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FOREWORD

As the speed of air-to-water missiles increases, the water
impact decelerations which these missiles experience at water entry
become incrzasingly important to structural design. For example,
at low speeds of even g few hundred feet per second, decelexaticis
of several hundred gravitational units are common. At these entry
speeds, and increasingly more so as the speeds increase, the com-
pressibility of water has important influence on the peak lmpace
loads and decelerations.

The researeh reported here considers the effeet of water
compregsibility in the fundamental case of vertical impact of
round-nosed missiles, by applying mathematical technigques pre-
viously used only in supersonic aerodynamies.

This work has been supported jointly by the 0ffice of Naval
Research (Project TOWER: Treatise on Water-Entry Research) and
this Station under Local Project 701, from 1950 to 195k.

This report is transmitted for information only. It does not
repcossent the official views or final judgment of this Station.
It presents inrormetion released at the working level that is still
subject to modification and withdrawal.

D. W. STEEL, Acting Head
Research Division

Released under
the authoi'ity of:

D. W. S1EEL; Head
Underwater Ordnance Department
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ABSTRACT

Compressibility effects during the icitlal impec’ raase of
air-to-water missiles are presented iz the form of a review of ex~
isting theoretical and experimental work conducted at the U. S.
Naval Ordnance Test Station during the last few years.

The theoretlcal section of the report presents three differ-
ent approaches to the problem of finding the pressures which act
upon the missile when 1t strikes the water with a velocity much
lower than the speed of sound in water, taking Into account the
compressibility of the water.

The experimental sectlion of the report presents results ob-
tained in measuring the impact pressure of missiles or spheres
striking the water surface.
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INTRODUCTION

Compressibility effects during the first instants of water-
entry lmpact of an air-to-water missile are of interest beoth from
a structural and a ballistic viewpoint. During the initial impact,
the effects of compressibility are important, whereas during the
latter phases of entry the incompressible theory is adeguate for
most pronlems. It should be emphasized that the amount of experi-
mental data concerning the compressible phenomenon is very limited,
ro that the treatment of compressible effects is essentlally a
theoretical vne at the present time.

Extremeiy high pressures can be developed on the nose of a
missile at water jmpact. If a flat, rigld disk is considered as
striking a water surface normally, the instantaneous pressure due
to the compression wave set up in the water is p =pgcV (Appendix A)
# 2re € 1s the density of the water, ¢ 1is the velocity of sound in
v ¢ water, and V is the normal velocity of the disk. If this prob-
ilem 1s considered from the incompressible viewpoint, the pressure
av impact has an infinite value. In the case of a sphere striking
a water surface normally, there 1s a small area over which such a
shuck will exist for a finite interval during which the intersec-
tion of the sphere with the water surface expands faster than the
veloelty of sound in water. For low entry velocities, Ve, the
time during which the rate of growth of the wetted-surface radius
is supersonic 1is very small. Hence for most cases of water enbry,
the Impact or shock phase occurs during a very cthort interval,
usually of the order of a few microseconds. This factor alone
makes experimental work very difficult to perform since instruments
with very rapld response are required in order ¢ measure events
occurring during a short interval. In addition, there are indica-
tions of alr trapped between the missilie and the water which acts
as a cushion in its effects on the shock phase. Since the pres-
sure plugs in the missile have a finite diameter, any pressure
measuremeat indicates an averaged value. The phenomenon of trapped
air may also delay and reduce the peak pressures.

The structural effect of the shock phase 13 of interest in
connection with the deformation of the nose of the missile, but
it is not well known. The structural effect is also of theoretical
interest since it combines hydrodynamic and elasticity theory ir
the solution of the problem.
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s one part of the over-all problem of water entry shock, the
impact phase 13 Impurtunt since it is the first to occur and the
subsequent behavior of Lne misgsile 1s dependent on what happens
during this phase. The fact that the compressibility effects are
more pronounced during this phase means that only theoretical and
experimental work of a fundamental nature can revszal thelr relative
importance.

The incompressibie theory of water entry eof blunt bodles has
been catensively Jdeveloped by Shiffman and Spencer (Ref. 1) and by
others. Based on this theory, the pressure distribution on a
sphere entering water vertically has been defermined at the Naval
Ordnance Test Station (NOTS), and the theoretical results have been
checked experimentally through pressure measurements with plezoelec-
tric gages at the stagnation point of a 12-inch -diameter spheie.

Incompressible theory, however, predicts an infinite pressure
at the stagnation point of a blunt body when it comes in contact >
with the water surface. Actually. it is expected that during the
impact phase, pressures of the order of the shoeck or plston-
impulsive pressure @cV are experienced for a few microseconds. A
Since a theoretical prediction of the pressures during this phase
requires that account be taken of the compressibility of the water,
the formulation of this problem and several solutions will be con-
sidered. The problem was first stated by L. Trilling of this Sta-
tion, who based his formulation on the theory of weak waves and
obtained a solution fto the two-space dimensional problem after mak-
ing several assumptions. The problem was later taken uvp at NOTS by
R. H. Owens, who reformulated the problem using the more general
Reisz method, but maae no attempt at a detalled solution. The ver-
tical .mpact of a sphere on the water surface was considered at
NOTS by R. H. Korkegl, using the retarded potential solution as
suggested by F. E. Marble, consultant to this 3tation, rrom which
actual pressure distributions were obtained.

TRILLING'S SOLUTION FOR TWO-SPACE DIMENSIONS

Since this report deals with the first contact of a striking
body with a plane water surface whore the compressibllity of the
water is to be considered, the provlem resolves itself Into one
concerning the propagation of a pressure wave of finite amplitude
into the water. This involves considerations in terms of the dy-
namics of a compressible liquid.

_, Wnen a body strikes a water surface at a velocity V where
VI£K1 {¢ is the velocity of sound in water), the theory of weak

o
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wavzs (Ref. 2) may be applied to compute its motion. The flow is
trrotuticonal and isentrcpic, and the velocity potential satisfies
the wave nquation up to terms of the order cf V2/c2. The boundary
cenditions are applied on the undisturbed free surface, and the
displacemeni of the body is neglected. The effect of splash is
ignored.

The velocity potential ¢ satisfies the eguation
(1) 0, —szzlﬁ:o
The velocity V and the pressure p are determined by
(2) T=VY , P=-¢¥
Just before impact, the fluid 1is at rest or

Since the differential equation and the boundary conditions have
been llnearized, the solutions for the vertical snd horizontal
components of motion may be found separately. In thls report only
the vertical comporent will be considered.

The boundary condition for the vertical component is
() it X,0,2) = o0 on S’
%(t,x,ﬁ,z):l/ on S

where S 13 the wetted surface of the body and S' 1s the horizontal
free surface of the liquid. The problem (Eq. 1 - %) is similar to
that of a 1ifting three-dimensional wing in a steady supersonic
stream for the case of two-space dimensions (Ref. 3, p. 73), and
the methods of supersonic airfoil theory may be adapted to solve 1t.

When a two-dimensional body strikes a plane water surface at
a constant velocity V, its wetted surface |x/<xe(t), grows at a
rat. propor»ional to the slope of the body section since
dxe/dy = Xa/v. The potential function satisfies the equation

5) - (G + By) =0

with the initial condition
Yo, X/.Y) =0

(€3]
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The vertical component of motion satisfles the boundary conditions

F(t,X,0)=0 X > Xelt)
b (t,x, 0=V X < Xe(t)
Figure 1 shows the growth of the strip x¢(t) in the plane y = 0.
c Ct | Xe (%)
=1 D s
¢ \ \ "'46? a
| /
i
|
. B,
8 ) B
~ .
O ) — X
\\1 .
A
FI1G. 1.

The lines AB, AB' are the itraces of the characteristic Mach cone
tangent to x(t) in the plane y = O. Since the equation of motion
is hyperbolic with constant leading coefficients, any disturbance
travels in the fluild field at the constant veloclity ¢. In the re-
glon B! 0B, the edge of S moves outward at a velocity ie)c, and
therefore, in the region BO5S!'C, no point on the body surface can
be influenced by the fact that the body has finite width. The
pressure in that region can be determined from onc~dimensional
wave theory (Ref. 3, p. 1) and is

2 ’
: - LY <
pwfecV(/ > *:) ) v e

and since V¢ and ieEZc for this domain, the pressure cen be ap-
proximated very closely by

pxecV
To investigate the flow in reglons 0BG, OB'C’it 1s convenient

to approximate the curve 0B by a straight line whose angle & with
the horizontal x-axls 1s small, since tan 91 £ lg. The curve BD is

4
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approzimated by 4 stralght line whose angle with the vertical (ct)
nx's 136 .. ‘The point D s any convenlent point on x,(t). The
origin of the coordinute systom is now shiftad to B. The flow in
ire Te,1on CBC 1s conical 1n the sonse introduocad by DBusemann
Har k). It is cher.cteortized by the aboonee of any length parum-
“tey n the epuabtion of motion o the pgeomelry of the fleld. Tha
ity and pressure depena only on the purumeters § = X/Z and
v+ ' In the ¥ 7 piane, the Maeh cape from B appears as the
1+ aiele.  The boundary BD is a Segmenl oun thn axis  The
cotn of guntact of the Muoh cone from B with the plane waves from
the points FF' on taa unit circle (Mg. ), situsied at

3(F=e'’ . N(F)=c'’
Cos Ym - EK‘
i

b

FIG.

Tho differantiegl equation fur Lh pressurs, obbwin d Ly §y
troducing p({ ,z) into the wave oquel v, Rg. %, art b torgiap
to polar coordihutes v, ¥ 1in the Q‘ wlane 18

/ 2 /‘“20‘a /
(1= )Bet == Bt 12 Pry

B POCENITIRCON PR VLS P I v I
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The angular coordinzte & 1is now lef%t unchanged, while the radial
coordinate is transformed as suggested by Tchaplygine (Ref. 3,
p. 28)

= A)—c2
(6) > =

-

The unit circle and the origin remain invariant and rays from the
origin are transformed into themselves, although not point by point.
In particular, the edge D which was situated at the pointdp = tanéz
14 now defined by

, ST A= 2]
s,=cot & (1-77 5= 8)

In the S, ¥ ptau. the pressure and the velocity components satisfy
tHie equation

Pso - o + Ly .o
59 Z P
The Cunelions p, u, v are therefore real parts of analytic functions
, U, Vol thh complex varlabie ‘f,n 3el¥. Since v 15 constant
ulnngvrn,aY vanlshesr there. Tt follows from the momentum equation
thut 3,5 (. bub n-ong the reas axis

f),l.’j - -[-’ _t:?_£
QY o or

and because of the invariance of angles under the Tchaplygine trans-
farmation 28 vanishes. From the Cauchy~-Riemann conditions, 1t
follows that the harmonic conjugate p* of p is constant along CD

and may be set equal te zero. On P! CF wherel¥/<¥, no disturbance
tan affect the pressure field, so that the pressure vanishes there.
Sinee the pressure is continuous in the fleld, the pressure along

FCR' t+ ihe same &s behind the waves from OB, that is p =QcV along
"1 aml -peV along CF'. To simpiify conditions along the real axis,
it 1o convenient to introduce the homographic transformation
{r) w = — %2

/- % Sp

which leaves the unit circle and the real axis inveriant, and puts
the point D at the origin. The points FF' are now located at

. ol
V\/FF,:': L‘@n% i‘.‘[,-//-"tzmaﬁa =& x

Along the positive real w-axis p 1s zero, and since 1t 1is harmonic
it must be antisymmetric with respect to the real axig. With re-
spect to the negative -3l w-axis, it 1s symmetric by virtue of
Schwartz's reflection principle, since p¥* vanishes there. The
w-plane (Fig. 3) 1s therefore a double-sheeted Riemann surfzce with

(02N

YR T N R N I
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a cut along CD. 4 reflection of P(w) in OD defines P(w) in the
lower sheet. The solution in the physical plane has a discontinu-

ity along G5, where the bedy can support a pressure discontinulty,
but it 1s continuous in the fluid, along the positive real axis.

F

/ \’\W-plane

%

\

7

FIG. 3.

If the douvle-sheeted surface 1s unwound by the transformation . o
2:{!4—" the points F, F' are mapped into four points 3¢= -te*“t,
and the boundary conditions for P ()) are given on the unit - A
circle as follows

Re P(2) =0, —§<m:92<§ )_e_g_‘zc@?ka_h}x
Re PN)=0eV ) % <argl< EL2%
Re A3)=-ecV ) 2_'7%_4 <argl < 4//2‘.-4:

The function which satist'ies these conditions is (Ref. 3, p. 79)

Loer e (- Ag)
PO = S5 Lo o

The pressure distribution on the body surface is found by retracing
back throuch the transformations in Eq. 8, 7, and 6. The result
for small 9/ (tanéj %6 ) 1s

Pz ‘-’-_ff;__‘/ Z‘qw-/[ﬂ//f—ﬁg,)_?
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where 2
4= I+%5% [ s¥3p 5;_/_//7“3 p)
T -5 Ve(rss)irs) ! el 132/’
YW ] F3
Sy = col & (/-yr-tand'), S= LY/
o )
= L
o L

Several factors restrict the usefulness of this solution.
First, c¢re becundary of the body has beern approximated by straight
1line segments. For this approximation to be reasonable 1% 1s nec-
essary to make these segments very short. In this connection
Evvard's method (Ref. 5) based on the appropriate fundamental solu-
tion of the wave equation might be used in order to .liminate ap-
proximation of the boundary by straight line segments. Coupled to
this restriction 1s the fact that to extend the solutlon any fur-
ther requires the use of complicated methods of superimposing othexr
solutions and then matching boundary conditions. Because of the
complexities of such a solution and the questionable aceuracy of
the solution already at hand, such an attempt does not seem to be
Justifled. Since the two-space dimensional case is essentlally of
academic interest, it 1is worth noting that the problem can be
treated by using the fundamental solution of the wave equation.
This has been done by R. H. Owens using Riesz's method (Ref. 6).

It should be noted here that the retarded potential cannot be for-
mulated in two dimensions because of Huygen's principle.

Riesz's method is presented in Appendix B. The advantage of
the method is that it clearly shows what boundary and initial con-
ditions are necessary to solve & problem in hyperbolic differential
equatiems. Recalling that in m dimensions the hynerbolic distance
R is g1 «n by

m .
/@a'—‘- Z /ft/_ XJ 2
v=/
and since »- )
a,, £ "’7= o (D = DA/e'méekl‘/an)

R2-M satisfies this m-dimensional wave equation. However, an at-
tempt to build up a solutiun irom this so-called fundamental solu-
tion fails when m > 3 because any integral involving R2-m diverges.
However, an integral of R&+2-® yhere o > m - 4 will converge (the
use of analytic continuation is the basis for Riesz's method) and
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its limit as a¢—0 may be ccnsldered as the analytic continuation of
the integral of R®*2-M into the domain 0<a<m - 4, 1.e., it de-
fines the integral of R2-M, In order to perform this analytic con-
tinuation it 1, necessary to integrate by parts. However, the in-
tegral 1is multiple, and 3reen's theorem i3 used, which corresponds
o integration by parts. For m = 4 the familiar retarded potential
solution is obtained. However this can be done more simply, and
constitutes the basis for the formmlation of the problem by R. H.
Korkegi.

KORKEGI'S SOLUTION FOR THREE-SPACE DIMENSIONS

The formulation of the problem is again essentlally that of
L. Trilling. The first few instants of -water entry during which
only a very small part of the sphere is submerged will be consid-
ered. The depth of penetration is small compared to the radius of
the wetted area; hence, to the order of approximation of this anal-
ysis, boundary conditions will be satisfled in the plane of the
undisturbed water surface rather then on the curved surface of the
asphere. Since the surface of contact of sphere and water 1s the
only disturbance present, the analytic problem is that of deter-~
mining the flow field that 1s due to an expanding disk of disturb-
ances. In addition, the problea will be restricted to considering
tne time during which the rate .I expansion of the wetted surface
exceeds the rate of wave propagation in water and the free surface
of the water beyond the area of contact is undisturbed. The fol-
lowing assumptions are made:

1. That the flow 1is irrotationel and isentropic.

2. That the valocity of the body V and the rate of uave prop-~
agation ia water c are constant.

3. That V/c is much smaller than unity.

4, That boundary conditions are satisfied in the plane of the
undisturbed water surface.

5. That the sphere is considered rigid.

The condition of 1rrotatignality,§7xﬁ = 0, 1s identically satisfied
by » potentisl such that T =V¥. (i is the velocity vector in the
flow field). With a system of coordinates x, y, & (or r, a, &)
fixed in space, the analytic problem consists of vhe following par-
tial differential equation, boundary, end initial conditions. Fig-
ure 4 shows the area of contact of spiere and water represented by
a disk.
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(8) VY- g2 Yy =0

(92) Plryot) =0 , > RE)
(9b) Ro(rot)=2 ) r > RLIE)
(9e) tlnot)<V ) r<ke)

Yir o) = Y(nz,p)=0 , ri+z0
where
R(t) = the instantaneous radius of the disk
XY,Z = coordinates of the field point
?, 7) £ = coordinates of a variable point in space

7 = fixed bime

% = variable time

A fundamental solution of the wave equation (Eq. 8) 1s the

simple source
F(t=t/c)
7

i, ,t) =

7

10
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It represents the instantaneous potential at time ¢ at a
71~1d point a distance r, away from a source of strength f. Since
the wave equation is linear, solutions can be constructed by super-
imposing simple sources. In particular, the sclution for a dis-
trivution or point sources in the planejs =0 is

Yix,y, 2,¢) =ﬂf(ﬁﬁ;ﬁj Z“Z,ZJ oA
p 7

vwhere

=Y (x-5)*+(y-9)%+ 2%

It is found that the instantaneous pulse strength f is directly
proportional to the instantaneous and local value of ﬁ;. This 1s
shown by Lagerstrom (Appendix C) and yields

:;(‘?fZIﬁa 2) = -2%%'(/?; ?}43 2{)

Thus, the solution can be written in terms of a retarded potential
as follows

_ [ HlEnot-k
(0a)  #0%5,2,¢) = 27//:/ V/zr-.af)zf; j)"‘ 227 C/fa/f
y! I

ct 25

(10b) ?(X,y,&,z;-/‘:-a—//;// ‘/3(7/ 7:%,2- —2—)»’96//;
2 0

where
o= fa"_/(/xj——é{ )

The 1limits of integration of Eq. 10b are obtained as follows:
1f there are no disturbances prior to time 2 = 0, then, at time
7 = t, the field point P (Pig. 5), 1s influenced by disturbances
occurring within a sphere of radius e about P; since disturbances
are limited to the plane ﬂ = 0, the reglon of integratisn 1is the
circular area defined by the intersection of the sphere ct with
the plane Z = 0. The integrand of Eq. 10a and b is determined by
the boundary conditions of the problem.

or

1l
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~

J7

27'5 P(% Y, 2,t)

FIG. 5.

For a sphere of radius a entering water with a vertlcal veloe-
ity V the inrtantaneous radius of the wetted surface for small
depths of penctration is approximately (see Fig. 6)

|V

'

\
A
\//
R(8)
TGS L7777
4,
FIG. 6.

(11) Rtt) = 9/ 2 aV¢

The rate of growth of the radius of the wetted area 1s hence

[
ayv
12 ¢) = f =
(12)  R(t) = 92 .
When the rate of growth becomes sonic R(tc) = ¢, the time at which
the rate of growth is sonlc is
L o= &Y
(13) we 2ce

12
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Since this analysis will held for times during which the rate of
growth is supersonic, 1t must be required that

r< b, RS RE) = 2

2

It is convenient %o use dimensionless variables (denoted by primes)
as follows

(14a) Rt = /?/f)/’a_é\_( <

1)+b / ,’ -— t- @V é {
(1kb) A 572 /
The dimensionless rate of growth becomes the Mach number
’ L ~L
R ) [ay! .-z 172
M= EE =y 25 £ =
c 2¢

Now the boundary conditions (Eq. 9) are appnlied to the re-
tarded potential solutior (Eq. 10a) in order to determine the po-
tential at an arbltrary field point. Since the problem is axially
symmetric, no generality 1s *~st by choosing a point in the verti-
¢csl plane ¥ = O. Because of .he time dependency involved, not all
pulses emltted in the circular reglon of integration illustrated
in Fig. 5 are felt at the field point P at time t. Hence it 1is
necessary to determine the region of integration within the cir-
cular area of radius ¥/ 22 22", with pulses of strength ¥ =V
(Eq. 9¢) which will contribute to the potential at P (x, O, &, t).
This region is bounded by the locus of the points of intersection
of the instantaneous Mach cone (see Fig. 7a) with the expanding
disk {representing the wetted surface of the sphere) for all times
between Z = 0 and ¥'= t - 8/c. From Pig. 7a it can be seen that
pulses emitted for 0L 2<%, and Z > have not yet reached P at
time t; only those emitted for 2« ¥< fhave influence. Hence, the
area in the plane z = 0 in which disturbances emitted will raach
the field point P(x, 0, s) at time t is bounded by the curve?(f)
(Fig. Tb) given by the equstion

gir) = $7+7°
Wwhere

RYL)= cavl = 2av(t-2)=2aV(+-L£Vi-0% 133

13
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This equation can be expressed in dimensionless rorm as fol-
lows

| T rTEULVArET S O

2¢ 7 .
less form throug‘z division by ?17, that 1s, 7 - f/“%V/ X'/_-X/?—‘!/

Solving for Z (f) the °nu:ticn iz obtained

for the curve bounding

\ where t'=fyéye and all space quantities are reduced to dimension-
\ the area of integration as follows

| .,
\ (s} 7(5)= J5(-[58) - £(5)] 31"
) where ,

\ F(7)= ar 2~ §°

|

£()= (21 57)2~ 4 [27 +x 57

\ Hence, from the retarded potential solution of the wave equation
{Eq. 8) and the boundary conditions (Eq. 9b and c¢), the potential
at an arbitpary field point (x,0,8) at time t, given in terms of
dimensionless coordinates, 1s , 7(§§

(16) Y(X,02,¢) = “/ '
’ /7/(1_92}7/27,_ Z/Z
where ( \z) is glven in Eq. 15 and the limits 5i/and are uhe

real roots of the quartic equation obtained by setting f2 (fj
In dimenslional c¢oordinates the potsential is

%)
Ay
f /th =—'..K 45 = 1
17y ¢x2 ) 7/-5 a,’/&v_g) 7,_;2/_ 22

where

%)= Zfz(e_b r2aVe-§2 a\/Z(alj+ath+X+g z,rﬂf

The reglon of influence of disturbances due to contact of the
\sphere with the water surface is sketched in Pig. 8. The dashed

line represents the front of the ccmpression wave moving out into
the fluid from the disturbed region.
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—— R (t)—>

% £

\\ Region of [nfluence

NO® From Eq. 17 7
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Wave !F;Emt
Y=10

2,8

FIg. 8.

Due to the complexlty of its 1limits, the double integral for
the potential (Eg. 17) does not lend itseif %o an exact solution
for an arbitrary field point. PFor x = O, however, the potential
and the pressure can he readily evaluated. Irn this case the area
of integration degenerates to a circle about the corigin. The result
is given in terms of dimensionless space and time coordinates

ecV
(18) /0{010/2//5"):7///_2/47,_2/'

Fortunately, the integral for the potential can be simplified
for the evaluation of the pressure distribution on the wetted sur-
face of the sphere. Since the integrand is a continuous function
of ? and for every value of z, the potential in the plane z = 0O
can be directly evaluated.

Mow polar coordinates are introduced in the xy-plane (see
Fig. 5) with the field point P(r,0,t) as origin

7 -/ /7_
e=Y(=-r(y-9)% & = Zan (‘%Té)

Since r; —> £ as 8 —> 0, the retarded potential solution
(Eq. 10b) becomes
ct e
/ . 1
(19) ?/";”/i’)=‘2—;. /4‘%(@6‘, r- ‘Z)dé‘a/ﬂ
2
o

where /’2-:. X2+- 22

15
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Because of axial symmetry, the potential is independent of o (see
Fig. 4). The domain of dependence of P(r,0,t) in the xy-plane is
the area bounded by the circle of radius ct about P. However, as
for the case of an arbitrary fileld point, only those pulses inside
the area defined by 6’(“, 111 contribute to the potential at
P(r,0,t). (Figure 9 Shows the area of integration for the point
P(r, o) at time §.)

This can be expressed mathematically as follows

\
|
\
FIG._ 9.
(200 ¥ (€,8t-%)= V ,0=5€=((s)
G(C,6,t-&)= O , G)<esct

Hence, Eq. 19 becomes ' L

@) Y(rot) = / <°/9)/a

2 Jo

16
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The equation giving the boundary of the area of integration is
(see Fig. 9)

;ge(z) = 0@%) sin’e + (r +g(¢9)co59)2
I4
Cl8) F2rers)coss #r?

I}

Since the square of the instantaneous radius of the disk (wetted
surface) is

R%Y%) =2aVy = SaV(t- f%)

In dimensionless coordinates is obtained

L
(22) & 16)= - (1 + )’/6959‘) /—[(/f-r’co.sg)z,a. (+L /a)J z

where
/_ v 1 ’,,/___41/
é = t}/@&fé y yr =

Since r< t‘/ for supersonic expansion of the disk, £ (9))0 for
0=BL2], 1.e., the area of integrstion always encloses the point
P(r,0,t) on the disk.

For the two limiting cases of a point fir 3, at the center of

the disk (r' = 0), and second on the edge (r' = / i), the area of
integration degenerates to a circle of radius C’ = -1 +-V 1+ 48

snd then vanishes, respectively.

The equation for the potential at a point r on the disk, given
in terms of dimensionless quantities 1s hence

ey
(23) ¥r0¢) = “6‘/ g/—"‘ L(/frc&sa)#-/f F)]'?’“

To the order of approximation of thils analysis, the pressure is
given by

@) p=ed=-e25 4

17
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Hence, the pressure corresponding to the potential of Eq. 23, and
given in terms of the shoek pressure; is

T
(25) Plr,o,¢t) _ l./ AP
25) ecV T Dy'('/-fl”cosa)z'f-/tl-r’é’

This 1s a complete elliptic integral of the first kind, which can
be reduced to the Legendre standard form (see Appendix D) yielding

Plrot) / //g ik
@) B = AT Ty
= Alr/ ') /’([oc/f’z’t’)]

where 2

A{f,ltl =

s #)*(2r')?] %

)y ,/'___/+L"-2r"" % ,
ki) = > W/M,F__(ar,)_z,]})=s/noc(f’,t’)

Values of the elliptic integral () are tabilated by Jzhulke and
Emde (Ref. 7).

The time history of the pressure distribution on the sphere
during impact is plotted in terms of the dimensionless radius of
the wetted area r' = _6‘_/ (actually the projection of the wetted

area in the plane of the undisturbed water surface), with the di-
mensionless time t':t/gi; as a parameter in Fig. 1.
¢

It is to be recalled that this analysis 1s valid only for f
times during which the rate of expansion of the wastied area of the
sphere_exceeds the speed of wave propagation in water, i.e., for
t <2_2‘2’, or £' < 1. Por this case the free surface of the water

beyond the area of contact is undisturbed. If the expansion rate
were less than the speed of wave propagation, compression waves
would propagate outward from the edge of the area of contact and
disturb the free surface inside the wave front (mathematically
this means that B, # 2 for R(t) < r< &Y + ct).

18
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From incompressible theory the pressure at the stagnation
point of a sphere is given in terms of the dynamlc pressure by
(Ref. 1)

ﬁ_: ‘Q:
Z_va VVA-

As a function of the dimensionless time parameter t'=:€§%£, the

Incompressible pressure can be expressed in terms of the shock
pressure as follows

ecV 2t

From Eq. 25 the compressible stagnation pressure (r! = 0) is

28) e .
Ccv V12"

Equation 27 clearly shows the nature of the singularity of the
incompressible pressure formula at the instant of impact (&' = 0)
while Eq. 28 indicates that the compressible pressure formula has
the finite valueocV.

Equations 28 and 25 are plotted in Fig. 11, with a predicted
curve for the compressible pressure when the rate ol expansion of
the wetted surface of the sphere is subsonle. With increasing
time or a decreasing rate of expansion, it 1is expected that the
compressible and incompressible pressures approach each other.
When the ratc oi expansion of the wetted surface becomes much
smaller than the speed of wave propagation in water, the effects
of compressibility are negligible, hence, incompressibility theory
is gquite adequate for pressure predictions.

EXPERIMENTAL WORK

The theoretical work at this Station has been concerned with
the entry of a rigid body into water and the subsequent motion of
the fluld, taking into account the compressibility of the water.
No account of the fact that an actual object is not strictly rigld
but deformable has teen taken in any of the theoretical work. Yet
the structurel effects, such as deformation of the nose at impact
or even fallure at high entry velocities, is of extrenme practical
importance.

20
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The difficulties which arise in any experimental zfforts to
isolate the compressibility effects are falrly well recognized.
The fact that the missile acts as a compressible medium has been
noted above. It is also true that the water surface 1s not a
strictly smooth plane. 1In additicn, there is evidence that air is
entrapped between the bo v and the water. All these factors make
i1t difficult to separate the true compressibility effect of the
water and modify all experimental results. Most of the experimen-
tal work ylelds orcder-of-magnitude results which may act as guldes
to the actual design of missiles and future theoretical anda exper-
imental work.

The normal component of force at the point of impact for a
blunt-nosed misslie entering the water at an angle £ arises from
the pressuregcV sin& where V siné& 1s the velocity of the missile
normal to the water surface. In order to study the peak impact
pressures when the nose of a projectile first comes In contact
with the water, a set of pressure plugs were distributed over the
nose of a hemispherically shaped missile {Ref. 8). The plugs arc
thin phesphor-bronze diaphragms supported peripherally on an accu-
rately reamed shoulder. For entry velocitles cf 500 fps or more
the plugs used were 0.02 inch thick and 0.250 inch in diameter.
Application of a sufficiently large pressure gives the diaphragn
a permanent set. The pressure piugs were calibrated statically.
Figure 11 of Re”. 8 shows a plot of the pressure at the impact
point as a funetion of velocity. The agreement with that calcu-
lated by the formulag@cV siné is very good, considering the fact
that the static calibration of the plugs was used. It 1s true
that the natural frequency of the membrane is theoretically high.
For these membranes the frequency should be 25,000 cps. The eff2e-
tive frequency as an inelastic, deformable membrane was not meas-
ured, so the true dynamic response 1is not known but is estimated
to be about 5,000 cps. For a hemispherical head with a radius
a of 1 foot, entry veloecity V of 500 fps, and ¢ of 4,800 fps, the
duration of the ¢V pressure is roughly twice the time at which
the growth of the radius of the wetted area of the sphere is just
sonic or § = %ga = 22 times 107° second. This is because of the

reflection of the pressure wave from the point where the velocity
of the contact peint is Just equal to ¢. The analogy for the
pressure plug is a spring-mass system which can move only in one
direction just as though the mass were restricted by a rachet.
Hence the time for one-fourth cycle of the motion of the membrane
needs to be considered. For 5,000 c¢ps this time is ¢ = 50 micro-
seconds, as compared to a duration of@cV of t = 22 microseconds.
Therefore the plug should not be deformed as much as the static
calibration would indicate. However, as an order of magnitude,
the check is very good.

22
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A laboratory setup for obtaining pressure-time measurements
has been established at NOTS by C. R. Nisewanger (Ref. 9).
Nisewanger's method consists of making direct pressure measure-
ments on bodies by mcans of electromechanical transducers (gages)
set flush into the surface of the bodies. The experimental body
is a 12-inch-diameter hollow dural hemisphere mounted on a suitable
carriage and gulded during a fall of 11 fect into a tank of water
by two vertical rails. The velocity at impact is about 2h fps.

For these values of diameter and veloclty fthe @ cV pressure to
be expected would be about 1,600 psi, and have a duration of about
1/2 microsecond. The resonant frequency of the gages used here 1is
105 cps. Thus even though the resonant frequency of the gages 1is
much higher than that of the pressure plugs, the lower entry veloc-
ities give a pcV pressure duratica of only 1/2 mi rosecond. For a
1/2-inch-diameter gage bthe maximum pressure obtained was 120 psi,
as compared to the theoretical value of 1,600 psi. However, this
experimental value of pressure was registered nearly 13 micro-
seconds after the initial impact, which means that the peak pres-
sure might have been modified considerably by trapped air. It
should be emphasized that the experimental work wasg done with
great care and precision. The presence of trapped alr seems to
be indicated by this experimental procedure.
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Appendix A

/ /
VON KARMAN'S DERIVATION

A simple derivation for the impulsive piston pressure p =pPcV
1s given by Von Karman (Ref. 10). When a flat plate strikes a water
surface, the pressure will have an infinite value if the water is
considered as incompressible, since a finite mass of water is given
a certain amount of kinetlc energy in ze.c time.

It is possible to obtain an approximate value for the maximum
pressure taking compressibility into account in the following man-
ner: The propagation of momentary increase of pressure in a fluid
takes place at the speed of sound in the fluid, designated by c.
Therefore the mass of fluld accelerated in the time dt 1s<7Scdt,
where S 1s the surface of the fluid struck by the body. Since the
velocity of this mass 1is increased from zero to V in the time dt,

the force acting is @SeV and the pressure is P = ,_DCV,

a5
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Appendix B
OWENS'! TREATMENT OF THE
TWO-SPACE DIMENSION PROBLEM
BY RIESZ'S METHOD

DEFINITIONS, CONVENTIONS, AND THEOREMS

The Riesz method is presented in detail in Ref. 6. The advan-
tage of this method is that 1t shows clearly which boundary and
initial conditions are needed to solve a probiem in hyperbolic
equations. As a preliminary, the de’initions, conventions, and
theorems necessary for the application of Riesz'!s methed arc pre-
sented.

Definition: Riemann-Licuville integral (R-L integral)

X X
I%- j,if:ﬁ—/- Se9- 97V = /-;—) [rum s
&M, ™)/ o

where o 1S a complex number. Tnis operator associates to each
function f(x), defined for x>0, a new function 1%f(x) derined
in the same domain.

wemma: For fixed, bounded f with n continuous derivatives,
where n is arbitrary, and for fixed x, I%f is an analytic lunction
of «.

Proof: IOf as defined converges for fe % >0 and is analytic

in a. So when Ae & DO integration by parts yields

a7
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) I = 208" o L [ L lgy-5)

However, this expression eguals the original expression in fe >0
but it converges for /ﬁo,t{)-—/ . The principle of analytic contin-
uation allows the use of Eq. Bl as the definition of I%f in ..
Hea>-[, for 1t 1s necessary to show only that the old and new
expressions are analytic in « and that they agree in a common do-
main. In the same way ISf can be defined for /fe&?—?)since repeated
integration ty parts will allow extension of the domain of analyt-
fcity (1 unit to the left each time) throughout the complex plane.
The use of analytic continuation is the basis of Rlesz's
method and hence the reason for including the previous proof.

Properties of I%f:

I, I'f= /'[(f)ﬂ/f

a g"/
2 I'F= WZ [ (5)d%,d 5 A
=0"¢ =0 f,-o %,=0

3. £ = r%c)

Xt ] /-,,\

f/o)ZM s T
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[fc:_l_/_;/ $15) 4%

17 rar i

6 I 3= X0, 1 fsze[ / £2) 45
/—77?’ -/-‘1//-/:7 A% | ?

- (m) V/
T e =F) = AL
F dx

8. For special a, i.e., @ = O or ~-n, I% depends only on the
values of f(?) in an arbitrarily small neighkcrhood of ? = X,
but for general a, I%f depends on the whole range of values of
r({) for 0 < §$< X,
TE A A D . Y . 4{ ﬂ —
Theoren: If fcd/(///(gﬁ, arvitrary, then f::j_
Application: Abel'!s integrel ezuavion

FUX) :/Dr \;(/f)/X‘Z)—f/g , o </§< /

The problem is to find g(x) if £(x) is !mown. The equation can be

written

/-3
fu)=170- 4)-—-_/ ;(?.’){x- 2) 44 =/7r8)I 9
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Since [~g > cne gets
~{1-4> -1 2
gy L— I im)y= L I I'g
[%1-3) 77-4)

on using the last theorem again since 42>¢7. From property 7

A=/
. d -1 -
o= A L Ire £ =/ f HOU-5) A5
Since

/7(/’4) In(/@) = _...L
S/nlﬂ?

one obtains
)= ST o [ 2 Y
)= 20 o [ crnyn5)“ g

which 1s the required solution.

Deflinition: %he Riesz integral in m independent variables.

(82) ///7,7_ A /f(@)ﬁ d, , X complex

} .44” L Aénﬁ{)

where
f = f(xl, x2, ..s, xM), 1.e., m independent variables, the
superscripts being distinguishing marks, not exponents.
D = the m-dimensional volume bounded by the m-l-dimensional

hypercone with apex at P(xl, x2, ..., xM) whose equa-

)
tion is R = 0 and x' = g >0
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R = the nypervolic distance of the arbitrary point
q(f’bff) 4™) from P, given by K2 = (fix')z
E=AYE L o (842
d%:d?%fqudfm,mmdmmﬂmﬂvﬂmwehmm

H (a) = a constant defined by
oL~/ "‘%"é ,C‘”/ﬁC+Z~M
(23) Ml = 2 T TUE) *-2_—-'*)

Remarks : Imf depends on «, f, P (corresponding to the upper
1imit of vhe R-L integral) and on a domain D (corresponding to in-
terval O, x of the R-L integral). The volume D is bounded by the
hypercone and the hyperplane §/= 0. IZf reduces to the R-L inte-
gral for m = 1. Lastly, the Rlesz integral is m-fold, but by in-

troducing mean values for f it can be reduced tc a double integral.

Theorem:
2,0 n )
B4) Lo FHBF) = F(P)= FIRT XS 100y X™)

In particular this is true even if D i1s a small part of a cone in-
c¢luding the apex P. This 1is analogous to the R-L integral in which

Igf depends on values of t(?) only, in a small neighborhood of

=X
Theorem: ,
) Y- - >~ X
s5) Lt Jr_ I,g[cc 2(/*922/’”(8,2)?‘.0/1]
) © :
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where m((’))) is a mean value of f. The essential point is that
this formula represents I%f in terms of a simple R-L integral over
the interval (0,1).

Theorem:
(26) (U’D ¥ Y0, d %, =//‘r”a» )b

where D is an m-dimensional volume and Z is an (m - 1)-dimensional
volume, i.e., the "surface" enclosing D. Differentiation in the
co-normal direction is represented by 5%5,the normal being the
outward-drawn normal to the "surface." The m-dimensional wave
operator defined below 1is represented by [7¢n: This 1is Green's
theorem in hyperbollc geometry.

Ir the components of the normal are gilven by
77 ( ), a)"’>7%w) the co-normal components are defined by
con = (n)‘Vé) 105~ Nom ) . This follows from the hyperbolic
metric assoclated with the hyperbolic differential equatlon. On
the plane 2"‘ = 0, the normal has components 77=('€; Opr et 0)
hence con = (— ?;/0, ey 69) o that 2-= _9—€/ + On the plane
'?a:!), ')T:[D)- fiﬂ) 1102 0) provided x2>0 (1.e., provided
the apex of the cone 1s on the positive side of the plane §2=0 )
so that the normal extends in the negative direction (see sketch
in nexi section). Hence coh = (0) ‘% I 0) and ;‘9 an .
The expression foré%b on the "curved surface" of the cone will not

be needed.
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K l ‘
Recalling that in m-dimensions RZ = (§Lx)% (%° —x?)?3 )
o p2=m 2 wp2 e el o2 Foaes 2~
one can compute D—m K = —D——;; K e W) Z: -
-3 2 A= =2

= o (x-mr2)R from which it follows that for a = O, LZ”/Z

and hence R2-M satisfies this m-dimensional wave equation (note
that Dm is defined above). An attempt to bulld up a solution from
this so-called fundamental solution fails when m >3 because any in-
tegral involving R2-M diverges. However an integral of RZ*2-1 yhere
X>-4.will converge, and its limit as &/-»Omay be considered as
the analytic continuation of the integral of R%*2-B into the domain
0% o = m-4, that is, 1t defines the Integral of R2M.  This
analytic continuation is obtained by integration by parts as done
in the continuation of the cimpif R-L integral. How»ver, this in-
volves a multiple integral, and the tool avallabie is Green's

theorem, the use of which corresponds to integration by parts.

TWC-SPACE DIMENSIONAL CASE

Riesz's method for m = 3 will be applled as illustrated in
Fig. 12 to give physical meaning to the process. The case m = 4
will be treated in the language of m = 3.

Characteristic cone, vertex at P(et, ¥, x):

cE(A-8)*=(p-y)P-(£-X)% =

"Reflected" cone, vertex at P(ct, - y, x):

A-£)% (1Y)~ ($-x)2=0

"Hyperbolic" distances from P, P to (¢ 23%) f) (Q not on

cone) are respectively:

33
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CA
/ 11 ,
/T 7
7 FIG. 12.\—’/
R = [ce(ﬂ-c)2 - ¢4 -y)2 - (f_x)zj 1/2
R = [02(?\-1:)2 - (lz+y)2 - (?-x)2] 1/2

Let Dl’ 51, be the respective interiors of the two cones for which
ﬁ)‘r(‘ >0. Llet s, S be the surfaces ) =p and interior of the
cones; Sy = '§'2 the surface '7 = 0 and Interior of the cones;

51, §1 the remaining "curved" surfaces of tne cones. Let

B=St+5+5 ) B=5 +5, 5% be the total surfaces of the twe

figures.
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The two-space Gimensicnal problem is
37) Os¥= $pp - (s +Wy)= 0
(B8) Y(0Y,X) =Y!0x)=2, x¢ +y27é O (initial conditions)
(B89) P (t:8X) =V ) IXI<X(t) 5 W(t,0%), |X]>x(z)
(boundary conditions)

Now Green's theorem is applled where ? satisfies ]:73 lP: © and
y= R Oy Y= ala-1) RT3

giving
— "("‘3 _ r 2 p"("{_ "C—/;
(B10) A (= ,)4‘4”2 o/V—/g (405_;) & . 2 l(’)a/.s

However

o / K‘;
=L Jwk 4V
L ¥ A’;(x)é

from Eq. B2 and

Hglat2)= ol =1) H3in) = 2%+ )

from Eg. B3 and from the properties cf the /’7 -funetion (duplication

formula). Thus Eq. B1lO becomes
. 2 «~1 _x-/
(s12) 2T/ f/)lS"‘f'—‘J{/’/ﬁ R=R %’)ds
D

Now ;g‘ﬁ= Qo(t,_}') X) from Fg. B4 so that Eq. Bll becomes
-y -
z/g_éq 2 R%T9 Vs

/
¢ yy=Lim —— /
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Thus, the so.ution P(t, y, x) depends only on the values of ;ﬂ on
the boundaries of the c¢one D;. Since R = 0 on Sl’ and with o¢>&,
the paru of ‘[3 on q vanishes, which 1s the reason for not express-

Ons, -—9— and on S

ingf:i . :-a~= —
2> 1 3 2c) 2" 9y 24

Eq. Bl2 becomes

(13) Y5 0= "‘l;"{zllﬂ(o(m//[-w/a 7)3)
~ K ‘/__Q ‘(0¢§ ]d/g&/
“CA" ’ ) ?

j/ wn08) 285
277'/7(a<+;) Jh
— g% ’e.fi»;f)jo/ma/z}
2y

on S Then

The reflected cone will now be used but the sclution has been
written in the form of Eq. Bi3 to call attention to the fact that
if the problem had no boundary condiftions, and hence the cone were
not cut up Ly the surface 7: 0, the integral over S, would not
occur and the solution ‘f would be given completely by the initial
conditions which appear 1nff. In this case i:he reflected cone

would not be needed. However, the occurrence of mixed boundary
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conditions renders the reflected cone a useful device enabling cne
to represent the sclution in <erms of one boundary value.
Since the initial conditions of Eq. B8 are zero, we have

from £q. Bll

(s14) 207/ Tuen) L= /[m 5)9/3 0 az’/z,o,f)]ﬁ/cq,/;

a

Using the reflected cone, one gets the analogous relationship
7 7
wis)2ren [ = [ [ o D) 32 227 ¢ _71 (2, 08) el

where

From the definitions of S, 52, R, and R it can be observed that
on S, = S, where 7 =0, R =R and R, = -Tf?. Making these substi-

tutions in Eq. B15, and adding Eq. Bl4 and Eq. Bl5 gives

2 (L ¢+ 5% )= —/fz g2 f/m.f«}?)/c:)/f

Lemma : [m ‘f=0 that is

_'C-Wi

oc—>o a(.-aue? Homl?l) Jf5

Using this lemma, Eq. B17 becomes

Pl Y, x)=s Lim = f//&’“ ‘1,8 ?)ﬂ’c 5]/3

X0 I /”(zc-/-/)

37



JAVORD REPORT 3523

which 1z the solutfon to the problem. For m = 3 the integral con-
verges so that wy carrying out this liniving process directly

yields

60065) ) df
pean) ///cfm D%y (510 |

Evaluation of this 1ntegral 1s usually very difficult and is not

considered here. It should be mentioned that in this evaluation,
with these mixed boundary conditions, the method developed by
J. C. Evvard (Ref. 5) may be used when the point P(ct, 0, x) 1s

in the "subscnic” region and only when y = O.

THREE-SPACE DIMENSIONAL CASE

Notation:
|V V = entry velocity of bedy
¢ = velocity of sound in water
@ = denslty of water

{ = velocity potential

— e s e B T,

|
|
yoq

X y FIG. 13.

£ = hydrodynamic pressure

Assumptions:
1. That entry velocity remains constant and% <L1.

2. That ¢ and @ remain constant.
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3. That flow 1is isentropic, hence lnvisecid.

k. That effects of splash and of gravitation waves are ig~
nored, and the water rurface remains plane.

5. That the body is very blunt at the poirt of impact: hence
the boundary conditions are applied on the water surface and not
on the surface of the body.

6. That perturbation velocities of the fluid are small so
that squares of these velocltles are neglected.

The problem to be investigated is “‘hat of the flow pattern
and the hydrodynamic pressure induced by the body entering the
water. Thne investigation will treat only the first few moments
of contact and therefore only a small penetration of the body intc
the water. Assumptions 4 and 5 are made for this purpose. In
particular, the pressure history, for the short interval considered,
is desired.

Since the water is compressivie, vnis treatment differs from
the classical one which assumes an incompressible fluid.

The flow 1s inltlally irrotational and remains irrotational,
so that we may assume a veloclty potential 7 foom which perturba-
tion velocities are given by u = fx, v =}"9y, W= f’;

From the equations of hydrodynamics which are linsarized, by
neglecting squares of velocitles and using the assumptions, the
following problem is obtained whose solution answers to the assump-

tions and description =bove.
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Pog - e (g + yr + Yaz) = O,¢=o0
--fe
¥ (x,y,8,0)

[ft(x)y} 5)0)

} X% + 32 + 82 2 0 (initial conditions)
0

fﬂy(x,o,s,t) =Y . 32< X(t:)2\ (boundary conditions)
¥Y(x,0,8,t) =0 , X2 + 22 >X(%)2
The expression X(t) describes the radius of the ring of con-
tact between the body and the plane water surface and may be deter-
mined from the geometry of the body. Hence x° + 82 < X(t)2 corre-
sponds to points on the body in the disturbed fluid surface and
x2 + 82 >X(t)2 to points in the undisturbed surface. (Since
boundary conditions are applied on the fluld surface rather "
on the body surface, the prcblem is that of an expanding disk on
the surface, sending downward pulses corresponding to veloeity V.)
The fcllowing definitions are needed:
Characteristic cone, vertex at P(x,y,s,ct):
A1) (-0~ (720~ (4-2)* = 0
"Reflected” cone, vertex at P(x,-y,s,ct):
C2(A-1)%- (§-X)=(1PN*=(5-2)°=C
"Hyperbol’c" distances from P, P to Q(f)Zi/‘/” are respec-

tively

R= § 202 (F-x)°-(1-3)°- (5~ )" :
2= § -1 (£ (13- (5=2)°]

Lo
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The regions D3, D1, S, S, 50 =33, 81, 33, B =S + 81 + 82 and
B=5%4 El + 52 are defined as in the two-dimensiona2l case and
are described later (Fig. 1%.).
Applying Green's theorem again where
d,¥¢=o0
and
pe %E O, Y= xi<-2) R T

one obtains

(B20) “_(9(2)‘/.¢@ -/-(Wale —E'Zé_g)a/‘é

but
« / a-4
Ly ‘f—-/-&'(‘{)/‘f’e 6/@
D
from Eg. B2 and

Hplxte)=ala-2) ff (x) = 25" [ % +1) e,

from Eq. B3 and from the propertles of the /7 ~-function. Thus

Eq. B20 becomes

X2 -2
(B21)Z 7/’/7/“+)/7/"¢ %*//Va’a -k %)V/‘é

-2
Now take @>3. Since R =0 on S; so 1s Q_'_f; and hence

)
-
/S =07, ons, 2 =-2 and on 55, 2. = 2. . Hence Eq. B2
)

Y ac) oV I 7
becomes

L1
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(B22) -Z:(‘/p_ ZM'V;(“ )/7/%) / 4”(57/ 5/ 5‘62
+/e“_z./zz 2] 1elpts

ACA

o4 A2y
+[[r5a5,128 L 2)]4?4%3}

Since the initial conditions are zero, the first integral vanlshes

and Eq. B22 becomes

L o / wsa%4) 2

i _f/faz, n)]%%ﬂ/cﬁ
K4

This proceso applied to the "reflected" cone gives —y—2

_ / I IR
2% 2¥T M H)1E) B J[ what St

Fe ul;/m,n) [/ $/5 4

From the definitions of Sp, S5, R, R on Sy = 85 wheref =0, R=R

(B23)

(B2k)

nd g? "":;'e. Making these substitutions in Eq. B2k, and adding
[4
Eq. B23 and Eq. B24 gives

T 7= =%
(825) 4 £ Pt 7S ﬁ)ﬁ(z)
/,e 'Zafl?,o,éi DS idE A

Using the lemma that IO (/ = 0 and Eq B4, Eq. B25 becomes

A
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(B26) Ly — / f ‘(Zg/a/g) z))/ ALY
YO 2E)= OL N ) ) /5 2
Z

where the "surface" of Integration, S5, is the volume bounded by
the surface Cz(ﬂ'f)z— [7'/‘()2—/5'2')22

Again 1t can be seen that the sclution is completely expressed
in terms of the boundary conditions (and initlal conditions if
different from zero). In this case the integral in Eq. B26 di-
verges for a = O. However, the factor preceding the integral was
constructed in such a manner that fthe existence of the limilt 1is
insured.

Evaluation of this expression (Eq. B26) for ¥ is quite in-
volved. The special point P (0,0,0,ct) in the supersonic region
can be treated quite simply by putting R =[C E(Z"/Al)a" '?2"" 2?2)
introducing polar coordinaves in the ( ? )'Z) plane, using the
symmetry of gf, namely ?_;‘/(9669, 2, Psin 9)/1)’_—'- '}bfgﬂzintegratmg
with respect to ‘9 , then with respect to f and finally letting
o> ¢ . However, in an attempt to be more general, mean values
will be used to express ?(x,y,z £} for the general point P(x,y,z,ct).
For this purpose put 6/4_/41’_ re) = Z /7' /7/ ;f— 7‘-/)/7/ g) for the

factor .efore the integral in Eq. B26 and consider

2 95,0 ¢ v
(B27) CPloyze) = Z/"Z Holern) £ 5;/5) )}/ 4

'
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Since So 1s the "surfac:"? = 0, introduction of the $ -function

makes Eq. B27 take the form

(m28) Y09 22)= Lim /p[_z (%085, ﬂ)&@/,@ ,/y

a0 /i;/‘c*%)-

and by definition from Eq. 2, thls can be written

~K7re /5)
(b29) V0%2,8) = L ;72 9«’[? $,3) 53)

2l 59 3’,02?5(
_j;/zéjf_j/ y %, 7) 7)]

Now Eq. BS provides a formula for Iﬁf with which one can discuss
the mean value, m(@ Q( }, of the function f mentioned below.

Referring to Fig. 14, one can make the following definitions:

T el i\
Z /f - X ) = E”C///Ed") &/I;fﬂ‘nce

7
from Q(?; ?f ay f)to the "center 1line" of the cone D in the

/
plane '? = constant.

(B30) A

£= *

i (kL 80 rie 130202 270 02)
Por this promem M=15Land

= (-0 r(p-02+(5-BF

4
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FIG. 1.

(®31) X =ct ~-c)

and Eg. B2 becomes

Ct
2 -/ TyA A
(p32) L, F= [ e )/m(@,ﬂ)ﬂﬂ’ﬂj
: 7 /3) & D
o
However, _L, gives the function inside the braces of Eq. B32 with
[~

the argument replaced by one, by virtue of property 3 of R-L in-

tegrals. Putting (° = 1 one gets

2, 1/—7 _ ct _ __&/ —
rFe /ow(/,n)) 7

which gives

> ct o
(833) l:_;"—‘ ,[‘*’m'// T)1d)
vo
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If the cone is ceneralized to m dimensions, it can be observed
that the locus of points r = constant,j-= constant represents
the (m-2)-dimensional surface of an (m-1)-dimensional hypersphere
con aiined in the (m-1)-dimensional hyperplane 'fl = constant whose
center is at the peoint (?f, X)ZH/,, /\’mi))with f/—_— x/- ;‘T,
Definition: The mean value of f is formed by integrating f
over the surface of this sphere and dividing by the area of the
surrace.
By induction 1t can be shown that
. ml o
m-p m=-/ p/m 9

represents the volume of an (m-1)-dimensional sphere. This for-

mula holds for m = 3 (area of a circle) and m = 4 (volume of an

ordinary sphere.)

Now assume that the formula 1is valid for an (m-1)-dimensional
sphere and prove that it holds for an m-dimensional sphere. By
induction it will then hold for all dimensions. By the volume of
an m-dimensional sphere 1s meant the "area" of any cross section
multiiplied by the elementary thickness and Integrated throughout
this sphere (see Fig. 15). The area of this cross section is the

volume of the (m-l) ~dimensional sphere. Thus

// /r245‘591"_/ 57”r1%§/(?»512562)‘7é;
m~/ /7( —m_-_} . S

z
46 i




(B34)

which

sphere

ume (ai

the (m

(35)

/\

////
\\—’_’/
FIG. 15.
(_g _/—7 /7(?_7_:1)
Using the relation/ cos B ﬂ/ﬂ = Y7 = this becomes
b & 7(xz2)

e 2
Z,

which has the same form as the formula for an (m-1)-dimensional
sphere and the assertion is proven.

By considering the area as the radial derivative of the vol-
ume (and putting m-1 for m in Eq. B34k one gets for the area of

the (m-2)-dimensional surface of an (m-1)-dimensional sphere

1=(
m-z r ¢

®35) O,,,=7" 7]
(/ 2 J

b7
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and by the above definition

, =
(B36) W(&j)fsl—/:c(x‘;;)?)n/)g lg/w
™

where dw is the surface element of the (m-2)-dimensional surface
> 2

of the sphere whose center is the point (X'—ﬁ//\’) 7 X_m)a For

the present case m = 4, ,0 = 1 (implying r = A from Eq. B30) and

the center is the point (/\j)jztjcz‘— ,:T),Then Eq. B36 becomes

m(r-1)= '/[ F(8)dw

598 ct-1 )dw

]
Sz
r= 5 f/xeﬂ/

where use has been made of Eq. B35. Substituting this in Eq. B3k

glves

(837) I f— /”/g /;C/? 7 Z,a‘—z‘)q"w

Applying this formula to Eq. B29 where f— -2 -g(i’ Z j}) 5{7)

the solution given by Eq. B24 then becomes
ct

@w>¢@%a@=—-]/\ﬂ _j?f@%éajﬁ%ﬁdw
-2
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Appendix C

INSTANTANEOUS PULSE STRENGTH

The potential ~quation is

Plx,y, 2 ¢) = //f(lf) 7/3/" - %_) ﬂ/A
y 7

Following Lagerstrom, pc . coordinates are introduced (Fig. 16)

e= -2 +(y-p)*

]

jo]

fa
)Y

P(X/yl 2} t)

FIG. 16.

kg
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For fixed z
v, dr, = (C‘a/p
heance the element of area 1s

da = edpdé = v dv; de

The potential equation becomes
CE Z}r

t’?{x‘;y’,z,t)_/ /)C(p, £ - i’)a/a -

Differentiating with respect to F*

@‘ro//‘/ylz'/f) / /9 95/}(/65")5" )5/”/

Now, from
z__Zr?-_a 2 _ - 2 26 - Z
V=€ ) 53 z ) =3 z
‘“
Therefore
1t b — 51 )
Yo (X, ); 28] = O/ﬂ/ _.407»’—-,]
(s %) A é 52 -y
but
Ezjf = Eiif 212 = - EE. :ij
J % ¢ Az e a¢
Hence
’27;' ct
o 2

Setting # = C one obtalins

1
<O
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to

Yo (,),08) = =27 F(%,Y,2¢)
The instantaneous pulse strength is thus directly proportional

Vg .

51
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Appendix D

LEGENDRE STANDARD FORM

The Legendre standard form of the elliptlc integral of the

first kind

(1) [ = / 7 5
/o]/(/f ricess) Z/—(r”—rfz)"

This equzticn can be reduced to the Legendre standard form by the
following four transformations:

Transformation 1

let 4 = ¢os8

Upon substitution into Eq. D1 and factocizatlon of the expression

under the radical one obtains

- Z‘=l,/ _ dé" I 9%
r ﬁ;-x)(f- sy E-Y)E-9) r ’/_/;/—57

where

R
i

--;’-,(/;LILW-’)
4= L (1~ {ATTF)

r/

Y: / ) 5:_/
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Transformation 2

To rid the radical of odd powers of the variable of integra-
tion, the procedure outlined by Karman and Biot {(Ref. 11}, for 2
fourth-degree polynomial is rfollowed, and the homographic trans-

formation made

This yields the integral
=L ' (= Pl
/i +- G(2)
where G (2)=|(p-p-8) +g )3 B2 |J(p-Dlr- )+ -2)5-9)E |

and the requirement that odd powers of Z vanish determines f’ and

g as follows
p=-a-+a*-)

5 = - q,-)--’qz__ /7

where

Upon factoring one can rewrite the integral as follows

s
) L = A’Jv/-//fyzzz)(’/ytéazz)’

where

#- 7
K= —p= .
riof (p-2)(p-8)(P-¥)ip-%)
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Y]

(p-)(p-4) a*-) — &

jz (3-)(g=-8) _ =] *

pi= (2-0(p-®) _ Al — 2
(p-¥)lp-5) V&4 +a

Transformation 3

Since @Sl and @ >O (r'z é-/si)'therefore /?z/>//72/,

Following Kdrmén ané Biot, putting

c __4f
? = ..-_?- I.) C - —a
J J
where C</ ; hence, Eq. D3 becomes

.y 4%
oy L =2 / Ny PN

Tpansformation U4

Lastly, applying the transformation

57__/___

c cosy

Equetion Db becomes

I=

K / Ay

or, with the limits of integration
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Ay
D5) ;£ /
( ) .Z— ﬁ/r, ) -,//—'{Z(r/ /)5
where / 2
/) —
Brst!) [//f-t’)"-—(zr’)ﬂ 7
ity o 1§y o LEEEE
e’y = 4 / [//f'i/) _(Z,,/)J/g}

Equation D5 1s a complete elliptlc integral of the first kind.

\n
ON
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NOMENCLATURE

A Area

[$3)

Radius of sphere
C, ¢ Velocity of sound in wafter
F  Surface of fluid struck by the body
F, F! Points on the .nit circle of Fig. 2
£ Instantaneous pulse strength
M Mach number
m  Number of dimensions
P Field point

P, U, V Functions of the complex variable
p, u, v

p DPressure

R Hyperbolic distance
R(t) 1Instantaneous radius of the disk
R(t) Rate of growth of radius of wetted area

r A point on the disk

S  Wetted surface of the body

S!' Horizontal free surface of the liquid

t Fixed time

te Time at which rate of expansion of wetted surfaces is

sonic
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<t

Velocity vect~r in flow fleld
7  Normal velocity of disk
<
-5
/" ;50

x Coordinate

5
|

& Entry angle

?; '7 Coordinate axis of the g plane

7) '(,‘% Coordinates of a varlable point 1n space
€ Density of water

o, ¥ Polar coordinates
%Y  Variable time
P Veloelty potential

"]" Angle between 5D and BF in Pig. 2
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