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ABSTRACT

A theory 1s developed which describes the behavior of a
vapor bubble in a liquid. Its physical basis is the assumption that
the heat iransfer effects which accompany the evaporation occurring at
the bubble wall when the bubhle grows, o the condensation that occurs
thers whon the bubble collapses, are dynamically important, The
basic equations of hydrodynsmics are shown to reduce, for the problem
under consideration, to a dynamic equation which describes the behavior
of the bubble wall, and a heat convection equation for the iiquid which
is erupled to the dynamic equation by a boundary condition at the bubble
surface. A solution for the heat problem is obtained under the assumption
that significunt temperuture variation in the liquid cecurs only in a
thin thermal toundery layer surrcunding the bubble wull. An estimate
of the correction to the tomperature solution is also derived. Once
the temperature at the hubble wall is given, the vepor pressure within
the bubble is kncwn and the dynamiec prablem becomes detorminate.

The theory 1s applisd %o the casea nf the grawth of a veper
bubble in a superhoated liquid, and the collapse of a vapor bi.¥lu in
a Jiguid below its bolling temperaturs at the exturnal presswre. The
slmplifying physical assumptions made in the courss of the investigation
are Justified for the specific example of vapcr Lubble behavior in water.

A comparison of the theory with experiment is given for the
observable range of bubble growth in superhcuted wuter, ond the
agroensnt 1s fcurd 5 be very good,
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I. INTRODUCTION

The term cavitation 1s used to describs the presence of a vapor
phase in a region filled predominantly with liquid. The condition necessary
fcr the appearance of cavitation is that locully the vapor pressure of the
liquid must exceed the externasl pressure to which the liquid is subjected;
this condition is by no mesns sufficient to produce cavitation, however,
because of the presence of surface stresses in the liquid. These stresses,
attributable to the short range attraction of the liquid molecules for one
- another, tend to reduce any surface element of the liquid to one having the
least (mean) curvature consistent with the mechanical constraints imposed
on the liguid. Thus, an otherwise unconstrained vapor cavity will be spherical,
The resultant of the stresses on an element of surfuce is a force directed
along the normal drawn from the concave side of the element. For a vapor
cavity to grow, the vepor pressure must compensate not only the external
ﬁressure on the liquid, but also the effective pressure of the surface stresses,

Since the surface stresses increase with the curvature of the
surface, there is a minimum possible size for an unconstrained pure vapor
bubble existing in the liquid, even at temperatures above the bolling point
of the liquid at the prevailing external pressure. Smaller bubbles are
unstable against collapse, The questlon therefore arises as to how a bubble
could form initially. The problem of the nucleation of vapor bubbles has
(1) and Peuasge,
in connection with thelr research in animal physiology. The conclusion
drawn from these studies is that in a moderastely superheated liquid; the
nuclel for cavitoation bubbles consist of small permanent gas bubbles in the
liquid, or gas pockets stabilized on solid purticles. When these are
removed from the iiquid (by agitation, continued boiling, or by compressing

(2)

been extensively studled in recent years, notahly by Harvey

the liquid under prezsures grout enough te foree the gases inte solution)
cavitation csases, and can bo reintroduced only by subjectlng the liquid

to extrems tunsion or high temperature. Thus, water put under & pressure

of several hundred atmospheres for a poriod of u fow hours becomes able to
() ana
cin be heated to 270%; before it uxpl@duﬂ.(A) The residusl nuclel, folluwing
degasslng, are bolleved to conclst of hydrophoble substances in the liquid

or at its surfnon.(a)

withatand noguative prosusures as great as 150 atm. without rupturing,
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The process involved in the nuciecation of a bubble by a permanent
gas can be explained by a simple model. Suppose the gas satisfies the
perfect gas law. Then the pressure pg of the gas in the bubble is given
in terms of the temperature T and radius R of the bubble by

p =M (1)

g g3’

where N 1is a constant, proportional to the number of moles of gas in the

bubble. The pressure Py due to surface tension is

- 20 2
Pg =R (2)

g’ being the surface tension constant of the liquid. If the bubble is in
equilibrium, the vapor pressure is & function of T alone, say peq(T).
Denoting the external pressurs by p. s one has as the condition of
equilibrium that

Py * Poq(T) =pg +p . (3)
The equilibrium will be stuble if the pressure difference p g+ Peq™ Ps™ Poo
i1s a decreasing function of the bubble radius at the point of equilibrium.
These conditions are conveniently expressed in terms of a function

-3 f—

3
£n(R) = ET- { Po* Pg = peq('r)} = [ [p,, = Peqy(T)] R + 2°‘R‘2‘§- (4)

Thus, for & given gas content N, the equilibrium radius (or radii) R,
of the bubble is given by

fp(R ) =N, (5)
and the condition for stobility becomes
£1.(8 ) > 0, (6)

whero f3(R) denotes the derivative of £2(R) with respect to R
Bolow thu boiling polnt of the liquid, p =~ Peq 0, and so i‘T(R)
L]

ic an increasing functien of R. Thus, there is just one equilibrium redius R

(o]
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’ preaented in Fig. 1 to illustrate these general remarks.
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of a gas nucleated bubble for 2 given value of T below the boiling point
of the liquid, according to {5), and the equilibrium is stable at thst
radius by (6). Above the boiling point of the liquid, the coefficlent of
R in f&(R) is negative. Honce as R increases for fixed T, fT(R)
increases, reaches a maximum, then decreases. Accordingly, eq. (5) may

'fgive two equilibrium radii, the larger corresponding to unstable equilibrium,
) or one equilibrium radiue which is stablc'zgoinst collapse but unstable for

grawth, or it may afford no equilibrium radius. Inasmich as p, (T) is

" E an’ increasinﬁ function of T, £o (R) 1s a decreasing function of T for
: aﬁy fixed 'R, 8o that the curves ef f (R) on an f - R dlagrasm form a
,nomihxersecting fomily, except for the commen point at the origin, and the

'cnrvas for . large T fall below those for small T. In particulur, the

maximum of £ (R), which occurs when the liquid is heated above its boiling
point at the external pressure p_ s decreases with on increase of T. A
tynieai f ~R diagrum, drawn for wate“ at 1 utm, external pressure, has been

l

Goneider a gas nucleaned oubble which is in stable equilibrium

ip a liquid below its boiling point, ond suppose the temperature to rise

slowly. The bubble radius will then increuse steudily, with the bubble

. remaining in stuble squilibrium as ‘the temperature incraases pust the bolling

- point, until there is finally. reuched a criticul temperature, und a

g corresponding critical radivs, above which the bubble cunnot exist in stable

equilibrium. ‘A further increase in temperature releasee the bubble for
dynamie grow?h. ‘ ’ '

' . The nucleution process deacribed cun be underetood on the basis
of the £ ~ R diagram of Flg. 1. The locus of the process for any given
bubble is a horizontal line, whose ordinute is fixed by the gas content

" of the bubble. A4t the beginning of the process, the bubble is represented

by the intersection of tha given horizontul 1line with the r,r(a) curve

for the initial temperuture. As the temperuture increuses, the polnt
representing the babble shifts to the xight on the f - R dingram to f_(R)
curves drawn for higher temperatures, and correspondingly the bubble radius
inorenses. The process terminates when the bubble point reaches the fT(R)

. curve which has & wiximum at the ordinate of ths horizental 1inc. (The locus

(. A TR
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of maxima is represented in tha diagram hy o dnshed lins, the "locus of
eritical points".) The bubble considered is then stable against collapse
at the temperature of this critical f&(R) curve and ot the radius R,
of its maximum point, but is in a situation of unstable squilibrium with
respect to growth. 4 further increase in temperature upsets the equilibrium
and releases the bubble for dymamic growth. Since the sarface tension
effects relax with an increase of bubble radius, the bubble (which is now in
superheated liquid) will continue to grow indefinitely.

’ The nucleation prccess is qualitatively similar, but from an
analytic standpoint more complex, when the cavitotion bubble grows from
a solid particle in the liquid, or from a gas pocket stabilized on 2 solid
paerticle. The bubble may pass through several intermediate stable or un-
stable equilibria, depending on the size and shape of the pafticle. Since a

pure gas bubble will eventually rise because of gravitational effects and so

be removed from the liquid as a source of nucleation, the majority of cavita~

tion bubbles may be supposed to grow from nuclei cdntaining solid parficles. !
: The mechanism discussed above for the release of a cuvitatidn bubble

for dynumic growth is the counterpart of boiling, One may analyzé ina

simjlar manner the shift of a bubble from stable to unstable equilibrium,

and its release for growth, by a decreuse in the externanl pressure. 4n

equivalent process occurs in cavitating liquid flow, the pressure drop in the

vicinity of the bubble nucleus being caused by a change in the flow pattern

~due to the presence of a submerged obstacle. In this case, however, the

bubble does not ordinarily continue to grow, but is forced to collapse by a
pressure rise which follows along the péth of the bubble.¥*

A different phase of the nucleation problem has been invéstigated by
(5,6) who usod degassed diethyl ether at 1 atm., superheuted 100°C
above its normul boiling point of 3,°C, us the working fluid in o Bubble
Chamber designed to losate the puth of a charged stomic particle. A series of

Glaser,

Considerable local pressures can develop at the point of bubble collapses
If the bubble collapses near the surface of a suhmerged cbject, the sudden
unbalunce of pressure resulting may be sufficient to dislodge particles from
the surface. For a recent study of cavitation damage, see M.S. Plessct
and A, E11is, Proccedings, annual Mocting ASME, December 1954.
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vapor bubbles appears along the track of such 2 partiele in the liguid, If
photographed a few microseconds after the detection of the particle, the
track is fairly well defined by the bubbles. The physicol mechanism of the
bubble nucleation in the Bubble Chamber has not, as yeﬁ. been fully expluined.
In treating the problem of bubble growth, it becomes necessary %o
mnke some assumption concerning the nucleation process.. The simplest
assumption‘to makes about the bubble, and the one which will be made in the

analysis to follow, is that the bubble contains inltially no permanent gas

or solid particle nucleus. It, of course, follows from this assumption

 :(N = U) and eqs. (4) and (5) above that there is no radius of stable
) eqpilibrium for such a bubble. Nevertheless, if the liquid is heated above
- its boiling point there will still be a radius R, of unstable equilibrium,

which satisfies the equation

“The radius R, of the pure vapor bubble given by eq..ﬂ7) is related to the

critical radius R for unstasble equilibrium of a gas filled bubble at the

"_R % e

‘iWhile it is not possible, nhysically, to form a pure vnpor bubble at the

gradius R s the details of growth of such a conceptual bubble differ in no

: essential way. from those of a ‘gas filled bubble growing from unstable
+ equilibrium, or from those of a bubble otherwise nucleated. Equilibrium
E bubble radii for o pure vapor bubble in water at 1 atm. external pressure.

as a function of the water temperature, will be found in Table II (ps65)

{Ths aquiJibrjum rodius of the pure vapor bubble and the corresponding oritical

radius of the gas nucleated bubbla are decreusing functions of temperature

,(see Fig. 1),

The mothod considered in the analysis below for the release of an
equilibrium vapor bubble for growth will be an increase of liquid temperature,
rather than o decrease of pressure. One reason for this cholce is that the
temperature change involved in the heating of a 1liquid usually procseds at a
euffiéiently low rate that it ceases to influence the behavior of a bubble

.| #oon after the growth of the bubble has begun, The bubble growth then becomes

et QPR b Dk

¢ i
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sell fedotormined. ar Ffrsal. When the bubhls gorowth 1o Andtindeld by
pressure changos, this may not he the case.

Another reason for the choice is the availability of experimental
data for the growth of cavitation bubblees in superiicated water, with which
the predictions of the theory developed below may be compared (see Figs. 4,
5; 6), After the growth of a cavitation bubble has begun, the details of
nucleation become unimportant. Ths bubble tends to become spherical, and
is adequately represented by the pure vapor bubols model used here,.

The process of growth of & ecavitation bubble in a superheated
liquid may be described as followss When the bubble is at its critieal
radius (R o for @ gas nucleated bubble, the radius R, of eq. (7) for a
pure vapor bubble), it is unstable against oxpansion, and a slight tempera=-
ture increase will stert the bubble growing. The initial phase of growth
is characteriszed by the relaxation of the effective pressure due to surface
tonsion with an increase of bubble radius. The pressure unbalance causing
the bubble growth is thereby increased, snd correspondingly the rate of
expansion increases rapidly. In order for the bubble to grow, however,
evaporation must take plece at the bubble wells Because of the latent heatl
requirement of evaparation, this requires the temperature at the bubble
wall to drop bslow thet of the bulk liquid, which in turn decreases the
vaper praessure at tho bubble surface. Whether or not the decrease in
pressure causes the veloocity of the bubble wall eventually to decrease
dopends upen the rate of inoreass of bubble surface area., It will be shcwn
that such an cffect occurs. The bubble radius ultimately becomes propor—
tionsl to the square roost of the time of growth. In this asymptotic range
of bubble expansion, the temperature at the bubble wall appreaches the
beiling point of the liquid at the external pressure, and the pressure
difference producing the bubble growth tends to zero with the radial
velocity of the bubble wall,

If the bubble growth is arrested and the bubble forced to collapse
by a2 sudden incvease in the extorior pressure, the flow of vapor end the
flow of heat at the bubble wall are reverasd. (ondonsation of vapor at the
surface of the bubkle raises the tenperstura thers, resulting in sn increase
of wapor preasure which tends Yo slow down the rate of collapse.

D et T
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$ . -~ 44
T+ 3a thne apporent that coupled with the dymumde problen the

is a problem of heat transfer between the liquid and vapor which arises when
the bubble changes size. The heat problem will be solved approximately

under the assumption that significant heat transfer occurs in the liquid only
in & thin shell surrounding the bubble wall. The solution is presented in
section III, along with an estimate for the first order correction. The
assumption of & thin thermal boundary layer in the liquia 18 reasonable if the
thermal diffusivity of the liquid is sufficiently low.

Insofar as the liquid is concerned, the bubble grows or collapses
because of pressure variations at the bubble wall, and possibly at the
extornal surface of the liquid, which set the liquid in motion. Thus the
heat transfer problem involves convection effects. A treatment of the heat
transfer problem which neglects convection has been given by Forster and
Zuber,(7) who use the model of a stationary liquid containing a moving heat
source (corresponding to the moving bubble wall). The diffusion solution
for the heat problem obtuined from this model leads to unrealistic predictions
for the rate of bubble growth. An analysis of the diffusion solution is
also presented in section III. _

The dynamic problems considered here are the growth from unstable
equilibrium of a pure vapor bubble in a superheated liquid, and the collapse
of a ippor bubble in afliquid below its boiling point. The bubble which
collapses is taken to be ot rest initially, and in this respect is @ model
for a covitation bubble whose growth has been arrested by an increase in the
external pressure on the liquid. The model used differs from an actual
cavitation bubble in that the liquid temperature is assumed to be uniform
when the collapse starts. The temperature field in the liquid for an sctual
bubble depends on the past history of the bubble, and if non~uniform will
affect the initial period of bubble collapse. The solutions for the growth
and collapse of vapor bubbles urs presehtod in section IV, together with
experimentol verification for the cuse of bubble growth in superheated water.

For the quantitative solution of the heat problem and the dynamic
problem; several simplifying physical assumptions have been made., The

-~
d &

arguments for the validity of the genernl assumptions are justified, as they
appear in the text, for the cuse of cavitation bubbles in water. Twoc busic

assumptions may be mentioned here, howevery these are thut the motion possesses

10 .

e ;
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spherical symmetry, and that the motion is irrotational. The latter

assumption is independent of the former since, for exasmple, it is possible

for a swirling, eddy type of motion to occur within the vapor of u spherical
cavitation bubble. Thc experimental evidence indicates that such motion, if
it occurs, does not influence the bubble behavior. The assumption of spherical
symnetry is more seriocus. This requires in principle thut the asymmetric
effect of gravity upon the bubble behavior be ignored. Actually, the rise

of a vapor bubble against gravity is extremely slow, so long as ths bubble

is small, Thus, for water superheoted by about 2°C, no great error is
introduced by the bucyant force provided the bubble growth is not followed
beyond 2 radius of the order of 10“1 cmy which is much greater than the
equilibrium radius of about 1.5 x 10“3
Bubbles released at higher superheats grow appreciably faster than the

102° bubble, and so are relatively much larger before gravitational effects
become importunt. The collapsing bubble has, effectively, no time to rise

cm for the 102° vapor bubble in water.

ageinst gravity bsfore its collapse is completed.

The emphusis in the following treatment is laid upon the physical,
rather than the mathemuatical aspect of the problem, Thus, & completc table
of the integrals appearing in the text has not been given, although a few of
the more obscure integrals ore evaluated in the Appendix. From o mathematical
standpoint, however, it is felt that theequation for the growth of a vapor
bubble in a superheated liquid may be of some interest, inasmuch as it offers
a tractable example of a nonlinear, integro-differential equation.

s T W
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1L, FORMULATION OF THE PRUBLEM

Basle Fauationg.
In terms of the fluid density, 0O, the {vector) fluid veloecity ¥,

the temperature T, the pressure p, the internal energy e per unit mass
of fluid, the stress tensor P, the thermol conductivity k, the coefficlent
of viscosity 72 s the time t, and the hsat § generoted per sscond, per
unit volume in the fluid by absorbed radiation, the fundamental Euleriaon
equations which describe the behavior of afluid (liquid or vapor) are:

The equation of continuity

8L

3 Ve py=0, (1)

The equation of motion (with the neglect of external body forces,
such as gravity)

dy '
ﬂ .dTb- = VP, (2)
The heat equation
fe-p. vy +vekV+g. (3)

The thermal and caloric equations of state

P=L (ps Ty e = alp, T)e (4)

For & Newtonian fluid, the stress tensor is given by¥*

P = -pI + 7 [w + (W) - -32- (v vl (5)

The notation used herc is essentiully thut of Gibbs, with V
denoting the gradient opsrator. The symbol ¥ » denotes the divergence, V x
the curl, and in the case of the rate of strain tensor W 13 the vector
grodient (2 dyasdic). The term P : vy in (3) represents the trace of the
product of the stress and rate of strain tensors. The term (W)! in
eq. (5) is the transpose of Wy.

For the definition of the stress tonsor and 2 derivation of egs. (1),
{2)y (3), see Milne-Thomson, Theoretical Hydrodynamics (Macmilicn and
Co., Ltd., London, 1949).




In these equations, Eq:t' denotes the totul derivative with respect to tims, o=

canputed in a reference frame at rest in the fluid slement under consider-~
ation;¥* thus,

4. .20 . {
" trV. {6)
’ 1

Physically, eq. (1) expresses the conservaotion of masa. Eg. (2)

relates the inertial reaction of the glven elementary fluld mass to the
surface stresses ascting upon it (in the absence of external forces). Eg. (3)
is essentially the statement of the first law of thermodynumics, relating the
increase of internal energy of the mass element to the work done on it by

its surroundings in changing its shape and size, the heat energy conducted
into it across its surface, and the heat generated in 1t by absorbed
radiation.

By the use of standard vector and tensor identities, the terms in
(2) and (3) involving the stress tensor defined by eq. (5) can be reduced
to the forms

o

Veps -vp+72[é;v(v - ) ~Vr(v x ©1

L N0
: J P:Vg=-p-(v-y,)+7z{(ng)z-i-%(voz)z |

+2v ¢ [%vvz-xx(v XE)-x(V'z)]} ’

providéc'. the coefficient of viscosity ‘7Z is considered to be constant,.
Because of the smallness of the coefficient of viscosity of woter and its
vapor, viscoslty effects ars not expected to play an importunt role in the
behavior of water vapor bubbles, and will ultimately be ignored. The
viscosity terms have been retained; however, so that order of magnitude
estimates of their importance may be mads.

When the assumption is made that the fluid flow is irrotationual

VXy=0 (8)

w
Cther symbols for the total (substantial, convective, particle)

derivative inelude D/Dt, and a dot placed above the differentiatod
term: § .
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the forms (7) further reduce to

V’P=-Vp+§7(v(v-!), -]

(9)
P:Vx=~p(\7'g)+7 {Vzvz“%(V*!)z‘ZX‘V(V'I)}‘

If the further assumption is made, in the case of the liquid, of
incompressibility (/0 = constant), eq. (1) gives

Vey=0, : (10)
and eqs. (9) become simply -~
vV P=-¥p;s '
- (11)
P:vg= ?Vz V. ]

It will be observed, on substituting eq. (11) into eq. (2), that the viscosity
terms disappear completely from the equation of motion for the case of
irrotational motion of an incompressible fluid. If the fluid is viscous,

the motion may still be influenced by viscous heat generation, however,
provided sigrificant heat transfer effects take place.

The Problem in the Liguid. :
It foilows from the assumption that the liquid motion is irrotationsal

{eq. (8)) that there exists a velocity potential @ throughout the liquid,
such that

Y= "‘Vﬂo (‘12)
Since, further, the liquid is taken to be ineompressible (eq. (10)), the
velocity potential is a solution of Laplace'!s equation
v g=0 (13)
The spherically symmetric solution of eq. ({3) is of the form

=

g =2ty p), | (1)

e ot m e we e
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where r 1s the radial coordinate from the center of the bubble. The

liquid velocity corresponding to eq. (14) is purely radial, and given by

eq. (12) as

v=4 Z . (15)
r

If the liquid velocity at the bubble well is denoted by v(R)y* eq. (15)
gives the relation

A(Y) = RA(%) v{(R), (16)

where R{t) is the rodius of the bubble surface. Eé. (15) thus becomes

2
vir,t) = B—éﬁl v(R), (17)
r .
ané if the veloeity potential is normalized to zero at » = o, eq. (14)
becomes :
-, D2
Bir,t) = Ll y®) | (18)

The equation of motion, according to egs. (2), (11), is

e) 4
Pl=+y vl =-p. (19)
at .
The vector identity

. xw.r)=*1§vv2-x'vz

‘and the assumptlon Vv X y = 0 give

¥ * vy = Lovd

N jr

hence, by eq. (12), the equation of motion (19) may be written
) T
LVI-5 +3 7] = -,
from which 2 Bsrnoulli relation

—g%+%v2=-j§—+c(t.) (20)

follows by integration, the density haoving been taken constant, From egs. (17),
*

v(R) 1is, in general, not exactly equal to the radial veloclty R
of the hubble wall (because of evaporation or condensation occurring thers.)

O

Lam
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(18), the left side of 2q. {20) vwanishes at r = w ., so that C{i

eqe (20) is simply the external pressure p, ¢ivided by the liquid density:

O(t)“:'—o
Eq. (20) thus becomes ert) :
ag 1.2 _ PWit)-p,
5g-§v = — 5 (21)

Because the density of the liquid is assumed conatont, the internol
energy e can be a function only of the temperature T. Over the limited
range of temperatures whiech will be considefed here, the internal energy may
be considered tu vary linearly with the temperature. On neglecting any
constant internal energies, the caloric equation of state therefore reduces to

e c T’ (22)

vhere c, is the speciﬁ.c heat (at constant volume)} of the liquid. The
thermel conductivity k, like the specific heat, will be taken constant

over ths temperature ranges considered. Egs. (3), (11), and (22) thus combine
to give for the internal cnergy equation of the liquid

Qe [g%" + v. * yr] = kva + ’hvzvz + 3. (23)
\' UL l

| In the analysis to follow, the viscosity term 72 v v2 in eq. (23)
will be neglected. By using the solutions thus obtained, it is possible “to
estimote the contribution of this term to the total rate of heat generation
per unit volume of liquid. The specification (17) for v gives

2
v P =12y %
Sl
and accordingly, the viscous heat gcneration is a maximun at the bubble wall,
where it amounts.to

12% V—L-L:ZR

per second, per unit volume. Here v(R) represents the velocity of the
liquid at the bubble wall, which may be approximnted by the radial velocity

ﬁ of the bub wall itsclf.* The coefficient of viscosity of water near
x

This approximatioun, which is plaueible physically, will be shown to be
accurate to about { part in 1000,




The solution for vapor
bubble growth to be presented below gives for a bubble grosing in water at
1 atm., superheated to 103° C,a maximm radial velocity ﬁ = 32 cm/sec
when the bubble radius is about R = 3 x 107> cn (see Fig. ,)‘ Combining
these figures, we find for the rate of viscous heat generation at this time
tine

R
7&‘72172 ~ 1271 %I =4 x 108 erg/ceesec ~ 10 L cal/oe*sec.
R

But the total temperature drop at the bubble wull neur the time of maximum
radial velocity (see Fig. 8) is about 104 oC/':-!ec, corresponding to a heat
loss from the liquid at the bubble wall at this time of

dr(R)
P

orad i~ 10* cal/ecesec,

dus essentially to the evaporation occurring there. The viscous heat gensi—
ation drops off sharply away from the velocity maximum. Clearly, viscosity

plays a negligible part in determining the growth of vapor bubbles in water.
Eqe (23) will therefore be written for solution as

pe [—-+V'V'I‘]=k\72‘1‘+c'1. (24)

The foregoing development of the equatlions for the liquid has
been baged essentially on the assumption that the liquid is incompressible.
The validity of this assumption depsnds upon the ratio of the velocities
atteined by the liquid to the velocity of sound in the liquid. For the
growing vapor bubble, the maximum velccity at the bubble wall is never
larger than a few meters per second for the highest superheats considered,
80 that compressibility effects in the liquid may be safely ignored.

For the case of the collapsing bubble, several of the assumptions
made above may fail near the point of collapse, if the solutions are corried
that far, Thus, the temperature at the bubble wall, which is initially below
the bolling point, rises sharply near the end of collapse, possibly

A tabuletion of phy=ical constants will be found in Appendix A.
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approaching the critical temperature of the liquid. The parametersdf). ks
e, ate. of the liquid cannct be taken constant, of course, over such an
extreme temperature variation, nor is it valid to consider the liquid
incompressible. Perhaps the most significant error in the bazsic assumptions,
for the case of the collapsing bubble, lies in the fact that the spherical
shape is inherently unstable near the point of collapse.(s) The collapsing
bubble tends (theoretically and experimentally) to shatter before collapse.

For these reasons, althcugh the assumptions made above will be
retained, the calculations for the collapsing bubble will be carried only
far enough to indicate the trend of behavior of the physicel quentities
involved.

Ihe Problem in the Vapor.

In the cose of the vapor, the main simplifying assumptions are
related to the smollness of the ﬁnpor density in comparison with that of
the liquid. Thus, the physical effects of the vapor inertia may be expected
to have a negligible influence on the rate of bubble growth or collapse.
It will be Bhown that the vapor may safoly be considered to be in a stéte
of thermal and dynamic equilibrium; insofar as its internal behavior is
concerned. To do this, it is sufficient to use orde of magnitude estimates.
The equation of motion of the vapor follows fro m eqs. (2), (8)
and (9); and is given by* ‘

p[- +y evyl =wp+ %QV(V c ). (25)

The veloeity in the vapor is certainly smaller in magnitude than the velocity
of the bubble wall, because of the evaporation which takes place when the
bubble grows or the condensotion of vapor which occurs when the bubble
collapses. The vapor density is smaller thun the liquid density in a ratio
of about 1:1000, and the coefficient of viscosity of the vapor 1s smaller in
a ratio of roughly 1:10. The pressure gradient in the vaparmay therefore

be assumed smaller than the gradient in the liquid by at least an order of
magnitude. An estimats of the pressure gradient in the liquid may be made

*
The symbols appearing in this purt of section II refer to the vapor,

unless otherwise indicated.
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by again putting the liquid velocity at the bubble wall equal to the bubble
wall velocity R in eq. (17), and using this to evaluate eq. (19) at the
bubble wall. The result for the liquid is simply that
Opy4 5%
-E;Q]rzﬁ(t) = —,f;iiqﬁ’
whers ﬁ is the radial acceleration of the bubble wall. For water at 103009
the maximum radial acceleration of the bubble wall is about 6 x 105 cm/'sec2
(se+ Fige 7), giving for the maximum pressure gradient at the bubble wall
6 x 10° dynes/cmz/cm, or sbout «6 atm./cm. The maximum pressure gradient
in the vapor is not more then about 1/10 of this, on the basis of the sbove
estimate, and it occurs when the bubble radius is about 2 x 10> cm. Thus,
the pressure variation in the bubble is at most of the order of 107 atm,
But the pressure itself is of the sahe order as the external pressure of
1 atm, It is thus clear that the pressure may be taken as uniform within

~ the bubble,

Pyap = P(t)e (26)

For order of magnitude purposes it is sufficient to consider the
vapor to be thermally and calorically perfect

p = PBT, (27)
e = Cst (28)

where B in (27), is the universel gas constant divided by the molecular
weight of the vapor, and Cy in (282 is the specific heat (at constant
volume) of the vapor. The heat equation for the vapor beccmes

ooy vl =wir-pe .y
+'7({v2v2 -56¢ cwP-2v 0w z)} (29)

according to egqs. (3) and {9}, if the radiant heating in the vapor is ignored.
The thermal conductivity, specific heat and viscosity coefficient of the vapor
are about an order of magnitude smaller than the corresponding Quantities

for the liquid. On making the same approximations for the heat equation (29)
as for the equation of motion; we obtain an approximate relation

W =W ¥,

[P SRV OO TR v



which reduces to
v (kT + p#) = O {30)

if the velocity potential relation for the welocity and the uniformity of p

and k are used. Inasmuch as the pressure, temperature and velocity potential

are all finite at the origin, the only solution of (30) consistent with
spherical symmetry is of the form

kT + pf = C(t). | (31)

The velocity potential remains undetermined to an additive function of time,
which can be so chosen that C(t) =0 im (31). Eq. (31) then ylelds the

relation

;d:-lg'r, (32)

and if the perfect gas law (27) is used in (32) it gives the further relaticn

;d=--—— {33)

Eg. (33)’mai now be substituted into the equation of contimuity (1), giving

Qg—-h - _— PR l{. .1_-,-
= cpr=v e pw=fv-gep,
or '
o HL =R p (34)

Eq. (34) iz a diffusion-type equation, which may be compared with
the heat equation written for stationary vapor

8T _ .. 2
AN g A
or
2p - L T =
V T_D at’ D—ﬁe ° (35)
v

The function in eq. (34) replucing the thermal diffusivity D of ths vapor
in eq. (35) is

9l = £ (36)

o SR
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If the vapor molescules may be supposed to have, say, three treanslational and
three rotational degrees of freedom, then ey = 3B. Hence if the vapor vere
stationary, we should have from (35) and (36)

|#] ~ 3D, (37)

Eq. (37) will be of the right order of magnitude even if the density varies.
Now, the thermal diffusivity D of saturated water vapor at 103°C 1s about

o3 cmz/Sec. The characteristic diffusion length for eq. (34) is thus about
/iTBTE ~ 2%, The significant time for the 103° bubble is about 10 sec,
roughly the time between the end of the relaxation period (when the rats of
bubble growth becomes significant) and the time of the velocity maximum (see
Fig. 7), giving for the diffusion length V4|@]t » .02 ecm, or about six times
the bubble radius at the velocity maximum. There is, therefore, an insignif-
icant variation of lnjo with position in the bubble, so that the vapor density
may be congidered a function of tims alone,

Puap = P (B (38)
Egs. (32) and (33) then show that also

Tyap = T(t), (39)
Brap = 8. (40)

It is not legitimate, of course, to argue from eq. (40) that the
vapor is at rest, since it is the small terms in @ which have already been
neglected in arriving at (40) that determine the veloeity, This difficulty
can be traced to the normalization chosen for @. However, an sstimate for
the velocity is readily obtained from eq. (38). Consider a sphere of radius
r within the vapor. The mass of vapor in such a sphers, by (38), is simply

n(r,t) = -% nr3/ t). (41)

If, now, the independent variables in (41) are chosen to be m &and t,
rather than r and 4, eq. (41) may be written in an alternative notation as

m= éﬁ n p(t) r3(m,t), (42)

AW -
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the change corvesponding Lo the adoption cf Lagrangian rather than Bulerian
coordinates. Diffeventiation of {42) with respect to t, holding m fixed,

ghowz that
T3P =0
or since %r%_ is now the vapor velocity, that
Y=o .I. B __ .z & | .3
vvap(r"_t") 30 o’ 30 dt ° (43)

Inasmuch as the origin for r in the above development was arbitrary, eq.
(43) implies a uniform dilation or contraction of the vapor within the bubble,
which is consistent with the uniformity at .~ . Eq. (43) indicates a radiel
veloeity in the vapor at the bubble wall of about .4 cm/ses for the 103°
bubble when the velocity of the bubble wall reaches its maximum of sbout

32 cu/sec,

In the discussion of the growing vapor bubble in a superheated liquid,
effects related to the veloeity of the vapor will be neglected, thus incurring
o, an error of a few per cent in the results. In the discussion of the
collapsing bubble, the large temperature variations at the bubble wall may
be expected to cause significant changes in the vapor density, and so the
effacts of the vapor velovity will be included. _

Tt may be noted in passing that for a uniform (irrotaticnal) dilation
or contrastion of the vapor, such as is indicated by egs. (38) or (43),
the viscosity terms in the heat equation (29) vanish identieally.

Boundary Conditions.

' If the terms involving viscosity are cmitted from the basic equations
(1), (2), (3) and the equations of state are substituted in, the resulting
equations are' of first differential order in y and p, and second order in
T, In order to match solutions for the liquid and vapuir across the bubble
well, relations must therefore be provided connecting the values of ¥ and p,
and the value end normel derivative of T across the interface. Becaouse of
the assumption of spherical symmetry, no further relations are needed if the
viscosity terms are retainad.
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Sousider & aifferential come I° extending from the center of
the vapor bubble (the carigin) to a point indefinitely far away in the liquid,
whose generators are straight lines through the origin, and whose differential
cross section at the bubbis wall is Z. o In this cone, mass is conservad

ag-.f \ PY o= {
oy P/)d”: + )61_.\9_ ‘/;_v_ds O. | (44)

The equation of motion of the cone ia*

-Q— . = . - 2—6:-
tjr\/o_v_m: +§rg /a_uds fpg P ds f}" = B as, (45)

and ths energy balance equation is
_@_U( 1.2 f”' T 1.2
e +3ve)av + [ ¢’as + ¢ ne pople+35v")as
at rf 2 s j jr y; 2
=f§dt+§ n+ (Pey+XkeT) dS. (46)

In these equations, n denotes ths outward drawn normal to the cone in
§ dS, and the unit normal to Z- extending away fram the origin in fZ as.

The surface :lntegrals on the left side of the equations represent trax\spert
torms; these must be added because the elesments of 1n1;egrauon do not move
with the fluid., To evaluate the integrals we shall neced the differential
equations, which may be written

as

5—;+v-/01=o, 47)
3
;;x.; V'[/Ow-PJ—O, (48)
2P+ iPN+v o+ L) -p.y-wrl =g, (49)

| en. (49) being a cambination of egqs. (2) and (3).

Sinca the stress tensor dose not account for the molecular forces
responsible for surface tension, ths force due to surface tensions must
be written exrlisitly into sg. {45), and the corresponding surface energy
into eq. (46). For a classical treatment of the theory of surfaco tension,
see Joos, Thaaretical Physins (Hafner Fublishing Co.. Ine.; New York, 1934),
Chapt, IX, section 8.




Ths equations (47), (48), (49) are a1l of the Form

3
a:w-b-c, (50)

ay, b and ¢ being suitable scalars, vectors or tensors. The integral
relations require a knowledge of

__qif 8d
r
The change in the integral f ady during a time d4at 1is
r
' .
dfadt:f {a'+-a£-dt]d6-f atat
T r<R+Rdt ot r<R
. -
+f . [ gfdtj atT - | adt, (51)
r>RRAL ot >R

vhere ai s the value of & written for the vapore The volums slement
dT 18 here considered fixed in space, To first order in dt, (51) is

o [ace |
- R

(at -a)dt + dtf f fal sv + fa d‘C]
<r<R+Rdt

Ra‘b

This may be transformed with the aid of the relation (50) and the divergence
thet‘srem, to

-g'gfad’t:=f R(a! ~ a)as + f cld? = 55 n s btas
r r=R r<R r<R

+ ed’t =~ f n * bds
>R >R

s f
=fﬁ'- @S +-| edt = ¢ e s-j o (b=
a (@' - a) +Jrcdt$ j‘rr_x, bd A n +(b'- blas

L.+ [R(a ~a)-nq *(b? 5b)12 - frge de+fP cd¥ e

(52)
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Applying (52) to egs. (44)-(49), one cbtuins in & siraightforvard fashion

[ﬁ(/ﬂ' ‘/) -pn e (/0'!' "/0!)]2_ = Qp

[ROp'y' = p0) =n e+ (p'E's! - oz - ¥ *P)]z'="'ﬁ"‘-’-’-z’

-gﬁ‘:ﬁ={ﬁf/?"(e-i-%v'z)-ﬂ(e-*%vz)] > (53)

-n v{/ﬂ'g' (e + % vt?) ~/g>g_(e + % v2) = Pte v!

+P oy ~k'WT + kvﬂ}z.

Because of the spherical symmetry .
pe-r=gl-p+47&-I (54)

on 2. (the same relation holding for P'). The use of (54) in (53) leads
to the results

/A(R—v) -/a'(n-v'), | (55)

p+-2-§°-'= '+(v-v')/o'(a-v')+47(—- _.‘3‘7'(%"-;’."'): (56)
kBowr Bl pr@-enL+ LRk - )R - L2 -0

%%(5"‘ %r!)+§% & -5 o (57)

at r = R, where in (57) we have put

L=e'-a+/%:-- m/‘%; (58)
according to the first law of thermodynamics, L i1s the latent heat of
evaporation at the bubble wall., Evidently. eq. {55) expresses the con—
servation of momentum ai the tubble wall, The last terms in (57), (58)
represent kinematic (mass transfor) end viscous corrections to the vapor
pressure and heat transfer relations holding at the bubble wall,

Manean da L enn T Ve dlon ameadt ad? oo manss btssnn o osvud S cnnedl dwn 0 manan -
aaeTs 185, Lfintily, ths condivion of tempsratus across

ths bubble surface

T =T, (59)
A temperature discontiruity would imply an infinite heat conduction through
the surfaco.

R g et
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The momantum condition {55), which may be written

hd IOi 2a v FYPREN
v &

shows that the liquid velocity at the bubble wall can differ from the
bubble wall velocity by at most terms of relative order < '//& ~ 1/1000,
For all practical purposes, (55) may therefore be replaced by

qu(R) = ﬁo . (61)

As has been meniioned previously, the vapor velocity is small in comparisen
with the bubble wall velocity. The momentum transpert correction in eq, (56)
1s thus approxinately ,'%. Far this to compare with o !, vhich ie sbout
{1 atn « 106 Ceg-8 units, R must equal about 300 n/sec, i.e. be comparable
with sonic velocity in the vapor. Such large velocities will not be con-
sidered here, so that the meamentunm iransnrot correcticn im eq. (56) may be
neglected, Simllarly, the kinetic energy transport correcticns to the heoat
transfer relation (57) are cumpletely negiigibls in comparison with the
latent heat of eveperation, (For water, L m2 x 1010 erg/gm.)

The viscosity corrections in (56), (57) may be evaluated by egs.
(17), (43), (60). The contribution of ihe vapor venishes identically.
The contribution of the liquid amounts to

47 @ -3, =13 -~k

in eq, (56), and this divided by f in eq. (57). 'I'he net xaffect of viscosity
is thus to increase the surface tension ¢ in (56) by 27Lﬁ’ and to decreasa
the latent heat L 4n (57) by 47lﬁ/ /oRe For a vapor bubble growing in
water, the latter correction is entirely negligible., The surfacs temsicm
incrense amounts to .2 and ,9 dynes/em at the time of the velocity maximum
of the 103° and 106° bubbles, respectively (sse Fige. 7,9)s This is of the
order of the thermal variation in 07, which has already been neglecteds For
the gollapsing bubble, these viscous effects becoms importent only nsar the
point of ccllapse,

With the negleoet of the kinematic and viscous corrections, the
pressure relation (56) reduces to

Prap = P1aq * 5L+ (62)
Since the temperanture within the vaper is considered to bs uniform, the
heat transier relation (57) reduces to
km =l "'(ﬁ v')e
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When the vapor is at rest relative to the interface, the quantities
vap and 2 vap are equal to the equilibrium vapor pressure and density
Pq q and ,o oq of the liquid at the temperature of the bubble surface.
But when a relative velocity exists they will differ, by an amount depending
on the nature of the liquid. A relation connecting these which holds when
the vapor may be considered a perfoct gas in a state of complete equilibrium
(v, Voap = 0) 12?8 )been given by Mathews, (9) on the basis of previous work
by Plesset. In the notation used here, Mathews'! relation is

pva

c+ R
vhere ¢ 1s a characteristic velocity, related to the veloeity of sound o
in the vapor and the specific hesat ratio Y of the vaper by

¢ = e g, (65)

Van .4

The paramster o appearing in (65) iz called the "accomedation coofficient®
of the liquid, and measures the fraction of the surface availabls for
avaporation or condensation., For non-polar liquides a is near unity,but
for polar lz.quida vith hydrogen bonding a may be approclably smaller.
For a water surface near 10° C, a is reported by Wyllie(“) to have the
value +04s This experimental value was obtained by measuring the time
required for a sample of liquid to evaporate into a partisl vacuume Due
to experimental difficulties, the value of @ for water has not been
measured at higher temperatures,

If the value ¢ = ,04 and the values Y =133, 6=56x 101* om/gec
are used in (65), they give for the characteristic velocity of water

o 7 wm/sec. Correspondingly, one might expect a signifiocant deficiency

in vapor pressure and density to occur when a vapor bubble 1s growing

in water at oanly & moderate rate. The situation in the case of a collapsing
bubble 1s sven more critical. The large pressures developed within the
collapaing bubble because of the inaccesibility of ths bubble surface for
condensation would saverely limit the rate of collapse, and might be expected
to result in the appearance of condensation throughout the vapor,

y




These conclusions, however, do not appear to be borne out by
experiment. Thus, the rressure=limited ccllapss desoribed does not ccour
(radial velocities of collapse in water which are certainly in excess of
25 m/sec have been reported by Ellis (12) ), and condensation has not been
obacrved to occur within collapsing cavitation bubbles, except possibly
near the point of collapse. These facts indicate that the value of o
for wvater at even 10°C may be much greater than ,04, and possibly point
to a significant increase of a with an increase of temperature.*

¥e shall therefore assuma the velocity ¢ 4inm ege (64) to be
sufficiently large that vapor pressure and density disorspancies may bs
ignored, so that we ray take

Pyap = peq’ /vap = /oeq (66)
at the bubble wall.

Gonelysion.
From eqs. (17), (61), eq. (21) becomes
(rot) =p_+ M_l&‘.ﬁ—] (67)
Since pliq{R) = peq('}?) - gg—« by sgqse (62), (66), sqs (67} becomes at
the hubble wall
y p.. (1) -p
m+%ﬁ2=_en__...2. -— (68)

g /11q B

an equation of motion for the redius R of the bubble walls Eq. (68)
wvas given by Plesset. (13) peq(T) in (68) refers to the equilibrium
vapor prassure of the liquid et the temperature of the bubble wall:**

* It 1s not the experimertal value of o which 18 questioned hore, but

the determination of the tamperature at the surface of evaporations In

the case of water, the rato of evaporation is largs, and a steep temperature

gradient develops at the surface (possibly reaching 102 or 103 °C/em),
** As indicated previocusly in the discussion, eqe (68) may be considered
valid so long 68 R remaine small in comperiscn with the sonic veloocity
in the liquid. A correctica to the equation of motion {68) which takes
the compressibility of ths liquid into account (up to terms quadratic in
R/6y4,) has been given by F,R, Gilmore (HDLCIT Report 264, ipril 1952)
on thé basis of the Kirkwood-Bethe hypothesis,

JRS—
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Coupled with eq. (68) is tho heat equation for the liquid, eq. (24):

’,oev[%% +ve 9T] =0T+ & (69)

vith the boundary condition

rAc &

Z =} & @ 4,00 | (70)

r=R(t)
(eas. (63), (66)). /Oe (T) in (70) is the equilibrium vaper denmsity
of the liquid at the temperature of the bubble wall, It will be assumed
that 1nitially the tempereture in the liquid is uniform

T(r,O) = Tee ("1)

Together with the initial eonditions for eq. (68), eqs. (68)~(71)
determine the problem of vaper bubble behaviaor.




and ‘laat of eqs. (1) give on integraticn
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ITI. THE HEAT PROBLEM

The system of equations II (69), (70), (71) which dofine the heat
transfer problem in the liquid may be written

-

r=l@iy. e~ g,
ot = 8% F(t), / ®
or r=R(t)
T(r’O) = TO,
. .
where D = and I
Se, R R

<

]
N
A

L 1. 4 .3 1
F(t 3k R“" dt (r ./oeq(T)}'

~d

At r = « the temperature in the liquid becomes uniform, so that the first

B 7 T T S

Tw, t) =T +2gt), ' (3)

o

T
o

L [

if q 1s chosen so that q(d) = 0. To standardize the solution it is _
desirable to use instead of T the dependent variable i

which vanishes at r = « and satisfies the system

\729:%[-6-%-{-1_;‘ vel,
88 - R?
=i = R°F(t), ( (5)

8(r,0) = 8(c0, t) = 0,




Convection Soiution.

Because of the boundary condition at the moving bubble wall, it is
convenient to transform (5) from Eulerian to lagrangian coordinates.
Coordinates appropriate to the present problem are

n=10 - 2w, l
(©)
t = t‘ J

The lagrangian coordinate m measures essentially the mass of liquid con~
tained within a sphere of radius r about the center of the bubble, the
liquid density having been agssumed constent. In terms of m and t, the

-

gystem (5) becomes

L4028 128

5m 3w Dot ?
ae : s
vy = F(t)’ (7)
Sm m=0 _

6i{n,0) = 9(=, t) = 0.

et

These equatigné can be put in more tractable form by introducing

a temperatwr¢ potential U, defined by

“om * (8)

The differential equation

2

L 9% 1ou_

r - - J(t)’
am2 Dot

whers J(t) is an orbitrary function of time. From eq. (8),

m
J 8 dm + K(t),

o

[~
]




and the function K(t) may be chosen so that J(t) = 0; and also so that
U(n,0) = 0. The system of equations to be solved then reduces to
"7

4% 18U,
8m2 D ot

'a'fg = F(t),

am?

0y
g - 9)
mn=0

U(m,0) = g—% = 0.

m=c

The diffuslon problem thus defined can be solved by an iterative
procedure iif the assumption is made that U varies appreciably only near
-m =0, This is equivalent to the assumption thut the temperature variation
in the 1liquid is localized in a thin "thermel boundary layer" surrounding
the bubble wall, which is reasonable if (as is the case with water) the
thermal diffusivity D of the liquid is sufficiently small. To utilize
the assumption, we shall rewrite the differential equation as

R4 QE% - % g% = (r4 - 7*) gfg

(10)
Bm amz’

and treat the right side of (10) as a perturbing heat source. It is
convenient to use in (10) a new time variable -t , defined by

¢
T = j R*(t) at, - (11)

<}
in terms of which the differential equation becomes

Qfﬂ_l@.ﬁz(rﬁm}ﬁ
D

om® T i on®

The system for the unperturbed solution U° is

AR

6m2 D 87 ’
Ty F(T) L (12)
om® ’
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Thia is resdily solved by taking the laplane transform of the system with

raspect to the variable 17 « If

we) = [Ty mmiat=L
o]
and | |
£(s) = L [Fl,

the transformed system becomes

. )
2
d*u s
— =-=u =0,
d.lm2 D
2
,d_%l = f(s), g‘% = 0,
am {m‘:o m=eo
J
with solution =
u= 5 £(s) e V5 .
Thus
- 8 -
du \’Qi‘(s)em D (ﬁ""f() mﬁ
dm s ’ 2= ks ’
dm
glving
=11 4y - _g__u_ DZz:- Z)

vy

D’L’-

2u )
-1 d" (1
Bn? -X ,/Z«?= f (’2:*&*)32

o

The system for the perturbation correction U
2 -y

o"u ou

___1 1 _.1 = G(I’l t,

amz D 3w ’

e
a4y, | 2
""% = U, (m,0) = a-m-l = 0,
Om n=c
m=0 _

(13)

(14)

1 Wy be written

(15)

C L o e
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where

: I3y 8%y
A 37U o)
G(m,'r') = (\EZ had 1 ""'"'% + —‘% . (16)
R Om Bm
If

vi{m,s) = ;( [U1}a S(mss)_ = x (Gl,

the transformed equations become

"7
2
Q_% "'% (m93)’
dm 4
2 dmi !
dn 'm=0 |m=eo
with solution e
. 3 8 8 ]
-m = m x f m]- o -XJ—':
v=-%\/g e \/;f e Dg(x,s)dx+e Dée Dg(x’s)dx
, o )

..m\/?‘. w _x\/i
- e D f e D g(x,S) dx ’
Jo J
so thet

1{-%@ fm ngh-e -fme‘uxvfggdx

(=

.J

-m /— [ =X v D
At the bubble wall m = O, this reduces to

dy

Y

DB =0
giving for the perturbation temperatwreat the bubbls wall*

g(x,s) dx,

| 8
- Jm e'“s/n
o]

x2

m X7 -
0,(0,%) = - dx o X Gix, 5) 43 .w?'cmg’i?
v '[o Vad [ (x-5P” °

. It is assumed in the following discussion that all iimiting procedures,
changes of order of integration, etc., are permissible.
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or from (16),
I T as % e 40 =)
8,(0,7) /i J{: ?72'_—'3?';375 fo xe

[ au 6%,
X | =1 —2 ax. (17)

2

a3(2 &2

The integral equation for the perturbation potential correction U1 will
be given for completencss. Ite laplace transform v(m,s) can be giritte’g
in the form

| /8
R - = =(mix) /B
v:-%_/%D-J {em*xl\/n_em /?):Jg(x,s)dx,
)

from which one obtains -
- - m:z o m-.*x?
1\/15/_41___f o WD(T-J) _, 4D(T-3
Yo i

(% o%. |

k—ww L;x — J dx,

The solutions given above in egs. (13)-(17) are thus far exact,
but not useful for computation. The approximations to be made depend
upon the assumption that the influenee of the heat exchange occurring at
the bubble wall doee not extend far into the liquid. The transform of
the unperturbed temperature solution may alsc be written

/B
gu_gu VD
dm dmm=0 ’
which ylelds
) 2
. [T@I)ay -y
8, (m, %) = =i e =3/, (18)

":m Jo ("‘5“;)3/2

For elther the expanding or collapsing bubble, IG {0, ] )l is an increasing
function of | . Hence, if © (04'.) ) may be ccnsidered negligible for
€ < 1, (<), me obtains fron eq. {18) the inequality
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Since erfo(x) < 1/2 for x > .5, the characteristic diffusion length

in terms of the Iagrangian coordinates may bs taken to be m = \/DZ’L' - T 05
for the unperturbed temperazture solution, The parameter of the

perturbation is
4 4/3
?-" - = 2 -
e (1 "R ) "

which in ths reglon of significant temperature variation is therefors
less than

3 BT=T) | 42
3

1 + - 19
Thus the perturbation correction may be expected to be small in comparison
vith the unjerturbod sclution when 3VB(Z - <_)/R° s small in
comparison with unity, which will be the case if D is sufficiently small,
The perturbation correction must venish when © , venishes (sege for

T < ‘Ce) ' because of the boundary and initial conditions on the
perturbation equation.

For the growing bubble, T~ T_ < R*(t)(t - t ), so that
<

3Bt -]  3vDt-t)

R R

The significent heat transfer for the 103° bubble begins at about
t, = o15 nilliscc. The bubble radius is 2 x 107 cm about .06 millises
later. Teking D = 1,9 x 10> en°/sec, this gives

3 VDt -t )

R ® 50

near the beginning of the 103° bubble growth, The ratio drops asymrtotically
to .20 at later times., Thus within the boundary layer, the perturbation
parameter ('r"‘/'RI‘ ) = 1 1s certainly smalier than .50 during the time of
significant heat exchange &t the bubble wall, For largerinitial superheats
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the bubble grows faster, and the ratio is accordingly scmeyhat smaller.
& ' 3\/th <)

For the collapsing bubble considersd here, the ratio 3 is
R
much smaller than unity except noar the. point of collapse.
When the thin thermal boundary layer assumption is valid, one may
arproximate the perturbation parameter by

4/3
Q AR ""%
R/ R
within the region of significant heat transfer, and to a first approxination
neglest the BZU /ax tern (which vanishes in any case at the bubble wall)
in comparison with the 8°U /6x term within the perturbation solution

integrals. Thus; the perturbation temperature corrsction at the bubble
wall eq. (17) beemes approximately

2 .
(A . © - X azu
6. (00 7) = ww —1 ] WE =37 dx oo g
i e AR B
or by eq. (14;,
2
(9 ' - - p 4
-1 al Y 3. OE-T)
91(00 ). pors j RB('S)(’E §)37i J X" e dx
| ._.(_._xff....
f 9-4DS-§)0
o ()-§) :

Interchanging the order of the last two integrations gives

2
¥ -§
T v €
,T) = = ke 4. ; at w(’z'.’)z - ;
| s L f ¢ Ju _u_gs- __nz(—.: 8258 2
piY) : :

.
=-§Dj VARSI \fi “er(f) af \
n o Rgtg) Jo ('t’ f)z . (19)
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Fi¥) = -3-1'1-;- &%:‘ ® » 1 (20)

is proporticnal to the rate of incrsase of the mass of vapor within the
bubble, in terms of the time wariable

%
T = j r4(t) dt.
o

F(T) is therefore negligible until a time t = t, or = "L  wvhen the
radius »f the bubble begins to change, so that the lower limits of
integration in eq. (19) may he taken tobe § =% = T instead of 0,
For the collapsing bubble, |F(7)| 1s 1tself an increasing
function of ‘¥ , For the expanding burble, R ~C /%t as t » = (see
Eq. IV{62)), so thut after an initial increase F(¥) eventually tends
to zero as ’t-v 2; hewever, for a reasonable choice of ’Zf the product
m F(¥) in this case becomes an increasing t‘unct.ion of ‘U .

Hence, the perturbation temperature correction given by eq. (19) ie
bounded by

- v € -
-8,(0,7) = & MEzTab [ \/’:‘f‘c‘Fq) (I=t 4%

3 2
b, B© b VS 5P Vi,

“o

5.3;? f"‘F(fzg‘S‘ T gv’s-t / \/?_-_;'“-—_:g‘?

(21)
for the expanding ‘bu‘bbie. or itas negative for the collapsing bubhle., The

last integtal in (21) can be transformed by the chunge of variables
- + 2.
§ o) (- "Co) - (g~ ’to)x

(0<x<1)

to

T
° (v~ V- z,

o

-7\ et \ 2
(t- o AT

-§)2v/§—:5-
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giving for (21)

T /f" to 32 »($)1a%
| &,(0,%)] 5 4D f'% \\"zc,— "c,,) | J_.L).R (SL_\ (22)
By (20), this may be written as
- N\ ld{R3(‘S’) p
!G (0, ’Z’)l f (’t“ _535.— egq ! f
K 3R (6)
[,t Vi-1T, at LDL/B a ln[RB(f)/ﬁgg_
TSy Tz )3/4 Sl (=55 |’

or if we neglect the variation of _Peq (T) in comparison with that of
R3 in hhs estimate; as

T T a8
|e(ot’)|<-—-—'—€93f 57 To &5

e (- e )32
o (o]

(23)

a 1n B2(S
d (s - 2,

For water, the factor

AD;;EE
in (23) has the value .066°C at T = 50°C, and .50°C at T = 100%,
' In ths case of the collapsing bubble, the ratio of logarithmic
derivatives in (23) is small ei:oept near the point of collapse; when it
iucreases rapidly in absolute value, Since

V'§ = ,t:o 1
— <
(L=t % g

for T < ¥ <%, a crude bound for IG1I for the collapsing bubble is

3
4Dl » ( R :
= -
*-—-953]: in \ _QP.3 . (24)

e R

T




This has about the vulue .07°C X 6.9 = .5°C frr the bubble considered here
when the bubble radius has dropped to 1/10 of its initial value, which is
ferther than the collapse was actually followed (see Fig. 11). However,
the actual temperature rise (see Fig. 12) at the end of the time pericd
conaldered was z.o°c. in comperison with which the perturbation correction
estimate is completely negligibie,

For the expanding bubble, the ra io of logarithmic derivatives
eppearing in eq. {22) vanishes at '§ 49 Tises to a maximm of lcas

than 75 at scme value of § > s then d.rops asymptotically to the value

1/2. The decrease after the maxiz:r.m is sufficiently gradual that it can
be dominated by a factor (“§- ’Eo)c for a small value of £, Thus, a
bound en l91 | for the expanding bubble is given by
T 1/2-¢
L - atl 3
4D ‘/oeg [ (5- %, ) - ) 9715 i ;
3& \/Co (q’_ ,\C )3/2 41 -g- 60

. 1/2-5
/’er LY (- "C 6 d;gﬁsg '("'{.‘C) /f
D am(t-1) X (“C )2

o

4DL/d 3,4 '
= l8g i d In R7(X
%  3/2-¢ dlr-%) (25)

Taking .’to for the 103° bubble to ecorrespond to ¢ 0= o15 millisec (sso
Fig. 7), we find for the ratio of logarithmic derivatives in (25) a

‘maximm of ,71 at t x .19 millisec.; tnd the value £ = .i5, The bound

on |e | thus has a maximum of about +26°C at .19 millisec, and drops
aaymp*otically to +18%C, For the 106° bubble (Fig. 9) the choice t =28
microsee, gives a maximum ratio of ,74 at 3/ microsec. and the value

&= .25, Since 4DL Ly /3% = ,60°C at 106°C, the bound on te | for the

106 bubble has a maximm valug »36°C and an asymptotic value .24, C.

The conclusions drawn from the analysis above of the perturbation
parameter, and from the bounds derived for the perturbation temperature
correction at the bubble wall, are thus in agreement. They indicate that
the thin thermal boundary layer assumpiicn is valid whon the wapor bubble
grows or collapses rapldly, and 2lso may be considered valid when the
bubble is nearly in equilibriume The assumption becomee somewhat critical,
in the cace of water above its boiling point, when the buhble growth occurs

S IR




B

ant eranafe

— e e S

occurs at the bubble wall, but slow enough the liquid to partially
adjust to this transfer. The error incurred at this aritical stage,
hovwever, doces not amount to mere than a few tenths of a degree, snd remains
8 small fraction of the actual temperature, It is sufficient, therefore,
to use the unperturbed temperature solution in the dynamie problem; at
least for the case of water,
In terms of the original time and radius varisbles, the unperturbed
temperature solution (13) is

8,(Tst) = T(ryt) ~ J— j lr=R(x)
/ R"(y) &y
3 230192
x exp | - (r é.li_.i;)) __
36D j R*(y) dy
%

which reduces at the bubble wall to

‘ — + R (3) dx

eo(ﬁyt) = e \/2 j _A_‘

/f ’*(y, ay

The temperature gradient at the bubhle wall is given in terms of the
evaprration rate by egqs. (1), (2), so that for the present problem, the
unperturbed solution becomes

a

a(R.t)-—--li»/—f 3"-(R’°§3~dx . (26)
\/L RI"(y)dv

Biffusion Solutions,

It 1s of interest to compare with the coavection solution
presented above, a diffusion approximation (for the identical plva:lce.l
problem)‘ proposed by Forster and Zuber.( W14) This approximation my

T b vt i £t S v

e e e o g vy B
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manner.
The heat equation (5) for an incompressible fluid may be written

Py 5t 8.y. [kvo - xfcvel. (27)
In this form, one may identify the iast ternm on the right as representing
the rate of heat influx into an elementary volume fixed in space due to
transport: by the fluid. If the fluid velocity is sufficiently small,
the tramsport effect, may be neglected in comparison with conduction effects,
represented by the first term on the right. With this neglect, the equation
becomes a giffusion equation,

28 _ _k
atl (D - /‘d"v)' (28)

The initial and exterral boundary conditions for egs (28)
0(r,0) =8(w, t) =0 (29)

are the same as for the convection equation, The boundary condition at
the moving vaper bubble well

=15 & /oeq (30)

~ 48 alsc the same, but becomes extremely diffieult to arply in Bulerian

coordinates, and some sort of physical or mathematical artifice must be
resorted to if a solution in closed form is to be obtained. The approach
?o the problem given by Forster and Zuber consists of treating the heat

“Sexchange at the bubble wall as though it were due to a moving sphorical

heat source (for the collapsing bubble, or a heat sink for the expanding
bubble) in a stationary infinits fluid.

The presentation given here is not that of the suthors, The
origiral presentation of Forster and Zuber (ref. (7)) is quite brief;
the second (ref. (14)) by Forster purperts to give a more detailed
treatment of the rroblem, tut actually treats a different problem.
Neither paper gives an adeguate analysis.

USSR . SR B
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They siart with the elementary soluticn*
e e

4rrrt \JuDt

of equations (28), (29) for the temperatuve diffaerence 6 in the fluid
at any radius r eaud any time ¢t > 0 due to an instantaneous spherical
heat source at r =1r!', t = 0o The total heat liberated is 2 /vaQ.

This is to be related to the quantity of heat transferred out of the
bubble by condensation during a time interval dx while the bubble radius
1s r' =R(x). The actual heat h transferred cut of the bubble at

time t =x ia given by the right side of aq. {(30).

h =L ;f; [4; n RB(x)/Oeq] dsty (32)

and this is also the heat transferrsd into the liquid at t=x. In
accordance with the Forster and Zuber assumption of an infinite medium,
however, the elementary heat source esseciated with the solution (31)
releases its heat not only to the fluid outside the shell r = r'!, but

also to that part of the fluid inside the shell, At ths instant of release;

half of the heat appears inside the shell. Therefore, if the solution
(31) is to correspond to the heat release outside the shell at the moment
of liberation, the h of eqs (32) must be equated to only half of the
total heat liberated, giving

- b nL 3
Q_/cv-_;;’-z-f;[n MR (33)

This cholce imtroduces an error at latsr times in the final
solution for two reasons: First of all, the hsat flowing through a later
shsll i3 no longer just that due to condenzation at that time, but still
has a contritution from the heat diffusing ocutward from the shell r =1r!',
This relaxation effect is minimal if the radial veloecity of the bubble
wall is large, and/or the thermal conductivity of the (siationary) fiuid

" Eq. (31) is readily obtalned by the operational methods alrszdy
used. It differs from the standard solution given bY Caralaw and
Jasger, Conduction of Heat in Solids (Oxford Univ, Press, 1947), p. 219,
by a factor of two bacuuss of ths choice 2 o c Uy rather than 0 c Q,
. for the total heat liderated. The transform of® (31) 4s given below,"®
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is ewall. Unfortunately, thsss are not the conditions of validity of the
 diffusion modsi. Sacondiy. there is 88111 thse contribution to the heat
sontent of the liquid at later times by ths hoat liborasted within the
shell r =1 The heat releassd within the shell ultimately reverses
it direction of flow and adds to the heat content ocutside the ahsll.
This offost can be eliminsted by a simple deviecs to be desaribed below.

mim;mum of the relaxation effect is a mors involved matter.
The Forster and Zuher solution is cbtained by rep? 1nedine ¢

. Sy ~ = i

=1

t -~ x in eq. (31} {corresponding to & heat relesse at t = x, rathsr
thap ‘t = o) &nd ' by Rlx), 'us.mg (33) to define (, and integrating
o the z\esult evver all sources from x =0 to x=t, This gives for the
o '&p“s-a‘ urs éifferanea at the ‘bubdble uall ¥ = R(t),

(3)

, “Msuming that, for the dyna.mic problem wnder considemtion (the grmving
"” ‘bubble), the second expenential in (34) can be neglested and the first
- ‘“reylaood by unity, Forster qmd Zuber further raduce the above equatieﬁ

L e [t mEAe o)

T o 3/03 " ' o ("A’v) u\k) v"e:: '

P F S & amw;at difi‘erent ap;roach to the diffusion preblem with
SR B ﬂw moving by » for which the dlfficulty connected with tho haat
© J . ‘release iseide the boundery doss not ‘aride, is ths following: lat it
B "'ba supposed. that at t.=0, 8 (ggthemat.ical} siutter cpens &t r = rf,

’ . o B mtanﬁmmly ioloses ‘again, 'The effect of the néving bmmdwry ogu then
MR ‘,ge ob'%ainsﬁg a5 abova. by intaa*atins over successive shutters at

v n 5 y \?': : R}dﬁ}% 0 < 3 Z .
T Both papers by Furster éi;iempt to ju&tizy tho fermiia (35) as an

- _g.nz;?muﬁn o the solutdon of the diffusion problem; and than as E-

- apprexizate sciution ¢o the convection problem. The scnveciisn amzmw-
ustion (%) wes alceady available, and, du fa0%, referred %e in buth
F@nﬁl‘ﬂ.

. such a8 to puss t%ws‘a Uhe sholl a  presuribed quantity of heat h, them
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flow through a surface element bounding the fluid is determined (as for
the convecticn solution) by the temperature gradient there. The
appropriate boundary condition for a shutter at r = »!', t =0 will thus
be of the form

The "ahutter eomdition® san be chtained hy noting that ths heat

- %E. = Q'S (t)e (36)
r=r

The constant Q' ocan be related %o the heat h passed by the shutter
by a determination of the total heat cutside the shell at a later time
(¢t > 0),

The system of equationsto be solved is

ve=18 (5.,
PN €' )
N _ 20 _
9(1'90) = 9(“’ ’ t’) = 0, 8_1: = “‘Q’ 5 (t)o ‘
r=r! —

By putting w = x [6] and taking the laplace transform of the system
with respect to ¢, one can reduce it to an equivalent systen
’1

2
ﬁ (ew) = £ (o),

w(ee ; 8) =0, iy

with soluticn

2 - . !) 8
w(r,s) = 1,', Q! 0 e ‘/; {r>1r').

r
8
1+ "'/'ﬁ— (38)

The heat liberated outside the shell r =r' 1s given by

o . Bt
X [n] = J:-?. o 4ur

2 D

o A
dr = 4mr'” <ol o

s

G
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h= lmr':Z ch'D.

so that (38) becomes

i

,.(r..,.:;b [
. J; g , (39)

8
.y

h—l—lg—.
4n 10 ch

wir,s) =

which has the inverse transform

8 rer!)?
{0 o

\h-‘ '2 r! : « p! f )
- M0 r erfc [J@ + 2= 5, (40)

The analogue of the moving source solution {34) can be obtained
fram (40) by agein writing t -x for ¢, R(x) for rf, R(t) for =,
using eq. (32) for h, and integrating over x. The moving shutter
analogue is thus ' )

-
R — J S odx Zeql o  A4D(t=x)
3p0, VD Yo R(x) R(t) VEi=x
Qfg—x! Rt -
T {e=x) . R*(x) " Rlx - y/D(t=x] R(t)=B(x} |

(41)

This solution ha®, of course, the same difficulty with the relaxation
heat flow that the moving source solution hus, but the problem associated
with the heat flow from within the moving boundary has been eliminated.

It is possible, in principle, to eliminate the relaxstion heat
flow from the shutter solution by using the correct boundery condition
at the bubble wall, This can be done, for instance, by leaving h
wndetermined in (40), but summing the gradients of the elementary shutter
- soluticns over the variable x to obtain the temperature gradient of
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the fina] solution in lerus of the unknown differential h(x). By using
eqs (30) to specify the temperature gradiemt at the bubble wall, cne
obtains an integral equation to be solved for h(x). The same procedurs
cen be carrled out for the moving source solution, leading again to an
integral equation for h(x). It is apparent, however, that a more
appropriate procedure would be to return to the original eguations and
to attempt to solve them, using the cerrect boundary conditions from the
beginning.

The moving source solution (34) and the emutter analogue (41)
differ from one another in the last terms of the respective integrands,
Sinee this difference accounts for the false heat flow from within the
interior of the bubble in the case of the moving source solution, it may
be expected to became importunt whenever relaxation effects becoms
importanty isesy when the thermal diffusivity of the fluid is large. This
may he vlarifi.’éd indirectly by showing that the solutions beeoms identical
when the diffusivity is small, (A direct verification will be given -

below for the case of the growing vapor bubble,) Perhaps the easiest way |

to show this is to examine the Lsplace transforms of the respective

‘elemgntary solutions. If the transform of (40) 1s denoted by w, as

above; and that of (31) by wu, one has

l. -(rw')\/-%-
8

w(rys) = 82— , 1 (e > '),
4 D
" O i !. 1+ r‘/% J
sleeetlfs )[R
~ulr,s) = =S Vr" e f (> > 0).

4!7,;; eD 7 -
7N t /8
In the equation for wu, the substitution @ =h/ o has been made.
It will be observed that for r > p!, p /?_ >> 1, both reduce to the form
- WD . -
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8
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which has the inverse transfoim
lew)?
h 4Dt

&= — © .

411/0 c, rr! \/uDt

The contribution to the boundary temperature by this elementary solution is

0, ) a

2
ER‘tl-&ig“
8=~ —20. = e- AD(t-x ) (42)
3pe, \/_- R(x) R{t) Vi-x '

i.9. the leading term of the solutions (34), (41)s

The solution (42) is a valid ajproximation to (34) and (41),
however, only for small D, For large D, the remaining terms in (34),
(41) become important; as D tends o finity, the integrands of both
(34) and (41) tend to zero, in fact, for x # te Eq. (42), on the other
hand, tends to the Forster and Zuber approximation (35) with large D-

‘It. is to be concluded from this that the Farster and Zuber approximation

is never & valid approximation to either of the diffusion solutions
‘(except in the case of a quasi-stationary bubble R(t) = constant). When
it is permissible to neglect the second exponential in eq. (34) in
conparison with the first, the first exponential cannot be set aqual to
unity; and when the ﬁrs@ exponential appreaches unity, so does the second.

neral Com 80! t onveetion & ion Solutions,
_ The temperature solutions presented above have not been rastricted
thus far by & radius-time relation, and so may be compaved for any

assumed behavior of the boundary consistent with the heat problem (such !

as may be achieved, for instance, by kesping the temperature of the bulk
liquid at T, but verying the externsl pressure). |

For a growing bubble, the convectlon solution (26) predicts a !
tempereture drop at the bubble wall which varies inverusely 2s the square ;
root of the thermal diffusivity D of the 1iquid, other factors (such
as the specific R(t) behavior) being held comstant. The diffusion
solutiens (34), (41) predict a smaller drop than the convection solution
for all D. The discrerancy becomes most marked for small D, when the
convection drop becames large but the diffusion drops tend (depending j
upon the law of growth) to vanish,




These predictions are qualitatively understandable on the basis
of the physical models inveolved. In the case of the cmwcﬁm model,
the heat socurce {or sink) is always located at the same fluid elements,
those at the bubble wall, Thus, & decreass in the diffusivity haa the
effoct of ccnoentrating the region within which significant heat transfer
oseurs nearer to the boundary, and correspondingiy the temperature drop
will be greater there (if the bubble is growing, or the temperature
rise greater thers when the bubble is collapsing) for small D than for
large D. .In the case of the diffusion model, on the other hand, the
fluid remains stationary while the heat source sweeps through ii. 4
decregse in the diffusivity here may ultimately be expected to have the
offeot of insulating the successive elementary sources from ome another,
asuch as to prevent any accumlation of heat from taking place.

' \hen the diffusivity of the fluid is large, the relative import-
‘ance of convection effscts in comparison with diffusion effects should
dim:liiah. A8 has been pointed cut above, the discrepancy between the
- econvection and diffusion soiutions is most marked at low; rather than
high values of the diffusivity., However, both the convegction and diffusion
aéluti‘ons preéentad here cessc to be valid when the diffusivity is too
large. so that a comparison in the 1limit of large D is not meaningful,

Comparisca for Free Bubble Growth.

” "~ When the bubble growth is not forced by external pressurs
variations, it beccmes limited eventually by the heat transfer at the
bubble wail, The physical relations holding in the heat-limited growth
vill be discussed later,* but may be briefly related here. The
evaporation at the bubhle wall necessary for bubble growth forces ths
temperature of the liquid thera down toward the boiling point of the 1iquid
at the external pressure, If the bolling point i= denoted by Tb, and

the temperature of the bulk liquid by T , the late growth of the

bubble must then be smuch as to satisfy the asymptotic relaticn

8 ~= (To - Th)t (43)

See the discussion € the esymptotic phase of bubble growth in
sectiaa IV, _

. vodsab NGRS
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Far every temperature solution presented here, the relation (43) restricts
the late bubble growth to & law of the form

R(t) ~C\& as ¢t > o, {44)

The rate of bubble growth is then eassentially specified by the value of C.
Let the parameters 'S, A bs denoted by

Ao \/E (T C
WI'/‘J eq(;b) ' A ) \/E ) )

Then S 4s related to A\ by an equation of the form

8 =

8=1I{ >\)’ (46)

where I(A) denotes the temperature integral involved, For the con-
vection solution (26), I(X) 1is given by

1) =\/3 R . S |y
‘[ AN /3
for the moving source solution (34) by*
, - Nk "1 Azlu-" X
1) = ) f x4, MR -vx
o Vi=x
. 2 ‘
= 4% /7 g! -A A 5 . erfc()\)} (473)

WRVE (1 =X+ eee) a8 N=0 (Do,

~

as‘za- & d
z\/ﬁ(1~2A2+ ) as A+ o (D-0);

for the moving shuttier solution (41) by

The integrals (47b), (47¢) are evaluated in Appendix B.
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2\/;; (1 - ";2'5-‘- ooa) ' as >\_, . (D *0)’ (10'!75)

and for the Forster and Zuber approximation (35) by

I() =X J \/_"' =2 (474)

T w1l be obs‘.prvad from (47b)y (47¢c) that the moving source
sclution and shutter solution become asymptotically equal in the reglon
of large )\ (i.es of small D, for a given value of C), but differ by
a factor of two when A 4s small(D large). This factor of two is to
be atiributed 4o the contribution to the heat content of the liquid by the
false heat flow from within the bubble surface, which ocours in the case
of the moving source sclution (47b). This juet doubles the expected
content (and temperature difference) for large D.*¥ It may also be noted

- that the Forster and Zuber approximation (47d) behaves differently in

all ranges of )| from the moving source solutior (47b) which it is suppssed
to approximate,

Fhysically, tubble growth with a given value of C but varicus
values of D cun be obtained by chkoosing liquids with differing thermal
diffusivity, and adjusting the superheat in each to give the specified
rate of growth. If ons concentrates on a given liquid (with fixed D), the
parameter which varies with the supcrheat becames €, 30 that the analysis
of the various tempera'lm-a solutions for a given liquid is to be made on

*

The actual heat content here is negative, corresponding tc ths
heat loss from the liquid at the surface of the growing bubblo due to
evaporetion,
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the basis of the dynamic situation which occurs in the respective physical
models, and its dependence on the superheat. . '

When the law of growth (44), applies, the temperature at the
bubble wall has dropped practically to the boiling temperature of the liquid
at the external pressure. The bubble growth is maintained by a differential
temperature (and thereferec pressure) effect which vanishes with the radial
velocity of the bubble wall, and which is negligible in compariscn with the
temperature difference 'J.‘o = T, o* The physical constants o, L Ly e q
and D characteristic of the liquid may here be given their wvalues at the
boiling point T,. The asymptotic rate of bubble growth (the constant ©
in ege (44)) for a given model i» then determined by the relatioms (45), (46)
end the superhsat T, = T, of the bulk ligquid.

.The thormal relaxation effects which meke the boundary condition
at the bubble wall imaocurate, in the case of the diffusion solutions, become
- imperiant if the bubble wall moves too siowly. Sinee I(}) 15 iz all
‘cases an increasing function of )\ , this means (according to eqs (46))
that the diffusion solutions do not repressnt the diffusion model et low
superheats. At larger superheats, these sciutions “oeéume adequate representa-
-tions of the diffusion model. Bui since the radial velocity of the bubble
wall incrasses with the superhoat, the diffusion model itself becomes non-
physical at larger superheats,

‘ The adequacy of the convsction solution may be determined from
6qe (25). lhen the aspmptotic law of bubble growth (44) applies, the ratio
of logarithmic derivatives appearing in (25) is equal to 1/2, The perturbation
corraction to the convection solution (26) is therafors not larger thsn
about ,2°C for water, and accordingly is negligible for all but the lowest
superheats, once the vapor tubble growth has reached the asymptotic stage.
Uns may therefors sonsider the convection soiution to be accurate in this
phase of bubble growth.

& plot of the values of C predicted by the convection solution

(47a) end the moving shutter sclution (47¢) for varying degrees of superheat
Ta will be found in Fig, 2, for the case of water at one atmosphere external

If the differential temperature effect wers ignored, the bubble
growth required bty the theory would appear paradoxioal,
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pressure. The parameters O, ey Ly /oeq and D have all besen given
their values at T, = 100°C. The temperature integral (47¢c) for the
moving ashutter solution was integrated numerically. The breakdown of the
diffusion model for water is clecarly shown in Fige 2. The diffusion model
prediots en explosive bubble growth at only .7°C superheat, and affords

it

©
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r
w
28
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[e]]
£

soiution ab all above this.
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I¥, THE DYNAMIC PROBLEM

The equation of motion of the vapor bubbie wall is given by
- 1¢ 1Y II (68)|

A2 __:peg(T) “Ps 29

4 . (1)
~ liq / dliqn

(4

ré
RR +

N

vhere R denotes the radius of the bubble well at time t, R the radisl
velocity and R the radial acceleration, The initial ccnditions for the
bubbles considered here will be that the bubble starts from rest with
radius R, '

R(0) =R, R{0) = 0. (2)

In the case of the growing vapor bubble, it will further be assumed that

the bubble is initially in (unstable) equilibrium, in which case the radius
R o becomes determined by the equation of motion. For the collapsing bubble,
equilibrium conditions will not be assumed, so that the initial radius
remains in this case arbitrary.

The surface tension parameter ¢ and the density ' of the liguid
will be assumed constant, and equal to their values at the initial liquid
ftemrature TO. The external presaﬁre will also be assumed constant.

The equilibrium vapor pressure of the liquid peq(T) at the temperature T

of the bubble wall cannct be assumed constant, however, since it is ths
pressure difference peq - p, @arpearing in eq. (1) vhich supplies the

driving force for the expanding bubble, and this has been assumed to be

in initial equilibrium with the surface tension. For the cass of the collapsing
bubble, the temperature at the bubble wail »izes sharply near the point of
collapse, and the corresponding riss of vapar pressure within ihe bubble

nay bs expected to influence the rate of collapse.

The dependence of the equilibrium vapor pressure on temperature
ocan be taken from aguilibrium vapor pressurs tables, so that peq('r)
may be assumed ¢o be & known function of the temperature at ths bubbls wall,
The aquation of motion then bscomes determinate when the bubble wall
temperature is specifisd in terms of the parameters of bubble gi'wth or

- G s

P LN et *




PR iy PRIy mpe

- 54‘ -
eollapse, This specification will here be assumed to be given by the
unperturbed convection solution, eqe IXI(26):

_L /D ‘i"g(RB/’)dx

T(R,t) = w 31‘-’\/" / ’ (3)
A
R* (y) &
ij ) oy
whora, by eqe III(3), the temperature at r = = is
T.=T, +2q(t),  (al0) =0l (4)

Ve

The equilibrium vaper demsity <& q appearing in (3) is, 1ike the vapor
preesure, a known functicn of thoe temperature of the bubble walle The

function q(t) 4n eqs (4), which roprooonts the accumilative effect ofthermal

radiation absorbed by the liquid, may be taken to be a linear function of
time. Its effoct is to initiate iiw growth of the equilibrium bubble (by
ralsing the vapor pressurs), but its infiuence is extremely transitory and
the term will be neglected once the bubble growth has begun. It will be
omitted from the equé.tiona of motion for the collapsing bubble. The
paramsters L,k and D (=k/se ) appearing in (3) or (4) will be taken
ag constant, and equal to thelr values at the initial liquid temperature T o*

The error incurred by the neglect of the variation of L,
D; eto., with tomperature is not significant in the case of the expanding
bubble, because of the small temperature variation which occurs (essentially
the initiel wuperheat T - Tb)‘ The error involved may be larger for the
collapsing bubble, depending om the initial temperature and the initial
bubble radiua, but is not as serious in this case as the failure of the
basic assumptions that the liquid is incompressible and that the bubble
romains spherical. The trend of the physicsl quantities which describe the
collapse of the vapor bubble iz the same, whether L, D, ete., vary or not,
however; and 1s given correctly by the analyéis to follow.

In terms of the conatants

o= . (T R
e SR/ 2
[+

vt e
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{(vhieh bave the dimensions gec ) » °C respectively), vo may define & set of

dimensicrlesa variablas

= B.)B = 2 v 7 ,
* (Ro ’ ) r jo v &
R | ()
B=glp,-p, ™  §= ‘/—:':'@;,
s

in terms of which the system of equations to be solved becomes

LW @ s s=0,

g= ¢(T)u

(5- z)dv

T=T, +—- -T)’J
g(r).

The initial conditions for (7) are

=1, g"; 0, at u =0,

The physical quantities we eventually wish to find are then given by
'}
t = 1 j 1j a4
% o g* 3 (v)

R(t) = B_ 2173,

., GOR
I (

4
= +£'q..:(ju QY._(.E_z_)_f:
° Yo Va=-v

(6)

(8)

(9)

(10)

(i1) |

{12)

S Crouatnd
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B Vu Bubble,

The pure vapor bubble which is to grow in a superheated liquid-is
assumed at some stage of the superheat tc be in unstable equilibrium under
the effeots oI surface tension, vapor pressure and external pressurse The
- bubble growth begins as a result of further superheating, which increases

the vapor pressurs and upsets the equilibrium. The ocondition for equilibrium
ﬁ at the time of release of the bubble & = 0 is that R(0) =R(0) = 0, and
] hence by eq. (1) that

L8]

&, (13)
o]

TRy

Poq(To) = P ™

~f

Eqe (13) ‘fixes the initial radius R, of ths bubble, As has been noted

previensly, the nucleus from which an actusl bubble grous is not necessarily

spherical, and its gurface energy may be aprreciably less than lma‘Ris

[ N
T T BN (A )

% however, the nucleus from which an actual bubble grows and “he free sphericel
vapor bubble of radius R o are both in unstable equilibrium with respect
f? . to growth at the temperature T, ard external prossure p_ Table II (p. 65)

glves a set of values of R o for various superhsat temperatures in water

at an external pressure p_ of 1 atms From the definition of #(T), eq. (6),
or the differential equation (7), the equilibrium condition (13) is
equivalent to ths condition

ga) =~ 1o (14)

As the bubble grows, the temperature at the bubble wall decreases
tovard the boiling roint, Inasmuch a8 liquids will ordinarily support only
a few degrees of superhoat, the temperaturs veriaticn involwed in the growth
is small, and an approximate expression for the dependence of vapor pressure
on temperature will suffice. For P, = 1 atm,y a close fit to equilibrium
vapor pressure data for water between 100°C and 110°C can be obtained ty

taking
y P, (1) ~p,
: . "iq—-/z———- = A(T - 'Tb)p (15)

. with ?b = 100°¢ for water, and A4 = 40,800 c.g.s. units, By combiping {15)
wvith (5)s (6), (9) and (13) or (14), one obtains for § the relation




,¢(T)=1+..2_.A..212... q - 2A2 Jr“ Ei_‘iw, (16)
Roc'k Ro“ ) Vu - v

The term involving q in eq. (16) is extremely smali, and
therefore of importance only for & minute portion of bubble growth; it upsets
the initial equilibrium. For a temperature rise of 1°C/min in the liquid,
this term 1s of order 10"8,, and it will be neglected once tha bubble growth
has begun, T» fix the model, we shall tuke

2 alt) = at, (17)

correspunding (see eq. (4)) to temperaturs rise of 1°¢ in Zl{' sec. in the
liquid fer from the bubble, Then from eq. (12),

AD. . u dv
Ri ek o w3 (v)
where the constant
X o=, | (19)
: R o a
In keeping with the above discussion; eq. (12) may he approximated by
Ro o k .

Because of the small temperature range occurring for the expanding
bubble, we shell further epproximate § in eqe (16) by unity;* and write
Q. (t 6) &a

~HM =1+ Y | Ednlde 1)
- o Ya-v

* The error involved hers in setting § =1 ( 2 eq(T) = 2 eq(To))

may be eatimated from the rest':lts’given below for the temperature variationm.
It 48 found that the ratio -%—/ -E- remains less than 5 per cent &t any
time for the growing bubbles’ considered herc. This ratio is identically
the ratio of vapor velocity to liquid velocity st the butble wall, which

has been discussed previomaly,

o S B
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whare 2'(v) _i‘-g% and
Ag 1o \
| v= g (@)
. : ./" Ro a

The system of equations for the growing bubble thus simplifies to

7 . a4
%%[2/32'2}-—'1":975-’.1“./“'«_)6 —-QI—-;;_:,
(23)

2! =0, z =1 at u=0,

J
. A solution to eqe (23) will be found in four parts, corresponding
! to four (overlapping) phases of bubble growth, which may be labeled ihs
"relaxation period", "early phase", "intermediate phase" and "asymptotic
phagef,

G g

& Since the bubble growth starts from equiiibrium, we shall put
z = o" (24)

-
4

the second or higher powers of w, w!, ... » or products of such terms, cns
may rewrite eq. (23) in an approximats (1inearized) form as

u \ |
w'(u) - () =3 Ku - 3//,0{’ i':(lfljil .
>
(25)
w(0) =w'{0) =0, ]

By putting y(s) = Jf_ {w] and taking the laplace transform of
(25) with regpect to u, one cbtains for y(s) the equation

8* y(e) - y(s) = %- ?',u.sy(s) -ﬁ ’

and assume that initially w(u) and its derivatives arec small, On neglecting
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whelce
|
y(S) = 312‘ 2 4 — » {26)
8 8 =1+3 )z /ns
In order to match a laber solution, we shall be mainly interested
in the asymptotic form of the selution of (25) a8 u = =, obtuinable
from the expansicn of (26) ebout the singularities of y(s). It is poseible
to obtain a solution o (25) in closed form by the meana described below,
and also to write & series expansien of w(u) in powers of u from the
Laurent expansion of (26) about & = O, although these will not be used hers.

The roots \/-=l/ﬁ- y S8y, of

324—3/“\/’;;-1:6 | (27)
carrespond to simple poles of y(s). FEqe (26) may therefore be expanded

in partial fractions using the factors indicated in (27). For a given roct
Ve = ‘/Ig- » ons obtains terms of the form

/n
1 , l’ 1 EB, .«:,r"b,sj/z + 5/51/2 + 5372

= ! —
82(\/.5-"/'"//5)#2!_\/5’»//@ 32

(28)

miltiplied by constunt complex coefficients. By the use of the Laplace
inversion integral it may be shown that

AL s By e ek 7 & 7 (2
. Lv’g- \//_g} V= + \/IZe [ +erf(x//8u)] (29)

for all complex \,//3— s and hence that for
L < Jarg VE <1y

(29) venishes as u = «, It fallows that the behavior ¢f w(u) as u -+
is determined by those singulsrities of y(s) for which

lare /Bl < 7. (30)

Actually, there is but ons root \/; = \/Z of (27) satisfying condition (30)
for O << @, and this root is real,




or since ﬁ satisfies (27), by

X 24

/52 3}&2 +1

Honece as s -0/5’,
i

X :
SO 8= F

y(s) ~
80, that a8 1 »* «,

W) -k of%, (31)
/4 (Bﬁ +1) ,
where, again, /& in (31) is that root of eq. (27) satisfying condition (30).
Alternatively; eq. (31) may be written

4 -]

\J" + 17
u ~ =L ln{'a £ 0wJ a8 w-»w, {32)

Sinee the trenaform

prenyepz|

1s asymptotic to =) Vip ¥(s) a8 s+ 2, 1t follows that

[ | oot @ 0

Vo u-v

T-Tm~~§\/t'r7éw(u) as u > w, {33)

Morecver, to the degree of appreximation used in the 1Lnﬂrizatia\n;
u = at,

(34)

v=38-1),
0

(...__.,.\,__J
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From (31), (33) we thus obtain the relations

R ~R ( + 2 X cft (35)
° \_' /.4(3/&'2+ N ’
T ~1_+at - 3% \/IT/Z(%-‘!). (36)

By defining g time t—'o by

2 } = e %f t'°, (37)
/6(33/3 +1)
one may urite eqe (35) as
a £(t-t )
R~Rf1+e °1. (38)

Thus the bubble radius remains practically equal to R o until the time
b .mt - ;—% when 1t bogins to increase, reaching 2B, at sbout t =t
A tebulation of the significant parsmeters in egs. (36), (38) for water
at 1 atm, will be found in Table I, with the choice of & = ,01°C/sec.*

TABLE I,

Parameters of the Relaxation Period

T, R, o t  sec. 1/ap ses |35vAE% .01 ¢
o 102%  [156x 107 [ 734 x 104 | 5,05 x 107 1,97 |73 % 10°
104% | 75 x 102 |8.08x 107 | 448 x 107 3.30 |8.08 x 107
106°C 48 x 1072 13,09 x 107 1.56 x 107° 371 3,09 x 107

This choice for the perameter a corresponds roughly to the rate of
the temperature rise observed by Dergarabedien(15) in his experiments
on bubbla growth in superhsated water,
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Becauae 1./&,8 << o® the bukble growth appesrs to start abruptly mear t = tfe .

rather than at the time of release; t = Q.
For given initial conditions T o P ? the duration

(3¢ 1)
t°=£zf 1n [lgfzx, } (39)

of the relaxation period is completely determined by the heat source function
q{t)y i.e. by the constant X , upon which it depends legarithmically.
However, it 1a evident from Table I that the heut scuree term (at) in
eq. (36) becomes negligible in comparison with the other terms near the end
of the relaxatiem period. From a physical standpoint, this means that at
later times the bubble behavior is independent of the rate of increase of
superheat whieh initiated the growth.

The asymptotic formulas for the linearized eq. (25) presented above
are accurate over a range rough]y defined by

u>1—P w.<<1’
or ‘
<t ~ -l

Because of the smallness of ’)( ’ w(u ) increases over the range by a factor

‘of several powers of 10 (about 10 Je

Early Phase.
In terms of w = 1n z as independent variable, eq. (23) may be
written
o
.1. -] 3 - 3 -~ UL
6° du ) ' ] - L J vu(w) ~ u(v) o)

wvith the negleot of the heat source term. For small w, this reduces to

¥ (Y v
6dw( =37/, AN
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which ia satisfled by

u= —l— 1n(Kw) {41)
for arbitrary K, provided that
— 1
2aq-3uyy | =, (42)

J°f1;_e}

Since the integral has the value /%, egs {42) is identical with eq. (27).
From the discussion of the relaxation period, it is clear that of the
vardious roots of (42), the one to be chosen is that ane which satisfies
condition (30), v = /L'/" . In order to match the previcus solution, eq. (32),

wo mst further set 2
ABES+1)

X

(43)

in (41)e
Tt is apparent from (41) that the derivative gg of the solution
u(w) of (40) bes a simple pole at w = 0, which suggests a solution of

the form

;,-‘17"- [1+aw+an +esel, (44)
ug/g.lu [79(3132;1? ?"] +—1w+°'g,g oo, 45)
By sﬁbaﬁtuﬁng (44 ) into the integral of (40), onc obtains* |
/’"f = uv Vg ‘(1 + ¥ 122 4 201 =212 o)
valw) = uzM
+ %— (32 6(2!/2- 31200, + 301222 $/2)2 4 30131/ 2)a2]+---} :
(46)

By eqe (40), this must equel
- 2 -
- e‘m"/3 - % o v _d_te13W/3 (%) 2] = ! (1 -/32) --%‘ {'} "'ﬁz(” - éa, )]

u3
5 [ - L2015 - 129, + 54a) ~ 36a,)] 4 eee )
¥ See J\ppendix C for the svaluation of the intogrele

- ra———
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The parametera Bg9 8op eoo are then found by equating the coefficients
of corresponding powers of w in (46), {47). A tabulation of the first
soven of these, for varying superheats, will be found in Table YI for the
cass of water at 1 atm. external pressure.

The time corresponding to (45) becames

t=%jw e"l’v/au'(v) dv
)

- ,5(3/32 £1) ]
=.~a-;;- (f_ In [ (33 'wJ + (a,- %) v

2 -
<+(a2-§a1+§)§-+--04{- , (48)

the logaritimic term having been chosen to match eqs. (32), (34). The
temperature may be found from eq. (46).

Amtgiig Phage,
During the early phase of bubble growth, characterized by the

relaxation of surface tension, there is a rapid rise in the radial velocity
R of the bubble wall until the cooling effect of eveparstion beccuos
important, The rete of bubble growth thereafisr is controlled by 2 baiance
bétween the rate of evapcration and the rate of cooling it produces.* Thus,
vihile the vapor cavity grows by evaporation (since the vapor velooity is
nogligzible); the motion of the liguid is caused by the difference between
internal and sxternal pressurc. However, an increasc in the evaporation
rate tends to decrease the pressure differences

* The effects of liquid inertis are important in determining the

bubble growth near the time of meximm radial accsleration, In the
agymptotic phase of bubbls growth, howawer, the inertial term

%&% (57/3 212)

- in the differential cguation is of smaller order than the surface tensiom
term __+ Thiz point will be returnsd to below,
11" C




TABLE II
v Parameters of the Early Phase of Vapor Bubble Growth
< T, % 102 103 104, 105 106
R x 10° m 1.558 1,019 7507 «5901 <4832
ax 10° sec”! 1,797 3.391 5.356 7677 1,035
¥ ° 1,120 1.023 «9628 <9205 +8880
e 5598 34N <2407 «1841 . 1480
y-4 1101 «2632 4168 .5340 6177
8y 2,0915 2.0322 1.9763 1.9456 1.9292
sy 2.1577 2,0547  1.9463 1.8852  1.8526
. e, 104633 13761 1.2732 12129 1.1807
e, 7359 R 622, 5831 45620
a 2946 .2722 02427 .2236 02132
8 09858 08945 07886 07143 06728
8y «02857 J02510 402205 01960 01819
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Now, it is clear that the bubble muat continue to grow, sincs a2
stationary bubble is at the temperature of liquid superheat and therefore
has a high internal pressure. Hence, the tempsrature at the bubble wall
must continue to drop bezauss of eveperation. But the temperature cannot
drop belew the boiling point and still malntain the pressure difference
necessary for growth. It follnws that the temperature of the bubble wall
must appiroach a 1imit as ¢ - o ; and this fact is sufficient to characterize
the asymptotlic phase of bubble growth.*

It is perhaps worthwhile to dememstrate at this point that the
limiting temperature predicted by the mathematical model is what one would
expect on physical grounds = the bolling temperature Ti'b .ai‘ the liquid at
the sxternal prassure; for the sake of consistency and to justify statements
made in section III above. The differential equation, with the neglect of
the heat gource term, may be writteﬁ

/"“.[ e ..1..-7- Fe " a?, 49)

If the last term on the right (the inertial term**) tends to vanish as
u-+w, 2>, then the limiting value of r.he temperature integrel on t

left sids of 8 (49) iz uaity:

/('U ~ 1 B8 U ™, {(50)
o \/—v

The actual temperaiure is glven by

sc that b’ (50),

¥
T -T~/—Zj- as  u-~ o, (51)

! o IR

The slew temperature rise due to irradistion is hers neglected.,
The kinetic energy of the 1liquid is given by

[- (1 2 ) . !mr dr = (5&/, g2n5) 87/3 a1,
YR
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According to the definitions (22) and (5),
5 2 2
3R s

1 ]
/u.. A /OR A

and so from the definition (13) of Ry

f 1 . Paq T@) “Pw.
- = ke l—"&- *
Y A /&
By eqe (15) this states that
e o™ T
{ 2 being considered a constant), and therefore, by comparison with eq. (51,
T~T 88 u-w, (52)

The c:onclusion (52) depends on the equation of motion only to the
. ﬁx?mt that 1% follows from the asymptotic vanishing of the lmertlal terwm.
One oan easily show, however, that the inertlal term must vanish whether
(52) holds or not, provided only that the temperature approaches some
limit as u » o, For this implies that

u
J ~E4Y _oonst, as  u - we (53)
V - v
Multiplication of (53) by -—1--=- and integration from u=0 to x
VX -u

yields, after & ohanga in the crder of integration,

J: \}:?L 0 ”' -[ otlv) av jv VE "ﬂ:I.L yu-v

= alz(x) - i1, ~ condte ¢ 2% (54)

The vanishing of the inertdel term im (49) then follows from eq. (54), which
shows in fect that the inertial term is of a smuller order of magnitude in

_ tue asymptotic range than the surfase tension term el 3. The constant

in {54) is 1,;w according to eq. (50), so thet eqe (54) ylelds

s(u) ~ V- a8 u - ™, ' (55)

I PR




Eqge (55) describes the dﬁymptotig bubble growth, but 1s not yet

useful, sinee it provides no meens of matehing the indicated ssymptotic
golution of eqe (49) with sarlier sciutions. The possibility of matching
soluticns cdepends on the possibility of shifting the asymptotic solution
in t (er in u) 8o 22 to account for the relexation peried of bubble
growth. It 18 necessary that one be free to shift the asymptotic solution
pinee the duration of the relaxation period depends co;npleteiy on the qhoice
of the heat source term, while the subseguent behavior of the bubble is
independent of this term.

The means for making an arbitrary time shift is furnished by noting
that, in addition to the asymptotic form of solution (55), eqe (49) also
possesses the solution sz(u) =1, Thus the complete asymptotic solution

@2y be demerited by

g(n) =1, 0<uzuy,
> (56)
L)
/4. g'fy)dy. _1_ _. 1 & .73 .2 .
ol g K
v,
Fram eqe. (12), the time corresponding to eqs. (56) beccmes
%g ) O<ﬁ.§u1,
u
t=lf 7—“’—= (57)
s J, 243(17)

u u
.1.;] gs
e ' e u, 243’ U >y

80 that u,/a here represents the duration of the relaxation poriods The
time shift may be introduced exrlicitly into the asymptotic solution by
using the fact that if 2(u) 1s & solutien of aq. (56); =z(u + uo) is
alsc & sclution, with delay pericd (ui - ‘ao)/c.'

A oonsistent scheme for continuing the asympiotic solution may be
found by taking the solution to be of the form

b

z{u) =1, 0<uzguy,
‘ b b
z(u"--a-;/u-u {1‘-4---1-- +-u+-—-j—7z 4 (58)
P ° (L (u~u j! (u~u )5
b§ ln(u-'u:) y 9 0
+ 1= j' u > uy, N
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to seven terms, vhers u, is a constant.* When the coefficients bk have
been determined, the difference (u1 -1 t’) is fixed by the requirement
8(\11) = 1. The matching with earlior solutions is then sccomplished by
adjusting uoe**

When (58) 1s substituted into the integral of (56) the result is*

)1/6 (u-uo) /

I

b b
+ 227,50 —-5-3-5-7€ + 2 - o (59)

(1’»""% u -

By eq. (56), the expreasion (59) is also asymptotic to

1oy - & W, ()

This may be expanded by (58) to give, on equating coefficients of correspond~
:Lngpo'f:erg of (u=u_) 1n (59}, (€0); a set of successive equations for the
_perameters by, e.;v.-, bge At each step ane has {as for the early phase
soefficients) a linear equation for the unknown parameter. A tabulation
of these paraumeters for various superhsat temperatures in water at an
external pressure of 1 atm, is given in Table III, '
~ The leading terms in the asymrtotic solution are

g = (R/R°)3 ,,,;,./.‘2.: va ,?i + Q(u-l/é)} ’
! ,gzr.gi',‘/:’ a2 {4 o(u"‘/")} :
2 2
R
T~ T, ~GA° {‘3 +O(u-1/6)} °

Highor terms are of the form [In{u-n e)}n/ (u—ﬂz_)k/ 6, whore n and
k are integers. d

#*¥

*

The match i8 betier cbtained in practice by shifting the asymptotie
R(t) ourves,

+ , See Appendix D for the evaluation of the integral.




TABLE III

Farameters of ths Asymptotic Phase of Vapor Baubble Growth.

7, °C 102 103 104 105 106
R, x 10° c 1,558 1.019 7507 +5901 4832
ax 107 sec™t | 1,797 3391 5,356 7677  1.035
T 1,120 1.023 .9628 <9205 +8880
e .5508 <3411 <2407 1841 <1480
b, 1,073 - 9099 - .8101 - JU09 = 46890
b, - 4709 - W46 = T122 ~14334 ~2.506
by ~ 2339 =181 = 3586 - 9725  ~1.972
b, - 5534 1,258 - .1970 4598 2510
by SR 3,064  4.298 18.50  65.84
b w23 - 22670 166 — 736 -48.65
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R~ . {1 + oft 1’2)}

T-T, ~———-9{1+o(t Vz)j;

< (&)

ar in toyms of the original physical constents,

k(’g"' 2 ""h -t
ooft S o {1,

L /eq’TG) Vi

4 (62)

T~ (T -T){-HO({‘/Z}} o 4

W

i The e.gy@wtie temperature ralatlon has been discussed pre?% ausly. The

ua peiation has also a simp ie physicsl interpretation, which may be

::"",siven here By dlfl’erantiﬁmiﬂﬂ tha first of emmtims (62 6~)s one obtains

(? ~-7)
ﬁ /i.k__ﬁ__i. _.;.;%_OT

yhich g.n'ﬁ be written as
‘,j}. 5 T - R 4 k3
4R o kf = -51./“(%) at (3 R).

In th!.a fom, ane may raad:ny recognize the heat transfer relation holding

at the bu‘bble wall, the right side giving the heat gein in the vaper and
'%hn lef't 8ide giving the heat loas from the liqui&. The tempsrature gradiem

i- bere eﬁfsased in terms of ik ratio of the temparature drop cccurring

" agymptotlcally at the bubble well %o the thicknass ox the thermal boundary
layer 1n which it cocurs, Tha pe.rticular choice V3 3 bt for the characterisiic

a ffusicn length could not, of course, have becn predicted beforehand,
While the leading terms of the asymptotic expensioms given in
~ (62) siicy the essential variation of the physical quantities which describe
the tubble growth, they are of limited usefuiness, and may be in error by
as muck as 40 per cent (depending on the superheat) while ihs bubble radiua

g e AR A
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is still small. Mors acourate expressions may be found by cerrying out
the time integration indicated im eq. (57) and substituting in the
coefficients from Tuble IIX. The result of such calculations is prosented
in Pg. 3, which follows the asympiotic soiutions down to a radius of

4 x 1072 om for the indicated supsrhests in water at 1 atm. external pressure.

Inasmuch as the duration of the relaxalion period may be chosen arbitrarily
8o far as these asymptotic solutione are concerned, the tims scale is
dstermined only to within en arbitrary additive constant (the constant
u.i/a mentioned above) which may vary from ane curve to ancther. The
astual spacing of the curves as presented was chosen ¢ that the time inter-
corts at R = 004 cm were equally apaced,

The exparimental evidence available thus far covers only the
asymptotic range of bubble growth, Observations on the growth of vapor
bubbles in weter have been made by Dergarabedian,u” and are presented
in Figs. 4,5,6, together with the theoretical predictions, The theereticel
curves were obtained by graphical imterpolation from the set of curves
plotted in Mgz, 3. The time origins for both the thsoretical curves and
the experimental points are arbitrary, so that a tims translation of the
thearetical ourve has been made in each case to give the best f£it, The
agreement is seen, however, to be very good. '

The importance of thes heat transfer at the bubble wall is shown
in Mg, 4y where tho ‘theoretical curve obtained with the nsglect of this
effect iz also plotted.* The asymptotic form of this solution 13 readily

obtained from eq. (1) by setting p eq(T) = peq(r o) thers. The ‘difforential

equatica way be written
. L2 =2 (-
R £ dt # By

with the help of the dofinition (i3), and yields on integration from R
4o R, ﬁo to Ry

2 R>
R »
o2 ' 2 g 4.(! Sz

»*
The solution for the motion ﬁ‘ a bubble under constant vepor pressure

conditions was given by Rayleigh ) and applied by him to the case of a
collapsing bubble,




100

a4

68

52

Rx 10° CM

36

20

P SO S o

0 ) 8 12 16
t = §5 — MILLISEC,

Fig. 3 - Asymptotic radius versus time curves calculated
for water at 1 atm., external pressure and the
indicated superheat temperature,




TRPGA S o o Rtk ik

e e

L

e e

-4«

l | i

© EXPERIMENTAL VALUES

«=e== PRESENT THEORY INCLUDING
HEAT TRANSFER

e=w=s THEORY WITHOUT HEAT TRANSFER

b=ty = MILL‘!SECs
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the Rayleigh growih curve, obtained by neglecting heat
transfer effects; the dashed curve is that predicied by
the asymptotic solution of the text, which takes heat
transfer into account.




S 1 — T S T e

s

100

84

68

Rx[0% cm
[+ ] i
N

36

//
/
e
z.;;?' |
&
4
‘/
/A
Y,
/
[
A
%
i
| @5
i
0 4 8 12 16
t — $o — MILLISEC.

¥ig. 5 - Comparison of theoretical radius-time values with
three sets of experimental values obtzined in water

at 1 atm. external pressure, superheated to 104, 5°C.

PR

. ;.‘
v,




RX10° CM

100 7
i/
,'-5’
| | ',5
é r
F 4
7/
| 3
. /
e8|
/
[ 4
4
I’b
f/
&2 é
/e
i
8;’
1
]
o !
20 l’
af
10 I |
|
*s 4 % 12 16

t-ty — MILLISEC.

¥ig. 6 - Comparison of theoretical radius-time values with
two sets of experimenial values obtained for watero
at 1 atm. external pressure, superheated io 105.3%C.

r e e




Ag R -+ o, this gives

s . Ja . 2
R~V3/>R° -ROV/3'

which is a conatant,

Experiments have recently been performed by Dergarabedian on vapor

bubble growth in pure CCl,, If the rates of bubble growth in this liquid are

4

comparsd with those of water ut the same value of the temperaturc difference
(T, - T,) and at comparable timcs, thoy should be about in the same ratio as
k/L /eq DV 2 for the two liquids. This constant is 3.5 times greater in
vater than in carbon tetrachleride. Dergersbedien's cbservations on bubble
grovths are in good agreement with this waiue.

Intormadiata Solution.

The early phase and asymptotic solutions presentsd above join

in the neighborhood of the meximum vaiue of dz/du. While the matcn of
these solutions is fairly good for all superheats, it is nevertheless
desirable to have availabls a sclution which covers the critical regiom,
to faoilitate the matching process.

The intermediate solution presented here vill be an expansion

aboul the point u = a0, defined by

o ("‘1) = 0, (63)

Since the sarly phase aocluticn is not assumed to be accurate at this point,
the ectual value of u, or z(ui) is unknown. In order to determins these
quantities, we require that the intormediate soclution and its derivative
shall coincide with veluss obtained fram the sarly phase solution at a
point, u = u, where that solution is accurats, The expansion sbout the
inﬂecjbioa point u, is constructed as followss¥*

#*

The difficulties which arise for any suchk intermediate sclution are
connectad with the expansion of the convolution integral in the differentizal
equation, Thus, & szolution about a known point (such as wug) which
assumas the intogral and all of its derivstives to be known does not
actually muke use of the infurmation given by the diffarential equatiom,

whils & solution about: a known poiut which uses the minimm of dats necessary

(the valus of = and ', say, at the polnt of expansiom) involves about
the same procedure as that given below.

" kil A
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Assume that 2(u) has an expansion about uy

3
5(ui+x) = 2[1 +c1x+c3%-+ eee ] (Zﬂz(ui)),

29 that 2 4 .
2! (u, + x) = 2[o, +o3-’52-+-n 1, - (64}
z"(ui +x)= Zf,cax + eee] ,

The expansions (64) are to bm substituted into the differential equation
(vith the heat source term cuitied)

i Z - d
22 +6z'2 '73r [1-ﬁ3—u u}:-i] (¢5)

Now, the integral in (65), svaluated at u + x, 1is

J““ML_ [famer (M sl
Vo X = v ° \/u-l-x-v X Vitx-v

j —-—-——&ul--'.j z!(u.'.x_v)-d-v—-
u+x-v “vo \/v-

- [Tl o [T gy S
0 yu+x~v km‘kl vo \/;
(66)

valid for sufficiently small x, But for small x, 2'(x) =0, so that
vhen (66) is valid, the first integrel in (66) is negligible. Thus for
u= ui.

ui+x _ 2
2.y r &
~T +3Ix+1 4+ ess (67)
So 1:1 TR =V 0 ! 221 ’
Bay, where a
1 (k) .

o \/ui. -v

v Ak o

N A

FE DR EO- 3!

[ TN
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If u, were knowa, we could use (67) in eq. (65) to obtaln; on equating
coofficionta of corresponding powers of x in (65), a set of relations

7 2 _
€% =073 [1 - ;T}s‘z ~mI)s

3 [ (et .__5_, o - -
03 zt'o 3 [( 4+ 21/3.’ !-1 /%(311 401 Io).’g P ’J

(69)

to gsive for the parameters Cys c3. ese o However, the Ik are not yet
determined.

Since the solution to (65) is assumed known for u Su_, U, < Uy
let '

(41}, _
j —_i—)-ﬂ- . (70)
(k+1)
L = j ————-(ﬂ-—!' | (71)
8o that
L =3 +1 (72)
in (68), and set
0=v, =u, e=u ~v (73)

in the integrals. Then in LG, for instance,

z'(v) = z'(ui -€g) = Z(c1 l 3'c2 + *0e),

giving u
=] - _ -
L°=f M =2z"/3—(8‘+%6036‘£+.0.)’
111 ui -V !
Thus -
- IOEJO(‘S)"'ZZF((;“ :lja 382.‘-0.0)’
and similarly 4 (14}
11 = J" (6) s /3; (" c CS"' “’)' ese d

Ul T e geetactio T

PR By
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may ba found 1€ 2y Oy» 4y ees s and J are known, The feasibility of

______ N 2 wnnde
v

this procedure depends an the fact that a good esvimaie of ( is slrsag
available from the sazly phase solution, sand that the

(c+1)
k(‘“"j .___.._L!)_L

Va v - v
are slovly varying mnctions of § . This fc(sn;n)«s from the relaticn
k4
g (u)
. 4 —3 - —a-ﬁ-—n—-g—
Jk(é ) = J'kﬂ(‘é‘) 7 - ’ (75)

since in the early phase z(k"'“ << s(k) .
Agsuming that the contributions t¢ I o? I1 from higsher powers
of § than those written in (74) may be neglected, we terminate the
expansions as written and substitute them into (69). Together with the
sonditions . -

z(ue,‘ =Z(] - S d - % cy 53)9

N

= L. s2
(e ) = Bley + % ey 85)

from (64), the equations Q%)

Fd = {1 - hs 0,00 ¢ 2E oy + 5 001
% = 3573 {(»z. + =750 o = 3pl5y(8) + 23 - § 0,80

s 4/;.01” (8§) + 22 V% (o (e, + .115 e3§ 2)]}

constitute a system of four similtenscus equations for the four unknowns
&y C4s Cg» §' » Inasmuch as ope end only one point of inflection of =z(u)
is known to exist; these equations have a unique @olution,
It chould be noted that because of the dofinitions of u and
$; the meximun radial velocity B of the bubble well does not ocour &b
ths same value of u (or t) =8 the meximum value of si(u). The discrepancy
is pot grest for small superheats, but for larger superheats ¢he point defined
by R =0 moves unto the asymptotic end of the z{u) curve.

R N e Ry -
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Solutic» for tha Expanding Bubble.

The results cf the above theory for water at initial temperatures
T, = 103; 106°%C and external pressure p_= 1 atm. have been plotted in
Figs. 7, 8, and 9, 10 The bubble was taken to he in equilibrium at
time t = 0 when the heat source q(t) is irtroduced; q(t) was

arbitrarily chosea to correspond to a temperature rise of 1°C 1n 100 sec
in the water far from the bubble.*

Sse the footnote on page 61,

e rn AT K

[ an e S SN
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Fig. 7 - Theoretical radius and radial velocity curves for the
growth of a pure vapor bubble in wa&gr at 1 atm ex-
ternal pressure, superheated to 1037C,
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Fig. 8 - Theoreticag radius and bubble wall temperature curves
for the 103"~ vapor bubble of Fig. 7.
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B Fig: 9 - Theoretical radius and radial velocxty curves for

the growth of a pure vapor bubble in water at 1 atm,
external pressure, superheated to 106°C.
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Fig, 10 - Theoretical radxus and bubble wall temperature
curves for the 106° vapor bubble of Fig. 9.
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Bocause of the large tempsrature variations which ocour when a
vapor bubble collapses in water below the boiling temperature; a simple
analytic expression for the vapor pressure or vapor density variations
eannct be found,

If wo take our data from equilibrium vapeor pressurs and

RIS

density tables, we commit the treatment of the problem to a mumerical one
from the beginning, ;

The system of equations to be solved, eqs. {7)-(11); iz unchanged.

In thds case; however, the vapor pressure at the initlal temperature Tg_

is less than the external prassure, and initial comditions of dynamiec
equilibrium ecannot prevail for the pure vapor bubble.
ne need to retain the heat source term in eq. (9), and we shall put
q(t) = 0. We contimue to assume that initially the veper bubble and
surrounding liquid are in thermal equilibrium at tempsrature To'

It 15. c‘orfvenient to ?ﬁa}gfﬁm the temperature squatian.
miitiplying eqe (9) by (% =-u) '™ and integrating it from u=0 to x,
ans obtalins, after an integration by parts, the relation

where

E(u)- z(u) =1 _ (u o'(v) vu=~v dv;

"y o

Q:T"‘Tﬂo

The syatem of equaticns to be solved beocues

6ds * 31;3 ’

g =g(8),

There is therefors

(77)

(78)




-$~

The system ('78) was solved numerically for initial temperature
T, = 22%, external pressure p_ = 544 atm., and initial bubble radius
(which is undetermined for the nan-sguilibrium bubble) R, = +25 oms The
method of gclution is given in dppendix E, The particnlar initial data
chosen here correspsnd to values which have been obtained experimentally.*
Although the temperature effects beeowe asignificant during the
collapse, the dynamies of the particular bubble comsidered hore differs very
14ttle from that predicted by the Raylelgh solution of the problem''®) over
nost of the collapse. The Rayleigh solution, which neglects heat tranasfer
effacts, is readily obtainsble from (78) under the assumption that #
stays constant, and equal to ﬁ(‘l‘o). The equation of motion i8

1.4 .73 .,2 .
& ag e’ 2]+ 1}3*-"0“0'

z
\»
3(6) = 19 2t (D) = 0,
s
vhich yielde
1a"P 0229 (1-2)+2 (1~ (79)

on integration, Since
: R
g, =52 [p, ~Pag(To)] ~ 2 x 1¢°
is much larger then 3/2, eq. (79) may be epproximatsd by

3527/3 212 =g, (1-32),

ot =~ VBF « 8 T,

where the negative square root of %2 muat be chosen to corregpaond +6 the
collapsing bubble., Fram eq. (12),

%:-= u38/6 2! =~ a\/ag ’ 21/6 1 -2)1/2,

vhich yields 1 '
i _=1/6 R VA ~1/6
W, T3 VB =P T Yem)P VT
. —

Thw sxporiments, performed at the Hydrodynamica Laboratory of .the
ca}:ht??;;i}a Institute of Teohnology, wore réeported by M,S. Plesset in
Tels ® o

o W e

R B e etinen ¢ B s sl
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on integration. The time corresponding to the full system (78) was found
by a numerical integration of the relation

‘,;:lf 43(7)

using the values of 2z obtained from the numerical solution of (78).

A comparison of the two solutions for the sollapsing bubble is
given in Fig., 11, The magnitude of the radiasl veloeity of the bubble wall
obtainsd from the numeriesl solution is plotted in Fig, 12, and the
eorresponding temperature at the bubble wall in Fig, 13, The numerical
solution was not carried out farther than shown in Figs. 12 or 13; because
of the breakdown of the assumptions underlying the theory rresented here:
the porameters L, ~, D,- etc. begin to vary significantly near the end
of collapss, the lifqni.d velocity beecomes so large that Qom]:ressibility
effecte nay become important in the liquid, and the spherical bubble shape
bocoms® unstabls 40 small disterting infivences.

L A
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includes heat transfer effects) with the Rayleigh solution
(which neglects heat transfer effects) for a vapor bubble
of initial radius .25 cm, collapsing in water at 22°C and
an external pressure . 544 atm.

Fig. 11 - Comparison of the numerical solution of the text {which
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APPENDIX

: The tabies ’bemu give representietive values teken frem BoN. Deirseyy
PrOpét‘%ias of Grdiaax? Water-Substante (Rsinhold Publishing Coxporatiaa,
- Now Yorks. 1940). Values for the vapor ars udcertain (experimentally)in the
o third !L.gnif'teant» Pgurs an@. ers ronewhat dependent on pressure; those cited
. ~v“51‘1‘,’5§9?11& to pressures of 1 atm. or belows Valuss for the Liquid have been

s sebitwesily lludtsd to four aignificant figures,

Water Vapo:-

0 150 200
884 10dk 1.62
erg/m * goo o . % 2,68 3.03
’ PZO” ﬂ.h'g/ @7”‘ 'Qc ‘ 103:9.' | 101'»4;2 1645
/ﬂaq G ) emz sec
B= 1.»3\96: 107 ﬂ:ﬂﬁ/gﬂ . o
\ yg_j;gx_
= "‘ aﬁ 50 150 - 200
:5 4:-' f‘ - A
L D & g c ss;m 5ed9 1.86 1.36
S . ' fx 10"4 *rg/em . @ee g . 6.43 6.5 668
Sl 1 ..v ® m Vora/gm o 4e215 4015
‘ R m 10 2 &r&ﬁgﬂ\ 250G 2.382 211l 1.940
f -;T-;i e 359 +9880
R - SR 0% gnfes .u.:u.a‘; +8302 25.48 3,52
- - - , W Vé ¥ . = g A5 &
. Pgg* w 'ﬁr!zea/ms JHSIOY o233 LeT60  15.55
- d™dgues ] 6129
3){3 é:,’/ﬁv) x 10° an®fsso 1,62
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- Q0 =
B, Evaluvetion of the MffMeion Tntomeals IIT{27h). 227:)
In terma of the new variable

t:l::—-ﬁ » (a)

the integral III{47b)

R S 2y
! 1+ VX I B~
1) =p [ —E{, SR % ()
Jo 1 =-x
basomes
Vi 2% 1 -4
D T B A TR X (o)
o (14t) /K Jo (14t) Ve _ |
The further substitution ¢ = 1/x in the second integral gives
A2
F . oo _ - R
) - TR J | . ~&x=1. x x|
Yo (Ht)z Ve 1 ('Hx)z V=
and therefors
J—-I(m;/m-—‘:l— -A%
2A o (1+)? Vi
e pbo [T N g ()
a{»*) Yo (iﬂ)'_’ Ve
Since

d o [ ~(+t)x
(142)2 ‘j; ° x ax

the integral in (d) may also be written

- 2% gt f G 7Y S S o) gt
fo \/b‘ o e x dx J’; 8 xdx‘[ e

- = =
jo e x /:5'—'--+ N 3%y {e)

~mon L
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after a change in the order of integration, By putting y =x +)°, one
obtaing after an integration by parts

Vi [T e e ff @2 g 257 de-
o

vx + 37 2 . v
= V,; {}i#%é)z vrw E-y &} - >\2v€7. §>‘2 JA&G"}'L
2 ¥ 2 v
X p
2 "0
SAVE + (-2 2 JT e (£)
3 v

The use of (f) for the intsgral in (d) then gives

(N _ 32 2 [
-%)-—27\/5--?“/5 e’ JQ "'/%L
| 2 /3

2
I =402 VA -an A e erfo()). (g)

The asymptotic formulas for I{A) follow from the relations
2 ) . -~
A ] ] 1 3
o? erfo(A) mmd—[1 - w4 =L~ it ], Ao w,
Ve 2A%  4p%

(h)

')

erfc(M) ~ 1 _Z_Z_ {1 . '%g'- eea ], A~ 0,

Ve 3 ; =
The integral IIT{4{7s)

l=x

, -2 {l=d

= ..._ns_..f 1+ vx
I(X) )fo Vil

15, 1.

-3‘;’?@ AExE e =1..I1‘_§.,.

PRTUR T

W
1

- B

I Rp——




mey ve transformed by the substitution

1+ /=
L %] a
| ) [t + ——te)”
10 = an [ X g [i-fx, A=)
Jo (14422 U A 14?
X erfo | At + -——E—T] . ()
At ~ %)
Pr A<1,t<A, |
% % 2
t+ - =%+ O(A°)
and the brace in (k) becomes
2
1=\ ('}) e'(t/’k) erfc(%) + 0(}\2). (1)

As ¢ 4n (k) increases beyond A s the brace in (k) drops rapidly to zero
(A<< 1)s But from ege (h),

P

2
1= 3 (i‘)e(t/)‘) erfc(%)-v% 7 as t-1, A << 1,

t
s0 that for smeil A the approximate expression (1) differs from the
brace in (k) only in O( 32) for the full range of +. Since the factar
cutedds the brace 1s unity to O(X®) when t £ )\ , an appraximation
to the integrol which is valid to terms of velative ovder A° 1is

1 3 rd 2 ’
Akf dt XL: - Vi (;‘{) oW/ AV Gnte (-‘;-\)}
o 3

] 2 Y
=40 = 222 v f31/1 ez‘fc(%) e O
_ g R AT
AV
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Henes, by (h) again;

100 ~2 VA A [ -—f:-@ o(H%)] as X-o0. (m)
n

For large A the brace in (k) remains near unity until t=1-0(1/4%),

2
80 that the dominar. factor in the intogral is e~ At%, It is convenient,
therefore. to put
U = i x = At + '-1;; . (n)

1-42"

in (k); and urite the integral es

2,2 X
I =42 —(1—5)' o Nt dt{‘i-v’?r
° (1-!-1;1

>

2 9!
& erfo(x) j . (o)

- \2&2
In the region where o ' ° 4s still large, u 13 of order 1/

and x is of order unity. Thus in this region, we may expand

e 1 II.Q_k.i"'Sz'
erfo{x) = erfo( At + -“i) = arfe()\t) - 2 2—- (E)': M

VI k= A ki
5 2.2 2
= rfg(At)-.-‘.. "At r~‘~==«}\f_,32‘-' &osee ¥, ) ) )
o /7 e L(X .A) 1s (p)
8o that
' ' 2,2
\/“; E‘i Qx erfc(x) l"i ezut +u /}\ {\/.E e ATE erf‘c()\t)

- A - el +m1} | (@)

By expanding u and the algebraic texm in (o) in powers of s E )¢
aad oublning terms, one ohtains finally a relstisa

2 A 2 2
I ~4 f e > dg ~ ~i§ f e ® [ Vi &® erfole) + 357) ds
o o

y 2 2'
+ -=-*-z f o”® [58* + 28°] a8 + 0(1/){6)". {r)
k (4]
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The error involvad in extending ths integrais of (r) t0o 8 = w, rather
than 8 = A , 18 of order e™'2A , and 56 does not change the asymptotic

expension indicated by (r), By evalusting the integrals in (r), one finds

I\ ~2 [§ ~ %= + =19- &+ o(-L)1. (s)
Vo AT X s




Thi Bubad‘httim oi‘ '!‘.bt nxptmum

u "'.-‘,1' {ln(Kw) fi"a1w + :% e -"}

" i,.j‘wr- m@u Vi :,o}

f °. \,‘QIW «'uT‘T o L Valw) = ute)

i 'w

i"

' Ja \/13 +a,‘m(1-w+

:5 - v2)+

(s) |

s e A i 2
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Consider a typisal integral in (e), for example that appearing in the
sosffioient of a4 within the second bracket,

i s
I= f vl gy (o)
o (h ;)3.

If the exponent of the 1n % factor wvere instead 1-s; then for

Re (s) > O, eq. (d) would give far I

-

1 B"" « B .
J e b e =01- & re. (£)
o

t it is readily verified that both sides of eqe. (f) are regular functions
of the complex veriable & for Re(s) > -1, the eingularity at s =0
being only apparent. Therefore, by the theory of analytie continuation,

the equality (f) remains valld for Re(s) > -1, In particular, for s = - 1/2,

(£) gives _
1=(1-2"%1 (/2. 3
The otber integrals appeerirg in (c) may be similarly evaluted.
From eqee (0), {(d) one thus obtainas

[ ¥ o av

/‘-Jo valw) = ulv)

= pw /B {I‘(%) w27 rh) -ir¢-5 0 - 2!/%) 2]

2 R
+ ¥ [371/2 r(%) - D= %)(2'/ 2. 31/2):31 + %r'(- 2)(1 - 2023/24 33/ ?)a%

- %P(__%) (1 - 3’/2) ag] + oot_} s (h)

vhich reducer to eq. 1V(46) on evaluating the gusc= Fumoctions,
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D. Agympiotic Fhage Temperaturs Integral IV(59).
By differentiating eq. IV(58)

b, ln(u-%x )
2 v 4 ——r,
z(u) "“;;/‘; \1*-'\10 2 : + (u.,u )1 3 + o0 +-J_7z+b6 u-uo }9

u>u1’ (a)

and substituting intc the temporaturs integral IV{59) there results afier
a change of variable;

. b
ALt e, i {3

b, b
+ s ,f% . J, ro- e B— -
v L- & uol ...J v L \u"'liol J

b [ v
m—-:;'%ﬁz -:1: ilnv+1n(u-uo)-2] {;:;;f"} + (b)

Tna terme in (b), except for the lest ons, yield hypergscwetrice
type integrals (incsmpl.ete Beta functions)

1 ,
..g( r 7 ﬁ! i TF(%P s 2413 1) - < F‘%$ 8 ¥l =) ©

1y
~r-{ .) T'(s) _ % .3 as x= o, | @)
I'(s +
valld for 0 < x < 1, Re(s) > 0. Hence, by the theory of emalytic
continuation, {¢; is valid provided only that 0 < x < 1, 8 # 0y =1, «2; sce
and (@) holds when Ref{s) > =1, 0<x <y For 8 =0, (d) 12 meaningless,
but mwsy be dofined by a limiting procedure. By differentiating (d) with
fedpsot tc 8 at 5 = - % » one readiliy finds

....,_gg+-3-u{2+1nx'f as x+ 0, (e)

1
f« = V-

F i

< g,
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Thus aqs. (), (e} give for (b)

ooy, ki
u-v
ré) by r@) b

v
T
-l

wmeo :

rDr@ @a)? "3 cdrd w7

21 _2
r(- g b, 2 r-2) b, e 42 b }
“3rd) r@) s o8 " 3 rd) 1‘(1) (wa /® T2

b b
2 + "4
2/6 (u1 - )/./6

(u1-ue)

1178 +

(u1 -

3 l
-&1)5/6 6 s,

aftsr o rearrangsment; sevsrasl torme esnaslling. BRre camparison with - 1o (a)ﬂ

the last group of terms in (f) is simply

+—-J-—:- [-b -;.,z(u.ﬂ —;'i,:i__f'- (§b3"/"):
va o

since by assuzption z(u,) =1 Fqe (f) reduces to eq. IV(59) of the
taxt upon evaluation of the gamma functioms,
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E. Humerical Soluticn for ihe Collapsing Bubble.
The syatem IV{(78) may be written

, 2 S
zz'-i-%z‘ +:&3[=ﬁ7§vﬁﬂ-0. {a)

% = g(8), (v)
€z~1=-—2— {u ot{v) Va - v dv (e)
- Tlg J(_: ’

§ = % (o) (a)
z2=1, 2'=0, ©=0, at u=0, (2

In order toc obtain a schems for numerical integration, subdivide the range
‘of values of u into intervals defined by the points

The intervals corrasponding to (£) are in general not equal; but chosen
ag the integration procecds. For convenience wrlte

u.1-un5h, (g)

4

ara nown for 0Lk <,
If ths inteival g~ i sufficlently short, €'(n) withdn
the iatervael may be approximated by

Ve .

and essune that, s, = z{y )y 8 = G(il, s gk ‘% ivk)w ﬁ’k ¢(9k)

Yieey T Y
The integiral in (o) evaluated at j;ha point u = Woag DAY then be estimated
r
{ Yn+1 — n Y41
j 8t (v) Va4 ~vdv= > o, j \/\I - v dy
o k=0 = VY,
X
=25 oltw., ~w o —u Y (1)
35 e T % 1'% B T M ‘

an
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Defirs
I, =0, '
n-1 y 3/ 4 (3)
. 32 _ ) 2
L= .54{ & vk“( ""k‘ (un+1 uk+1) le
'8
Then aceording to eqs. (1), (J) and {g), eq. (¢) at u=1u - besomes
Saet P 1 =5t %#f ©p41 = 8y)- (ie)

The valus of § aaq 10 (k) msy be estimaied in terms of 6 4 by am
espansion of § about a value & = 8 ansar €., which uses equilibrium
vapor density data, sar

- - - 3 - 0 s - 8 2 se s
€t = §(°n+1) =5 [1+3d,(8 44 =8 +dy(0,,, ~ 8"+ 1, (1)

Thus, for the first few steps of integraiiom, 6 = 0, aud 80 ? =1
initially. The temperature integral relation (k) beccizes

anS "1 v d (6 n+1 Q) t12(9 +1 - G)d 4 0o ]

=1+ 1,4 548 (0, -0 - (9, - B, ()

in which ths ouly uvknowns are 94 ad 2 4. Eq. (m) is mest essily
solied for Sn 1 by e iteratiod prucedurv based vu &p alivrnative foruw
of (n),

(6 .-8)e=e "rw‘l?"'Brr.g"(Qn"e)mxnm1

o+ =3 —— _ -, i . (ﬂ)
Iy " “n#l 3 [dy +ay(0,,) - 8) + o ]
To obtuin LRy Lhe Giffcronilizi sgmstion must be wsod. At eagh
point u = LW make th> approaxdimations

Py —‘\#

<o Wl




A1)

JU. 7 )

oy

fgﬂ_:.;a‘) - (2wt |

> (c)
-i i - l [{zzﬁ: V,ffa\ /’n - 55‘4 l =it fus . Ane
si{u,) =5 u_n*‘-‘!_':-—.n } + \un -u 4 2 % (2 B! |
E zi. a

With these approximations, the formla
2
(u - un)

z"

z(u) = 3+ (w=-u)jsa+ "
is exact for W= _4s U s W 4. Whon (0 -u _,) equels h= (g = uy)s
sqs. (o) give

n 2h ’

% .4~ 28 +2
n
h

8o that the differential equation (a) at u = u 1s approximataed by the
diffsronce equation

2 2 ., .
e + I'? “n 2“n~-1] Pnt

n+1
+ [‘(:s2 48,2 %, . )+7“‘ (++‘)]
L n-1 7 Ta 7T “n "n-1 ,._./' k

(Aver Qn’ e4. {(q) may be golved for the poai.t,lvn root L WEL E’n = ¢(9n) ‘
being kmown from equilibrium vapor pressu:o dato.
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Tn ondor €0 kesp the differencss 4n 2 =2nd & small and ensure
that a positive roat 2,44 OF the difference equation {q) sxists, it
becomes necessary to decresse h as the numerical integraticn proceeds,
At the atep where a new valus of h 13 introduced, the approximations
(o) rather than (p) mist bs used. The difference equation which applies
at that step is thsrsfore not {q), but one obtainable from (o).

Te start the integration, a fietitious point LR
is used. Corresponding to the initial comdition 2'(0) = 0 and the
approximation (p), ome must then choose 3y = %50 Sinee =z =7, liw
differeonce equation (q) for n =0 eimplifies to the linear squation

w2
2 =1 -8 (14 9) (8, = gls,) = o)), =)

The tempsrature equaticn bescmss

3y = 1
91 = (s)
%7%‘,:‘- =598y + ) 6 + o)
for 2 =0 eince I =8 =8=0, ¢ =1, For sufficlently small k,
eq. (=) may bo appreximated by -
g, -1
Wb | 3
TR d

I\ shouid be noted that 5 , E,p dﬂ e»s dspend on O, and
change vith eich new oxpansion of g (8)« Baoauae. these purametors,
ay woll s h, may bo constant over several utops of iuntegration, we huve

ot ghven thew iudives whioh depend on u (1.6, on n).

——

A smumre-
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