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PREFACE

The problem of the existence of conservation laws was suggested
to me oy Professor Charles Loewner, who has recently made use of some
5 special cases to obtain results of interest in hydrodynamics [3]. The
question is also of general interest with regard to the physical inter-

pretaticn of given systems of partial differential equations., Many

important systems arising in physics, Maxwell's equations, for instance,
are indeed in the foru of conservztion lnws,
I am indabted to Preofessor Loewner for his patience, advice, and

friendly cnccuraysment throuphout the entirze writing of this dissertation,

& to Professor Marcel Riesz, University of Lund, for his interest in the
material of Chapter II, and especially to Professor S. S. Chern, University

of Chicago, who introduced me to many of the methods used in Chapter III.

This work s~ bes:: sponsored in part by the Office of Naval Research,

Contract Nonr 225(11), and Air Force Contract AF 18(600)-659.

July 15, 195k Howard Osborn
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“HE EXISTENCE OF CCNSERVATION LAWS
By

Howiard Osborn
Introduction

A Pirst order quasi-lirear homogeneous partial differential
equation in the independent variables xl, i=1,...,n and the

dependent variables uJ, g~ 1,...,p is a conservation law if it

is of the <orm

(C.1) Qﬁl_ + + 5¢n =0

for some ¢i which are functions of x = {xi} and u = {uJ}.

If a scalar density P = P (x) 1is fixed on the space of x, that is,

if a change of variables x' = x'(x) involvesc Pi (x') = p (x) %EI 2
x
where 2 is the Jacobian, then one may set ¢l = P*’l and write
x
I

(0.1) as

1A gr 2™ ) ¢ ason
(0,2) £ (2N ) o 0 UET )y -givt =0

7 1 n 2

! O x dx p

which states that the vector ¥ with components "Vl is solenoidal

with respect to the density €. (The notation div is useful for

changes in density; for example, if';\ is a scalar, then

divd = - div)v*‘.) If a metric ds® = 2 g. .(x)dx dx?
/\P A R 1J

1]
is attached to the space, the vector Y is solenoidal with respect to

the given metric when P =\l|det gijl is taken as the scalar density.

In order to i1nvestigate whether a given equation has the form

(0.2), or in order to investigate whether some linear combination of

several equations has this form, which is the purpose of this paper,




o

it is clearly not necessary to know the dansity‘p . For if one knows
only that the equation is in the form of a conservation law (0.1),
then for any density @ the vector "V = % @ is solenoidal with respect
to that density. Henceforth a density will be introduced only for
purposes of illustration.
Conservation laws arise in several ways in the mechaniecs of

continuous media. If a fluid of dernsity P has the velocity vector

t = u{x) for x in some closed bounded region R, then Gauss' theorem

asserts that
(0.3) j\g u pdT = \fffdiv u Pdx,
OR R P

where u is the component of u normal to the boundary dR of R, The
left--hand side of (0.3) is the variation of the total mass over R,

This is physically clear since i1 gives the normal rate of flow throughout
the entire boundary OR. 1f the flow is stationary, then clearly the total
mass over any R is conserved, so that the integrand on the right-hand side
of (0.3) vanishes, showing that u is solenoidal with respect to P .

Variational principles furnish another source of conservation laws.

5 ; ; ' 3
let f be a function of uJ, ug, and xl, where ug = jLEE 5 & " dgemesi

j=1,...,p, and suppose that the integral j‘Rf dx, for which a stationary
value is sought, is invariant under a group with f parameters. Then,
according to a well-known result of Emmy Noether, one can find Q linear
cambinations of the p resulting variational equations which have the form
of conservation laws [L ]J. As an example, if f does not depend explicitly

on the independent variables xl, then these variatles themselves may be

M DR SAI Lgim. . 2&




taken as varameters. Indeed, by appropriate linear combination of

the variational equations

(O.U) fuj - iz=1 b&)(_i. _fuJ = (jﬂl,"',P),
one finds

M o8
(0.5) T ok iR = G, (k=1,...,n)
where

. " p .
@8y F-=8§° 3= Z ug E

k k 3=1 i

Unfortunately, the system (0.5) is not necessarily linearly equivalent
to (0.4), for example when n < p.

Occasionally well-known systems of equations which are not
cuctomarily derived from variational principles can be written in

the form ~f a system of conservation laws, For example, the equations

(et‘uex‘Pux;-o
(0.7) u, suu 4 % Py ™ 0

p, * up, * qux =0

of the one-dimensional, non-isentropic, non-steady flow of an adiabatic
fluid, where P is the density, u the velocity, p the pressure, and [

the adiabatic constant, can be written in the form

B e o o e CINELER
A4
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aslles

div (1, u) =0
=

(0.8) div  (u, nF &2 -
4 e
dpiv (ue#b;-?-_-_[ g,u3*§:x1 u-g)-O.

If an arbitrary system of first order quasi-linear homcgencous
partial differential equations is given, one might ask if it is
equivalent in some sense to a sysiem of conservation laws, or at least
how many conservation laws can be obtained from it by linear combination,
as in the preceding examples. This question will be stated more
specifically in Chapter 1 and answered for a small class of equations
in Chapter II; it is answered in a very general way in Chapter III.

Chapter I is of an algebraic nature, and reduces the problem of

the existence of conservation laws to that of solving an over-determined

system of linear homogeneous partial differential equations. An existence

-t

[§

‘neorem is given for the over-determined system in Chapter II, under the
restriction that certain integrability conditions are satisfied. For
the more general problem solved in Chapter III the question is more
conveniently stated in terms of exterior differential forms in order
that the existence theorem of Cartan and Kahler can easily be applied.
A brief sketch of the theory of systems of exterior differential forms
has been included for convenience.

The principle results of this investigation suggest that in general
one should expect systems of partial differential equations to contain

mary more conservation lavws than appear on the surface. For example,

when n = 2 and p = 3 every system in which the coefficients depend

.
i
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exclusively on the unknowns possesses at least a two-parameter family
of conservaiion laws. Even more surprising, for 2 wide variety of
cases sne can find conservation laws which depend not only on a small
number of parameters, but also on a certain number of functions of a
single variable; in particular, when the integrability conditions of
Chapter II are satisfied, one may assign p arbitrary functions of one
variable to obtain infinitely many equivalent systems of conservation
laws. In other cases, although certain functions again may be assigned

arbitrarily, equivaient systems of conservation laws do not exist.

All definitions will be indicated by underlining new tefms as
they arise, with an accompanying explanation in the text.

The Einstein summation convention is occasionally used. The
dummy indices will always be lcwer case Greek letters and the range
of summation 1,...,p. There is no summation over Latin indices except

when indicated by E:.
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CHAPTER I

DEFINITZONS AND STATEMENT OF THE PROBLEM

§1. Well-determined systems

This paper deals with formal properties of a system of quasi-

linear homogeneous first order partial differential equations

n,p : J
Ly g oUJfl :—”ino, k=1,...,n
i,j =1 &

in the independent variables x = ixi} ard unknowns u = {u‘]}, where
ki ol
} J

- 3 (x,u).

A system is determined if m = p and equations (1.l) are linearly
independent at any given point (xo,uo) in the product space XX U of

the spaces of x and u. Clearly the determination of a system is

independent of the coordinates of U since a change of coordinates
u = u(v) merely turns (1l.1) into a system

n,p

< ki bvg .
- —_— O, k = 1,-.-,
(1.2) i,§= 3 @1 i m

ki 3 K duj : Y
h = oA ;3 si the matrix
where PI 32._, J j S:,—% since (m )

is non-singular, the rank of the np x p matrix (@Zkl) is the same
] as that of (& ‘J?l).

Determined systems exist for which vhe corresponding Cauchy

Chiikedd
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problem would be rather unnatural. For example, if n = p = 2 the

system
'
dxl
(1.3)
[l
\\bx

is determined. Its solution, ut an arbitrary constant and u2 an
arbitrary function f(xl,x2)s is uniquely determined by the unusval

Cauchy data u1 = constant and u2 = f(xl,x2 . Similarly the systern

can be completely solved merely by assigning the Cauchy data
u1 = fl(xz), u2 = f2(x2), where fl and f2 are arbitrary.
Tet 5 = {53} be indeterminates, and for each i let (0‘}51) be a

p » p matrix with complex entries, (i = 1,...,n). Then pathological

examples like (1.3) and (1.L) may be eliminated by requiring that
n
ki
(1.5) det (2 Ei*j)r*-o
i=1

be a non-zero form of degree p in3 . Any system (1.1) satisfying

(1.5) is called well-determined. Clearly this property is independent

of the coordinates in X as well as in U,

SAE ek




The.fj.may be assipned ccmplex values which vary covariantly
with coordinate changes in X. For any point (xo,ub), the annihilator
of any co-vector {§i) for which the determinant (1.5) vanishes is

called a characteristic element in X at (x ,u ). Thus a system is

well-determined if and enly if not every element is characteristic.
If (1.5) contains a linear factor, the coefficient of;i

aprearing in this factor may be taken as the ith direction number

ol a characteristic direction in X at (x ,u ). Geometrically, if

02—0+

there exists an (n-2) - parameter family of characteristic elements

in X at (xo,uo) which have a direction in common, then the direction

- is characteristic. For n = 2, when p linear factors always exist,

the preceding defiritions coincide, and furthermore; for any characteristic

direction one can find a linear combination of the equations of the
system of partial differential equations such that every unknown appearing
in it is differentiatied in the given characteristic direction. For n > 2

such linear combinations do not necessarily exist.

§2. Tangent spaces, equivalence of well-determined systems
let {u} - {u ] X} be a class of differentiable functions
u of X. By choosing a set {ul,,n.,uq} of functionally independent
u's about any given poirt of X this class becomes a differentiable

manifold, also denoted by (u} ; with the values of ul,...,uq as the

E local coordinates. We ncte that th. operator

q
L’.—.‘:i ——]— é—d— is a linear differential mapping of the class
dx* jlio== dxt

oy
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of all differentiable functions on the manifold {u} into the complex

number field, at any given point of X. Since any operation E{ /M.l -é-

AN
i=1 nx

on {u} is also a linear difterential mapping, these mappings form a

vector space, the tangent space of {uj , spanncd by ~b1,...‘—ﬁﬁ. Two
dx ¥x
vectors in this space are identical if and only if they furnish lae
same mapping. Clearly the space is of dimension q.
An alternate definition can be given merely by replacing "the class
of all differentiable furictions on the manifold {p} " by "the class {u} n
alone, or even by {ul,.,.,ué} and considering the operators —ET. This

X
definition has the advantage that it defines a tangent space to the

class {u} without constructing the corresponding manifold. As an example,

consider the class {u} of all solutions u of & L 0. Its tangent

6xi
space is just the annihilator at any point of the vector le,...,«n);
clearly there is no point ir constructing the manifold {u} to discover
this.

The tangent space just defined is distinct from the tangent space

of U, which is a p~dimensional space spanned by the mappings sLT’°'°’_13

LR} 5‘.1
of all differentiable functions on the manifold U, independently of X.

let {(ul,...,upj} = {(ul,...yup) aX} be a class of p-tuples of

5 1
functions u’ of X. Suppose there are q p-tuples (ul,...,ui),...,(u&,...,u

such that the rank of the g« np matrix

PR ke
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buf duP })ul Ba?
i e 1 1 i
= e i 160 tee T eee —=
dx* S;I ox" ax?
byt P Bu} 3P
- (N - |
dx Ox ax" 0"

is q; then the q p-tuples are defined to be indepcondent. Any operator

n o n . \
2 /4} —}’-—i-,. R z /11 -—C’-I) is a linear differential mapping
=1 * ¥x e P ¥x

of the class {(u*,...,upjs into p~tuples of complex numbers, at any point
of X, where the//i's are arbitrary. As before, if there exist exactly g
independent p-tuples these maps form a g-dimensional vector space, the

tangent space of {(ul,...,u9ﬁ;

Suppose that (1.1) is determined and continuous in Xx U in a

neighborhood of (xo,uo). Then the p vectors L (le oK1 kn

-
LT TIPS I

x=1,...,p are independent in the usual sense for each (x,u) in the

neighborhood and span a p-dimensional subspace V of some fixed np-dimensional

complex vector space.

Assume that for any well-determined system

ES

n
C P
(1.6) 210((1’(1 -SBI =0, k=1,...,p
L X

the tangent space T of the class of solutions {(ul,...,up)} of (1.6)

is isomorphic to V#, the dual of V. Then one can define two systems to

be equivalent if the tangent spaces of their classes of solutions are
isomorphic to each other. Clearly this implies that they possess the same

so.utions.

&
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Without using the above assumption, two systems (1.6) will be
called equivalent if the corresponding spaces V# are isomorphic. This
means simply that one can apply a non-singular linear transformation,
depending on Xx U, to obtain the equations of one system from those of
the other., This definition is less satisfactory than the one just

suggested only in that it characterizes V# purely formally.

§3. Statement of the problem

If a given system 1s equivalent to a2 system one of whose equations
happens to be a conservation law, the original system 1s said to contain

the conservation law, Geometrically, the space dual (o the vector
J
consisting of the coefficients of the EEI ~appearing in the conservation

dx
law contains V#. As an example suppose n = 2 and p = 1. Then ifall and % .

are aifferentiable functions of u alone, the system

(1.7) %l:—ufr ‘“2:‘11‘5 -
X X

contains infinitely many conservation laws, depending on a single

arbitrary function. Namely.

N . | . 3 = '
(1.8) 2y [« (wlvidy + ju (v)£(v) av = 0,
d¥x x
where f= f£(v) is the arbitrary function. Note that the tentative
assumption of 2 always holds for p = 1 so that the equivalence of 1.7
and (1.8) couid be taken in the earlier sense if desired.

The problem 1s to find how many conservation laws are contained in a

RS
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given system. In particular it is of interest to learn whren a system
is equivalent to another system consisting entirely of conservation
laws, (0.8) for example, and in how many ways such a representation
can be found. Ons surprising result is that even if those representations
which can be obtained from one another by linear combination with constant
coefficients are included in the same equivalence class, there is still
a wide variety of systems which can be represented by infinitely many
equivalence classes.

From now on we restrict ourselves to two independent variables,
n = 2, except as noted. The number of unknowns will be arbitrary,
although all of the chief difficulties of the problem occur when p = 3.
We further assume that the functions o(gi are independent of X. Thus
the existence of conservation laws is a purely local problem in U.
The functions o(?i are assumed to be as many times differentiable as
needed in some neighborhood of u = u; they are assumed to be analytic
in Chapter IIL{, Only well-determined systems will be considered., Finally,
in order to avold considering several exceptional cases, the p
characteristic directions in X will be assumed to depend contiruously
on U and to be distinct, but nct necessarily resl, at (xo,uo), except
as noted. Thus it does not matter whether the system is totally
hyperbolic or not, e.g.

For convenience, specific reference to u or (xo,uo) is usually
omitted. All the results of this paper will be given only for a
neighborhcod of this point. If thc appropriate conditions are satisfied

in a larger portion of U or of Xx U, the results can clearly be extended

to this port.ion.

.
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§h. The corresponding linear equations

let the system

P P
(1.9) 0(1;1 ;_z.Iooc};Z §%=o, k=1,...,p

£ X
1 92)

annihilate the A characteristic direction in X, L = l,.04,pP.

satisfy the assumptions of §3 and letg = (3

4
The matrix (}' 1« 1:1 . ;ﬁ Qlafz ) is of rank p-1, so that to each

characteristic direction in X there corresponds a unique characteristic

direction in U, dsnoted by ”71 = (’)711,..., "?f ) which is defined by

(1.10) (3 gqgl .}gq ;2 )’7}> = 0, (no summation onk ).

£

Since the characteristic directions in X are discvinct ine matrix

( j) is non-singular. Setting
74
i ict gy P
(1.11) . =
Bg ~%p 4
equation (1.10) becomes

) |
(1.13) 5{(521 + 5,8 =0 (k=19

(no summation on 4 h

so that the ratio ﬁ;l . ,3;2 is independent of k. Furthermore, for

st least one value of k not both ﬂ;l and (3}52 vanish s ince (1.9)

is well-determined, that is,

WAL caad St

IS

-,
i

#*

L2



usaner)o

2w

>
pa

»ea

'y}‘ﬂ‘fﬁ fipaid ',_:.:‘

¥

k]
2

S 6500 4. AR
e R

-1k~

(1.1L) det  (§ @El " 3’2 (5;2 ) Ao

Let (ﬁi,...,ﬁ% 3;,...,55 ) be any member of Vi and set

, g . _ P
\1.15) ui -~ 7(; O—i

so that in the new coordinates Vi# is defined by

(1.16) 59“1 O:f N @Pk? ,;—g =0, k=1,...,p.

Since @}\1 2 @1}(2 is well~-defined and independent of k we may use
the elements
. _{ 4 .
= (0,000y 679,044,0350,..0, 6—2,...,0) as a basis in V% with

respect to the new coordinates, where

(1.17) ™ Il + otg 652 w0, (no summation OI'!/Q Y

But (1.13) eand (1.17) imply that

52 ;22

1
(1.18) det ) f =0, J=1,...,p,
Ty g

which is merely the definition of V® in the new ccordinates.
Suppose (1.19) contains a conservation law

Y Y . 28 Auf,‘ g 3t -
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. il i P
(1.20) U£ ¢l =b_g_ ’7F e é}i,, 53 ?jd-i
duf (g7 8y P
this may be written as
e I o 2
L] 6‘ =
(1.21) o0, U, £+ 2UP g- =0,
and we may speak of the tangent vectors U(o in the tangent space of U.
Then the elements which arc duwal to a space consisting of the single
vector (U1¢1,...,UP¢1; IJIQZ,,..,Up;dz) must contain Vi, expressed
in the new coordinates., It will suffice to look at the basis elements
of Vi, For each .l we have
(1.22) 6__f U ¢l *0—'2 U£ ¢2 = 0, (no summation onl s
172 2 :
/e ol SRPPPRE . %
Referring to (1.18) this becomes
: £
{1,23) ;21 Ulﬂf* + 52 U ¢2 =0, (no summation on /Z,
A= L, snugB) s
It should be noted that these equations are entirely independent of X.
Except for the trivial constant solutions, there corresponds a conservation
law to every solution c_f_ (1.23), which is a linear system of partial
differerntial equations in the space U.
&
;

!
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§5, The case p = 2

In this case the tangent vectors in U are of the form

2
(1.2h) U =73 36?‘735%?’

j=1,2.
Let (§ }‘Z) be the inverse of ('r(ll‘), S%ﬂ:;‘ gjq§=[j'

Then an integrating factor Mj always exists such that

M § g dut « o au’) ic 1 total differential, say avd, j=1,2,

so that
(1.25) My g - 2—"-12 , (no summation)
u
hence
(1.26) mE -y ou
= J 3 va' ¥

and (1.23) becomes
: 1 % 2
(1.27) 3{i.+353—¢—.=0,

The system (1.27) has a number of solutions about B

arbitrary functions of a single variable, as one easily shows by the

Cauchy-Kowalewski theorem, if the};i" are assumed to be analytic.

This existence theorem will be given in a particularly nice form as a

special case of a more general result in Chapter III, 663, 5. Thus

for p =2 (1.9) is equivalent to many systems of concervation laws [ 3].

j = 1,2, after division by Mj'

defined by two

PO 47 SR 1N
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§6. The case p> 2

In general one cannot expect to find integrating factors leading
to the simple form (1.27) of equations (1.23); the case where this
can be done is treated in Chapter II.

In any case the system (1.23), or any system equivalent to it, is

over-determined for p > 2, that is, there are more linearly independent

equations than unknowns. Therefore, in order to find results analogous
to those found in _§3 and §5 for p=1and p = 2 respectively, one
should expect that certain integrability conditions must be satisfied.
As noted in §L the matrix (’713') is non-singular, hence the p
operators Ul. are differentiaticns in p distinct directions which
span the tangent space in any peint of U. The UI do not commute with

each other in general. However, their commutators

tm 2 T8y 2
(1.28) [Ul Ui = z ("?z 8?? ~ 7?;31 &Tg) gl]z
3,k=1

again lie in the tangent space and so may be expressed in the form

=

B .
5 . j
(1.29) [y, U] = il £ U
J=

for certain analytic functions 55 = xg (u) called the structure
m m

functions. One easily checks that for any suitably differentiable

function @ = ¢ (u)

(1.30) U, (08 - U (U@ = [T ] ¢ .

i e —————————
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Clearly
(1.31) 9 yjn =0;
m mx
furthermore the 3‘] 's must satisfy a relation arising from
m
Jacobi's identity
2 [(uyu]u] =
mn
(1.32) (lugu Ju 3 ¢ [[up Ju,) + ([Uu,]U ] =0,
where 2 represents cyclic summation as indicated. If the }¥ J 's are
m
constant, the fundamental theorem of Lie groups asserts that there exists
an analytic group for which the Ul are the infinitesimal transformations.
If b’j = 0 except when i =] or j=m one can find integrating
m
factors Ml and a change of variables, v = ¥(u), so that
= l k-
(1.33) UZ -Ml bvf, { 1,...,D
as in §5. This will be shown in Chapter II, which deals entirely with
this special case, and again by a simpler means in Chapter III.
§7. A preliminary transformation
The elementary methods of Chapter II are better suited to deal with 3
the case where either (oC ?1 ) or (X )52 ) is a non-singular matrix. %
Suppose that (o l;l ) is singular. Since (1.9) is well-determined there i},

e i e A —— = | %
-
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is non-singular in a neighborhood of u ug and such that/AL and M

exist constants/&1 = (/Li, /*é) such that (/A'l

are distinct directions in the dual of the tangent space of X. Letting
.30 T =M T i - 1;2
so that
(1.35) gé'I i,u.il b—b:I 4/(Li _§__2 .
x
we see that (1.9) may be written

—k1 bu k2 6u
1.36 +
) E (Gl Ti a2 70

where

(1.31) & _,uloc‘dn“l °<‘?2

and (5Z§l) is non-singular. Thus ( O( ) might as well be assumed
non-singular at the outset.

If

N

3 P
e L 7 =
L1

then

i A 7 A
(1.39) oo, =M T+ AL T,

—_—— -

N T e ee—, e

.
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But the form

u,@1+af-£ l{g@z=0

(1.h6) & I ”

ol 2 conservation law is invariant with respect to linear coordinate

changes in X. Hence the existence conditions "(1.23) become

(1.h1) ff u]zal . 5'21 y# = o

where }f "/‘1 5_124 /’-i 3'_£ Thus the ratios 5{ : ;f at any
point of U may be changed by a projective transformation. 1In particular,

. since the projective group is simply transitive on any three of these rat*ios,
for p = 3 one may adjust the characteristic directions in X to be any
three arbitrary distinct directions at u . This transformation could

have been derived directly frem (1.23) simply by setting

£

3 i i1, Li 2

1 (Ll2) B =pigt e pmld

L

i without investigating the corresponding transformation in X,
T

p

Taking (X ?l ) to be non-singular merely corresponds to

J
3 1#0, Bm LaeeyDn
Assuming that (ﬁgl)

is non-singular, equations (1.9) can be

written in the wnsymmetric form

I\Jl

P ;

yuls . 2 k QuY _ -

(1.43) 6—; °<J. » e 3 T B
gk

A R i e
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In this case the derivation of § L is easier to give. For suppose

a conservation law exists, so that

(1.19) g (b¢ \011 - 6¢2 bu =0

51 duj éx duj hx )

1
Multiplying (1.43) by 54(- and adding,

du
P P,P g
(1.Lb) Z?ﬁéb—“—;‘ Z bﬁix‘?b_“;-w,
du bx e 611‘ J bx
k=1 Jyk=1
hence
3
: P,P : P
! o Wk W, < g
(1.h5) r Shp e { g .
A du © 0x > duj ox
Jyke=l J=1
du? | X
8 But the p elements , J=1,...,p determine a basis in V%,
i ¥xe
% so that (1.45) implies
¢
' A Vi
gy (1.L1) 2 a—-Eo&j- = B_- s J = 1lyeee,p
: k=1 ©¢ et
é; from which one derives (1.23) merely by diagonalizing (X k o

J

B s b N ey vy

which is possible because the characteristic directions in X are distinct.
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CHAPTER II

THE SPECIAL CASE

§1. The tangent vectors U,

v

A set of tangent vectors (operators) Uj’ Y eeng® D8
complete if and only if the commutator of any pair of them lies in
the tangent space the set spans. (For convenience here we speak of
tangent vectors even in the absence of a manifolc or class on which a
tangent vector could be defined.) It is well-known that for any
complete set, depending continuously on r parameters, r > q, then

there exists an r - q parameter family of integral manifolds in the

parameter space whose tangent spaces are spanned by the given vectors.
Given a set of vectors Uj’ j=1,...,p, suppose there exist
non-zero factors Mj and a change of variables, v = v(u), such that

these vectors are of the form

(2.1) U= l , i=1,...,p.
ovj
Then
=y 1 - xi
(2.2) [UJ.Ui] ] i by = § 5 Uj
where
i
(2.3) M, Kji UjMi,

all the other structure functions vanishing identically. This is clearly

equivalent to the assertion that any subset of the vectors Uj’ R ST o
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B3

is complete. Conversely, the following theorem holds.

THEOREM A: If any subsetl, of tne vectors Uj’ J=1,...,p 1is complete,
then there sxist non-zero factors MJ. and a change of variables,

v = v(u), satisfying (2.1).

Proof: A sequence of changes of variables will be constructed in such
a way that at the o stage the form (2.1) 1is displayed for all j,
J=lieean n = p. Assume that the first n - 1 stages have been

completed. Then, after multiplication by suitable scalers, the first

3

n vectors may be assumed to be of the form Tseees ﬁ'l’

u
P
L, 9_ , where 77n = 1. Since by assumpticn the commutator [_a_’rfz_ ]
nf : duj duf

is & combination of 2~ and »,?P_Q_’ we have % "?k = AJ'VI K for

uj 611? " ~3u
some /\j, j # k. But '7']“ = 1 implies 3j_ = 0, hencc Aj =0,

uj

so that '72‘] - Vj(u‘]; w,...,uP) for j=1,...,n~1, and
5 i, n . ¥
e = ”’IJ(u gieagll) fOF J = Hysueyp

The nt'h change of variables will be assumed to have the form
vd = vI(ud; u?, ... ,uf) % 1,eael=il

(2.L)
J

v Py

-v‘j(un,...,u J = nyseesDs

Then for j = 1l,.es,n=1

P w3 3 :
(2,5) U. = N L e &J " (no summation on j)
I dui  dui &P dui dvj

so that the first n - 1 vectors retain the desired form provided

. e e 2 i o o — o —————————r =t
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=Df=

wJ # 0. The nth vector becomes

Buj
PA_ _pP 2% 2
(2.6) U =% - = L
i duf 1 2uf v

I
PA¥ O if and only if
auf 3

sz Eig vanishes for j # n. For j = 1,...,n-1 this requirement is
u

and hence will have the form Un

1]
-~

P - :
: : J
(2.7) 'rZJ 5—3 . 271”"" =0, 5 % 1, g0,
k=1

v vt
duj duk

and for each of these equations one can find a vJ  for which aﬂLQ ¥ 0.
duj

To satisfy the requirement for j = n,...,p, each of the vJ'S, J T Nyeee,P,

may be chosen as an independent solution of the equation

P
(2.8) k 3% g,
=n

in which the coefficients cepend only on un,...,up. In particular,

n
v'' may be chosen in such a way that %E;-f 0. Clearly the Jacobian
u

matrix of the transformation (2.4) chosen in this way is non-singular.
For there is nothning below the first n - 1 terms on the princiml
diagonal, and the block of side p -~ n + 1 in the lower right-hand
corner represents the ncn-singular change of variables chosen last.
This completes the proof.

Some further properties of vectors satisfying (2.1) will be given

for convenience. First, for any differentiable function f, (2.3) dinmplies




3
g

Wi

. U UM,
Uy () v - e,
i i (M)
(2.9)
1 i 1
LR FPR IR

. o = i
where Uj-k is the operator Mij ‘_ﬂ; ) = Uj - iy °.

If f.. = Qf; s = 1ly0e.,p, then

(2.10)

In particular, since (2.3) canbe written

B ogop B g
(2.11) J Sk Mj i 1n= W _,

we have

- k T >
(2.12) Ui,‘jajk = Uj;idik’ p l,eee,pP

EBquation (2.10) can be given an interpretation in terms of the
operators Uj alone, Given p functions gj, a necessary and sufficient
condition that there exist & single function g such that By = U.g,

J
i=1,...,p is that

(2.13) U, .g. = U, .¢

55181 15385 350 A sy Pe
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Another proof of this statement follows from a form of Stokes' theorenm.
Let Z represent cyclic summation, 2 F(ijk) = F(ijk) + F(kij) + F{jki),
i3k : ijk-
and suppose 0?j dua- = LUj then for p = 3 we have
& )
a

(2.14)

"? v du‘]du
,{fg ) 2

J;ﬂv :Aéﬂ ,“ E

le

where E = det 7?& Formula (2.1L4) can be proved by means of the more
custcmary form of the Stokes theorem.

The factors Mj can be calculated directly from (2.3} without
involving the sequernce of changes of variable used in the proof of
THEOREM A. Once these factors are known the desired change of variables
can bte made directly.

An alterrate proof of THEOREM A will be sketched, based on the
direct computation just suggested. By performing the calculation indicated
in Jacobi's identity, (1.32). substituting ngU? for [UjUk] whenever
possible, one finds (2.12) under the assumption that ng = 0 except
for k=3 or i=k. For each i the system (2.3) can be ccnverted
into a homogeneous system by considering Mi as a new independent variable;
then M, can be found in terms of the other incependent variables, if the
new system is complete, simply by considering the constant solutions to

the new system. It turns out that (2.12) is exactly the condition that

the homogeneous system is complete, hence the factors Mi exist. Thus

40
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the commutators of the vectors Ml— U, all vanish, from which it
5 .

follows that they are of the desired form, —QE .
v

A third proof of THEOREM A is given in Chapter III, 2.

In the new coordinates the vJ axis may be described as the

solution of

B ) p
7 de¢ _ _ dv- _ = Ov
{2.15) ) S e = . 5

passing through the crigin. In the original coordinates this is the

solution of

(2.16) —~F B ome mE=g

passing through u,e The curves thus obtained for j = 1,...,p are at
each point tangent to a characteristic direction in U for the system

(1.9) and are called the characteristic curves through u . As THEOREM

A has shown, it is the peculiarity of the special case being considered
in this chapter, in which any subset of the tangent vectors Uj is
assumed *to be complete, that the p families Kj of characteristic
curves through all points of U may bte used to define a coordinate
system. This means that if jl""’jp is any permutation of 1l,...,p

then those members of Kj intersecting given members of Kj form

z 1

the same family Kj 3 of two-dimensional surfaces when jl and j2
12

arz interchanged; those members of Kj intersecting given members

3

-




— — Qs S

—28_

of Kj j form the same family of three-dimensional surfaces when
1v2

jl j2 j3 are permuted, etc. These hypersurfaces are called the webs

spanned by jl j2, jl 32 33, ete,

§2L Conditions for a representation by a system of conservation laws

Assume that an appropriate change of variables has been performed

as in Chapter I, §7, so that ( °(k1 ) is non-singular. Then
3 i # 0, j=1,...,p so that in the special case, in which any subset

of the tangent vectors Uj is complete, the existence conditions (1.23)

1 become
1 2
R w )
(2.17) TN ;35—-—=o, i T

dvj dvj
$
v R 3
?1 after division by Mj’ where }2 ;1'} . Note that the J* are
;4 distinct. The number of solutions of (2,17) gives the number of
éé’ conservation laws contained in (1.9). More specifically, the question
gﬁ here is to represent (1.9Y) by a system of conservation laws, The

necessary and suf"cient condition is that there exist solutions

45

Al
( §2I" bﬁ a——u...,b¢ ) ecf (2.17) which span V. Hence,
v

WP L
from (2.17), where the values of 6¢1,...,:¢ determine those of
1 1
QQT,...,ég-, it is clear that a necessary condition is that no linear
z‘v' bvp N 7‘2 )0(2

relation exist among the S—HI,ooo,SZB
= We try to concoct such a linsar relation. Let i j k represent
any three distinct integers among 1,...,P.
] 241
62¢1 3 3 ¢L
3 K dvj ijavk

Since we may cross—differentiate the equations

3 A-J
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of (2.17) to find

g : 2.2 k 2 2 9
Can WAL L VP e i
: dvE v IvEavy  avy dvk 3 avs ovs

that is, setting #° =g for convenience,

(2.19) 5_2;6—'12’-1‘7 &—b—g—k ﬁ?ﬂ_)

dvj v FI5% dvy ev AV v
since '§j 4 5}ﬂ It should be noted that the system of ( g ) second
order equations obtained by writing down every instance of (2.19) is
entirely equivalent to (2.17). Differentiating (2.19) with respect
to vi gives rise to new mixed second derivatives on the right hand
side, which can be evaiuated exactly as in (2.19) in terms of the first

3
derivatives of @ . Similarly the third mixed derivative _gjzgix_ﬁ can
vrev

be expressed in terms of the first derivatives. Equating the two third

derivatives gives a linear relation among the first derivatives of @

all of whose coefficients must vanish if the wvectors
1 a0 2 2

(-824-,...,‘)-2-;6-&[,...,69’ ) span V. The coefficient of ME in this
oyt dvP " dv dv ¥

linear relation is especially easy to compute if one notes that the mixed

2

b7 . 48

s 4v3 dvy ow

is expressed as a linear

second derivative

combination of only the first derivatives 6¢i and QEL_. Equating this
v dvj
coefficient to z22ro gives
- > SN WA S TR
(2.20) | ) - 2 (‘Ef——E ] ) =0
dv ;J 3 dvj 0vy J-37 ov

as the necessary condition.
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Ore might expect that the coefficients of %QI and %g- would
v vj

lead to new relations which cannot be obtained merely by permuting the

indices i j ¥ in (2.20). They do not. In fact, lewting O?j

represent the left-hand side of (2.20), the entire first order equation
in @ becomes

k

(2.21) 4 ij 82 .,

ry 0 ¢
ijk 31g}3 6vk

s

vhere 2 represents cyclic summation,

Z F(ijk) = F(ijk) * F(jki) + F(kij).

ijk
Equation (2.21) can be proved by direct calculation, which is not very
instructive, A simple reason that one set of indices i j k 1leads to
only one linear relation among the first derivatives of @ will be given
in Chapter III, §3.

Equation (2.21), when written back in terms of the original
variables and tangent vectors Uj’ could be derived directly without
making a change of coordinates, This might lead one to expect that a
similar derivation with any tangent vectors Uj’ not restricted to the
special case, would give a similar result. In fact an analogue to (2.21)
can be found, but unfortunately it is no longer in general a first order
equation; indeed it contains terms —Iii. Uk (Ukﬁ), where 1 j k are
distinct. Thus the only case in whijch_igxe resulting equation is of

first order is the special case considered in this chapter. The more

general second order equation can of course be used to derive further
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results in the general case, however, which
setting in Chapter III.
The integrability condition (2.20) f

more useful expressed in terms of the origi

will be done in a different

or the special case will be

nal variables and tangent

vectors, since the coordinate transformation, v = v(u), and the

integrating factors M. might be inconvenient to find in any given

J

example.
k
Setting fk = —%__F éi— , We note that according
J FI-3° dvy
to (2.10) relation (2.20) may be written as
k
2.22 v, .M, £ = v, (e, £
(2.22) g0 £ = U £,
that is
Ujsk : v 3"
2,2 U, . (—=—r = U, ., (= )
(2.23) 515 (jj—§k) % \EI:EEI g

Thus we have proved

THEOREM B: Suppose o<}§ = °UJF(u) is a p X p matrix of twice

differentiable functions of u which has

roots §k. Then the system
k —
k du
(»,2L) —Iau v S =0, k=1l,...,p
dx T x

may be expressed in the form

o—
u

o

.
(2.25) 7]; a—b*}kqg, =0, k=1

3

0l

o/

X

P

p distinct characteristic

g 2 ol o PG

9

: it the - t d
Let UJ represer. e tangent vector 7?j g—? , and suppose that

u

Ly

Nt ok f
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any subset of the vectors Ul""’Up is complete. Then a necessary

condition that {2.2L4) is equivalent to a system of conservation laws

is that
il Uigk
3 -3
for every distinct i j k among 1,...,p. According to (2.13)
it 1s equiwvalent to demand that there exist p functions fk such

that

=
“n
-

(2.2L) Ujfk =

‘@.

k’ J’k =19”’,p’ jfk’

¢
"_IJ.
ot

* #* #

- Clearly aiy system with constant coefficients satisfies the

conditions of the preceding theorem. To construct a non-trivial system

conservation laws, attempting to choose p pairs of functions in such
a way that the resulting system falls into the special case. This method
is much more difficult than attempiing to guess the functions §l'direct1y.

It is easy to check that the following example satisfies the conditions:

5 T
ou~ . 2 3 u
e u =
bxl g;§

2 2
du 31 2u

(2.25) + uu = 0

oxt B

3 : 3
bu’ & ulu2 W _
>x— dx

T 3
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Another simple excmple is that in which _fi = .}l(ul), 1= ven,p,
whose solution one can easily give by assigning p arbitrary functions

exactly as one was assigned in (1.8).

3 3.  Proof that the preceding conditions are sufficient

According to THEOREM B there exist functions £% such that in

an appropriate cocrdinate system

o
o]
-

. }( 2
i B o i,k = 1,...,p

2.26 — =
(2.26) S

|

i
o

so that (2.19) might be written

2 k j
2 3¢ . of 8 39 38
(2.27) S ¢ P 9
dvjidv dvj avk dvk Ovj

where § = ¢2. By cross-differentiation as before it is clear that

(2.28) &L - af de _ df ofr , afd oft
bvj (\,V' bVJ 8;12 ij bvk ka 6'73

for i j k distinct, that is

(2.29) i _ ot égfi . agd Yol
T bvg ovE  dvF 2

Define a new differential operator on any suitably differentiable

function Y by means of

(2.30) 4~ - g7 .8 e
Iyoeceely d A-Vin

TN |
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Note that although Y. . 7oY. )
ieipg

we have

(2,31} . . = (¥, ) gk o=
hkll,...,ln’l ll”"’in . : a1 11,...,in
n+l

where the customary partial derivative is indicated by a subscripi

without underlining. In particular ‘Yj =’*j, *EE EAka ‘Avjﬂ’k’

and (2.28) Dbecomes

(2.32) R A

Lemma C,: Suppose “¥ satisfies

S <
ik fk'fi + fj"fE

(2,33 ¥

and let il"“"in be any distinct indices among 1,...,p, say

l,...,n for convenience, n < p., Then

yoo
N

. n

. i
(2.3L) ¥y = g”"i T ——
o CLLLIL LT

I
where 1,...,i,...,n indicates the n-1 integers omitting 1i.

In particular

n
Ql - g n"l i a3
(8350 & LA L P

[

Prooi:; Use induction on n. By (2.33) the lemma hclds for n = 2,

To show that n may be replaced by n+l in (2.3L) wuse (2.31) to obtain

DR
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Yy e - Yy ) *1;ﬂ.*1..un

cofiasn gl Sos Zaerewll o8 ey A EEEL
n
- ~ /"'*' i o i i
(2.36 = phy R Fina T * Yoty F)
i=1
n n
2 *1 Fn*l 2 *121'141 -
i=1 i=1

i g
where F~ = f e ;
l,v..,i,...,n for converience.

But the second term on the right is

n
i +1, i
ég g fn‘l ‘Arn*l f; ) F

{2, X7}
n+l "1,...,n

n
i i n+l
‘ é{ayi R
=i

by (2.33) and (2.35), which is just the induction hypothesis applied

to fn§l. Hence by (2.31) and the induction hypothesis

I
- i i i n+l
Arlj...zn*l E :E th (Fn*l * fn*l F7) ’nrg*l flz...zn
i=1
n
= & A n+l
(2.38) §£—+i £ty eeynsl “Ther Tl n
J=11.
n+l

;E;ﬂ‘i f1,...,i,...,n#1

asz asserted.




I T

Formula (2.35) may be iterated to find an expression for
n+l . . 3
fl directly in terms of the f£fY if desired.
yeee, D i

If ¥ satisfies (2.33), that is

= oF

(2.39) (e+) e"+ = f.}‘z (e*) P A S (e* e

ik 3 5 (e )y

then clearly # = e e Een (2.27).

Similarly (2.3L) becomes

Since the right-hand side of (2.L10) 4is symmetric in the indices

1,...,n it is clear that the computation of ¢1 , is independent
,.oo,

of the order of dilrerentiation. Thus any mixed derivative of ¢

involving nc repeated differentiation may be uniquely evaluated in terms

of the first derivatives of .

THECREM C: Under the hypotheses of THEOREM B, if the integrability
conditions (2.23) are satisfied, then a conservation law in a neighborhood
of wu =u_  may be specified by assigning values of @ (=¢2) on the p
characteristic curves (2.16) through uge In garticular, by successively
determining conservation laws for which the derivatives of @ vanish

along all but the kth characteristic curve, k =1,...,p, 1t is clear

that any system satisfying (2.39) 1is equivalent to infinitely many

systems of conservation laws,

e e e —— e




-

l
|
|
i
{
|
!
!
i
i
i
)
i
!
|
|

———l

2

?ibmﬁﬁ!zfmﬂgpgggﬁgnﬁgﬁuIn

s AR T S SR

P

) :
Proof: Write @ for ¢ (0,...,0), #~ for & (0,.c., v ,...,0),

120
b2¢ﬂk al
¢Qk for _7:;7§ ., etc., and note the following sequence of integral
by oV '

formulae, which may be verified simply by evaluating the integralss:

Jn lr k ¢‘£
¢ Bar B (B0aey Fyorns¥ 0) etc., and - @, for "
and -8, 3;f2

)]
(2.L1) ¢£ = g = §, ¢£ dv’e
0

sl ik

any e - pligy g jj $ gy av av

00

1

(zuy g ARIL @9 s giha gy _ghiga gy

vﬂvk VJ
+ g Jj f ¢£k;j dvjdvkdvz,

0O ©

and so forth, until ¢1,2,...,p =g (v%...,"vp) at any point

is given by

groestP = S (all @'s with p-l entries)

(2.10) - $ (a1l @'s with p-2 entries) +---
1 3 VP D 1
vee & (_l)p._, ¢‘ S ce e S ¢1 dv “...dv T,
R
0 0

The data ¢’£, £‘= l,...,p is given, so that (2.h1) 1is trivial for
all.l . Everything on the right.-hand side of (2.42) except the integrand

is therefore known. But according to the lemma the integrand is jJjust

P S P
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& known linear combination cf the first derivatives of @ which may

be integra’:d by parts to give a linear integral equation in @ for
which several existence and uniqueness proofs can be constructed. Thus
all the ¢l X can be found, so that everything on the right-hand side
of (2.43) except the integrand is known. Again the lemma allows the
integrand to be uniquely expressed in terms of the first derivatives

of @ which rives rise to a new integral equation, and so forth. This
process successively finds the values of (Vl,...,vp) on higher

and higher dimensional webs spanned by the characteristics, finally
giving the values on the p-dimensional web, that is, in the entire space,
at least in a neighborhood of v = Voo depending on the method used to

solve the integral equations.

e,
AT re
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CHAPTER III

THE GENERAL CASE

§1, Exterior differential forms

In Chapter I the evistence of conservation jiaws was entirely
reduced to the study of the linear system (1.23). This system is

repeated here for convenience as
yi ! ' '
1 2
(3.1 Flupd ¢ 3, upd =0, L=1,...,p,

where 5 . are functions of U, and the Uy are linear differential

first order operators, differentiations in the characteristic directions

- (3.2) U,=7" & f »1
. ’e —7?/2 éua_.9 ')‘ 9"'8p9

ngent space of Y, which is defined in Chapter I, §2.

The dual to the tancent space may be identified with the space of

first crder differential forms, called Pfaffian forms, over U, since

f the former transfoims centravariantly and the latter covarianatly under
a change of coordinates, piving rise to appropriate bilinear functionals.
It will be more ~onvenient in the present chapter to workwith the space

of differential forms, spanned by the dual basis

(3.2) uula gﬁduo—
i

2

where (Sﬁ.) is the inverse cf (’75—), If_';?;r = g 3°

This space is called the co-fangent space of U.
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An exterior differential form of degree r in the variables

1

2]

,,.,,7N is any element of the Grassman algebra of degree r
generated by the space of Pfaffian forms in the N variables

z1 g i Thus, if the Pfaffian forms are spanned by Ol,...,ON,
an exterior differential form of degree r 1is a linear combination

with analytic coefficients of terms Oilé OizA ...,\Giw , Where

des sagaimghl are invegers from 1,...,N, the sign " A" denoting
1’ st (2 y £ ) A

4]

exterior product. The definition of exterior product assumes that

(3.4) 6,AS, * 6. A6, = 0.
=5 12 12 11

These forms constitute a ring in which products are formed by
exterior multiplication. Since (3.4) implies that the square of any
element vanishes, it follows that this ring is of dimension

{ -} %4

A \
» e ’(u) ?24‘

N

\
/

r =1

N
over the araiytic functions, thus of dimension 2" when the unit element

is added; introducing the analytic functions as differential forms of

degree zerc.

From {3.L) one easily shows that the forms Gl""’gr are

linearly indevendent if and cnly if glA 82/\.../\9r is a non-zero

form.

The operaticn of exterior differentiaticn, denoted by 4, is

i i
defined on a monomial a dz /\.../\dz by
< i N i 4
; =3 i B < da j 1, “r
(2.5) a (adz Aere pd7 ) = & rdzJAdz Aeoo A 92
> 0z

= 5 . s X o — e ———rn At ot e B IS o e wioge

- 1 considered as a vector space

O 8
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and on arbitrary exterior differential forms by means of
a(® = @' )y = daB® +« ¢ @', Clearly

N

i i 2 . i i
dd(adz l,‘...Adz Ty = 2 é—i——- dzkAdzJAdz l/\"‘/\dz L
; kclbz 323

vy

(3.6)
= 0

by (3.l4), which gives Poincaré's theorem,

(3.7) ad® =0

>

for an arbitrary exterior differential form@ . If @ is an exterior
differential form of degree r and @ ' is an arbitrary exterior
differential form, then the definition of exterior differentiation
implies

(3.8) a0, @) -4d0,0"'+ (-1DTP,a0 .

A differential form Lk which is the exterior derivative of another

differential form, = d@ , 1s called an integral, or total differential.

Poincare's theorem has a converse, namely, if d{l=0 ina neighborhood
of a given point, then.m_ is an integral there, provided that the
coefficients of {L are aralytic in the neighborhood.

The exterior derivative of any Pfaffjan form is an exterior
differential form of degree two. Consider the forms w*e, A= l,000,P
given in (3.3) for example. We have
2 (op

(3.9) awl - -1 cpo,w?w,
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Cop =0 due to (3.4).

where we might as well take c,£, +

If f 4s an arbitrary analytic function of u',...,uf then

B 3 =t &

o_du =(P—-32/—Jdut= U, fw

(3.10) df
du du”

so that
G o
0=ddf = d{U ), w + U fdw
o
=Up(mrﬁwiW¢ U, fdw?®
1 - (2 T
=5Up (Up D) - Up (Up D)}waw & U, £ dw

[ . P&
L [Up Ug JEw, ws U,Cfduut

=.2..6Pq- U fw, ,w —-5 po UthJ AW
=% (JPc——c-‘Eo-) U,c fu.)F,-‘u.o—

by the definitions (1.29) and (3.9) of the structure functions

X,EO' and the functions cg respectively. By definition X;a' = C;:a' =0
for /0 = 0" ; ard since (3.11) implies that the coefficient of ’?P,\wr
must vanish for © # p it follows that the c;o— of (3.9) are merely

the structure functions,

T
(3.12) cge = doo BiSEE Livanyis
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2. Frobenius' thecrem

In Chapter II, §l, it was noted that the complete system {2.2),

repeated here as

{3:13 W $ = o, A=1,...r

N
for convenience, where WZ = 2 t’éj .58 is a linear homogeneous
J=1

awj

first order differential operator in a neighborhood of w in a
wanifold W of dimension N, possesses N-r functionally independent
solutions. It was further noted that there is a change of variables,

w = w(v), such that the given system becomes Jacobi complete,

ki aé=0, E Lieweept
(3.1) e ?

Z

The solutions @ of this system are arbitrary functions of v© ,

,2 = r+l,,,.,N. Thus one can map a neighborhood of Yo given by the

cocrdinetes vy = (vz,...,vg), onto a neighborhood of some point

m = (mgj}.n,mg) in an (N-r)-dimersional manifold M by means of
(2:.15) ml = v"z, [= i .

M 1s the integral manifold determined by (3.13) in a neighbor4ood

of w.

o}

The fact that the vectors gdp 5 1= r+l,...,N span the tangent
space of M in a neighborhood of LA is of no interest since these

vectors depend on an a priori knowledge of M. However, the differentials

dV'Z = dm’l: [= r+l,...,N span the corresponding co-tangent space and
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can be invariantly described as isomorphic to the annihilator of the
vectors —i] ; = l,...,r, given in (3.13) and (3.1L), which determine
v

subspaces of the tangent spaces in a neighborhood of wo. Furthermore,
since these differentials are independent their exterior product is

non--zero, and so one could equally well describe M as the integral

manifold through w_  for which dvr’l,\ ,\va # 0.

It is desirable to find a criterion for the completeness of (3.13)

in terms of the annihilator A of W Wr’ Suppose (3.13) is

1,-...,

complete, and let © ..8,, be any basis of A. Then each Ol is

oo
1‘.;12'

N

. : 3 rel N r+l N
some linear combination of dv yeoe,dV , Where Vv seee ¥V are any

independent soiutions of (3.13), with coefficients which are not a
priori xnown. Since the square of any Pfaffian form wvanishes, only one

term appears in the product Ll= gr*lf\'” /\GN’ namely,

(3.16) N=0 o, = Adv™ ... avl,

Fel ACCE N

Thus A is completely described by a non-zero form {7 for some unknown

factor /\t ,/\ # 0. Differentiating the right-hand side of (3.16)

1

N .
AT dv vanish

*
according t» (3.5), all terms except d/l,\ avt

B3 Poincaré's theorem. Hence
(3.17) dN = %i\,\ AL

so that d fL is in the ideal gencrated byﬂ over the ring of differential
forms, which is also expressed by saying that the differential form s

is closed. Conversely, if {L is closed, Frobenius' theorem asserts that

there is an in:egral manifold through e for which fL# O, that is,

satisfrimge (3.13).
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As an application we return to the problem of Chapter IT, §1 to
determine when multiplication by an integrating factor and a change of

-
variables u = u(v) will bring the operators U, &7 - into the
£ day™

form '/\,?U‘EE ) S

\
av

14 )
(\3.18) UZ = /U m, j 1,...,})

then the dual basis iz of the form

(3.19) wligi au’ E/\ldvz, J=1,...,p

!

Thus for each £ the differential {L = W¥ must be closed. That is,

the exterior foim
2 o
(3.20) dwt = - 20w W
must lie in the ideal generated by UU'B, so that b'a_f, must vanish except

when o = 4 or o = L. This condition, found previously ir Chapter II,

is both necessary and sufficient by Frobenius' theorem.

§3. Exterior differential systems

Instead of prescribing only ‘a form L which does not vanish on some
unkncown integral manifold one might also seek integral manifolds on which,
in addition, a prescribed system of exterior differential forms does vanish.
Problems of this type arise in a natural way from systems of linear
homogeneous first order partiial differential equations. For example, it
is of interest to consider the system of Chapter I, §5, concerning the

case Pp =2,
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= N

l a¢l + §I é?—z- ¥}
st

(3.21) y 35 £a=1,2
v

£

‘SJ' §1
b : i g
where §.i are known functions of v such that \ > .2

51 -§2

For simplicity we introduce the unsymmetry of Chapter II and take this

¥ 0.

in the form

1 2
(3.22) & . }“i =0, f=1,2.
évl bvz
Let
(3.23) d¢2 = ¢1 dor ¢2 dav®

then (3.22) implies

(3.2L) agt - - §1¢1dvl = }2¢2dv2.

Suppose

1 2
) = fyy AV ¢y, AV

(3.29)
B, = By avt %2n av

then extericr differentiation of (3.23) gives

1 2 1 1 2 2
0 = (¢lldv . ¢12dv )A\dv + (¢21dv + ¢22dv ),\dv

(3.26)
. ! 1 2
= ¢120v N av ¢ ¢21dv NN

1 2
(¢21 = ¢12) av~, dv
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so that

(3.27) ¢21 = ¢12,

2 ' 2
This was to be expected since it merely states that ilﬂ—f = -—6-225——1 3
6V 5v b Av

b

Similarly exterior differentiation of (3.2b4) gives

. 2 2 1 1
{2.28) 33, ¢ 390 - 3Pt P
. . .
where az’t = 5}dv1 + 32av© i=1,2
1 2 2

Hence, since by assumption 52 4 31,

(3.29) ¢21 = ¢12 = /4'1¢1 4 /’"2¢2

pilk : 2
where _1 = 22 and /(2- = 51 5 Now substitute
# T 3

these values into (3.25) and take exterior derivatives to find

1 1 2
0 ‘=.d¢11/\dv + Fldv Adv

(3.30)
. 0= P,Av A avt + afyy Adve
& where
f 1 1 2 1 2 2 2.
Q=M Pyt (M My ¢ (uy v AT I8
: (3.31)

Lag

2 1, 1 >, L.z
Pp= Pl * Mo o p ¢ (g * S e

NI OR R
v

Finally (3.23) and (3,30) may be taken together as a differential

b
f.
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system in the four unkmowns ¢1, ¢2, ¢ll’ ¢22, and two independent

; i 2
veriables v~ and v,

/98 - ¢11d"1 = (/’"1951 & /"2¢2 Yav? = 0

2

g, ~ (x 1‘Z‘l g /“2¢2 Javt - gyyav” = 0

(3.32) .
af , pdv 4 P lavia v’ = 0
.

; =0 .

deva dv- + d¢22h dv
The relations d(¢ldv1 . ¢2dv2) =0 and d(J 1Qfldvl . 5'2¢2dv2) =0
imply that the two Pfaffian forms in parentheses are integrals, by the
converse of Poincare's theorem. Since these two eqn=2tions can be obtained
without differentiation from (2.32), we have omitted (3.23) and (3.2L)

from the collection (2.32). In fact this system already describes the

o)
original unknowns ¢1 and @ up to additive constants of no interest

in conservation laws.

Now note that further exterior differentiation of (3.32) yields

only equations which are already in the ideal it generates over the

ring of exterior forms in the space (vl,v2,¢1,¢2,¢11,¢22), so that

the system (3.32) is clesed. If an integral manifold can be found

RO BB T T P

which satisfies (3.32) and on which in addition dv‘ll\dv2 # 0, then
the system is said to be in involution with respect to the variables

v and . . Clearly if (3.32) is in involution with respect to v

and v2 then there exist soiutions of (3.21). The number of such

PR
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solutions as well as a criterion for a closed system to be in involution
is given in §b.
An important detail in the preceding derivapion should be stressed.
The original differential system, comprising (3.23) and (3.2L), was
not closed, but it might have been closed merely by adding the exterior
derivatives of these equations to it, giving the system
/o - gavt - gavi= o

d¢l . §1¢1dv1 . .§2¢2dv2'= o
(3.33) -

af, advh ¢ af, pav? = 0

shag navt o FPg,aav + (4,32 - g 51 davt, @ =0,
in which the first two equations might be omitted as before. A4s it turns
out, (3.33) is not in involution, so that it has been necessary to prolong
it by adding ,réll and ¢22 to it by means of (3.25). Then the new
system had to be closed by the addition of the exterior derivatives of
(3.25); luckily the resulting system is in involution as we shall see later
on, It is an open question whether an arbitrary system can be prolonged
in this Tashicn into a system in involution with recoect to a given set of
variatles,

The remainder of this section is devoted to replacing the general

equations (3.1) governing the existence of conservation laws by a
closed exterior differential system. Since one may solve (3.1) for

Ul g* in terms cf some new parameters,)gi say,
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o

& A

™

=X
(3.3L)
2 £
Uy 8 = -Xp3y
the initial differential system in the variables (¢1,¢2,Xl,...,x p,ul,...,u '
is B '
=1 -
(3.35)
p
> 1
p p ]
where U)l'—' E yj du®. The system (3.35) can also be obtained directly

J=1
from (1.9} without going to the trouble of deriving the corresponding

linear equations (3.1). In fact, write (1.9) in the normal form

L A

o=>

, L
(o = =
(1.28) §,%% jjo, =0, d=1,...,p
P
where o‘{ = 2 gf :—l‘z , and suppose there exists a linear
"
Il

p "
i £ 4 L
combination ix Ji (3’ 20y - §10"2 ) of the left-hand members oi"

\ 41 2
(1.18) which is of the form g + b—;d? . Then
' Ox dx
P k P
3 gt /2 ﬁ 3o I
6—?—11- &= 2 2 1 anq g? - = lénglo—g’

since each of these identities involves differentiation with respect to

P e
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QQJ_‘ and 0‘5 by the corresponding differentials d@* and w

only one of the indepenrdent variables, we may replace the derivatives

1

T to obtain

x
(3.35).

We attempt to prolong (3.35) by adding new variables X’ef o ik,
where

(3.36) dx, =Xy, d=1,...,p,

Denote the Pfaffian form on the right-hand side of (3.36) by 02 5
The introduction of G2 is convenient for deriving results which are
independent of the fact that it is an integral; it should be noted in
particular that Poincare's theorem, dd OI = 0, 1is always valid, even
if nothing is known about 8§ .

Differentiate (3.35) to obtain

P

2 .
(3.37) g { 01:\5 wiﬂ« X,Q d (}iw’?)} = 0, i =12,

g4

The coefficient of w",\ wk in (3.37) is given in terms of the XL

and the known functions X ’Jekj 5{._, 3 'zk in the second term, and by
ik -

X kﬂ_gli - xikgﬁ in the first term, i = 1,2. Hence, since the
characteristic directions in X are distinct, by setting the coefficients
of u)n,\wk equal to zero, Kk, L = l1,...,p, one can solve for all those
x | for which k A4 in terms of the %y . Taking these values for
xkl’ or, preferably, merely considering these vaiues as definitions,

(3.37) 1is identically satisfied and hence the exterior derivative

p 9 '
(2.38) 2 {d@ ,\§iw2- Ql/\ d(§£w2) + dyyx\ d(;fu’j)} EO
1=1
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of the left-hand side is identically zero. (Notg that a minus sign
appears in (3.38) due to (3.8).) In other werds, since the last
two terms of (3.38) cancel, using (3.36) and the definition of

91 , the expressions

(3.39) z de ,\} w?
£=J.

are in the ideal generated by
(3.L0) dxXp- 8y, 1L

For the converse of Poincare's theorem turns (3.35) into (3.37),
and (3.37) vanishes identically, merely being used to define various
coefficients in the Oj 's. Note that the system (3.L0) is not yet
closed, although Oi represents an integral, since ©, involves new
terms which prolong the original system. In the prolonged system Oj
is not an integral.

Now let

™| -

(3.’41) dgle —UJI‘P/\UJIQ g WPJKWJ/\WK

ik #4

Wp,, TM,.. dependi d th st differentials,
for some 20 T i epending orﬂf.f )buan telr fir ifferentia

£,3k=1,...,p, whereTfI K ‘ﬂfkj = 0. Without yet closing 1 S hO) by

]
<

asserting that dOf =0, multiply (3.41) vy UU'Q to find that

D P

p
P
(3.h2) ¥ {5 ™, WJAWk/\‘“Uf
ot J s o=l

lies in the ideal generated by (3.40), since (3.39) does;

[ Y
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* Mo

E*ﬁﬂﬁﬁxﬂmﬁﬁTnﬁggygg¢g¢.

hence

i | . .
+ J +* k = 4 =
(3.43) 35 Mo * J1 Mg ¢ 35 Mypy =0 1=1.2

But (3.L3) gives the identity

(Gubb) - Ty = Ty = Mgy = TOLK
s | pw

TRHNEEANE
where 1T ( #/ jk) 1is independent of the order of .£ jk. In ths special case
of Chapter II this simple result is exactly the assertion of Chapter IT,
§ 2, that only one first order relation arises for each diztinct triple
of indices. In fact, T (ijk) is just the left-hand side of (2.37). It
should be noted, however, that in general T is a linear combination of the
7912 as well as )92, 4= l,...,p, the special case being the only
exception to this rule,

t is undoubtedly true that for p > 3 one can find still further
identities among the TT( {jk). These identities, if any, will not be
investigated here.

The fact that dde J, belongs to the ideal generated by (3.L0),

that is
= 1 )k
= (Wu«w)) Y B 2 d T psk w Aw
ik f4
(3.45) :
3 2 W 8¢ whw') = o,
ik, ¥4

will be recorded here for later use,
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To close (3.40) one must first add to it the requirement
dO£ = O, which breaks into several parts in the notation of {3dd).

The result is that

TEL g It = D

(3.h8) dxy -8y =0 £k = 1,s5:,p
s 0
W!l/\W‘ =0

iz a closed system provided that d( u,\wy) and 4T (f jk) Dbelong

to the ideal generated by it. However, 1iu is not necessary to look at

d(muA W,E) since

d(mwwf) L 2 ant . wJ,\w ) s B
j,k#d
belongs to the ideal generated bty the left-hand members of (3.L6),
thanks to (3.L4S). Hence d(U'JUAwl) vanishes if dTT(/ jk) does
for all j,k=1,...,P.
Finally, if dT(/ jk) vanishes then so does its derivative, by
Pm'ncaré's theorem, since no prelen-ation of the system is involved at

tnhis point. Thus

¢ m(0,ik) =0
am(d ,i3,k) =0 Higk = IpenayP
(3.47)
dX.[ = Ql =0 »
Bggawd -0
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is a closed system in X!_ ’Xﬂ” and ul, £ = 1,...,p, all of whose

sovlutions are also solutions of (3.1). The main result of this

chapter is that (3.47) is also always in involution with respect to

the u‘l.

§L. The theorem of Cartan and Kahler

The following existence theorem, due to Cartan [l ] and extended
by Kahler [2 ] to arbitrary exterior differential systems, not only
gives a criterion for a closed system to be in involution at a given
point, but also indicates how much Cauchy data (in the form of
coefficients of convergent power series in one or more varijiables about
the point) is necessary to determine a unique solution of the system.
The presentation given here for the case that the system contains no
forms of degree higher than two is essentially that given in Kéhler,

pp. 54-55, with only slight changes of notation. Frobenius' theorem

% ’ . .
and the converse of Poincare's theorem can be obtained as special cases

of this theorem.

Given p independent Pfaffian forms wl,...,wp in a certain

nejighborhond in some space of dimension n * r, we consider a system

™, =0, i =L swegt
(3.L8) ej =0, j= 1 eee,h
\ X =0, & Lyl

of forms Tri’oj’xk of degrece zero, one, and two respectively, where



-~

——e

L5

the Jacobian matrix formed by the gradients of the forms of degree zerc
is of rank r, the p + h Pfaflian forms wl,...,wp, Ol,...,Oh are

linearly independent., the quadratic forms are of the type

p
Xk = zmkj ,\W‘( for some new Pfaffian forms a)“,d s and the ccefficients
Ji=1
of all of the forms are analytic. We seek a solution of (3.48) on
: 1 P
which W™, ... W ¥ O.
Iet g = n -~ p - h and suppose that new independent Pfaffian
forms (0 ¥y n i h that wl,...,wP
orms Wy,eee, Wy are chosen in such a way tha geee W OI,...,Oh,
wl,...,a)q span the co-tangent space of the n-dimensional manifold
determined by the zero-degres forms

(3.L9) M. =0

N g T R

Then the Pfaffian forms CCYZ are linear combinations of

W= (wl,...,w p),.G = (Gl,...,Oh) and W = (JJI,...,JJq); since

only the coefficients of W are of interest, and only the manifold
determined by setting T = (T goeees T r) = 0, we may write
q‘ s K3
w = J o :
(3.50) E 2 aly @, (mod w,0,T)
jzl 3
k=1,...,m; A= l....,pP.

Let 0""l represent the number of linearly independent forms among

P .
za)kﬁug, mod W,0, W, k= 1,...,m, where u, = (ujl',...,uﬁ) is

f=1
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a set of constants chosen in such a way that ¢, is a maximum, or,

preferably, Uy is a fixed set of indeterminates. Similarly let

o, 0”. represent the number of linearly independent forms among

P p ;

2“11, and 2 Wi ug mod W,8, T, where u, 1is chosen in such
£=1 =1

a way that 0

is a maximum,..., let 07 +...¢ Tp_l represent the

2

number of linearly independent forms among Eﬁ') A TERED)
P=3

P
Ewkﬂ p—l mod W 6, T, where ua is chosen in such a way that

£=1

j imum. Final =q -0 .,-u..- 3
o is a maximum. Finally let rp o] 1 Frod

1

One further definition is necessary. An integral of (3.L8) on
which u)l,\ ...Au)p # 0 is complestely specified once X is written in

terms of W, say,

(3.5} J)j: 2 tuwﬁ, PR L awenly
A

- assentially prolonging (3.48) by adding the tJl to it. However, the
tjj are restricted by the quadratic relations in (3.48) and so do not
in general span a Space of pq dimensions. Iet M be the dimension of

the space spanned by the til .
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Ths Cartan-Kahler theorem asserts that

(3.52) M < g;-(p&)fl-—(pQ)fé-“.-d¥gh

with equality holding if and only if (3.L8) is in involution with
respect to p variables for which lAJ-A ...Auup # 0. In the latter case
the general solution depends on 0"0 arbitrary parameters, where

G‘O =n- p-~gq, on O‘i arbitrary analytic functions of a single variable,
on &, arbitrary analytic functions of two variables,..., and on 0
arbitrary analytic functions of p variatles.

This theorem is proved by means of a sequence of Cauchv-Kowalewski

constructions. Setting

: P
i L .
W= 2 ukw;: one successively constructs Mintegral elements®
k=1
: wEs w P
through the spaces determined by 5 Z e = ¢ for k=1,...,0

It should be remarked that even though a closed system is in

involution, further prolongation might still lead to a new system in

£
kst

involutiorn. In particular, the singular solutions of a system in

involution, which satisfy additional restrictions under which the given
system is no longer in involution, can sometimes be obtained as the

general solutions of a new prolonged system in involution.

§S. The existence of conservstion laws

e

As a simple illustration the Cartan-Kahler theorem can now easily be applied

to the first example of §3, given by

Y
LA atel

Srp e L
2V
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W

B

dffy - Fppav’ - (u, 2 AL

ag, - (u'p + ulB)avt - g0 =0
(3.32) .
(df.. - P .Av0), dvF = 0
11 = £19V )4
(d¢22 - Pzdvl)A e = -

3ince there are no forms of degree zero, r = 0. The variables occurring

in (3.32) are vl, v2, ¢1, B ¢J‘.’ ¢22 80 that n = 6. A solution is

sought on which dvl,\dv2 7 Oy so p=2. The system (3.32) contains

two independent Pfaffian forms, giving h =2 andq =n-p-h =2,

Clearly we may set CO£ = d¢,,, with J)!X = J)l (mod w,0), A =1,2;

[}

thus 0‘1 = 2 and 0'2 1

completely determined by d;&‘ll =t

=q - 0 0. Finally d¢11 and d¢22 are

1 2
11 2dv ‘.t22<'iv :
where t11~ and t22 are unrestricted by the quadratic members ot (3.32),

giving M = 2., Thus equality holds in (3.52) and the general solution

1 2
dv— ¢ foldv and d¢22 = p

of (3.32) depends on two parameters, and two functions of a single variable,
since n - p-q =2 and 0_1=2.

More generally, the special case of Chapter II follows exactly the
same pattern. Again there are no forms of degree zero, 7= 0, provided
the integrability conditions of THEOREM B are satisfied. Referring to
(_3.14.7), it is clear that each JJ}‘P contains only one term of interest,
namely dX»p, vhich was defined in (3.36), so that we may take <
Wp = dxyy with Bge = Wy (mod w,0), £=1,...,p, Then exactly as ¢
befcre, n = 3p, h=p, @g=n-p-h-= P,0 =P 0’2 =,..=0_ =0,

P

since O TR N ¢ g = q, and M = p. The equality holds in (3.52)

P
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and so the general solution depends on p parameters and p functions
of a single variable, This result might be slightly surprising since

the existence theorem given in Chapter II indicates that the values of
the first derivatives of X 2long the p characteristic curves determine
a solution uniquely up to two additive constants which do not occur in
the present discussion. However, if cne assigns not the first but the
second derivatives ?%ﬂl along the characteristic curves, the p values
of the first derivatives at the origin may be taken as the additional
parameters.

As a slightly more interesting example consider the special case
again but suppose that none of the integrability conditions is satisfied.
Then, since the coefficient OI'X;E occurring in T ( Jjk) 1is non-zero,
the equations dTT (Jjk) =0 in (3.47) provide a determination of all
the XJZ in terms of the Y.z , the determination being unique since (3.&7)
is closed. Decduse the system already contains expressions for d’tf’
namely d)&l =0y, the quadrafic members of (3.L7) are redundant and
may be dropped out. When no quadratic terms are preseni both sides of

(3.52) vanish so that the system iz automatically in involutien. No

arbitrary functions may be assigned, since g = N, and the number of
arbitrary parameters depends on the equations TT(,[jk) = 0. The number
of these equaticns is ( g ), but there might be considerable linear
dependence among them, as suggested on p. 53. However, for p = 3
there is exactly one relation among the three unknowns so that a
two-parameter family of conservation laws exists.

To illustrate the preceding result consider the system

L ———
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which satisfies none cf ithe conditions of THEOREM B, In fact it leads

to the first order equation TT = O where

2 2 5 2
(3.58) Moo o VPRI o (o o e U (o AR
va_'. v g%z Ve v v g—j

Nevertheless it has two solutions,

LR G

= v (v’ - v
¢2 vt e vl e
and
¢l . v1 (v3 _ v2) (vl % v2 . v3)

_ (v1)2 " (v2)2 v (v3)2 . vl (v2 & v3) ,

AN
N
| .

the general solution being a linear combination of these with constant
coefficients.

Intermediate cases, in which some but not all of the integrability
conditions of THEOREM B are satisfied, can be investigated in exactly the
same fashion. In every case, of course, the conservation laws fall short
of equivalence to the original partial differential system unless all of

the integrability conditions are satisfied.
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Some examples not ¢ontained in the special case will be given in
order to motivate the theorem to follow. 1In giving these examples it
will ve converient tc specify the differential forms qu,...,u)p, or
equivalently, the operators Ul""’Up’ merely by giving their structure
functions, which will be taken as constants satisfying the quadratic
relations arising from Jacobi's identity, (1.32). The fundamental

P

: g : 1 :
theorem of Lie groups insures the existence of w™,...,w"® in an

sppropriate neighborhood. We take p = 3 and suppose that the ratios
3% 3 5 5 are distinct constants. Turther we suppose for simplicity
that the structure constants satisfy a condition which is just the opposite
of that assumed in Chapter II, namely that ¥ Ek is non-zero only when

i j ¥ are all distinct. For convenience let (ijk) be any even permutation

of (123) and write

X by y i o=yt

jk
and
(3.58) X, = —* x . .
i 3 ok i
Al z1

- J
(3.59) A%, =0, =X, w e+ |V L

and further differentiation gives

1y
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(3.60) e i Ry * MR v 158
and

(3.61) W, awl =0, 3 =1,2,3

where

(3.62) @D -a®% -2 ¥ % wl + % w).

Now we consider various examples obtained by svbstituting these values

of 6y, wii, and TV into the closed system

TT=0

dT =0

(3.L7) . _
d¥. -8, =0

1 WY

~ i
Wij aw™ =0,

5 = ,,
for several choices of 61, Xd, 53. The special case ¥~ = 52 =¥’ =0

is omitted here. : :

1 |G 2 3 > :
Bxample I: Suppose § =1, ¥° = ¥~ = 0. Then wll is known in

. . 1 2 3 = :

terms of the eight variables u ,u",u”, ¥,, ¥, X3, 222, 233 since
(3.60) implies )?11 = 0, Hence there are only two quadratic relations
in (3.61). Furthermore g =n -p-h =8 =3 -3 =2 so that since
07, is clearly 2, 0, = 0, =0. Since the components of d'¥,,
and d'\'33 in the directions UJ2 and W3 respectively may be arbitrarily
prescribed, M =2, Hence M = pg - (p-1) 0"1 = 2 so that the systenm is

in involuticn. Furthermore, three parameters and two analytic functions
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of a single variabtle determine the corresponding conservation laws
since n ~ p- q = 3 and o1 - 2. It is interesting to note that

d )—Cl =0, so that X 1 is one of the parameters. A more careful
exarmination of the Cartan-Kahler thecrem would probably show that the
values of )—L - and X 3 at a fixed point are the remaining paramevers,

giving rise to an equivalent system of conservation laws.

Example II: Suppose 31.= 52 = 1 KB = 0. Here we note that

11 Tl

Since the quadratic relations show trat W

11 22

and @2 lie in different

11

directions in the co-tangent space this means lel = w22 = 0, leaving
3

only one quadratic relation, 533 AW™ = 0, As pefore there are eight

r

variables, which may be taken as ul,uz,u3, il’ 22, X, )_(22, 133

b

to the relation .TT= 0. In a fashion similar to the first example one
computes M =g = 0_1 = 1, where it should be noted that the additional
Pfaffian relation d7 =0 gives h = L rather than h = 3. Thus
M'= pq - (p-1) 6"1 = 1, so that the system is in involution. OUne may
prescribe three arbitrary parameters and one analytic functions of a
single variable in order to determine the solution, since n - p - q = 3

andG""1=1.

3 o
Example III: Suppose ¥l 2.2 1. In this case

w - o < wj X UJk 3 &
i1 dzii i /(J. + % ), according to (3.62), for

i =,1,2,3, so that the Pfaffian equation 4T =0 becomes
~ ~ ~ 1,9 2 7 w3 : =
W) w W - )
(g ® By ® g ) BUCHWESEG05 S B ¥ = 00 Slm W,

is in the direction of wt tais breaks into three Pfaffian relations,

W =g ¥ and (32,)=d5222 so that dTT = O implies W__ + W =0,
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namely asii + bX iwi =0, i=1,2,3. Thus all the CUii are known,
and the quadratic relations are merely redurdant. Note that althoﬁgh
six Pfaffian forms are involved in the system itself only five of them
are independent since the relation 4T =0 is merely the derivative
of the definition of x’ll’ say, which is not a prolongation. Thus
clearly 9 =n-p-h=8-3-5=0 and M=0'1=O so that the
system is in involution and is completely determined by five parameters

since n-p~q = 5.

In every example so far the relations m =M = 0—1 = q and

0‘2 e gl o—p = 0 have been satisfied, where m is the number of

independent quadcatic relations, so that the condition
M= pq - (p-1) 07 = eee = 0 has always been satisfied by virtue

of m=pn - (p-1)m. Ii is clear that G’y =m always holds since

each independent wj} contains exactly one term dkj[ independent of

the Pfaffian forms wb,...,wP, o O and the other Uyg. For the

P ERREEY
same reason 6‘2 e O"p_1 = 0. Furthermore M = m always holds
since the component of d)Lﬂ, in every direction except W'Q is determined
for each term occurring in the m independent quadratic relations; that
is, in the language of éh, there are n Zndependent parameters t)l 8
Finally, to show that g = m in every case, suppcese the opposite, that

is, 9> m since q <m 1is impossible by the Cartan—K'elx‘nler ineguality

(32,52). In this case, since gq = 0_14 *c‘p and rl 4 ...t L =m

p-1
one couuld prescribe rp arbitrary analytic functions of p variables

: 2
in determining the conservation laws, G"p > J. This means that ¢°  for

example, could be completely specified in a neighb,orhooc} of U, which is
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clearly impossible because ¢2 satisfies several second order equations.

Thus the following important resalt is clear.

THECR®M D: The system

m(f,i,k) =0

ami{d,3,k) =0
(3.47) B3k =150 ,p
dX.X—OI = 0
~ 1
D, ,w" =0
"

is always in involution.

The importance of this result is that it gives a perfectly definite
criterion for establishing the existence of conservation laws. One merely
needs tn compute G‘o and 0‘1 in order to find how arbitrary the conservation
laws are, with no further prolongaticn necessary.

When p = 3 THEOREM D leads to a very strong result since there is at
most one finite relation, namely " = (. There are then at least eight
variables, n Z 8, sﬁ that n - p:Z 5, unless some of the variables
xll-’x22’x33 do not appear; in any event n - p = 2. But, according
to the preceding theorem, G’l = q so0 that 0'0 = h, Hence

>
0O +0_ =n-p=2

o 1 , Which implies

THEOREM E¢ For p = 3 any system of the form

3
o= o=
(18 g (oaoki :ﬁi *.oalgf f—-‘% ) =0, k=1,2,3
=1 X X
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satisfying the conditions of Chapter I, § 3, contains at least a

two-parameter family of conservation laws.

§6. Several independent variables

The restrictions of Chapter I, &3, that the original system should
contain oniy two independent variables, that it should be well-determined
with distinct characteristic roots, and that its coefficients should be
independent of x = [xi}, have been very usef:l, since they permitted the
introducticn of the normal form of Chapter I, § L. Without this normal
form the method of Chapter II would have been impossible. However, it is
possible to .use the methods of the present chapter in a way which is
completely independent of a normal form cc thet the preceding restrictions
become superfluous. Here we obtain an exterior differential system whose
solutions correspond to conservation laws contained in the original system
(1.1), with no restrictions whatsoever except that of analyticity, which is
required for the Cartan-Kahler theorem. No attempt will be made to decide
when the resulting exterior differential system is in inwvolution; in order
to do this it would again be wise to introduce some kind of normal form.

Systam (1.1) 1is repeated here for convenience as

n,p

3
| o
(3.63) Z.oc : f—“I =0, k=1,...,m
i 5, 51 =

]

Temporarily we assume that digi is an analytic function of u = §u3§

alone; 1his restriction will be removed presently.
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Suppose that there exist functions'}(k such that the equation

n,p,m j
(3.6h) X, N g
k 5xl
isj) =1
has the form
5 nie
(3.65) 2 2 .o,
i ox
that is,
n,p ; .
i1, . -
(3.66) Q-QJ %“— = 0.
21 ou x
Then clearly
2o
(3.67) s 2-9’— auw) =dag* =0, 1i=1,...,n
5 u
g

by Poincare's theorem, so that the necessary and sufficient condition

for (3.6L) to be a conservation law is that

p,m
(3.68) d ( gxkx?‘du‘])=o, 1=1 n

B 't
Jyk=1
the sufficiency following by the converse of Poincaré's theorem, Thus
the existence of conservation laws is reduced to the problem of
prolonging (3.68) toca closed system in involutien.

Now let us consider an inhomogeneous system

g2 RO,
(3.69) gx"ﬁl@f s xXuo, k=1 m

g e e ,yilly

-
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where O(?l and o X are anal lytic ‘unctions of x = {x % as well as u.

If there exist functions Xk such that
n,p,m é:

(3.70) 2 pd o(ki 5 EX <KX a
i,j,k=1

has the form of a conservation law (3.65), which in this case becomes
n,p N N j n 5
SRR Qi Vi CURNY g T2
i

then clearly

p ; : :
1 . 1 .
(3.72) d (g T N éﬁl dx*) =0, 1i=1,...yn
) du’ Ox
that is,
ps :
(3.73) éx o<k1 du? + axt) =0, i=1,...n
J,k‘l

is a necessary and sufricient condition for the existence of a censervation

law, where

n
(3.7h) §

i

o e, ————————— = e = .
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