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ABSTRACT

A theory is developed which describes the behavior of a

vapor bubble in a liquid. Its physical basis is the assumption that

the heat transfer effects which accompany the evaporation ocourring at

the bubble wall when the bubble grows, or the condensation that occurs

there when the bubble collapsea, are dynamically important. The

basic equations of bydrodynamics are shown to reduce, for the problem

under considerationp to a dynamic equation which describes the behavior

of the bubble wall, and a heat convection equation for the liquid which

is coupled to the dynamic equation by a boundary condition at the bubble

surface. A solution for the heat problem is obtained under the assumption

that significant temperature variation in the liquid occurs only in a

thin thermal boundary layer surraunding the bubble i.lII An estimate

of the correction to the temperature solution is also derived. Once

the temperature at the bubble wanl is given, the vapor pressure within

the bubble is known and the dynamic problem becomeal detorminatei.

The theory is applied t, the cases of the gr'wth oa a vaptr

bubble in a superheated liquid, and the collapoe of a vapor b.° blu in

a liquid below its boiling temperature at the extovrnal premtiure. The

simplifying physical assumptions madn in the course of the investtgatJion

are justified for the specific example of vapcr Lubble behavi-, in watur.

A comparison of the theory with experiment la given for the

observable range of bubble growth in superheated water, ond the

agreement is fcur tV3 be very good.
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I. INTRODUCTION

The term cavitation is used to describe the presence of a vapor

phase in a region filled predominantly with liquid. The condition necessary

for the appearance of cavitation is that locally the vapor pressure of the

liquid must exceed the external pressure to which the liquid is subjected;

this condition is by no means sufficient to produce cavitation, however,

because of the presence of surface stresses in the liquid. These stresses,

attributable to the short range attraction of the liquid molecules for one

another, tend to reduce any surface element of the liquid to one having the

least (mean) curvature consistent with the mechanical constraints imposed

on the liquid. Thus, an otherwise unconstrained vapor cavity will be spherical.

The resultant of the stresses on an element of surface is a force directed

along the normal drawn from the concave side of the element. For a vapor

cavity to grow, the vapor pressure must compensate not only the external

pressure on the liquid, but also the effective pressure of the surface stresses,

Since the surface stresses increase with the curvature of the

surface, there is a minimum possible size for an unconstrained pure vapor

bubble existing in the liquid, even at temperatures above the boiling point

of the liquid at the prevailing external pressure. Smaller bubbles are

unstable against collapse. The question therefore arises as to how a bubble

could form initially. The problem of the nucleation of vapor bubbles has

been extensively studied in recent years, notably by Harvey (I) and Pease,#(2)

in connection with their research in animal physiology. The conclusion

drawn from these studies is that in a moderately suporheated liquid, the

nuclei for cavitation bubbles consist of sifall permanent gas bubbles in the

liquid, or gas pockets stabilized on solid particles. When thege are

removed from the liquid (by agitation, continuud boiling, or by compressnig

the liquid under prussures groat enough to forco the gases into solution)

cavitation ceases, and can be reintroduced only by subjecting the liquid

to extreme ttineion or high temporature. Thus, water put under a pressure

of several hundred atmospheres for a period of a few hovrn buuomeu ablu to(3)
withstand nogativc prooeures ao groat as 150 atm. without Yiupturing, and

can be heAted to 270 . bcfore it exploduk.'(4 The residual nuclei, follewing

degamaiig, are bulieved to coioiot of' hykrophoblc substancov In the liquid

or at its surfao. (2)
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The process involved in the nucieation of a bubble by a permanent

gas can be explained by a simple model. Suppose the gas satisfies the

perfect gas law. Then the pressure pg of the gas in the bubble is given

in terms of the temperature T and radius R of the bubble by

g NT (1)
Pg R 3

where N is a constant, proportional to the number of mo-les of gas in the

bubble. The pressure p8  due to surface tension is

S2U" (2)ps=--

o" being the surface tension constant of the liquid. If the bubble is in

equilibrium, the vapor pressure ia a function of T alone, say peq (T).

Denoting the external pressure by p , one has as the condition of

equilibrium that

p + Peq(T) =p +p +P (3)

The equilibrium will be stable if the pressure diff erence Pg+ Peq- P- P

is a decreasing function of the bubble radius at the point of equilibrium.

These conditions are conveniently expressed in terms of a function

fT(R) R' + { L p() R3 + 20'R2 (4)

Thus, for a given gas content N, the equilibrium radius (or radii) R

of the bubble is given by

fT(RO) = N, (5)

and t-he condition for stability' bucomes

S> 0, (6)

whe.re f(R) denotes tha derivative of fT(R) with respect to Re

Welow the boiling point of the liquid, pC - Peq > 0, and so YT(R)
is an Inc,,eacing function of R. Thub, there is just one equilibrium radiiiO R0



of a gas nucleated bubble for a given value of T below the boiling point

of the liquid, according to (5), and the equilibrium is stable at that

radius by (6). Above the boiling point of the liquid, the coefficient of

R3 in fT(R) is negative. Hence as R increases for fixed T, fT(R)

increases, reaches a maximum, then decreases* Accordingly, eq. (5) may

'give two equilibrium radii, the larger corresponding to unstable equilibrium,

or one equilibrium radius which is stablo'" _ga+nst collapse but unstable for

.. rgrOh, or it may afford no equilibrium radius. Inasmuch as peq (T) is

an increasing function of T, fT(R) is a decreasing function of T for

-• fixed R, so that the curves of fT(R) on an f - R diagram form a

.."nonintersecting family, except for the common point at the origin, 8nd the

c:.rves for large T fall below those for small To In particular, the
" - "•lmaxu.of fT(R), which occurs when the liquid is heated above its boiling

point, at the externa! pressure p decreases with at increase of To A

; typica! f- R diagram, drawn forwater at 1 atm. external pressure, has been

presented in Fig. 1,o illustrate these general remarks.

Consider a gas nucleated bubble which is in stable equilibrium

in u liquid below its boiling point, and suppose the temper4ture to rise

.slowl•. The bubble radius will then increase steadily, with the bubble

remaining in stable equilibrium as the temperature increaseS past the boiling

... points until there is finally reached a critical temperature, and a

corresponding critical radiusp above which the bubble cannot exist in stable

equilibrium. A further increase in temperature releases the bubble for

The nucleation process described cn be understood on the basis

of the r -R diagram of Fig. 1. The locus of the process for any given

bubble is a horizontal line, whose ordinate is fIxed by the gas content

of the bubble. At the beginning of the process, the bubble Ir represented

by the intersection of the given horizontal line with the fT(R) curve

for the initial temperature. As the temperature increases, the point

r representing the hibble shifts to the r•ght on the f - R dinggram to f T(R)

curves drawn for higher teoperatures, and correspondingly the bubble radius

V, increases. The process terminates when the bubble point reaches the fT(R)

curve which has o muim at the ordinate of the horizontal lino. (The locus
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of maxima is represented in tha diagram by a, u, A -- lln.-e OE

critical points".) The bubble considered is then stable against collapse

at the temperature of this critical fT(R) curve and at the radius R.

of its maximum point, but is in a situation of unstable equilibrium with

respect to growth. A further increase in temperature upsets the equilibrium

and releases the bubble for dynamic growth. Since the surface tension

effects relax with an increase of bubble radius, the bubble (which is now in

superheated liquid) will continue to grow indefinitely.

The nucleation process is qualitatively similar, but from an

analytic standpoint more complex, when the cavitation bubble grows from

a solid particle in the liquid, or from a gas pocket stabilized on a solid

particle. The bubble-may pass through several intermediate stable or un-

stable equilibria, depending on the size and shape of the particle. Since a

pure gas bubble will eventually rise because of gravitational effects and so

be removed from the liquid as a source of nucleation, the majority of cavita-

tion bubbles may be supposed to grow from nuclei containing solid particles.

The mechanism discussed above for the release of a cavitation bubble

for dynamic growth is the counterpart of boiling. One may analyze in a

similar manner the shift of a bubble from stable to unstable equilibrium,

and its release for growth, by a decreuse in the external pressure. An

equivalent process occurs in cavitating liquid flow, the pressure drop in the

vicinity of the bubble nucleus being caused by a change in the flow pattern

due to the presence of a submerged obstacle. In this case, however, the

bubble does not ordinarily continue to grow, but is forced to collapse by a

pressure rise which follows along the path of the bubble.*

A different phase of the nucleation problem has been investigated by
Gsr,(516) 0

Glaser,(6 who used degassed diethyl ether at 1 atm,, superheated 100 C

above its normal boiling point of 34 0C, as the working fluid in a Bubble

Chamber designed to locate the path of a charged atomic particle. A series of

Considerable local pressures can develop at the point of bubble collapse.
If the bubble collapses near the surface of a submerged object, the sudden
unbaiunce of pressure resulting may be sufficient to dislodge particles from
the surface. For a recent study of cavitation damage, see M.S. Plesset
and A. Ellisp Procoedi ngs, Annual Mbeting ASME, December 1954.
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vapor bubbles appears along the traole of 6 _nch n pnrr,4t.l Y in the liqu,_1d If

photographed a few microseconds after the detection of the particle, the

track is fairly well defined by the bubbles. The physical mechanism of the

bubble nucleation in the Bubble Chamber has not, as yet, been fully explained.

In treating the problem of bubble growth, it becomes necessary to

make some assumption concerning the nucleation process. The simplest

assumption to make about the bubble, and the one which will be made in the

analysis to follow, is that the bubble contains initially no permanent gas

or solid particle nucleus. It, of course, follows from this assumption

(N = Ul and eqs. (4) and (5) above that there is no radius of stable

equilibrium for such a bubbleo Nevertheless, if the liquid is heated above

its boiling point there will still be a radius R of unstable equilibrium,0
which satisfies the equation

fT(Ro) = o. (7)

The radius R. of the pure vapor bubble given by eq. (7) is related to the

critical radius for unstable equilibrium of a gas filled bubble at the

same superheat by

R° Ro. (8)

While it is not possible, physically, to form a pure vapor bubble at the

.ra dius R, the details of growth of. such a conceptual bubble diffar in no

essential way from those of a gas filled bubble growing from unstable

equilibrium, or from those of a bubble otherwise nucleated. Equilibrium

bubble radii for a pure vapor bubble in water at 1 atm. external pressure,

as a function of the water temperatures will be found in Table II (p,,65)

SThe equilibrium radius of the pure vapor bubble and the corresponding critical

radius of the gas nucleated bubble are decreasing functions of temperature

(see Fig. 1).

The method considered in the analysis below for the release of an

equilibrium vapor bubble for growth will be an increase cf liquid temperature,

rather than a decrease of pressure. One reason for this choice is that the

temperature change involved in the heating of a liquid usually proceeds at a

sufficiently low rate that it ceases to influence the behavior of a bubble

5Qso0 after the growth of the bubble has begun. The bubble growth then becsmes

:.-1
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pressure ahangos, this may not be the case.

Another reason for the choice is the availAbility of experimental

data for the growth of cavitation bubbles in superhated vaters with which

the predictions of the theory developed below may be compered (see Figs. 4,

5; 6). After the growth of a cavitation bubble has begun, the details of

nucleation become unimportant. The bubble tends to become spherical, and

is adequately represented by the pure vapor, bubble model used here.

The process of growth of a cavitation bubble in a superheated

liquid may be described as followui When the bubble is at Its critical

radius (Ra for ae gas nucleated bubble, the radius Ro of eq. (7) for a

pure vapor bubble)v it is unstable against expansion, and a slight tempera-

ture increase will start the bubble growing. The initial phase of growth

is characterized by the relaxation of the effective pressure due to surface

tension with an increase of bubble radius. The pressure unbalance causing

the bubble growth is thereby increased, end correspondingly the rate of

expansion increases rapidly. In order for the bubble to grow, however,

evaporation must take place at the bubble wall* Because of the latent heat

requirement of evaporation, this requires the temperature at the bubble

wall to drop below that of the. bulk liquid, which in turn decreases the

vapor pressure at the bubble surface. Whether or not the decrease in

pressure causes the velocity of the bubble wall eventually to decrease

depends upon the rate of increase of bubble surface area. It will be shown

that such an effect occurs. The bubble radius ultimtely becomes propar-

tiocal to the square root of the time of growth. In this asymptotic range

of bubble expansion, the temperature at the bubble wall approaches the

boiling point of the liquid at the external pressure, and the pressure

difference producing the bubble growth tends to zero with the radial

velocity of the bubble wall.

If the bubble growth Is arrested and the bubble forced to collapse

by a sudden Increase in the exterito pressure, the flow of vapor cnd the

flow of heat at the bubble wal are reversed. Uondensation of vapor at the

surt•ce of the bubtle raises the ter.-----r theral resulting in an inarease

of vapor pressure which tends to slow down the rate of collapse.
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is a problem of heat transfer between the liquid and vapor which arises when

the bubble changes size. The heat problem will be solved approximately

under the assumption that significant heat transfer occurs in the liquid only

in a thin shell surrunnding the bubble wall. The solution is presented in

section III, along with an estimate for the first order correction. The

assumption of a thin thermal borundary layer in the liquid is reasonable if the

thermal diff.usivity of the liquid is sufficiently low.

Insofar as the liquid is concerned, the bubble grows or collapses

because of pressure variations at the bubble wall, and possibly at the

external surface of the liquid, which set the liquid in motion. Thus the

heat transfer problem involves convection effects. A treatment of the heat

transfer problem which neglects convection has been given by Forster and

Zuber,(7 who use the model of a stationary liquid containing a moving heat

source (corresponding to the moving bubble wall)* The diffusion solution

for the heat problem obtained from this model leads to unrealistic predictions

for the rate of bubble growth. An analysis of the diffusion solution is

also presented in section III.

The dynamic problems considered here are the growth from unstable

equilibrium of a pure vapor bubble in a superheated liquid, and the collapse

of a vwpor bubble in a liquid below its boiling point. The bubble whichj

collapses is taken to be at rest initially, and in this respect is a model

for a cavitation bubble whose growth has been arrested by an increase in the

external pressure on the liquid. The model used differs from an actual

cavitation bubble in that the liquid temperature is assumed to be uniform

when the collapse starts. The temperature field in the liquid for an actual

bubble depends on the past history of the bubble, and if non-uniform will

affect the initial period of bubble collapse. The solutions for the growth

and collapse of vapor bubbles are presented in section IV, together with

experimental verification for the case of bubble growth in superheated water.

For the quantitative solution of the heat problem and the dynamic

problem, several simplifying physical assumptions have been made. The

arguments for the validity of the general assumptions are justified, as they

appear in the text, for the case of cavitation bubbles in water. Two basic

assumptions may be mentioned here, however) these are that the motion possesses
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spherical symmetry, and that the motion is irrotational. The latter

assumption is independent of the former since, for example, it is possible

IIfor a swirling, eddy type of motion to occur within the vapor of a spherical

cavitation bubble. The experimental evidence indicates that such motion, if

it occurs, does not influence the bubble behaVior. The assumption of spherical

symmetry is more serious. This requires in principle that the asymmetric

effect of gravity upon the bubble behavior be ignored. Actually, the rise

of a vapor bubble against gravity is extremely slow, so long as the bubble

is small. Thus, for water superheated by about 2 0, no great error is

introduced by the buoyant force provided the bubble growth is not followed

beyond a radius of the order of 101- cm, which is much greater than the

equilibrium radius of about 1.5 x 10-3 cm for the 1020 vapor bubble in water.

Bubbles released at higher superheats grow appreciably faster than the

1020 bubble, and so are relatively much larger before gravitational effects

become important. The collapsing bubble has, effectively, no time to rise

against gravity before its collapse is completed.

The emphasis in the following treatment is laid upon the physical,

rather than the mathematical aspect of the problem. Thus, a complete table

of the integrals appearing in the text has not been given, although a few of

the more obscure integrals are evaluated in the Appendix. •om a mathematical
standpoint, however, it is felt that the equation for the growtl of a vapor
bubble in a superheated liquid may be of some interest. inasmuch as it offers

a tractable example of a nonlinear, integro-differential equation,

I!

U'
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11. FORMULATION OF THE PROBLEM

Basic' Fauationp.

In terms of the fluid density, ,O , the (vector) fluid velooity X,

the temperature T, the pressure p, the internal energy e per unit mass

of fluid, the stress tensor P, the thermal conductivity k, the coefficient

of viscosity ý , the time t, and the heat 4 generated per second, per

unit volume in the fluid by absorbed radiation, the fundamental Eulerian

equations which describe the behavior of a fluid (liquid or vapor) are:

The equation of continuity

M + V. -0. (0)bt

The equation of motion (with the neglect of external body forces,

such as gravity)

p •= V . P. (2)

The heat equation

fdt P -.Vv + V #kVT + (3)

The thermal and caloric equations of state

P =_p(pv T),9 e = e(p, T). 4

For a Newtonian fluid, the stress tensor is given by*

P= -p1 + + ( -_)- I(v v)_. (5)

The notation used here is essentially that of Gibbs, with V
denoting the gradient operator. The symbol V * denotes the divergencej, V x
the curl, and in the case of the rate of strain tensor Vv is the vector
gradient (a dyadic). The term P : Vy in (3) represents the trace of the
product of the stress and rate of strain tensors. The term (_)t in
eq. (5) is the transpose of Vv.

For the definition of the stress tensor and a derivation of eqs. (I,),
(2), (3), see M-4Ine-Thomson, Theoretical Hydrodynamics (Macmillan ard
Co., Ltd., London, 1949).
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In these equations, # denotes the total derivative with resapet to time no

computed In a reference frame at rest in the fluid element under consider-

ation;* thus,

--- =-+ -V . (6)dt t

Physically, eq. (1) expresses the conservation of mass. Eq. (2)

relates the inertial reaction of the given elementary fluid mass to the

surface stresses acting upon it (in the absence of external forces). Eq. (3)

is essentially the statement of the first law of thermodynamics, relating the

increase of internal energy of the mass element to the work done on it by

its surroundings in changing its shape and size, the heat energy conducted

into it across its surface, and the heat generated in it by absorbed

radiation.

By the use of standard vector and tensor identities, the terms in

(2) and (3) involving the stress tensor defined by eq. (5) can be reduced

to the forms

(7)

.:V_ -p(V .•) + • ( )2 + (v. )2

+ V W2 - V X(V X ) - XVv • )l

provide& the coefficient of viscosity is considered to be constant.

Because of the smallness of the coefficient of viscosity of water and its

vapor, viscosity effects are not expected to play an important role in the

behavior of water vapor bubbles, and will ultimately be ignored. The

viscosity terms have been retaineda however, so that order of magnitude

estimates of their importance may be made.

When the assumption is made that the fluid flow is irrotational

V Xy 0 (8)

Other symbols for the total (substantial, convective, particle)derivative include D/Dt, and a dot placed above the differentiated

terms .
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the forms (7) further reduce to

V. P =-_,+•+ •(v.v),
IR ( 9 )

P,•: V1 -(V, V V + Vv• V)-2 _• x•-v. (.v

If the further assumption is made, in the case of the liquid, of

incompressibility (J = constant), eqo (1) gives
(.(10)V • = O, (10)

and eqs. (9) become simnpy

VVP,

P :VZ= •V 2 V 2 .

It will be observed, on substituting eq, (11) into eq. (2), that the viscosity

terms disappear completely from the equation of motion for the case of

irrotational motion of an incompressible fluid. If the fluid is viscous,

the motion may still be influenced by viscous heat generation, however,

provided significant heat transfer effects take place.

The Problem in the Liguid.

It follows from the assumption that the liquid motion is irrotational

(eq. (8)) that there exists a velocity potential 0 throughout the liquid,
s u c h t h a tV 

= o .( 
2S= -v•S. (12)

Since, further, the liquid is taken to be incompressible (eq. (10)), the

velocity potential is a solution of Laplace's equation

V2 $= 0. (13)

The spherically symmetric solition of eq. (13) is of the form

A(t) + B(09 (14)
r
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where r is the radial coordinate from the center of the bubble. The

liquid velocity corresponding to eq. (14) is purely radial, and given by

eq. (12) as
2= A . (15)

r

If the liquid velocity at the bubble wall is denoted by v(R),* eq. (15)

gives the relation

A(t) = R2 (t) v(R), (16)

where R(t) is the radius of the bubble surface. Eq. (15) thus becomes

v(r,t) = B v(R), (17)2 i
r

and if the velocity potential is normalized to zero at r = , eq. ('I4)

becomes
r,t) = ...22(t R) v (R.)

r

The equation of motion, according to eqs. (2), (11), is

J + V• Vv]. ?p

The vector identity
v x v ) =jvv -X'• 7 X

and the assumption V X = 0 give

hence, by eq. (12), the equation of motion (19) may be written

from which a Bernoulli relation

N+ 1 v' oP (t) (0
- bt 2 = 2 (20)

follows by integration, the density having been taken constant. From eqs. (17),

v(R) is, in general, not exactly equal to the radial velocity
of the bubble wall (because of evaporation or condeneation occurring there.)
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(18), the left side () .7 9 at r so that CIt)• •T•

eq. (20) is simply the external pressure p. divided by the liquid density:

c(t) .--.

If
Eq. (20) thus becomes

M 1 p2 P (rt)- p (21)

8t 2

JI Because the density of the liquid is assumed constant, the internal

energy e can be a function only of the temperature T. Over the limited

range of temperatures which will be considered here, the internal energy may

be considered tu var- linearly with the temperature. On neglecting any

constant internal energies, the caloric equation of state therefore reduces to

e = cv T, (22)

where cv is the specific heat (at constant volume) of the liquid. The

thermal conductivity k, like the specific heat, will be taken constant

over the temperature ranges considered. Eqs. (3), (11), and (22) thus combine

to give for the internal energy equation of the liquid

'c [T + v -TJ = kV~T + -Vv + A ()

In the analysis to follow, the viscosity term V 2 v 2 in eq. (23)

will be neglected. By using the solutions thus obtained, it is possible 'to

estimate the contribution of this term to the total rate of heat generation

per unit volume of liquid. The specification (17) for v gives

2
2V2 v 2 =12 v

r

and accordingly, the viscous heat generation is a maximun at the bubble amlli

where it amounts .to

R2

per second, per unit volume. Here v(R) represents the velocity of the

liquid at the bubble wall, which may be approximated by the radial velocity

Rof -the bble all itself.* The coefficient of vigcositc of yater pear

This approhImation, which is plausible physically, will be shown to be
accurate to about I part in 1000.
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bubble growth to be presented below gives for a bubble groaing in water at

1 atm., superheated to 103°Ca maximum radial velocity Amax = 32 cm/sec

when the bubble radius is about R = 3 x 10 cm (see Fig. 7). Combining

these figures, we find for the rate of viscous heat generation at this time

timeS A2

"AVYv2 - 127 - = ,x 106 erg/ce-sec 1071 calcesee.

But the total tomporature drop at the bubble wall near the time of maxinum

radial velocity (see Fig. 8) is about 104+ °C/seco corresponding to a heat

lose fr-om the liquid at the bubble wall at this time of

I ov dT R l 10 ,o aooi o°.°°o
due essentially to the evaporation occurring there. The viscous heat gener-

ation drops off sharply away from the velocity maximum. Clearly, viscosity

plays a negligible part in determining the growth of vapor bubbles in water.

Eq. (23) will therefore be written for solution as

c QT + -v - VT = k72 T + . (24)

The foregoing development of the equations for the liquid has

been baped essentially on the assumption that the liquid is incompressible.

The validity of this assumption depends upon the ratio of the velocities

attained by the liquid to the velocity of sound in the liquid. For the

growing vapor bubble, the maximum velocity at the bubble wall is never

larger than a few meters per second for the highest superheats considered,

so that compressibility effects in the liquid may be safely ignored.

For the case of the collapsing bubble, several of the assumptiona

made above may fail near the point of collapse, if the solutions are carried

that far. Ths,-w the temperature at the bubble wall, which is initially below

the boiling point, rises sharply near the end of collapse, possibly

A tabulation of physical constants will be found in Appendix A.
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approaching the critical temperature of the liquid. The parameters p, k

C v etc. of the liquid cannot be taken constant, of course, over such an

extreme temperature variation, nor is it valid to consider the liquid

incompressible. Perhaps the most significant error in the barsic assumptions,

for the case of the collapsing bubble, lies in the fact that the spherical
(8)shape is inherently unstable near the point of collapse. The collapsing

bubble tends (theoretically and experimentally) to shatter before collapse.

For these reasons, although the assumptions made above wil be

retained, the calculations for the collapsing bubble will be carried only

far enough to indicate the trend of behavior of the physical quantities

involved.

The Problem in the Yanor.

In the case of the vapor, the main simplifying assumptions are

related to the smallness of the vapor density in comparison with that of

the liquid. Thus, the physical effects of the vapor inertia may be expected

to have a negligible influence on the rate of bubble.growth or collapse.

It will be bhown that the vapor may safely be considered to be in a stAte

of therMal and dynamic equilibrium, insofar as its internal behavior is

concerned. To do this. it is sufficint to use arder of magnitude estimat÷

The equation of motion of the vapor follows from eqs. (2), (8),

and (9), and is given by*

av
+ Vi1 =-.VP. k 3 1). (25)

The velocity in the vapor is certainly smaller in magnitude than the velocity

of the bubble wall, because of the evaporation which takes place when the

bubble grows or the condensation of vapor which occurs when the bubble

collapses. The vapor density is smaller thcn the liquid density in a ratio

of about 1:1000, and the coefficient of viscosity of the vapor is smaller in

a ratio of roughly 1:10. The pressure gradient in the vapcrmay therefore

be assumed smaller than the gradient in the liquid by at least an order of

magnitude. An estimate of the pressure gradient in the liquid may be made

The symbols appearing I.n this part of section II refer to the vapor,
unless otherwise indicated.
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by again putting the liquid velocity at the bubble wall equal to the bubble

wall velocity A in eq. (17), and using this to evaluate eq. (19) at the

bubble wall. The result for the liquid is simply that

where R is the radial acceleration of. the bubble wall. For water at 1030C,

the maximum radial acceleration of the bubble wall is about 6 x 105 Cm/sec2

(i Fig. 7), giving for the maximum pressure gradient at the bubble wall

• i 6 X105 d ynes/cm2/cm, or about .6 atm./cm. The maximum pressure gradient

in the vapor is not more than about 1/10 of this, on the basis of the above

estimate, and it occurs when the bubble radius is about 2 x 10- cm. Thus,

the pressure variation in the bubble is at most of the order of 10-4 atm.

But the pressure itself is of the same order as the external pressure of

1 atm. It is thus clear that the pressure may be taken as uniform within

the bubble,

FrPp = W. (26).

For order of magnitade purposes it is sufficient to consider the

vapor to be thermally anti cal orioAi1y per '+t.

p = PBT, (27)
S e = ojr ¢ 28)

where B in (27), is the universal gas constant divided by the molecular

weight of the vapor, and ev in (28) is the specific heat (at constant

volume) of the vapor. The heat equation for the vapor becomes

Pcv v a • T1 = kM72T1- p (V Xv

+k Vv2-c 2v -2V' (IV a (29)

according to eqs. (3) and (9,;, if the radiant heating in the vapor is ignored.

The thormal conductivity, specific heat and viscosity coefficient of the vapor

are about an order of magnitude smaller than the corresponding quantities

for the liquid. On making the same approximations for the heat equation (29)

as for the equation of motion, we obtain an approximate relation

k p2T = pV • v,

2I



which reduces to
V Wk + pO) =0 (0

if the velocity potential relation for the velocity and the uniformity of p

and k are used. Inasmuch as the pressure, temperature and velocity potential

are all finite at the origin, the only solution of (30) consistent with

spherical symmetry is of the form
1

kT + po = c(t). (31)

The velocity potential remains undetermined to an additive function of time,,

which can be so chosen that C(t) = 0 in (31). Eq. (31) then yields the

relation
kg -- Tv (32)p

and if the perfect gas law (27) is used in (32) it'gives the further relation

ki
_ k_ (33)

Eq. (33) may now be substituted into the equation of continuity (1), giving

at=P _7 "4 _P N/j V .p,•=f •

or

Eq, (34) is a diffusion-type equation, which may be compared with

the heat equation written for stationary vapor

LTov =kV2 T,

or
2 L 18T -- (35)

T-D D &t' 35

The function in eq. (34) replacing the thermal diffusivity D of the vaipor

in eq. (35) ia

I1 -(36)
1P
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If the •apar. mole cuLes may be supposed to have, say, three translational and

three rotational degrees of freedom, then ca 3B. Hence if the vapor were

stationary, we should have from (35) and (36)

1911 z3D. (37)

Eq. (37) will be of the right order of magnitude even if the density varies.

Now, the thermal diffusivity D of saturated water vapor at 10300 is about

.3 cn2 /sec. The characteristic diffusion length for eq. (34) is thus about

/4f-%t = 2V. The significant time for the 1030 bubble is about 10-4 sec,

roughly the time between the end of the relaxation period (when the rate of

bubble growth becomes significant) and the time of the velocity maximum (see

Fig. 7), giving for the diffusion length VZWIt = .02 cm, or about six times

the bubble radius at the velocity maximum. There is, therefore, an insignif-

icant variation of lnp with position in the bubblo, so that the vapor density

may be considered a function of time alone,

/Pvap =J (t). (38)

Eqs. (32) and (33) then show that also

T•.- = T(t), (39)

9p = 0(t). (40)

It is not legitimate, of course, to argue from eq. (40) that the

vapor is at rest, since it is the small terms in 0 which have already been

neglected, in arriving at (40) that determine the velocity. This difficulty

can be traced to the normalization chosen for 0. However, an estimate for

the velocity is readily obtained from eq. (38). Consider a sphere of radius

r within the vapor. The mass of vapor in such a sphere, by (38), is simply

m(rot) = 4 Tr3• %t (41)

"If, now, the independent variables in (41) are chosen to be m and t,

rather than r and t, eq. (41) may be written in an alternative notation as

m = iijo(t) r3(m~t), (42).



the obange earrespo idln the adoption c£ Lagrangian rather than Aulerian

coordinates. Differentiation of (22) with respect to t, holding m fixed,

she*- that
r ap+ 3 . ar= OP

at 0,

or since k is now the vapor velocity, thatatha

"vap t ' 3/ dt

Inasmuch as the origin for r in the above development was arbitrary, eq.

(43) implies a uniform dilation or contraction of the vapor within the bubble#

which is consistent with the uniformity at /O a Eq. (43) indicates a radial

velocity in the vapor at the bubble wall of about .4 cm/sec for the 1030

bubble when the velocity of the bubble ,Iall reaches its maximum of about

32 om/sec.

In the discussion of the growing vapor bubble in a suporheated liquid,

effects related to the velocity of the vapor will be neglected, thus incurring

an error of a few per cent in the results. In the discussion of the

collapsing bubble, the large temperature variations at the bubble wall may

be expected to cause significant changes in the vapor density, and so the

effects of the vapor velooiiy Will be Included.

It may be noted in passing that for a uniform (irrotational) dilation

or contraetion of the vapor, such as is indicated by eqs. (38) or (43),

the viscosity terms in the heat equation (29) vanish identically.

Bonary Conditions.

If the terms involving viscosity are omitted from the basic equations

(.1), (2), (3) and the equations of state are substituted in, the resulting

equations are of first differential order in v and p, and second order in

T. In order to match solutions for the liquid and vapor across the bubble

wall, relations must therefore be provided connecting the values of V and pt

and the value and norma.1 derivative of T across the interface. Because of

the assumption of spherical symmetry, no further relations are needed if the

viscosity ter.ms are retainad.,
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cosdaer a diueieatial cvae r extending from the center of

the vapor bubble (the origin) to a point indefinitely far away in the liquid,

whose generators are straight lines through tha origin, and whose differential
creeos section at the bubble wall is in ths cons. mass is conserved

The equation of mction of the cone is*

L ,Jdx+ dSf= PdS -- ndS, (45)

and the energy balance equation is

4' {4 + vý)d -6 +j VdSj + (s+ ý

fA dt +d n(P + kVT) dS.46
P -r

In these equations, p denotes the outward drawn normal to the cone in

dS, and the unit normal to Ž_ extending away from the origin in Jj d

The surface integrals on the left side of the equations represent transport

toaer these must be added because the elements of integration do not move

with the fluid, To evaluate the integrals we shall need the differential

equations, which may be written

S+ 
9=o, (47)

+ V' • • o (4S)

at (9 + v21 + y9+IV2) - P •y - WTI , (49)

eq. (49) being a combination of eqs. (2) and (3).

Sines the stress tensor does not account for the molecular forces
responsible for surface tensionp the force due to surface tensions must
be written explicitly into eq. (45), and the corresponding surface energy
into eq. (46). For a classical treatment of the theory of surf'aho tenri±on;

a.e Joos, Thsoretional Phys (Hafner Publishing Co; Lnea# Now Yark, 193),,
Chapt. IX, section 8,
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The eQuations (47), (.48). (4)are _.1 of the form

-+ V• b=, o(50)

as b and e being suitable scalarso vectors or tensors. The integral

relaionsrequire a kcnowledge of~

-Jadt.

The change in the integral fr adt during a time dt is

dfadt = + PA L + !dt~ dr a'dtý

r 'r<R+Adt L j J
+ [a + dt dZ - adZ (51)

r>R+Rd ftr>R

vhere at is the value of a written for the vapor* The volume element

d T is here considered fixed in space, To first order in dt, (51) is

d R<r<R+Adt (a' - a)diC + dt[ r t + Ar

This may be transformed with the aid of the relation (50) and the divergence
thecemp to

- ~ad~=f i(a'-a)dS + f oldt- ~ .bdS.
r= R R<R

r, f,+ Jad -dt - bdS Jb
r>R f>RI

= (a'-a)a s + (.. ) - r • s - *(b,- b)1S

-[A(a- a) -n (b- b)17 bdS + frcd

(52)
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P.yIAn& (52) to eqs. (")-(49). one obtains in a straightfma-ov rd ftshion

[Ay,, -/) - . y',_' -/ 03 ,._ - o

2 , - ) e * + . v,2 + v2),

-*= f 2(e+jv ,.2/(.+ ½2,1 (53)

- _ .i</,,(e, + ½vt2 ) +-,•( + I½v2) p, -,

+ P • -kVTt + kr2TiX...

Because of the spherical symmetryq

n• -> P =n[- P> + it ; ý .7 - t •>

on - (the same relation holding for P,). The use of (54) in (53) leads
to the results

4 V-) -V9, (55)

, + • ,' + (V - VI' I,'• (P. (56),-.>,
/10 3r Ar 2 2k ~ ,3 •-k .i /1(- vl)[L'i + (• V!)-Q(2,)

Or 2 2 r8

""1 I-§V) (57)

at r = R, where in (57) we have put

L =e' -e + (58)

according to the first law of thermodynamics, L is the latent heat of

evaO ration at the bubble wall. IMvdent]y, eq. (55) expresses the con-

servation of momentum ato the bubble wall. The last terms in (57)9 (58)
*represent kinematic (mass transfer) and viscous corrections to the vapor

pressure and heat transfer relations holding at the bubble wall*

"1-' S9UW VA .UU W& rizWValy, VUL aodto CO--" LIM& W'- aaloas
"the bubble surface

T' = T. (59)
A tempe'.-atWe dlsoontinuity would iMpy an infinite heat conduction through

the mnwo..th



The mme~ntum condition (55), which may be written

v= (60)

shows that the liquid velocity at the bubble wall can differ from the

bubble wall velocity by at most terms of relative order /00 ?<. • 1/1000.

For all practical purposes, (55) may therefore be replaced by

Vliq(R) = (61)

As has been mbwuioned previously, the vapor velocity is small in conpariBon

with the bubble wall velocity* The momentum transport correction in eq9 (56)

is thus approximately, 2 ,/ For this to compare with v I which is about( atm og6 c.g~s unita, A must equal about 300 m/se, is.e. be comparable

with sonic velocity in the vapor. Such large velocities will not be con-

sidered here, so that the mmontum tzvansr-o-t correction in eq. (56) may be

neglected. Similarly, the kinetic energy transport corrections to the heat

transfer relation (57) are ocapletely negligible in comparison with the

latent heat of evaporation. (For water, L m 2 x 1010 erg/gm.)
The viscosity corrections in (56), (57) may be evaluated by eqs.

(17), (43), (60). The oontribution of the vapor vanishes identically,

"The contribution of the liquid amounts to

"", I it -

in eq, (56), and this divided by,- in eq. (57). The net effect of viscosity

is thus to increase the surface tension T in (56) by 2 R, and to decrease
the latent heat L in (57) by 4 ReA/R. For a vapor bubble grming In
water, the latter correction is entirely negligible. The surface tension
increase amounts to .2 and .9 4ynes/cm at the time of the velocity maxim=
of the 103 and 1060 bubbles, respectively (see Figs. 7,9). This is of the

order of the thermal variation in 0, which has already been negleated. For

the aolapsi•ng bubble, these viscous effects become I'_ortant only near the

point of collapse.

With the negleet of the kinematic and viscous corrections, the
pre-vire relation (56) reduces to

S(62)
P~vap ýPliq+ Rg (

Since the temPerature within the vapor I- considered to be uniform, the

heat transfer relation (57) reduces to0--'1
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By ~ ~ M %M4 (4t thsmy lob 'i~tn

R2(k OT)~ (Rs ) (63)
liq 3't a

When the vapor is at rest relative to the interface, the quantities
pvaP and /0vap are equal to the equilibrium vapor pressure and density
Peq and ! 0 eq of the liquid at the temperature of the bubble surface.
But wben a relative velocity exists they will differ, by an amount depending
on the nature of the liquid. A relation connecting these which holds when
the vapor may be considered a perfect gas in a state of complete equilibrium
(Vvap = 0) has been given by Mathews,(9) an the basis of previous work
by Plesset.(lo) In the notation used here, Mathevws relation is

* -- (64)
Peq c

where - is a characteristic velocity, related to the velocity of sound o
in the vapor and the specific heat raio Y, of the vapor by

= a (65)
The paramtar _ atpAari ima ir, (M ) A ^a,. .

of the liquid, and measures the fraction of the surface available for
evaporation or condensation. For non-polar liquids a is near unitybut
for polar liquids with hydrogen bonding a may be appreciablyv smaller.
For a water surface near 1000, a is reported by Wyllie(1) to have the
value .046 This experimental value was obtained by measuring the time
required for a sample of liquid to evaporate into a partial vacuum. Due
to experimental difficult-ies, the value of a for water has not been
measured at higher temperatures,

If the value a = .01 and the values Y = 1.33, = 5. x 104 on/seo
are used in (65)p they give for the characteristic velocity of water
a 7 Waso. Correspondi~gly, one might expect a significant deficiency

in vapor pressure and density to occur when a vapor bubble is groýwing
in water at arIy a moderate rate. The situation in the oase of a collapsing
bubble is even more critical. The large pressures developed within the
oollapslg bubble boeaus of the Imaoesibility of the bubble surface for
octdenUatien would severely limit the rate of collapse, and might be expected
to rMult in the appearanoe of condensation throughout 'he vapor.
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These conclusions, howver, do not appear to be borne out by

experimenu. Th-uas the pressure-liimted cDllapse deocribed does not occur

(radial velocities of collapse in water which are certainly in excess of

25 z/sec have been reported by Ellis( ), and condensation his not been

observed to occur within collapsing cavitation bubbles, except possibly

near the point of collapse. Tbese facts indicate that the value of a

for water at even 10 0C may be much greater than .04, and possibly point

to a significa•t increase of a with an increase of temperature e

We shall therefore assuma the velocity ; in eq. (64) to be

sufficiently large that vapor pressure and density discrepancies may be

ignored, so that we m•y take

Pvap --Peq' /Prep = eq (66)

at the bubble wall.

gculuelone

From eqse (17), (61), eq. (21) becones

Piiq(rPt)--=p /o+ R R-i R (67)

Pi/0lqr2 r4  *(7

frA -i 20-i:, Mt" f~r],~
• P l tq • ' " -1 e q % & R w o %' to % w rv-, , , % "" I-,,,n V o % % ,, .Of f. . .

the bubble vanl

p (T) -p
2 /34~q /'liq R

an equation of motion for the radius R of the bubble wall. Eq, (68)

was given by Plesset.(13) (T) in (68) refers to the equilibrium
Peq

vapor pressure of the liquid at the temperature of the bubble wll1*

It is not the experimental value of a which is questioned here. but
the determination of the tAmperature at the surface of evaporation. In
the case of water, the ratie of evaporation is large, and a steep temperature
gradient develops at the surface (possibly reaching .02 or i03 00/cm).

As indicatcA previously in the discussion, eq. (68) may be considered
valid so lneg as ft remains small in comparison with the sonic velocity
in the liquid. A correctica to the equation of motion (68) which takes
tha ocupressibility of thi liquid into aoount (up to terms quadratic in
/oa) W) booeen given tW FR, Giluor (HDLOIT Report 26--4, April 1952)

ce IM b"is of the Iizwkvod,.,Bth. iWpotbesin.
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Coupled With eq. (68) is tho heat equation for the liquid, eq. (24)s

,ov•+ V • VT) = kV + •,(69)

with the boundary condition

R~k I( (R 3 /~q(T)) (70)

(eqs. (63), (66)). /Oeq(T) in (70) is the equilibrium vapor densit7

of the liquid at the temperature of the bubble walla It will be assumed
that initially the temperature in the liquid is uniform

T(rO) = T 0  (71)

Together With the initial conditions for eq. (68), eqs. (68)-(71)
determine the problem of vapor bubble behavior.



-28 -

TIT. THE ffAT PROBLEM

The system of equations I1 (69), (70), (71) which define the heat

transfer problem in the liquid may be written

-v.

Q21RIt) R2 F(t), (1)ar r=R(t)

T(rO) = ToI

where 1) -= - and

2 '

RUr2

F(t) ~ R 1 6 (T)I.J
3k dt eq

At r = r the temperature in the liquid becomes uniform, so that the first

.and 1aat of eqs. (1) give on integration

T ~~o k ~t,(

if q is chosen so that q(O) = 0. To standardize the solution it is

desirable to use instead of T the dependent variable

= T-T , (To)

which vanishes at r = co and satisfies the system

V2 g 1 rN +vD2 t = ~t _

1 rR = R2 F(t), (5)

o) -- (Co, t) 0.
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Conveti on Soiuti on.

Because of the boundary condition at the moving bubble wall, it is

convenient to transform (5) from Eulerian to Lagrangian coordinates.

Coordinates appropriate to the present problem are

MTh [r- R3(t)], (6)

The aLgrangian coordinate m measures essentially the mass of liquid con-

tained within a sphere of radius r about the center of the bubble, the

liquid density having been assumed constant. In terms of m and t, the

system (5) becomes

am 1 - D at

•I =F(t), (7)
am m=

G(mO) = e9(0, t) = 0.

These equations can be put in more tractable form by introducing

a temperature potentia' Up defined by

aU
=-am (8)

YTe differential equation

am ;m2 D8T

may be then integrated once with respect to m *to yield

r4 2uc - I Dut J(t),
8m2 D at=

where J(t) is an arbitrary function of time. FMom eq. (8),

fU = 0 9dm + K(t),
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and the function K(t) may be chosen so that J(t) 0 0, and also so that

U(m,O) 0 0. The system of equations to be solved then reduces to

em2  D 8t 0

- o= F(t,,(9)
m0-

U(m,O) = O. j
The diffusion problem thus defined can be solved by an iterative

procedure if the assumption is made that U varies appreciably only near

m = 0. This is equivalent to the assumption that the temperature variation

in the liquid is localized in a thin "thermal boundary layer" surrounding

the bubble wall, which is reasonable if (as is the case with water) the

thermal diffusivity D of the liquid is sufficiently small. To utilize

the assumption, we shall rewrite the differential equation as

24 =- t (r• 4., (00)

and treat the right side of (10) as a perturbing heat source. It is

convenient to use in (10) a new time variable r , defined by

0
S- •~4(t) dt, (1

in terms of which the differential equation becomes

.M yR4  am)

The system for the unperturbed solution U0  is
82U aU
-0 -- 1 -"2 = 0
am2  D a 0,

amu-
852-
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Thi. is reaftiy solved by taking the laplane tra-nsform of the system with

respect to the variable • * If

u(ms) - ef U C0 (mgt) dt C Si u01

and

f(s) [Fly' ?1

the transformed system becomes

d2ud

f(s), 0

d• dm

with solution

u _f(s) e VB

Thus

du FD f(s) e d=u=f(3 ) s
dm

giving
2o-d- j: " 4D (t; -

"o" d " e (13)

The system for the perturbation correction U1  may be written

27
m2 -D a" -6~ ,•)

(1.5)

M--O BM"7C
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where

+ :_ (16)

If v(ms) = U g•[], =mvs) (G 0 a]

the transformed equations become

2

dv _ v = g(m,s),
I D

dm:-IW- MM-0

with solution ([ IC tm
+,• o f °a M+,,o + °-xv

=~ts -x + (x,s) dx
0O

-. e e g(x,s) dx a

o -J

so that

"dv- (e/- ID- /v g dx-

-e f gdxg.
0,

At the bubble wall m = O, this reduces to

= -~ ~ D g(x,s) dx,

giving for the perturbation temperature at the bubble wall*

f dx I
*X ---

1(0. -C) =-f dx e -3-/ (x•)d -V T+,)/ e D 'i(-C5".

It is assumed In the following disciiseion that all limiting proce,12res,
changes of order of intagration, etc., are permissibles
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or from (16), 2

0l(OPT•) =_ '• d' -o°c X -

,X ( ) LK ] dx. (17)

The integral equation for the perturbation potential correction U1 will

be given for completeness. Its Laplace transform v(ms) can be iten

in the form_

,'* j [emIV~ ev/] g(xvs) dx,

from which one obtains

2 l oo ° 2 Jo-

The solutions given above in eqs. (1,3)-(17) are thus far exactl,

but not useful for comnutation. The a.proximations to be made depend

upon the assumption that the influence of the heat exchange occurring at

the bubble wall does not extend far into the liquid. The transform of
the unperturbed temperature solution may also be written

a = dkaj m 'D P
dm dml

which yields

For either the expanding or collapsing bubble, Ieo(O 3 )1 is an increasing
ftuotion of "3 . Hence, if Go(Or ') may be considered negligible for

< X (< t), one obtains from eq. (18) the inequality
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S- .. JIo

Since erfo(x) < 1/2 for x > .5, the characteristic diffusion length

in terms of the Lagrangian coordinates may be taken to be m = %/D(I- t )
for the unperturbed temperature solution. The parameter of the

perturbation is

S~~R3-,

fwhich in the region of significant temperature variation is therefore

less than

1+ R3-1

T..s the perturbation correction may be expected to be small in comparison

with the unierturbed solution when 3 VD(• - %) is small in

comparison with unity, which will be the case if D is sufficiently small*
The perturbation correction must vanish when Go vanishes (e.g. for

"0o) because of the boundary and initial conditions w. the

perturbation equation.

For the growing bubble, " - o -< R4 (t)(t - to ) so that

0 0

'3 - R

The significant heat transfer for the 1030 bubble begins at abuat
to = .15 millisea. T71m bubble radius is 2 x i073 em about .06 millisec

later. Taking D = 1.,9 x 10-o3 0 2 /sec, this gives

3 (R " .'50

near the beginning of the 1030 bubble growth. The ratio drops asym•-totically

to .20 at later times* Thus within the boundary layer, the perturbation

parameter (r 4'/1) - 1 is certainly smaller than .50 during the time of
sinifoanlt heat exchange at the bubble wall., For largorinitial superheats



the bubble grows faster, and the-ratio is acoodng• swe t sallero

For the collapsing bubble considered here, the ratio R- is

much smaller than unity a1ep noar the. point of collapse.

When the thin thermal boundary layer assumption is valid, one may

approximate the perturbation parameter by

+ -LZ )
K RR3

within the region of significant heat transfer, and to a first approximation
neglect the 82U /Wx2  term (which vanishes in any case at the bubble wall)

in comparison with the 82/LXa term within the Ferturbation solution
integrals, Thus, the perturbation temperature correction at the babble

wall eq. (17) becomes approximately
2

or by eq. (14;, I

Irnterchang~~the order of the last two integrations gives

u2

, t. 2 J0 1 • •Id

to R'p
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S... .. .a • _ .L . .. I S I f4 -#\

A000rad~n to OqS. ý riu

F Yk 1teq (20)

is proportional to the rate of increase of the mass of var.or within the

bubbles in terms of the time variable

-t R4 (t) dt.

F(.) is therefore negligible until a time t = t or C = 0 when the

radius ,)f the bubble begins to change, so that the lower limits of

integration in eq. (19) may he taken to be = = o instead of 0.
For the collapsing bubble, I F(T) I is itself an increasing

function of 1 * For the expanding buhble, R - C as t - c (see

Eq. IV(62)), so that after an initial increase F(U) eventually tends

to zero as -I, I- hý,wever, for a reasonable choice of t 0 , the product

\'"t -- P ) in this case becomes an increasing function of

Hence, the perturbation temperature correction given by eq. (19) is

bounded by

P (- 2'

(21)i

for the expanding bubble, or its negative for the collapsing bubble. The

last integtal in (21) can be transformed by the chunge of variables
IT .• Z.•; (-o)(1.- Z). o<x<I

•="20 )X0; " -

to

0 'to

= 3'i - = 2('c- 3/
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giving for (21)

I e1(Ot)I < 4D (22)

BY (20)v 'this may be written as

•'of

tJ 3/_2.d o(R/
(0 tf Ir. Ielc i aito f PqT ncmaisnw hto

100

R in the eatimatep as
so ~ d••-'-od ld n R3(t)•I

I•(°r~ <-3k eq o (.,~)3/2 d ln, %)"(•

0 0

For watera the factor

4DL LfR

in (23) has tJe value .0660C at T = 500C, and .50o0 at T =00°C.
Inthe case of ch ollapsing ibabblep the ratio o oaihi

.derivatives in (23) is small except near the point of cellapsep when it

increases rapily1 in absolute value, Since

M- "^ O </

fo 0 < < 16 a aruzde bound for 1011 fa- the collapsing bubblG is

,e, 4DLe ln R;3n 3{')

< k R3(-•)id•• o



This has about the value o070 C x 6.9 z .oC fnr the bubble considered here

when the bubble radius has dropped to 1/10 of its initial value, which in

fa-ther than the collapse was actually followed (see Fig. 11). However,

the actual temperature rise (see Fig. 12) at the end of the time period

considered was 40aCp in comparison with which the perturbation correction

estimate is 6ompletely negligible.

For the expanding bubble, the ratio of logarithmic derivatives

appearing in e-q. (23) vanishes at = Zrisen to a maximum of "Was

than .75 at sae value of > Zo, then drops asymptotically to the value

1/2. The decrease after the maximt-m is sufficiently gradual that it can

be dominated by a factor - ) for a small value of c. Thus, a

bound" on 1@11 for the expanding bubble is given by

"0 k, ) 1/2• 0 d
10

4DL.'o8r [- dS ~ "~d 5 ~ ~ c l
< - (,A _4DL3k 0 ) 3/2

- /)Go d ln(a. - ) o (,R_ vt

3 1 dl ( -- (25)

Taking to for the 103° bubble to correspond to to = .15 millisea (see

F.g. 7), we find for the ratio of logarithmic derivatives in (25) a

maxi3am of ,71 at t -. 19 millisec.j and the value C o 151# The bound

on 11 I thus has a maximum of about .260C at .19 milliseo, and drops

asyMptotically to .18%0. For the 106° bubble (Fig. 9) the choice to = 28

mierosec. gives a maximum ratio of .74 at 34 microsec, and the value.25 Since 4 eql fo .theth
£ = .25. Sinc~ /e 4L/.q3kC z .6000 at 1060C, the bound on IS,1fr h

1060 bubble has a maximum value .3600 and an asymptotic value .24+°.

The conclusions drawn frco the analysis above of the perturbation

parameter, and from the bounds derived for the perturbation temperature

oorrection at the bubble wall, are thus in agreement. They indicate that

the thin thermal boundary layer assumnrti= 43 valid when the vapor bubble

grows or collapses rapidly, and also may be considered valid when the

bubble is nearly in equilibrium. The assumption becomes somewhat critical,

in the cae of water above its boiling point, when the bubble growth occurs



occurs at the bubble wall, but slow enough for the liquid to partially

adjust to this transfer. The error incurred at this critical stage3

however, does not amount to more than a few tenths of a degree, and remains
a small fraction of the actual temperature. It is sufficientp therefore,

to use the unperturbed temperature solution in the dynamic problem# at

least for the case of water.

In terms of the original time and radius variables, the unperturbed
temperature solution (13) is

R2 T dx

%(r pt) T(rpt) -T -f ft r=R X_0 CO
t 9,[36D R4(y) dy

which reduces at the bubble wall to

O ~v=./• ..... • F=~x.
0 V 1  t 4  yFf~

The temperature gradient at the bubble wall is given in terms of the
evaperation rate by eqs. (1), (2), so that for the present problem, the

unperturbed solution beeches

%([R,t) - k/ t I R/X p (26)

It Is of interest to compare with the convection solution
presented above, a diffision approximation (for the identical pbyaical

problem) proposed by Forster and Zuber.(7,14) This approximation may
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. d•em.loped 4I= +he f4t,:gimln.., man r,.*

The heat equation (5) for an incompressible fluid may be written

* Wt [k, - x,,,c0e1. (27)

In this form# one may identify the last term on the right as representing

the rate of heat influx into an elementary volume fixed in space due tc
transport by the fluid. If the fluid velocity is sufficiently smallp

the transport effect may be neglected in comparison with conduction effects,

represented by the first term on the right. With this neglects the equation

becomes a diffusion equationc

V2e 4 AO (D = -k-.(28)

The initial and exterral boundary conditions for eq. (28)

IE G(rO) = W(o, t) = 0 (29)

are the same as for the convection equation. The boundary condition at
the moving vapor bubble walln

k- ,R 8 Ld 3 (30)

is also the same, but becomes extremely difficult to a.ply in ]iblerian

coordinates, and some sort of physical or mathematical artifice must be
resorted to if a solution in closed form is to be obtained. The approach

.-o, the problem given by Forster and Zuber consists of treating the heat

ýSxchange at the bubble wall as though it were due to a moving sphorioal

heat source (for the collapsing bubble# or a heat sink for the expanding
bubble) in a stationary infinite fluid,

The presentation given here is not that of the authors. The

original presentation of Forster and Zuber (ref. (7)) is quite brief;

the second (ref. (14)) by Forster pU.--p--rs to give a mzre detailed

treatment of the rroblemp but actually treats a different problem.

Neither paper gives an adequate analysis.,
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They aurt with the elementary soiutUM*

of equations (28), (29) f Cyr the temperatirue difference e in the fluid

at any radius r and any time t > 0 due to an instantaneous spherical

het source at r = rt, t = 0. The total heat liberated is 2 AcVQ.

This is to be related to the quantity of heat transferred out of the

bubble by condensation during a time interval dx while the bubble radius

is r' = R(x). The actual heat h transferred out of the bubble at

time t = x is given by the right side of eq. (30).

h = -L Vd3()/., x (32)

and this is also the heat transferred into the liquid at t = x. In
accordance with the Forster and Zuber assumption of an infinite mediump

however, the elementary heat source associated with the solution (31)

releases its heat not only to the fluid outside the shell r = r p but
also to that part of the iuid inside he. shel!! At the4. .-s-tant of release,

half of the heat appears inside the shell-. Therefore, if the solution

is / 15o correspond to the heat release outside the shell at the moment

of liberation, the h of eq. (32) must be equated to only half of the

total heat liberated, giving

Q oc - Rd /eq]

This choice inbroatces an error at later times in the final

solution for two reasons: First of all, the u-at flowing through a later

shell is no longer just that due to condemoation at that time, but still

has a contribution from the heat diffusing outward from the shell r = r's

This relaxation effect is minimal if the radial velocity of the bubble

wall is large, and/or the thermal conductivity of the (stationary) fluid

Eq, (31) is readily obtained by the operational methods alrsacy
used. It differs from the standard solution given by Carslaw and
Jaegerv Conducticm of %at in Solids (Oxford Univ. Preass, 1947), p. 219,
by a faotor of tyo becauco of ths choice 2 o c Q* rather than o a Q.
for the total heat liberated. IU transform of'(31) is given below.'
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thouha # % rb4A4+A- mn h b ned I'm "nti that the heat
flow through a surface element bounding the fluid is determined (as for
the convection solution) by the temperature gradient there. The
appropriate boundary condition for a shutter at r r j, t = 0 will thus

be of the form

_ •ir = Q, W(t). (36)

The constant Q1 can be related to the beat h passed by the shutter

by a determination of the total heat outside the shell at a later U4me

(t > 0).

The system of equationsto be solved is

117 = sl . (r" > r ) p

(37)
Cr~~o) G=0P ) 0 -Q' S (t).e(r,o)=:e(=, t) =o, 6erl

rr'

Sputting V = [ el1 and taking the Laplace transform of the system

with respect to t, one can reduce it to an equivalent system

d ( r w) = D ( r w '2 D
dr

(C d) 0 -, • '

with solution

r ((- r).).W(rps) = rL.a€, e (r > r').

r' (38)

The heat liberated outside the shall r r' is given by

2 ,2Dtf
"o(( =Jrj O Yw" 4i*r cl=4"rl '. v s



h = 4rrt2a avQtD,

so that (38) becomes

v~r~)=- ... .!e ...... • ,(39)

v~rs) 4914~ ovD r 1

which has the inverse transform
2

S...Q_ ....... e " 4Dt j

V eru-(r" )• +• 3_, (40) :"r-rI).rf- arr er/ [ •

rr

The analogue of the moving source solution (34) can be obtained

from (40) by again writing t - x for t, R(x.) for r1, R(t) for rV

"using eq. (32) for h, and integrating over x. The moving shutter

analogue is thus

-3 "(R(t)-R(xY]2

o- U 1-." 62-eo " - 4D(t-x)

" L R2x erfe.

(41)

Tris solution has, of course, the same difficulty with the relaxation

heat flow that the moving source solution has, but the problem associated

with the heat flow from within the moving boundary has been eliminated.

It in possibla, in prinoiple, to eliminate the relaxation heat

flow from the shutter solution by using .the correct boundary condition

at the bubble wall. This can be done, for instance, by leaving h

undetermined in (40), but summing the gradients of the elementary shutter

...... solutions over the variable x to obtaln the temperature gradient Of
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the fi-a 3"O ,,•"40n- In te•fu Z +,he unknown differentia~l h(x;. By using

eq. (30) to specify the temperature gradient at the bubble wall, one
obtains an integral equation to be solved for h(x), The same procedure
can be carried out for the moving source solution, leading again to an
integral equation for h(x)* It is apparent, however, that a more
appropriate procedure would be to return to the original equations and
to attempt to solve them, using the ccrreat boundary conditions from the
beginning.

The moving source solution (34) and the shutter analogue (41)

differ from one another in the last terms of the respective integrands.
Since this difference accounts for the false heat flow from within the
interior of the bubble in the case of the moving source solution, it may
be expected to become important whenever relaxatim effects become
important, isee, when the thermal diffusivity of the fluid is large, This
may be verified indirectly by showing that the solutions become identical
when the diffusivity is small. (A direct verification will be given

below for the case of the growing vapor bubble.) Perhaps the easiest way
to show this is to examine the Laplace transforms of the respective

- elementary solutions, If the transform of (.40) is denoted by w, as
above, and that of (31) by us one has

rv " i rr-> r'),

u(r > r -
+ r'

In the equation for u, the substitution Q =h//% has been made.
It will be observed that for r > rI, r 1 /• > 1,• both reduce to the form

- •D

-£ r -(r-r' )/

4u,-o,,rD ~r
4vrf/D



-46-

which has the inverse transtoxt
, rr?)2

h e t

The contribution to the boundary temperature by this elementary solution is

3('0 ) dx IRN) ý - 2

iwt (41)

L . ... _. . 41)(t-x) (42)

is** the leading term of the solutions (34), (41),

The solution (42) is a valid alproximation to (34) and (41),

however, on3,y for small D, For large Dv the remaining terms in (34),

(41) becoe important; as D tends to finity, the integrands of both

(34) and (41) tend to zeros in fact, for x / t. Eq. (42)v on the other

hand, tends to the Forster and Zuber approximation (35) with large D*

It is to be concluded from this that the Forster and Zuber approximation

is never a valid approximation to either of the diffusion solutions

(except in the ease of a quasi-stationary bubble R(t) a constant). When

it is permissible to neglect the second exponential in eq. (34) in

acmparison with the firstp the first exponential cannot be set equ,,al to

unityl and when the first exponential approAches unity, so does the second.

General Gcm _arsoa of the Congvqetiog, and Diffu=sio Solutions,
The temperature solutions presented abov\ have not been restricted

thus far by a radius-time relations and so may be compared for any

assumed behavior of the boundary consistent with the heat problem (such

as may be achieved# for instance, by keeping the temperature of the bulk

liquid at TO but varyring the external pressure)e

For a growing bubble, the convection solution (26) predicts a

temperature drop at the bubble wall which varies inverely e a. the square

r.oot of the thermal diffusivity D of the liquid, other factors (such

as the specific R(t) behavior) being held constant. The diffusion

solutions (W4), (41) predict a smaller drop than the convection solution

for all D. The discrepancy becches most marked for small D) when the

convection drop becomeo large but the diffusion drops tend (depending

upon the law of growth) to vanish.
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These predictimis are qualitatively understandable on the basis

of the physical models involved. In the ease of the convection model#

the heat source (or sink) is always located at the same fluid elementst

those at the bubble wall. Thus , a decrease in the diffusivity has the

effect of concentrating the region within which significant heat transfer

occurs nearbr to the boundary, and correspondingly the temperature drop

will be greater there (if the bu'ble is growing, or the temperature

rise greater there when the bubble is collapsing).for small D than for

large D. In the case of the diffusion modelf on the other hand, the

fluid remains stationary while the beat source sweeps through ite A

deoregse in the diffusivity here may ultimately be expected to have the

offset of insulating the successive elementary sources from one another#

such as to prevent any accumulation of heat from taking place.

1ben the dIffusivity of the fluid is large, the relative import-

anee of convection effects in comparison with diffusion effects should

diminish. As has been pointed out above, the discrepancy between the

o convection and diffusion solutions is most marked at low9 rather than

high values of the diffusivity. Hroever, both the convection and diffusion

solutions presented here cease to be valid when the diffusivity is too

large! so that a cmparison in the limit of large D is not mea•_ningft,_l!

Convearisoa for Free .Bbble Growth.

When the bubble growth is not forced by external pressure

variations, it becames limited eventualljy by the heat transfer at the

bubble waill The physical relations bolding in the heat-limited growth

will be discussed later,* but may be brieflr related here* The

evaporation at the bubtle wall necessary for bubble growth forces the

temperatare of the liquid there down toward the boiling point of the liquid

at the external pressure. If the boiling point is denoted by Tb, and

the temperature of the bulk inquid by To, the late growth ef +.-I

bubble must then be such as to satisif the asymptotic relation

See the diseussion X the asyamtotic phase of bubblo growth in
seatl--= 'v
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For every temperature solution presented here, the relation (43) restricts
the late bubble growth to a law of the form

The rate of bubble growth im then essentially specified by the value of C.
Lot the parameters 8, A be denoted by

/% • (To b

Then S in related to b gby an equation of the form

ii

8 = IG P(46)

where I(A ) denotes the temperature integral involved. For the con-

vection solution (26), I(,X) is given by

I () =14 f -/A, I 4a

for the moving source solution (34) by*

fe + ex e

= >,i+ -'\Ao erfo (,3) (47.,)

f) 4AVIF (1 - \IT+ )as 0-O (-o)

2 v• (1 - = + - as GO (D o);2X2

for the moving shutter solution (41) by

* The integral. (47b), (47c) are evaluated in Appendix B,



1
•, 1+ 1 _[

S22 ( _A. ., as ).o (D. ®),

4 /1 '
-A +o

12.F1 2 f -ý V

and for the Forster and Zuber appraimation (35) by

10X

NI...'. t wil be observed from (4Th), (47e) that the moving source

of large /\ (i.e. of small Do for a given value of C)P but differ by

a factor of two when A is small(D large). This factor of two is to
be attributed to tjhe itributein to the heat content of the liquid by the

false heat flow from within the bubble surface, which occurs in the case

of the moving source solution (4Tb). This luat doubles the expected-

content (and temperature difference) for large D.* It may also be noted
tlAt the Fabster and Zuber approximation (47d) behaves differently in

all ranges of A from the moving source solution (4.7b) which it is supposed
to approcim-te.

R-sieca3l2y bubble growth with a given value of C but various

values of D can be obtained by otoosing liqaids with differing thermal
diffusivity, and adjusting the superheat in each to give the specified

rate of growth. If one concentrates on a given liquid (with fixed D), the
parameter which varies with the superheat becomes CO so that the analysis

of the various temperatmue solutions for a given liquid is to be made on

w
The actual heat content here is negative, corresponding to the

heat loss from the liquid at the siwfak of the growing bubble due to
eiapastion.
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the basis of the dynamic situation which occurs in the respective pk~sical
models, ard its dependence on the superheat.

When the law of growth (44), appliesr the temperature at the
bubble wall has dropped praotica1ly to the boiling temperature of the liquid
at the external pressure. The bubble growth is maintained by a differential

temperature (and therefore pressure) effect which vanishes with the radial
velocity of the bubble wall, and which Is negligible in comparison with the
temperature difference - Tb.* The pbysical constants i-, cr, Li9eq
and D characteristic of the liquid may here be given their values at the
boiling point Tb' The asymptotic rate of bubble growth (the constant G
In eq* (44)) for a given model is then determined by the relations (45), (46)
and the superheat To - Tb of the bulk liquid.

The thermal relaxation effects which make the boundary condition
at the bubble wall inaccurate, in the case of the diffusion solutionsp become
imnptant if the bbble wail moves too slowmy. Since iQk) IS -1 all
cases an increasing function of A this means (according to eq. (46))
that the diffusion solutions do not represent the diffuson model at low
superheats. At larger superheats, these solutions become adequate representa-
tAis of the diffusion model. But since th radial velocity of the bubble

all reases c th the Muperheat, the dif flsion maode! ±+tscf becomes non-
pbosioal at larger superheats.

The adequacy of the convection solution may be determined from
eq* (25): hen the aeyMtotl, lay Of bubble growth (44) appliesp the ratio
of logarithmic derivatives appearing in (25) is equal to 1/2. The perturbation
correction to the oonvaction solution (26) is therefore not larger than
about .2OC for water, and accordingly is negligible for all but the lowest
Superbats, once the vapor bubble growth has reached the anymptotio stage,
One my therefore consider the oonvect4on s olution to be accurate in this

phase of bubble growth.

A plot or the values of C predicted by the convection solution
(47a) and the moving shutter solution (47c) for varying degrees of superheat
TO will be found in Fig. 2p for the case of water at one atmosphers external

If the differential toemerature effect were ignored, the bubble
growth required by the theory vould appear paradoidoale
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pressure. The parainetera /, e L, it eq and D have all been given

their values at Tb 1COCO The temperature integral (47o) for the

moving shatter solution was integraied nmuerically, The breakdown of the

diffasion model for water is clearly bhown in Fig* 2. The diffusion model

- pr-ediots an explosive bubble growth at only .?OC superheat, and affords

no asUJyI-iL c solution at a"l" aboe this,

I
I

4e
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IV* THE DYNAMIG PROBLEM

The equation of motion of the vapor bubble imll is given by

eq. 11(68), 2
R + 4 2 = ,e ( ) "P . _ ,2 "(1

S/'ýUq / liq

where R denotes the radius of the bubble wall at time t, R the radial
-velocity and A the radial acceleration. Te initial ccmditions for the
bubbles considered here will be that the bubble starts from rest with
radius R,

0

R(O) R0o R(e) o. (2)

In the case of the growing vapor bubble, it will further be assumed that
the bubble is initially in (unstable) equilibrium, in which case the radius

Ro becomes determined by the equation of motion. For the collapsing bubble,
equilibrium conditions will not be assumed, so that the initial radius
remains in thb case arbitrzrya.

The surface tension parameter '"- and the density 7' of the liquid
will be aas d-cmd, con pt and equal to their values at the initial liquid
temPerature T0. The external pressure will also be assumed constant*

The equilibrium vapor pressure of the liquid Peq (T) at the temperature T
of the bubble wall cannot be assumed constant, however, since it is the

pressure difference Peq - p• appearing in eq. (1) which supplies the

driving force for the expanding bubble, and this has been assumed to be
in Initial equilibrium with the surface tension, For the case of the collapsing
bubble, the temperature at the bubble wall rises sharply near the point of

collapse, and the corresponding rise of vapor pressure within the bubble

mqk be expected to influence the rate of collapse.

The dependence of the equilibrium vapor pressure on temperature
can be taken from equilibrium vapor pressure tables, so that Pq (T)

ay- be "sumed to be a known function of the temperatut-e at the bubble waq.
The equAin Of motion thm becomes deteraInate when the bubble wall
tempeurature is ,peo--., in t-rms of the parameters of bubble growth or
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collapse. This specif:iation will here be assumed to be given by the

umperturbed convection solutnon, eq. III(26)t

where by eq. IIIt(), the temperature at r = c is

t ~ ~~~T = TO + qt,(2o +
C(0kq t q(O)O= ).(4

The equilibrium vapo density / appearsng in (3) is, like the vap'cr/•eq
pressure, a known function of the temperature of the bubble wall. The

! function ci W in eq, (4), which ropreconts the aecumulative effect of.thermal

radiation absorbed by the liquid, may be taken to be a linear function of
Stime. It aeffect is to initiate tU-m growth of the equilibrium bubble (by

raising the vapor pressure), but its influence is extremely transitory and

the term wil be neglected once the bubble growth has begun. It will be

wmitted from the equations of motion for the collapsing bubble. The
parameters L, k and D ( k/. ) appearing in (3) or (4) will be taken
as constant, and equal to their values at the initial liquid temperature To0

The error incurred by the neglect of the variat-•on of Ls t

Dr etc., with temperature is not significant in the case of the expanding

bubble, because of the small temperature variation which occurs (essentially

the initial uuperheat T. - Tb)* The error involved may be larger for the

collapsing bubble, depending on the initial temperature aid the initial

bubble radius, but is not as serious in this case as the failure of the

basic assumptions that the liquid is incompressible and that the bubble

remains sptdicale The trend of the physical quantities which describe the

collapse of the vapor bubble is the same, whether L, D, etc., vary or not,
however, and is given correctly by the analysis to follow.

In terms of the cstants

1(

a-V a 5R33
it?
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N(hah have the dimensions see 0 C respectively), we may define a set of

dimensioLlees variables

> (6)

-c ~eq~~1  (T
eq 0

i-. terms of which the system of equations to be solved becomes

S(T),(8)

TT - qdv 9(9)

~T= (T).(10)

The initial oonditions for (7) are

S11 at u 0o()
du

The pystical quantities we eventually wish to find are then given by

/ (v)

R(t) =-• 1 .1i/ z

I3 du= * -/ , (12)
and

T=T0 +~q ji , ~ z) dv- + q -. 1o k
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The JUMandinf Vanor BtUbble.

The pure vapor bubble wbhoh is to grow in a superheated liquid-is

assumed at some stage of the superheat to be in unstable equilibrium under

the effects of surface tension, vapor pressure and external pressure. The11
S" bubble growth begins as a result of further superheating, which increases

-the vapor presse and upsets tha equilibrium. Th•e condition for equilibrium
at the time of release of the bubble t - 0 is that A(o) = R(O) = O, and

hence by eq. (1) that

i•• ~Peq(To ) P• = 90 "(3

Eq. (13) fixes the initial radius R° of the bubble. As has been noted
previonsly, the nucleus from which an actual bubble grows is not necessarily

2t sphericalv and its surface energy may be apTreciably less than 4n."
however, the nucleus from which an actual bubble grows and the free spherical

vapor bubble of radius R are both in unstable equilibrium with respect
tl to growth at the temperature To arn external prossure p__ Table 11 (p. 65)

given a set of values of R. for various superheat temperatures in water

i at an external pressu•e p. of 1 atm. From the definition of 0(T), eq. (6),
or• the differential eqcuation (7)p the equillbrlia condition (13) isequivalent to the condition

,j! O~ )= -. .(4

As the bubble grows, the temperature at the bubble wall decreases

toward the boiling point, Inasmuch as liquids will ordinarily support only
a few degrees of superheat, the temperature vuriation involved in the growth

is small, ad an approximate expression for the dependence of vapor pressure
on temperature will suffice. For p= 1 atm,, a close fit to equilibrium<I vapor pressure data for water between 100°0 and 11000 can, be obtained Wy• taking

( ) - o
• - • -'P • ' A (T - Tb ) ,v15

Swith Th 1C00C for waterp and A = 1.0,800 cg.s, urd.ts. By coml-ing '15)
with () (6) (9) and (13) a, (14), one obtains for 0 the relati=



AD A ru A. C ) v
(T - (16)

'02 k A 70 a Vu - V

The term involving q in eq. (16) is extremely small, and
therefore of importance only for a minute portion of bubble growthi it upsets
the initial equilibrium. For a temperature rise of 1 C/uin in the liquid,

ti4s term is of order l ,ay and it will be neglected once the bubble gromth
has begun, T -fix the model, we shall take

D q(t) = at, (1?)

oorreupmding (see eq. (4)) to temperature rise of 10C in "' see. in the
liquid far from the bubble. Then from eq. (12),

..AD qCk)" ,u dy
q~)=A V-.- (18) !1

R a2 k z+/ 3(v)

where the constant

in keeping wtth the above discuesoni ,_ (180 rmay b approximated by

Sq(t) (t u. (20)
R;a k

Because of the small temperature range occurring for the expandingSbubble# we shal further apprazm~te in eq* (16) by unityp* and mrite

eq@ 0(6) as
Sfu a' (vI Lvi -O(T) =1+ )Cu -.,zc (21)

* . The error involved here in setting • = 1 (/'eq(T) =/ eq(Ts))

may be estimated from the results given below for the temperatiare variation.
It Is found that the ratio remains less than 5 per cent at any
time for the growing bubbles considered here, This ratio is identicall-y
the ratio Q•f vapor velocity to liquid velocity at the bubble wall, which
has been discussed previously.
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where x', ds - - and

The tsytem of equations for the growing bubble thus simplifies to

[7 I, ,- + "Ku - . Iu . -,

i (23)

M? =O =Z I at u=O.

A solution to eq. (23) will be found in four parts, corresponding
to four (overlapping) phases of -bubble growth, which may be labeled Uhce

"relaxation period", "early phase", "intermediate phase" and "asymptoticf phaselle

Relaxation Period.
Since the bubble growth starts from equilibriums we shall put

and assume that initially w(u) and its derivatives are mall-. On neglecting
the second or higher powers of w, wto .s. , or products of such terms, one

may rewr~ite eq4 (23) in an approximate (linearized) form as

w"(u) - ,w(u)- 3 l u - 3/ WIv,(vi, !IV-

(25)

w(O) =w'(o) = j.
By putting y(s) L[w] and taking the laplace transform ofI ,~ (25) with respect to U, one obtains for y(s) the equation

a2 4y(s) - Y(s) = 3,t - y(s)
2
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whence

y(s) 8 2 "2(A6)
R +

In order to match a later solution, we shall be mainly interested

in the asymptotic form of the solution rf (25) as u - L, obtainable

from the expansion of (26) about the singularities of y(s). It is possible

to obtain a solution to (25) in clbsed form by the meana described below,

and also to write a series expansien of w(u) in powers of u from the

Laurent expansion of (26) about a = O, although these will not be used here.

The roots /13 = q , say, of

82 + 3,ý V• - 0 = (27)

correspond to simple poles of y(s). Mq. (2,6) may therefore be expanded

in partial fracticus using the factors indicated in (27 )a For a given roo-b

Va = T--mone obtains terms of the form 1
F312k 21/2+s /2 + 93 /2

2 PTI/

- (28)

multiplied by con.tunt complex coefficients. By the use of the Laplace

inversion integral it may be shown that

~Z~ ~+ V27 e~ (1 + erf~v,~) (2-9)

for all complex and hence that for

< larg \171 < 1T

(29) vanishes &* u-. . It follows thAt the behavior ef w(u) as u c

is determined by those singularities of y(s) for which

-arg Ve-1 < . (30)

Actually, there is but one root of (Z7) satisfying condition (30)

for 0 </.< •, and this root is real.
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&r since rsatisfies (27), by22

2,2 2

3p•/: +I)-iHence as a

sot that as u coo.

OWu "- 62 e /fu (1
W (./?2 + 1)

where, again,# in (31) is that root of eq. (27) satisfying condition (30).

Alternrtive!y, eq. (31) may be written

u - n " as V C. (32)

.i'hine the transform

in asyaptotio to V y' Y(s) as a.. --l , it follows that

T - T. - - uv* (u) an u -c.o (33)

Moroover, to the degree of appreoimation used in the lineR_-mt•eno,

(3')
(--1()-,% J

0



From (31), (33) wa thus obtain the relations

~2

R.. RO + e~ (35)
R -Ro 1+ f o 2 + 1•

By defining a time t by
2 % -/to, (37)

/(•A2 + 1)

one may urite eq. (35) as

R -e] (38)

Thus the bubble radius remains practically equal to Ro mtil the time
tt - when it begins to increase, reaching 2Rfl at about t to.

A tablation of the significant parametero in eqs. (36), (38) for water
at 1 atim. waill be found in Table 19 with the choice of a = 01°*C/sec.*

Parameters of the Relaxation Period
T, R. Cr t• see. IIap see }3 V F6"v#C' .01to 'C

02~ , .56 x 10~ 7.:34 x 1074 5.0o5 x 10" 1.97 7.:34 -, -10-6
104 C .75'x 10"3- 8008 X 10-' 4*4,,8 x 10". 3.30 8.08 X 10-

106°C ./+8 X 10-3 3.09 x 10-.5 1.56 x 10 3.71 3,09 X 10"7

This choice for the parameter a corresponds rough1l to the rate of
the temperature rise observed by Dergarabedian(15) in his experiments
on bubble growth in superheated water.

I-
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Because 1/a •( t, the bubble growth appears to start abruptly near t t

Irnther than at the tVime of release, t = 0&

For given initial. conditions T OP p ,O the duration

- P (39)

of the relaxation period is completely determined by the heat source function

q(t), i.e. by the constant " , upon which it depends logarithmically.

However, it is evident from Table I that the theat scarme term (at) in
eq. (36) becomes negligible in comparison with the other terms near the end

of the relaxation period. R-om a physical standpoint# this means that at

later times the bubble behavior is independent of the rate of increase of

superheat whieh initiated the growth.

The asymptotic formulas for the linearized eq. (25) presented above

are accurate over a range roughly defined by
u> 1 ,

a w <<

or

<t<t
.a# 0 C!

Because of the smallneaa of V, (u) increases over the range by a factor

'of several powers of 10 (about. 1 )6

In terms of w = in z as independent variable, eq. (23) may be

written

-w 13w (du- 2 1 eovdy
"6w .]- a IrW (40) /CW U

with the neglect of the heat source term. For small w, this reduces to

w r w d y
6.I (dw dw - ,1

dW A~I 74 T - -rT



which is satisfied by

U-_ ln(Kw) (41)

tfr arbitrary K provided that
3/A. _•_ (42)

Jog

Sýncs the integral has the value sAi eq. (42) is identical with eq. (27).

From the discussion of the relaxation period, it is clear that of the

various roots of (42), the one to be chosen in that one which satisfies

condition (30), p = . In order to match the previous solution, eq. (32),

we mist Zurther set 22'0 + )
K (43)

in (41).

It is apparent from (41) that the derivtive du of the solution

u(V) of (40) b"a a simple pole at w = O vhich suggests a solution of
the form

du__ r + Iw + +,

A "LL' " :v+ 2 2 8+*,]
dv 

L

U:- •u , +/ v, + V2+,(4

Byaubstitutirg ( la 1no +, & Im-s-rae of (40), 0Me ohmaim*

,I..-- - [2'/2 , 2(1 - 21/2) aI]

+ 1. [3•/2+ 6(21/2_ 31/2)I + 3(12-23/2+ 33/2)aI + 3(1-3"/2)a 2+...3

(,6)

By eq. (40), this Mut equa.

-x13-)2 - j --w.r 1"/3 = _ (1 p 2 ) 2.. [1 +f 2 (!1 .

+ ./ (11.5 - .29a, + 54L- 36& ..- (47)

•e ii-Padix C for the evaluation of the integral.



The paraweters a, a2 , are then found by equating the coefficients

of correspmnding powers of w in (46), (47), A tabulation of the firet

seven of these, for varying superheats, will be found in Table II for the

case of water at 1 atm. external pressure.

The time corresponding to (45) becmes

t f eWv- 3 0/ '(v) dv
t--t

In L I~ iiýj A)

+ (a2 3al9 2 +

the logarithmic tei-m having been chosen to match eqs. (32), (34). The

temperature may be found from eq. (46).

ArMntotio Phase. '1
During the ear3y phase of bubble growth, characterised by the

relaxation of surface tension# there is a rapid rise in the radial velocity

R of the bubble wall until the cooling effect of evaporation beeches

important, The rate of bubble growth thereafter is oontroled by a balInce

between the rate of evaporation and the rate of cooling it produeeso* Thus,

uhile the vapor cavity grov by evaporation (since the vapor velocity is

negligible)h the motion of the liquid is caused by the difference between

internal and external pressure. However, an increase in the evaporation

rate tends to decrease the presksure difference.

The effects of liquid iner'tia are important in determining the
bubble growth near the time of maximum radial acceleration. In the
asymptotio phase of bubble growth, however# the inertial term

* in the differential equation is of smaller order than the surface tension
term . ThIs voint will be returned to below.

4S1.1 ,3



TABLE II

Parameters of the Early Phase of Vapor Bubble r-owth

T 0 0C 102 103 104 105 106

,03 cm 1.558 1.019 .7507 .5901 .48320i

a x 105 seO'I 1.797 3.391 5.356 7.677 1.035
C 1*120 1.023 .9628 .9205 .8880

.5598 a3411 *2407 .1841 .14480

/' .1101 .2632 .4168 .5340 .6177
a1  2.0915 2.0322 1.9763 1.9456 1.9292

2.1577 2,0547 1.9463 1.8852 1.8526

a3 1.4633 1.3761 1.2732 1.2129 1.1807

a4  .7359 .6864 .6224 .5831 .5620

.2722 .24..27 .2236 s2132
a6  e09858 ,08945 .07886 ,07143 .06728
a7  .02857 .02510 ,02205 .01960 .01819

i
I
,I
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New, it is aleas that the bubble =4t continue to row, since a

stationary bubble is at the temperature of liquid superheat and therefore

has a high internal pressure. henee the temperature at the bubble WiU
must continue to drop beoaue of evapomatimi-- Put the temperature cannot

drop belyw the boiling point and still maintain the pressure difference

necessary for growth. It foflvws that the temperature of the bubble wall
must approach a limit as t * , and this fact is sufficient to characterize
the asymptotio phase of bubble growth.*

It in perhaps worthwhile to demonstrate at this point that the
limiting temperuture predicted by the mathematical model is what one would
expect on physical grounds- the boiling temperature *Cb of the liquid at
the external pressures for the sake of consistency and to Justify statements
made in section III above. The differential equation, with the neglect of

the heat source term may be writtn

/.Af~Y.AL 21h,21 (49)

If the last term on the right (the inertial term**) tends to vanish as.
u * co s z cc , then the limiting value of the temperature integral .•-. -

-A.2 -1o• u (o

The actual temperature is g1iaven by

T = To -_..
So VTl• -- V!

so that by (50),

To - as u• . (51)

The slew temperature rise due to irradiation is ... neglec-ed,

The kinetic enorpy of the liquid is given by
J•- (• ,s2) •v• dr = (4,a 2R5 ) 27/3 =2'2

dr = / ma l
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According to the defMitions (22) and (5),
2 2

g A

and so from the definition (13) of Rap

By eq. (15)p this states ithat

- To- Tb

(/ bein considered a .eonsat), and therefore, by comparison with eq. (51),

T -Tb as u-o. (52)

The conclusion (52) depends on the equation of motion only to the

extent, that it Tollw•o -from the asymptotic vanishing of the inertial ter.

One can easily shawp however, that the inertial term mnst vanish whether

(52) holds or not, provided only that the temperature approaches some

limit as u- co . For this implies tfat

{. at -d- _ const. as U (53)

ih4tiplication of (53) by and integration frm u1- 0 to x
% - U

yields, after a change in the order of integration,

(' =y a I .(v) dvJ

= z - 11 9 - const. - 2,(54)

The vanishing of the inertial term in (49) then follows from eq, (534), which

shows in fact that the inertial term is of a smaller order of magnitude in

tUL asymptotic range than the surface tenison term s . The constant
in (54) is 1//' according to eq. (30), so that eq. (54) yields

a(u) -;-:- as U - (55)



e ole r h bti
Eq. (55) describes the asymptotae bubble nrowth, ht i- not vet

useflp, since it provides no melans of matching the indicated asymptotic

solution ol" eq. (49) with earlier solutions. The possibility of matobing

aolutiOns depends on the possibility of shifting the aymptotio solution

in t (or in u) so as to account for the relaxation period of bubble

growth. It in necessary that one be free to shift the asymptotic solution

sinee thi duration of the relaxation period depends complete3y on the choice

of the heat source term# while the subsequent behavior of the bubble is

independent of this term.

The means for making an arbitrary time shift is furnished by noting

that, in addition to the asymptotic form of solution (55), eq. (49) also

possesses the solution s(u) 1. Thus the complete asymptotic solution
vamy be decTlibed by

O(a) )1, 0< u< ,

j/ (56)

___ --1/L3O6s'du512

Arom eq. (12), the time corresponding to eqs. (56) becomes

iI. , 0 < u "•ul,

t = av) (57•)

z~u) is aa ful souinba

so that U /a here represents the duration of the rela•ation period. The
Time shaft ma~y be introduced expliciliy Into the asymptotic solution by

using the fact that if z(u) is a solution of eq. (56), z(u + u) Is

also a solution, with delay period (u, - uo)/as

A consistent scheme for continuing the asymptotic solution may be

found byt kitg the solution to be of the fowu

if ~ + 079 + #
b •l(u%)} I, 0 <u uI J' b. 1O

+ b54 o UOUl
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to seven terms , where uo is a constante* When the coefficients b, have

been determined, the difference (u - uo ) is fixed by the requirement
B(U ) = 1. The matching with earlier solutions is then accomplished by

adjusting u,."

When (58) is substituted into the integral of (56) the result in+

e .... !atX~ + o80,266,-.b11/ + -a77306 -- ...2/

b b(u- ° )1/6 (u-u0 o)2/6
2 &, + .47545

+.27450 . +2'- o

By eq. (56)r the expression (59) is also asymptotic to

.- = (7/3 ,'2l (60)

Thin may be expanded by (58) to givel, on equating coefficients of correspond-

*ng powers of (uiun) in (59), (60), a set of successive equations for the
parameters bi, b6a At each step one has (as for the early phase

coeff"cients) a linear equation for the unknown parameter. A tabulation
of these parameters for various superheat temperatures in water at an
external pressure of I atm. is given in Table III.

The leading terms in the asymrtotic solution are

= (RA )3 _ 2_.) V C, + o(u71/6) ,

T - 0- :;: uI: 1+ O(u7 1/6 )j ,

Highor terms are of the form 'wer

k are integers.

The match is better obtained in practice by shifting the asymptotic
R(t) curves.

+ See Appendix D for the evaluation of the integral.
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TABLE III

Parameters of the Asymptotic Phase of Vapor Bhabble Growth.

T 0 0 C 102 103 104 105 106

R0 x i01 am 1.558 1.019 o7507 .5901 .4832

t x 10- se.1 1.797 3.391 5.356 7,677 1-.035

0 c 1.120 1.023 .9628 .5)205 .8880

.5598 .3411 .2407 .1841 .1480

b -.- .9099 - .8101 - .7409 - .6890

b2  - .4709 - .44& 7122 -1.334 -2.506 .1

b - 021-339 -1,481 - .3586 - .9725 -1.972

b4- .55l34 1.258 .1970 -- 2.98 -, 1

-1. 7756 3.064 4+.298 18.50 65-84

b- .7.23 - .2670 .6166 - .4736 -,8-k.6

_ _ _ __ _ _ __ _ _ __ _ -i

dI
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Thus+91

R ,- ( 1 + o(t•')J , j
T- To A-- fl1+ 0(t"1/2),..j•_

,w in te•, of the original pl1aical • onstants•

R .= . o(To) -
R 2/ ]tie I + o (t"2, 7

f (62)

T -,To (T -T O) + O .

.... The a potio teperaturp relatioa has been discussed prey4 W4!y. The
,4is orelat4oi has also a simple p~sical winterotati , which may be

Byvep here B differentiatir_ the first of eqaticn() one obtains

t• k (T

wh ny also be written as

4~ir * _L/~ - uRi3 ).

In this form', we y readilTy recognise the beat tranusler relation holding
at the bbble ,al, the right side givig the healt gain inthe vpr a

th. left side giving the heat os8s fro, the li..id. The temperature gradiesi
ib here eratsed in ter-s of te fatio ov tbe. tempi•_'aire "drop occurring
asymptotically at the bubble. til to th, thickness of the thermal boundary
layer in • hio) it occurs. The particular cholo / Dt for the charaoteristi"V3
A4iff pm length could not, Of course, have been predicted beforehand.

Wile the leading terms of the asymptoati expasions given in
(62) s1*6V the essential variation of the pV'siWal quantities which describe
the b ubegatfho, they are of limited useiuineneq and ma7 be in error by
as =Ch as 40 per cent (depending an the superheat) while t4,1 bubb1 radius
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is still smafll Nr accurate expressions may be fewud by carrying out

the time integmation indicated in eq. (57) and substituting in the

coefficients from Table III. The result of such calculations is presented

in Fig. 3, which follows the auyptottic solutions down to a radius of

4 x 1 03 am for the indicated _mnperheats in water at 1 atm. exterval presswre.

Inasuach as the duration of the relaxation period may be chosen arbitrarily

so far as these asyMptotic solutions are concerned, the time scale is

determined onl1 to within an arbitrary adeitive constant (the constant

uI/% mentioned above) which may vary from me curve to another* The

actual spacing of the curves as presented was chosen so that the time inter-

Copts at R = W004 cm were equally spaced.
The experimental evidence available thus far covers only the

asymptotic range of bubble growth. Observations on the growth of vapor

bubbles in water have been made by Dergarabediany15) and are presented

in Figs, 4,5,6, together with the theoretical predictions. The theofeatical

curves wera obtained by graphical interpolation from the set of mwrnes

plotted in n-g. 3. The timo origins for both the theoretical carvea and

the experimental points are arbitraryp so that a tive translation of the

theoretical curve has been made in each ease -to give the best fit. The

agreement is seen# however# to be very good,

The importance of the heat transfer at the bubble wall is shown

in Fig. 4, where the theoretioal curve obtained with the nglecot of this

effect ia alo plCtted.* The asymptotic form of this solution ia readily

obtained from eq. (1) by setting peq (T) = pq(To) there. The 'differential

~~_..aqwto y be writton,

2RF A dt /0J

with the help of the definition (13), and yields on integration from H0

to A, A0 to A,

i 2 1,2 __f

1, / o R3 , 42

The solution for the motion f a bubble under constant vapor pressure
conditions Ws given by Rayleiggh%6) and applied by Mm, to the case of a
cO0l.pspng bubble.
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1060C//I,/

84 _ _ /' !I/
15C,f

1040 C
68-" / ,1",°C

0 52

36-

20

0 a, 12 16

f, - to - MILLISECo

Fig. 3 - Asymptotic radius versus time curves calculated
for water at I atm. external presaiire and the
indicated superheat temperature.
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0 EXPERIMENTAL VALUES*

---- PRESENT THEORY INCLUDING

HEAT TRANSFER

I- THEORY WITHOUT HEAT TRANSFER

3

I0
U I

I.'

O0 5 I0 15
t ".o -ML-,SEC

Fig. 4 - Comparison of theoretical bubble radius-time vaiues
with experimental values for water at I atm. external
pressure, superheated to 103. 1 C. The solid curve 6L
the Raylcigh growth curve, obtained by neglectihg heat
transfer effects; the dashed curve is that predicted by
the asymptotic solution of the text, which takes heat
transfer into account.
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.Fig. 5 - Com~parison. of theoretical radius-tin-ie values uith
three sets of experimental values obtained in waterat I atm. external pressure, superheated to 104. 5 C.
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Fig. 6 - Comparisort of theoretical radius-time values with
two sets of experimental values obtained for water
at 1 atm. external pressure, superheated to 105. 3 C.



As R this gives

V 3ýoRo -O 3

which is a constant.

Experiments have recently been performed by Dergarabedian on vapor

bubble growth in PRIne C01 4 . If the rates of bubble growth in this liquid are

compar-d with those of water ut the same value of the temperature differenoe

,T T ) and at comiarable timos, thoy should be about in the sane ratio as

k/L/?q DI/ 2  for the two liquids. This constant is 3.5 times greater in

water than in carbon tetrachioride, Dergarabediants observations on bubble

growsh are in good agreement with this value.

Tt*~u late Solntion0

The early phase and asymptotic solutions presented above join

in the neighborhood of the maijdmm value of dz/du. While the match of

these solutions is fairly good for all superheats, it is nevertheless

decirable to have available a solution which covers the critical region,

to facilitate the matching process.

The intermediate solution presented here w.l1 be an expansion

about Uhe point u = ui defined by

a-)=0. (63)

Since the early phase solution is not assumed to be accurate at this point,

the actual value of u, or O(ui) is unknown. In order to determine these

quantitiesp we require that the intermAdiate solution ahd its derivative

shall coincide with values obtained from the early phase solution at a

point u = Ue where, that solution is accurate. The expansion about the

inflection point u. is constructed as followsr,

The d•ifficulties which arise for amy rch intermediate solution are
connected with the expansion of the convolution integral in the differenti•al
equation. Thus, a solution about a known point (such as ue) which
assums the integral and all of its derivatives to be known does not
actually make use of the inf(imation given by the differential equation,
whil, a solution about a known point which uses the minimum of data necessary,
(the value of z and zI. say, at the pount of expansion) involves abcut
the sae procedure as that given below.



Assume that %(u) has an expansion about u

x3
Z(u1 x) z11 ÷+ ix • "3 "' 1 (Z Is( )),1

2 :so that 2'u ) z~ 0.,4(4Z,'(U, + X) = Z[01 + 03 2" + "' ,(64)

t(u, + X) = Z[Cyc + "'i)

The expansions (64) are to be substituted into the differential equation

(vith the heat source term oandtted)

z*" + Z I2=~d F &LIAOdU (65)

Now, the integral in (65), evalmated at u + x, is
Iu+x (v)dv x '(v)dv + " (v)dv

S U" so, VI + x - v , X x - v

X UVJo- Jo
=•' , •( + Xu +£ x V))

jo vru- + x '" V J•o k! "

((,) A
valid for sufficiently small x. nut for small x, za (x) = 09 so that

when (66) is valid, the first integral in (66) is negligible, Thus for

0+ 0+ (67)

01 1 2 21may$ wh~erv!

IC (68)
I%
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If ,. were known!, ue could use (67) in on. (65) to obtain, on equating

coeffioients of corresponding powers of x in (65)p a set of relations

I~~ 72 2r i

I * (69)

,~((-4 +-j)C W/~(I 4 I I)jq of$*

to aoive for the parameters a19 0, .. . However, the k. are not yet

determined.

Since the solution to (65) is assumed known for u u,# ue < UiUlot u co
( v 2 AM(70)

I fi L¶ (k dd)( , (71)

II Lk = u 2(.)(vId (71)

so that

7Jk + Lk (2)

in (68), and set
S=u - , = ui - v (7)

in the integrals, Then in L0, for instance,

S23
• ,(v)• =2zv'(u e +.Lzo1 . o2 + ... ),

LO Jiu~ 103

Thus
I~~~ J() Z r6-(c + L,33s2 + .) 1

o a 1 103

and simlarly (7)-(-4" -



my be faowl if Z, 01 P C ° , and are known. The feasibility of
this procedure dependa on the £tac thut a good eM4jUWe o .. ,-
available from the GWrq phaas aoiutions and that the

Jk a

are slowly varying .Unctions of i . This follows from the re.ation
_(k+1) (U)

d 8 -Tk+1 (75)

since in the early phase z (k+1) < (k)

Assuming that the contributions to Ior from • i•-iher powers
of S' than those wr-.tten in (74) may be neglected, we terminate the
expansions as written and substitute them into (69). Together with the
conditions

% 0 ~ !' -0; S 03 C3),

Z-., fit +°. + S2. ) II
2~I.

from (64/), the equations 76)

6' 1 O~ 13 (6)+2z?, (ci+1 C~T) 3 )1

4 +13
lpa[OS 2Z'4 )O-!,[l$ + Z•-10].

constitute a system of four sizltsnecuis eqw•vions for the four ukmnoms
Z' 01 , v , 03 Inasaioh as ree and oaly ome point of inflection of a(u)
is knOW to exists these equations have a unique solution,

It should be noted that because of the definitions of u and
3; the rwxtua radial veloolty f of the bubble tan does not occur at
the saa value of u (or t) 5s the maximum value of z (u). The disorepancy
is not SrSLt for small superheats, but for larger superheats the poivt defined
bi 1 = 0 Move c6to the a•mtotc and of the a(u) cuve,
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Solutio' for -2he.-aiine Bubble.,

The results of the above theory for water At initial temperatures

To 1039 1060 C and external pressure p,, 1 atm, have been plotted in
Fig** 7 St and 9, 10& The bubble was taken to be in equilibrium at
time t = 0 when the heat source q(t) is irtroducedl q(t) was
arbitrarily chosen to correspond to a temperature rise of 1°C in 100 seo

in the water far from the bubble.*

S

:i
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Fig. 7 - Theoretical radius and radial velocity curves for thegrowth of a pure vapor bubble in water at 1 atm ex-
ternal pressure, superheated to 103 C.
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Fig. 8 - Theoretical radius and bubble wall temperature curves
for the 1030 vapor bubble of Fig. 7.
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Figi 9 - Theoretical radius and radial velocity curves fcor
the growth of a pure vapor bubble in water at I atm.
external pressure, superheated to 106°C.
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Fig. 10 - Theoretical radius and bubble wall temperature
curves for the 1060 vapor bubble of Fig. 9.
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h Colansing_ Vaor Bubble.
Because of the large temperateure variations which occur when a

vapor bubble collapses in water below the boiling temperature; a simple

analytio expression for the vapor pressure or vapor density variations

cannot be found* If we take our data from equilibrium vapor pressure and

density tables, we commit the treatment of the problem to a numerical one

from the beginning.
The system of equations to be solved, eqs. (7)-(11); iz undhanged,

In this easep howevers, the vapor pressure at the initial temperature T a

is leos than the external pressure, and initial conditions of dynamio

equilibrimm cannot prevail for the pure vapor babble. There is therefore

no need to retain the heat source term in eq. (9), and we shaln put

q(t) = Oe We continue to assume that initially the vapor bubble aud

surrounding liquid are in thermal equilibrium at temperature T *

It is convenient to transform the tamperature equation. By

V-iplying eq. (9) by (x - u) and integrating it from u = 0 to x,

one obtainso after an integration by partst the r elation

where (77)(1d

0=T- TO.

The system of equations to be solved "bociaes

7/3 ".21 o1

o) ,(o ), L

z() "a () 0 () 0



The system (78) was solved numerically for Initial temperature
. - uG external pressure p., .=444 at*m., and Initial bubbe raCMuS

(whioh is undetermined for the non-e94uilibrium bubble) R0 = .25 am. The
method of e.iution is given in Appendix E, The partixlar initial data
chosen here corresptid to values which have been obtained experimentallyb *

Although the temperature effe.ts becae significant during the
collapset the dynamios of the particular bubble considered here differs very

little frow that predicted by the Rayleigh solution of t problem16) over
most of the oo.lapse. The Rayleigh solution, which neglects heat transfer
effectes, is readily obtainable itro (78) under the assumption that
stays constant, and equal to O(T). The equation of motion is

6 da _113 .0

a(o) = 1, s (0) = o,

which fl•lde

13 ,: 2,+ 00 a)- + 0% 0I -+/3• €(79)

on Integration. Since

its much larger than 3/i2, eq. (79) may be approximated by

6o
or =.v . ,-7/6 V ,

where the negative square root of z 2 must be chosen to cmTeapond to the
eollapsing bubble. From eq. (12)9

La a8/6 a a 01/6(1
dt /o 0

whiv h yields 1

~=~-~ I x__ -1/6 f _.

t. =. . - I
t, = - k - -. 'i • =_ . ..• . , +"- /6•+:: . (80 )

4-:•_: 1 •,%Wl .. .. - - xi V6 p -K i" . (I - . • •[ )T_

The apiriMentl, performed at the ,.dro.4nd .. Iabogatory of -the
Cal•fo•nia IMhtittte of Teonelogr, wore reported by :*S, Plesset inret. (13), .0



on integration. The time corresponding to the full system (78) was found

by a numerical integration of the relation

using the values of z obtained from the numerical solution of (78).

A comparison of the two solutions for the collapsing bubble is

given in Pigs 11. The magnitude of the radial velocity of the bubble wall

obtained frem the numerical solution is plotted in Fig. 12, and the

oarresponding temperature at the bubble wall in Fig# 13. The numerical

solutio"i was not carried out 1arther than ahown in Figs. 12 or 13, because

of the breakdown of the assuptions underlving the theory presented here:

the par-Azeters L9 ,at Dp, etc. begin tim vary significantly near the end
of collapse, the liquid velocity becomes so large that compressibility

effects may beomse important in the liquid, and the spherical bubble shape

boc=is smtable to s-all rLiting influences.

I-
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RAYLEIGH SOLUTION

-- NUMERICAL SOLUTION

.32

.2.

t -. S

-.08 .' - -

I 0.2 .34

I- nn~~ofthe~- MILLISEC. ii
Fig. i I Coypaison of the numerical solution of the text (which

includes heat transifer effect) with the Rayleigh solution '

(which neglects heat transfer effects) for a vapor bubble
of initial radius . 25 cm, collapsing in water at ZZC and
an external pressure . 544 atm.

I.1
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The tables beicqi give representative i~uos taken from E.N. Dcrseyp
Propfttios of OrdiAterY Watfr-Submtabalb (aPihtfl-d Pubflshing. Corporatlm, il

a~w York,, 194). Vtusc-m for the flpo? are utcerta~tn (experimentefly)in the

third aý1gzdf,'ont iueand are .rveihat dejnindnt on pressmre; those citedII
oonscp d to pr~rsOf 1 atas. or be)low. Valuers for- the lIItlJhv bften

arbttn1i3Y IIL~ttd to four sipnif-iosat fjIsteso

T0  1 010 10200j

-' I,1.62

tri 2.g/ 'eA2 2.08 3.03

,r 04~r&/p0 19139 1.41 1.21.45 I

D~m7 0o~oa'~o j.282

-04 24 12W

pn81 ya/cz a .Ct5OUiY 6.13 1.01 6.b3,6

D(' 2 103o,)2i 1Q3 1.31 152 1.89



Ewiuston of 1tie f) - tr MIA

In terms of the nev variabje

t 1  -- A (a)

0 theVn integaaal (4%) r --

_x2rit4,l
IOG) *x 1+ V'ý - (b)

0 1o -

becomes

2ý izt. 'A 2 t.A
~ 1+t)2  A- Jo l t)

IhO furthair substitution t =1/4 in the second integral. gives

(.and therefore

+ C- Akt dt

the Integral in. (d) my also be wri.tten

- f ox dx r eld dx, Ce)
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after a change in the order of integratin. By putting- y = x + C2 e

obtalms after wa integration by parts

v-, L'" "- j s

2 ,,•÷• ( -2>2 (r')

The use :,t; (f) for the In~tgal in (d) then gives

+y
22

orr 2•= > 2),

2

z()=- 2VW.=4-A a),' erfo(>). (g)
The asyeptot (o formulas for IGe) follow rom the relationss22 4A

(11)

+X2(• \I/-w[ - 4, + 3 (g)"] ,•"

The t formual III(4Ao) f he/ A! Se,. GO + 00 s Ci

(h)
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may be tranaformed by the substitutiua

t~ (J)

t= ++

c(,D! = t ý t -A2 -t

Jo(01+t:) ~it

/ erfo XA +1(k
For ?wk4<1,t<A

At + . ..t ... =•+ o(; 2),
h d1 - t) A

and the brace in (k) becomes

1 - ¢'i~) ,¢-(t/) 2 erf.•,.() + o€• 2 ). (,)

As t in (k) increases beyond ) , the brace in (Ic) drops rapid!y to zero
(•cc 1). But frcm eq. (h),

)22

erfe( 2

so that for small •, the approximate expression (1) differs ftrom the
brace in (k) omly in O(,A 2) for the ful range of t. Sinca the factor
outaide the brace is urdity to 0(X 2 ) when t A; k p an apprconimation
to ths integral which is valid to terms of relative owder A is

1~J dt % ~) t/;X)2  . (

4LA /, 2 2 ,2 Qi! 2 ergo() - 1 +
Jow
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Hoer-ee, by (h) agatnr

-2 >,2 (1 -- + 0(:2)1 :. (M)

For large t the braee in (k) remains near unity until = 0(/A 2 )#

so that the dominar,ý factor in the integral is e-32t2. It is convenient,

U -- - At +- (n)
2U1 -. 2 ' A=

in (k), and write the integral as

IO W d• ,t I -V -• erfo(z) (0)

\•2t2

In the region vhere e" i•s till large, u. is of order I/A
and x is of order undity. Thus in this region, we may expand

= ~~~I a=fC~ It~Ii2
erf•(x) erfc(Xt + 2) erf=(At) - (2) (_________17 k,/' k1

- erfto( At) - ...L 0"A 2t 2 r(i) ),(_i)2  
*

so that

0 2af eA 2 2 ~2t2 erfc(At)
= )2t2

By expanding u and the algebraic term in (o) in powers of s t

aiad outbm-I'ng terms, one obtains finally a relation

Z(I) VJ f4do e -d -A'6 ej 2  erfa(s + 3s d

A 2

+ e1. [5,14 + 2s2, do 4 0(1/A6 ) (r)

X %4 Jo
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The error involved in ext'ending the :integrals of (r) to s = a rather

fheAr a A P is %f order 9"'A j and so does not ohange the asymptctic

expansion indiceaed by (r), gy evaluating the integrals in (r), oe finds

2 4X4

F C1
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-tv
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Consider a typical integral in (o)p for example that appewring in the

ooefficient of aI within the second bracket,

Jo (l -a (
4V

If the expment. of the in factor wre instead 1-sa then for

Re (a) > Op eq. (d) vould give f"r I

-11)_-1 ,

(1--v) (iLni dv =1 El ) 1(f)

Bel, Jt is readily verified that bet-h Bides of eq. (f) are rogiLar functiors

of the complex variable a for Re(s) > -1v the singularity at a = 0

being only apparent. Therefore, by the theory of a•a•lytia eontim-lationp

the equality (f) remains valid for Re(s) > -1. In particular, for a -- 1/2,

(f) gives I = [1 - 21/21 r(--i/2). (g)

Th other integrals appearing in (o) may be similarly evalutede

From eqs. c), 9(d) one thus obtains

f V V

//A redu?# s ro + V[2 rL) - I ar(1) (1 - 21/2)a

1/2_ 312 2a 1
+ r(1 - r( 31/(2 +1/r( - 2-23/2+ 33/2)a

2 /2 ~ )2 1a + 2 1(

2- 7~ (1 -..31/2) &21 + (h)j

ubwich reducer, to eq. IY(46) tz evaluating the guw-, f-,1 mctione.,
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1). -It~asa e Temwrtwma Pal, IV(59).

By dif ferentiating eq. b 1h(18)

a (U) _2 b~ + + b b ni-o)

U >U1 0 (a)

awat substituting into the tempoeratin-; in-tegral P¶1(59) there re"sults after

aL &AMAge of variable,

1 ~ ~ ~ L 1 +i 1/W ~ L~~ 6
fa-U6

-i+ [l Fin -) I~

v1 3 a-I; - I1b

x~(0)
x 'V2

valid for 0(1(1, Re(sj) > 0. Hanoep by the theorY of 8naiytioj ontinuation, (a) is valid provided only, that 0 -C x < 1 a ý 0,, -1,t -2v ... ,
ad (d) holds'twhen Re(s) io < 3c < cc For g0,(=d)± mrnsa nglessO

but May be doftned by a limiting procedure. By differentiating (d) wifln

r*Dpzct to 8 at 2 me~ readiljy finds

2s* ' 8
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Thus eqs. (d), (e) give for (b)

U a'(v) v

, r( 2) buu,-7 r() r(.)

b~b5 2L37 + 2
3r(12 (6)3r(12) r h16 i1 (uuJ +7

(u1-'U)5/6 6 U- 11

•F••. a re -'g~t•se-vero! term_- eM-B•!•_ COMM-aris-a with ea., (a),).

the last group of terms in (f) is simply

since by asa~titon s(u1 ) = 1. Eq. (f) redueos to e•,, IV(59) of the
text upon eval ation of the gamma 1Amctime.
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E. • -toa1 oS~i for the Collapesing Bubble.

C. The system IV(78) may be written

= 0i(9)0 (b)

-1 (v)2 Vlu, dv, (o)TtfJ

= ~ (e)~(d)

-1, sw =0, 0=0, at u=0. (6)

In Order ta obtain a schemo for numerical integration, subdivide the range

of values of u into intervalI defined by the points

S = , < ,, e a <. . . ~ << . < < < . .** i )
-0 -1 171n < -n+i -<

Th. intervals corresponding to (f) are in general not equalp but chosen

ar the Integration proceeds. For convenience write

Un!-% -hi, (g)

and ausm that, a, = z ~' q(uk). .1k )
ar known for' 0 E k <I n.

If the intex val Uk+1 - uk is waf fioently ahorto 0' (u) -witlrxi

the interval may be appeaximated L-y

'7= !ý-:3 h)

The Wntegzal in (c) evaluaived at. the point u = .+, may then be estimated as

k=o Uk

n 3/ , ~~ / 21, 1
Z- E (kotl - k+ 1 0.)kwo
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Define
DI0 = O3

n-= r (Un+ 13/ (u+ Uk+11 U

In= K. Vr~ k L 1 -A(~ 1~+1 )/i f
Then acecrding to eqs. (I), Cj) and (g), eq. (e) at u u,+1 becomes

un+1 'n+1 In 3T %%+i On)

The value of in (k) may be estimated In terms of %+1  by ain

"e,-pasion of about a value 8 - § near 0 which uees equilibrium

vapoar density data, saV

U,+1 Ce+) = I+ ,("n+1 j + -2 (),On+,1. (

Thus, for the first few steps oil integpation, O =, O a so = 1
initialy, The temperature Inteagral relatim (k) beowmes

= 1+ in2 ) + 1  + e) - ** -

In widch tly, cly siklknowns Pro and on+,. Eq. (m) is most easil4v

aiol"iud £u. +, by a&n iaz.tw2 pruuedlu bWeod uu au ulturnativu form

of (i),

zn+1 +
-3T 

f ( n - *

S- =.+, • +ta 2 ( %+I b) ++ -

To obtain a- i , he -- .. "-.itiM on ruxst be kirod. At eac•

point u u a, make th, approximations
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U h --I --

Z(o)

,, ___--_ _, ¶-i., w45G--t
"2 u(4.1 u- 2-

n

With t÷hese appraxiationis, the formula

a (u) = z(U - 2 Znu + (U -Udz+ 2 U2

Is exact for u =ho-' (ii1 -u,_ 1 ) equals h= (un+1 -un)'

;qe. (o) give

I II2h 2h

(p)
a 1- 2! + z.

n h 2

so that the differential equation (a) at u = u. is apprvaditatd by the,

diffaro•oe equatiom

n+ n " 2n-2z n+1

4-+ (2 1& 5 2 + I. (1
L. a-1n 7 7 n n-1 ?- b3 (pes-- d+3

I U en 1 eq. (q) may be solved for the poultIvo root . 0=
'being known from equilibrium vapor pransauro data@~
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In 61~~ Ai~ .aA4~ 4, ~ ~ .i.~

that a positive roat ,+1 of the difference equation (q) exdsts, it
CO MeOeaessary to decrease h as the numerical integrati•i proceeds.

At the stop where a new valum of h is intraduced, the apprcwdmattans
r (o) rather than- (p) m=st be used. The difference equation which applies

at that step is theOrfore not (q)p but one obtainable from (o).

To start the intergration, a fictitious point u - -

is Used. Corresponding to the initial condition z' (0) = 0 vnd the
approxia•ton (p), one m.Wt then aohooae =_ Z 1 Since z Z % ho

difference equation (q) for n = 0 simplifies to the linear equation

The temperature equatim.- be•mcs.e

21- + + t+o)

for i = 0, since 1 e O, 0-=1. For affioaent3y small ,h
eqo (a) my be approximated by

It sthould be noted that 5 d1 , ', , .32 , depend on 0, and
hane vith etih new oxpanslan of ¶ (Q . ,aoauue, the#e puranmetov..,

at ius.l as h, may bo cm~estant over several oaopa of Integration, ie h.ve

nA gi;iron t-lwo I4llwais which depend on u (i.,e. os n).

I
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