is assumed, we have 

iiy) = T(p>9.g)- 

From the properties of min-max, we have 

(6.17) 

j 
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\ 

■ 

it- 

(a) 

(b) 

Ky) = rip,q,f)>T(p,q,f) 

and 

(a) giy) = np, q, g) < Tip, q, g) 
(b) tnp,i,K). 

Combining (6.18a) with (6.19a), we obtain 

/(>) - iiy) > T(p, f. f) - T(p> q, g) = rep, q,f- g), 
while (6.18b) and (6.19b) yield 

/(>) - giy) < np, f. /) - np. ?, f) = r(^, f. / -1). 
From these two inequalities, we conclude that 

A = |/(>) - iO) | < Max [| T(p,q,f- g) |, | Tip, f,f-i)\] 

Since 

\np.f:f-i)\<np.f.*) =A. 
|r(^f./-;)|^r(^y.A) =A. 

(6.18) 

(6.19) 

(6.20) 

(6.21) 

(6.22) 

(6.23) 

we conclude that (6.22)  is actually an equality, which means that the inequalities in 
(6.20) and (6.21) must also be equalities. 

Consider the relation 

where we set 

/(A) - g(y) = > JMUQ + in) - giy + *iy)], 

\a„       aTJ      \    c       -b) 

(6.24) 

(6.25) 

Since 2*« Pvii = 1. if | fiy + <»i>) — qiy + an) \ < D, p^ff must be zero. By as- 
sumption, y was the largest integer in [0, </] for which | f{x) — g(x) | = A. Hence, 
ptfi = 0 whenever a^ > 0. 

It follows that ptfi — 0. p2qi — 0- Since pi + p2 = 1. both />, and p2 cannot be 
zero, which means that ^, or q2 = 0. Coming back to the game matrix 

i/(x+0  «,-*>;• c6-26) 
we see that the strict monotonicity of /(x) makes it impossible for ^, = 0 or ^2 = 0 to 
be optimal play for ß for x = y. 

We have thus obtained the desired contradiction. 
The method we have employed is quite general and can be used to treat many particu- 
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lar types of w» X « games. The general case, however, in which one only assumes that 
the entries in the matrix are positive or negative integers still presents difficulties. 

6.3. More General Results 

Let us now consider the game Cl(f1, /2) characterized by the payoff matrix, (I^y), in 
which the elements are non-zero integers, and the finite fortunes fa and /2 of each 
player. We shall show that il is inessential and has some easily described optimal strate- 
gies.* We shall also show that if Maxjj I Tif I is small enough compared with the com- 
bined fortunes, then to play at the «th play a 8',-optimal strategy for T is an e-optimal 
strategy for fl, if 8 is sufficiently small. (8n is the »th power of 8.) 

We assume that every column of r has a positive entry and that every row has a nega- 
tive entry. Otherwise, there would be a negative column or a positive row. In the first 
case, player 2 can always force player 1's fortune to become non-positive by repeatedly 
playing the negative column. In the second case, player 1 can force player 2's fortune to 
become non-positive by repeatedly playing the positive row. 

Let 0<»>(/„ /2) be the game in which two players repeat r » times, or until one of the 
players has a non-positive fortune, if this occurs first. The payoff in money is (0, 1) if 
player 1 ends with a non-positive fortune, and (1, 0) otherwise. n(")(/1, /2) is a constant- 
sum two-person game with value, say,  [«'<B)(/i./«)> * — ^""(/i. A)]- We observe that 

1. Player 2 can always win as much money in r<n+1> as in r<M> by playing a T<n>- 
optimal strategy during the first n moves of r<n+1) and by playing arbitrarily 
on the (« + l)th move. Hence, 

*tni(h,f,) >^B+1,(/i./2)- 

2. Since each column has a positive entry, by repeatedly playing the strategy that 
assigns each pure strategy probability l//0, player 1 ensures that no matter what 
player 2 does, player 2*5 fortune will decrease each time with probability at least 
l//'0. Player 1 thereby ensures, with a probability of at least /„-f'«1"1, that player 
2 will be bankrupted in at most [/2] + 1 trials. (£/«] is the largest integer not 
larger than /2.) Hence, if » > [/2] + 1 and (fu /2) > (0, 0), then 

>>(/«/.) «[».1]. 

where 8 = /o-"»1"1- By definition, we have also 

and 

3. Let CT(A) be the game value of A for each game A. If (/j, /2) > 0, after one 

* In an inessential game, an optimal strategy for a player is one that secures for him the maxi- 
mum amount he can ensure for himself. An e-optimal strategy secures for him at least that amount 
less t. 
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I 

I 

move of r<»+i)(/1> f2), the players are playing r"»^ + Tih f2 - ri;). Hence, 

4.   Let e > 0. Player 1  can always win as much in r*"'(/i + e,/2 — e)  as in 
!*•>{/„*,), Hence, 

»'"»(A+«./.-«) >>'(/!,/2)- 

We can now conclude: 

(a) From (1) and (2), 

>'(/!. /.) -* K/i, /.)«[«.!] ^ (/i. h) > (0. 0) 
= 0 'f/i<0 
= 1 if/, <0. 

(b) From (3). if (U /.) > (0, 0), 

K/1!/2) = ^[K/i + riy,/2-riy)]. 

(c) From (4), for e > 0, 

Hh + •./.-•)> KA. /t) ■ 
DEFINITION. A strategy for player 1 is called conditionally optimal if the conditional 

distribution of his strategy at any play of r, given the course of the game up to that play, 
is an optimal strategy for the game [f (^i + I^y, <f>2 — r^)], where (^ ^2) is the for- 
tune distribution immediately before the play in question. 

LEMMA 6.1. // player \'s strategy is conditionally optimal, and if with probability 1 
the fortune of one of the players (not necessarily always the same one) eventually be- 
comes non-positive, then player 1 can expect at least p(fi, ft) in payoff. 

PROOF.   It is sufficient to show that the probability that player 2's fortune becomes 
non-positive is at least v(f1,f2). Let [(F^,F») | « > 1] be the random variable of for- 
tunes at play «, where, if the game ends at play N, (P*+i, P%+') = (F*, F*) for ; > 1 
Then, since player 1's strategy is conditionally optimal, if (FlJ, FjJ) > (0, 0), 

£-(F„+1 p»«) > EGfoFt + IV.,F» - riy)] 

= E*(F» F»), 

whereas, otherwise, 

Ev(F»+\ F»+1) SB Fr(F». F»). 

Hence, by induction, 

Let [(P^, P^) | « > 1] lie the random variable that is 

(0, 0)  if neither player's fortune is non-positive by the end 
of the «th play, 

- 
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; 

?( 

(0, 1)  if the  first player's fortune is non-positive by the 
end of the «th play, 

(1,0)  if the second player's fortune is non-positive by the 
end of the «th play. 

Then 

Ev^F*, Fn
2) < EP» + £(1 — P» — Pj) . 

But, by assumption, the second term on the right tends to zero. Hence, where En —> 0, 

EP*x+en>v{fltft), 

which is the desired result. 
LEMMA 6.2. There is a conditionally optimal strategy for the first player which en- 

sures that the probability that the game ends by the «th play tends uniformly to \ as n 
tends to oo in the opponent's strategy. 

PROOF. First, we show that for each (<£!, <^2) > (0, 0) there is an optimal strategy / 
for the first player for the game [«'(^j + T^, i^, — ri;)] such that for all /, Pr{Vu 

> 0} > 0. Suppose, on the contrary, that for some (i^,, </>2) > (0, 0), for all optimal /, 
there is a / such that Pr{Tu > 0} = 0, or, since r,, =/= 0, Pr{r„ < 0} =1, which is 
the same thing. Then, since player 1 is playing optimally, 

K^i, *2) < £"(<*>. + rw, ^2 - rH). 

From the monotonicity of f («^i + e, <f>^ — E) , 

*(*i. fa) > K«^, + rw. <t>2 - r„). 

Combining, 

K*., fa) = K^i + r„, ^ - r,,), 

or, weaker, from monotonicity again, 

KtfM. fat) = "(fa - 1. «^a + O • 

If (0! — 1, 02 + 1) > (0, O), this implies that an optimal strategy / for the first player 
for the game [v(<^, + r^ — 1, 02 — r0- + 1)] is an optimal strategy for [fC^i + r^, 
<f>2 — !%,■)], since by using it against any /, the first player ensures for hiirself 

£«'(</>i + r„, 02 rw) > EvCfa + r„ - i, 02 
> «/(^ - i,02 + i) 
=   f (01. 02) ■ 

r,. + i 

Thus, for a fortune division (0, — 1, 02 + 1) > (0, 0), and by induction for a fortune 
division, (0, — «, 02 + «) > (0, 0), for all optimal strategies, /, there is a / such that 
Tu < 0. But eventually, perhaps for « = 0, 

I 
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whereas ^ < n + 1. Therefore, for an optimal / and some /, 

0 < 8 < »(^x - «. ^ + ») < Evfa - « + rw> ^a + « - rw) 
KvMt - M - l,^a + «+ 1) 
= 0, 

which is the contradiction for which we have been looking. 
We have now proved that for (<t>u ^s) > 0, there is an optimal / such that for all /, 

Mr« > 0} > 0. For each (^ ^2) > (0, 0), fix such an /. Call it /(^ ^2). From the 
compactness of the second player's set of strategies and the fact that Pr{rw > 0} is a 
continuous function of his strategy, Pr{r„ > 0} > p(^j, ^2) > 0. Define sr^, ^2) = 
Mink pC^! + *, ^J — A) > 0, where k is an arbitrary positive, zero, or a negative integer 
such that (^ + i, ^, — *) > (0, 0). 

Now let player 1 use the conditionally optimal strategy that consists in playing /(<£T, 
^2) when die fortune distribution is (^ ^2)- Let g<w) be the probability that one play- 
er's fortune oc the other's is exhausted on or before the «th play. Then, where o- = 

gd/.^i«) > 0. 
Qtm*ftt*tti*t) > g(n) + (! _ Qm^etWJ**. 

By induction. 

^(»(t/^l+i)) >!_(!_ a[^+^l+1)I'-,. 

Hence, g<W) —> 1 as N -* 00, which is the lemma. 
Let «'"»(/i. ft) be the game in which the two players repeat r n times, or until one 

of the players has a non-positive fortune, if this occurs first, and the money payoff is 
(1, 0) if player 2 ends with a non-positive fortune, or is (0,1), otherwise. ß<B)(/i, /j) 
is a constant-sum two-person game with value [«'<")(/i' /z)»1 — t'(B)(/i. /a)] • Obviously, 

since any strategy for player  1  in n(B>(/1,/2)  will ensure him as much money in 
n*")(/1,/2). We therefore conclude, by the same reasoning as that stated earlier, that 

(a')        *<->(/„ /») -> •(/„ /,) e [0, 1 - 8'] 

= 0 
= 1 

where 8' > 0; 

(b')       »(ft. /0 = GC^C/x + r^, f2 - r4i)] 

(C) t-C/i + =. /J - O > K/i- W 

In addition, 

(d') *(/../,) <K/../.) 

if(M.)>(0,0); 

if e > 0. 

1 
r 

• 
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DEFINITION. A strategy for player 2 is called conditionally optimal if the conditional 
distribution of his strategy at any play of r, given the course of the game up to that play, 
is an optimal strategy for the game [f (^j + 1%,-, <f>2 — r^)], where (^j, fa) is the for- 
tune distribution immediately before the p'ay in question. 

From Lemmas 6.1 and 6.2 and from h.e analogous Lemmas 6.1' and 6.2' that we do 
not write down, we conclude that each player has a conditionally optimal strategy which 
ensures that play ends by the «th play with probability tending uniformly to 1 as » tends 
to oo in the opponent's strategy. The first player's strategy ensures him •»(/», /2) on the 
average, and the second player's strategy ensures him 1 — f(/i, /2) > 1 — "(/i, /z) on 

the average. Since together the players can win no more than 1, we get 

1 > K/i. /a) + [i - f(/i. /.)] > KA. /.) + [i- »(/». /2)] = i ■ 

This means that v(f1,f2) — v(f1,f2) — (say) K/i,/,), and that 0(^2, ^2^ is inessen- 
tial with the solution  [f (/i,/a), 1 — vifuft)]- 

v can be characterized as being the unique solution of 

o < *(*!. ^2) = <?I>(*i + riy. ^2 - r,,)] < 1      if ifu /2) > (o, 0) 
= 0      if/, < 0 

= 1 if/2<0. 

For, if f * is a solution, 

by definition, and so, by induction, using (a), (b), (a'), and (b'). 

Hence, 

^(01. ^2)  = *i+U <f>2)  < v*(<i>i,<l>i)  < H+u fa)  = "(fa, fa). 

giving 

v(fa,fa) = v'C^i, *a). 

as was to be proved. 
We thus have 
THEOREM 6.1. n(/i,/z) is inessential with the solution [_v{fi,fx), 1 — »(Juf*)J> 

where v is the unique solution in {(^1, ^2) I ^1 > 0 or ^2 > 0} 0/ 

0 < v{fa, fa) = G{_vifa + r^. fa - r^)] < 1      // {fa, fa) > (o, 0) 
= 0 iffa<0 
= 1 iffa<0. 

Each player has a conditionally optimal strategy that is optimal and which ensures that 
play ends by the »th play with probability tending uniformly to 1 in the opponent's 
strategies. 

Let us turn now to the problem of the effective computation of an e-optimal strategy 

V 
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for !!(/!,/a). This is easy, if we are not interested in efficiency. That is, we need only 
find an » such that v«»' (/^ /2) — i'<n> (/„ f-i)<E — S, where 8 > 0. Then a S-optimal 

strategy for the first player for n(B)(/1,/2) provides an c-optimal strategy for him for 

QQuft)- Thus, he can use the strategy on the first n moves of ßC/i./a) and act arbi- 
trarily thereafter. Similarly, a S-optimal strategy for the second player for fi!(n)(/i,/2) 
provides an e-optimal strategy for him for Ii(/,,/2). 

If Maxj.y I r1,- I is small enough compared with /, and /2, another class of interesting 
c-optimal strategies exists. The repeated playing of an optimal strategy for T is an c- 
optimal strategy for O. More precisely, let us remove the restriction that each r^- be a 
non-zero integer. Let us require instead, say, that G^r) > 0 and that for some optimal 
strategy /, Pr{VIj > 0} > 0 for all /. If G(T) — 0, we require in addition that for 
some optimal /, IV{rw < 0} > 0 for all /*. Define a = G(V), ß = Min, Pr{T,j > 0}, 
y = MaxM |r4/L 

We assume tnat both /,  and f2 are positive and  define f — f\ + /a- Define,  for 
Ot=:0, 

■ 

Poi**) f+ y 
— o 
= i 

if 0 < ^ < / 

if «^ < 0 

and for a > 0, 

PM 
- exP j - ^- *i 

exP i - -^7 (/ + y) 

if 0 <<!.,< / 

= 0 if./., < 0 

LEMMA 6.3. // player 1 plays I repeatedly, then he can expect at least />„(/,) in pay- 
off. (I is any optimal strategy for r satisfying Pr(V,j > 0) > 0.) 

PROOF. Since ß > 0, by the method of proof of Lemma 6.2, it follows that if 
player 1 plays / repeatedly, the probability that the game ends by the »th play tends to 
1 as « tends to oo. Hence, in order to prove Lemma 6.3, it is sufficient to show that for 
all AT, 

By induction, this would follow from 

E{paiF'[^)\P^}>paiP'!). 

We prove the latter. 
Suppose that o = 0. If 0 < F* < /, then for all (/, ;), since Tj, < y, 

1 
Mf + r*i) > f + r 

er+i«). 
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Hence, if 0 <F«' </, 

EiPoiP^1) | P?) > Min Ep0(P* + rif) 1 i 

> —=—FN 

Since if Ff < 0 or Ff > / our proposition is trivial, we have disposed of the case 
«=0. 

Suppose now that a > 0. Again, we need only consider 0 < F^f < /. Then 

Hence, 

where 

Hence, 

^.(^ + riy) > 

«^.Cif*)^) > Min£/»a(F* + T^) 

l-£eXp{_^(Ff + r/y)} 

i-«p{-^(/ + y)} 

l-Alexpj-^Ff} 

> Min 

- exp j (/ + y) ]■ 

M = Max E exp | — -^ T,; I 

^Maxji-^Er^ + c-a)^)2} 

< 

< I- 

{.-^(-^1 

1-exp   -JF?| 
„(Ff«) IFD > r-L-j:—H = PAT) ' 
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n 
r 

1 

'e 

as was to be proved. 
By symmetry, if « = 0, we condude 
LEMMA 6.4. If a = 0, and if player 2 plays ] repeatedly, then he can expect at least 

poift) in payoff. (/ is any optimal strategy for r satisfying Pr^Tu < 0) > 0.) 
If a = 0, Lemmas 6.3 and 64 give us, whenever 0(/], ft) is inessential with the 

solution {[«'(/„/,). 1 - KA./,)]}. 

M/O < •(/»./•) < 1 - PoiU) = poiU) + f + y' 
Thus, repeating / is [y/(/ + y)]-optimal for player 1, and repeating / is [y/(/ + y)]- 
optimal for player 2. If « > 0, Lemma 6.3 gives us, whenever n(/i, /j) is inessential 
with the solution { [»(/», /2), 1 - f (/x, /2)] }. 

exp 
?'■ <paih)<<Uh)<i 

Thus, repeating / is exp {— (a/y2)/1}-optimal for player  1, and any strategy is exp 
{ —(<r/y1)/1)-optimal for player 2. 

What if, instead of repeating /, player 1 repeats a 8-optimal /«, where 8 is the small- 
est number for which /« is S-optimal? If or > 8, no great harm is done, since it can be 
verified by precisely the proof given above that this is an exp { — [(a — 8)/yi!]/1}- 
optimal strategy for player 1. If, however, a < 8, player 2 can expect at least 1 — 
exp { — [(8 — «O/y2]/«} in payoff. When [(8 — a)/y2]/2 is large, this payoff is close 
to 1, so that la is not a good strategy. Thus, if a = 0, no matter how small y is, it is 
not enough to repeat a S-optimal strategy for sufficiently small 8. On the other hand, 
suppose that (/„) is a sequence of strategies for player 1 whose «th member is 8n- 
optimal for F and satisfies 

mnFr{Ttj > 0} > /?' >0, 
i 

where f? does not depend on «. Then 
LEMMA 6.5.  If a = 0 and player 1 plays /„ at the «th stage, then he can expect at 

least pttifJ - [»/(i -«)(/ + Y)] '« Payoff- 
PROOF. The proof is almost identical with that of Lemma 6.3, where, instead of 

proving 

^.W) >?„(/.). 
one proves that 

^„(Pf) > ?„(/*) 
8-1 + gy-i 

/ + y 

It is now an easy step (left to the reader) to 
THEOREM 6.2. // G(T) = a > 8 and OQu /2) is inessential, repeating a strategy 

which is »-optimal for T is exp {-[(a - 8)/y*]f2}->ptim<tl for Oft./«). Let G(T) 
= 0, and let (/,,) be a sequence of strategies for player 1 whose nth member is 8n-opti- 
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mal for T and satisfies 

Min Pr{ru > 0} > )8' > 0, 
i 

where ß' does not depend on n. Then playing /„ at the nth stage is a { [y/(f + y)] + 
[28/(1 — 8)(/ + y)])-optimal strategy for player 2. 

The reader will observe that when each F^ r/= C, say, 11%,- I > C, we automatically 
have, for a 8B-optimal /„, when 8 is sufficiently small. 

Min fV{r,ny > 0} > 
i 

C - 8» ^ C - S 

In dosing, we wish to point out that the method of proof leading to Theorem 6.1 is 
trivially sufficient to handle the following generalized game of survival, in which the 
result of a play is a random state instead of a definite number. However, the method is 
apparently insufficient to handle more than a finite number of possible states or the pos- 
sibility of "zeros." A finite set S with two distinguished points, a, and o-2, is given. 
S is partially ordered by <, which satisfies for some fixed n and all {xi I 1 </<«}, 

Xt < x2 < < *Vi < xn *t — "a. ^n  —"  «»l • 

For each x eX, there is a set of random variables on 2, {Yij^x) I 1 < / < /"o, 1 < ;" <;o}. 
such that for all / and ;, Vj^o-j) = »„ Vj^o-.,) — <r2; and for x =^= <T1, <T2, 

| PrlYaix) <x} = 0-*Pr{x < Y^x)) = 1, 
Pr{x < r„(x)} = 0 -> Pr{Yifix) < x) = I. 

In addition, for x ^ a,, cr2 for each /, there is a ; such that 

IV{y„(x)<x) >0; 

and for each ;, there is an / such that 

Pr{x<YiJix)}>0. 

Define H n=i Y<in)- (x) by induction by 

where {[V'^C^) I ! < ' < '«. ! < / < /o.x€ 2]} is a set 0^ independent random vari- 
ables, each distributed like [Y^C*)]. Then we finally require that x < x* implies that 
for all N, 

Mil ^.^" •») ^ Hnyo.w""]- 
i ii=i *    * »=i * 

Pr\i{Y%y) = *,] < PrlllY^x) - . 



f 
96 THE THEORY OP DYNAMIC PROGRAMMING 

AH that we have said about {n(/1, /j,)} up to Theorem 6.1, trivially modified, applies to 
the games {Q(x)}, in which two players repeatedly and simultaneously choose integers 
in and /,, at each time », until IT«-i yf\ (*) = "i <?r o^s or ad infinitum, if this never 

occurs. The payoff is (1, 0) if the game ends in the state oj, and is (0, 1) if the game 
ends in the state «r,. If the game goes on indefinitely, then the payoff is [a(C7), ^(C)] 
where 0(0,/8(C)] < (1,1) and a(C) + /8(C) < 1, and v^ere [a(C),/8(C)] can 
depend on the course of the game, C. 

Similarly, Theorem 6.2 can be generalized by the use of expected values to the situa- 
tion in which 2 is a set of reals satisfying, for o-j > x- > o-2. 

if <r2 < AT + aif < aj 

if a, < x + aif 

= <r2 it a2 > x + an, 

aij is a real-valued random variable whose distribution depends on (/', /'). 

i 

•i 

r 

I I 
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