**AD NUMBER**

**AD046111**

**NEW LIMITATION CHANGE**

**TO**

Approved for public release, distribution unlimited

**FROM**

Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; Jan 1954. Other requests shall be referred to the Commanding Officer, Chemical Corps, Army Chemical Center, MD.

**AUTHORITY**

EA D/A ltr, 6 Oct 1972

**THIS PAGE IS UNCLASSIFIED**
Task 3. Analogs of Tetrahydrocannabinol

for

Chemical Corps Procurement Agency

Project No. 4-08-03-001
Contract No. CML-4564
Progress Report
from
December, 1953 thru January, 1954

SHELL DEVELOPMENT COMPANY
EMERYVILLE, CALIFORNIA

Approved for public release; distribution unlimited.
Bi-Monthly Report No. 9

on

TASK 3

for

Chemical Corps Procurement Agency

Contract No. CML-456

Period Covered: December, 1953 through January, 1954

Reported and Reviewed: D.E. Winkler
R.R. Whetstone

Participants: D.D. Campbell
R.J. Patten

Approved: W.E. Vaughan

SHELL DEVELOPMENT COMPANY
EMERYVILLE, CALIFORNIA

S-13570

Approved for public release; distribution unlimited.
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>1</td>
</tr>
<tr>
<td>Analogs of Tetrhydrocannabinol</td>
<td>2</td>
</tr>
<tr>
<td>Nitrogen Analogs</td>
<td>2</td>
</tr>
<tr>
<td>Sulfur Analogs</td>
<td>2</td>
</tr>
<tr>
<td>Changes in Alkyl Groups</td>
<td>3</td>
</tr>
<tr>
<td>Appendix</td>
<td>5</td>
</tr>
</tbody>
</table>
Abstract

A thiopyran analog of tetrahydrocannabinol has been prepared in which the amyl group in the three position (I) has been substituted by methyl. The corresponding oxygen analog has been prepared as a reference standard.

The synthesis of a compound having an aminoethyl group in the three position has been carried to what is believed to be 1-hydroxy-9-methyl-7,8,9,10-tetrahydro-6-dibenzopyrone-3-acetic acid.

Another unsuccessful attempt was made to prepare a compound with an amino group in the one position.

The work on Task 3 is terminated with this report.
Analog of Tetrahydrocannabinol

Nitrogen Analogs

Another attempt has been made to prepare a nitrogen analog of tetrahydrocannabinol (I) having a dimethylamino group in the one position.\(^a\)

![Chemical Structure](image)

(I)

The method tried involved the reaction of ethyl 5-methyl-cyclohexanone-2-carboxylate with \(3\)-dimethylamino-5-ethylphenol according to Long and Sears\(^b\), who use zinc chloride to effect the condensation of keto esters with di-alkylaminophenol. The reaction was tried with and without a solvent - the two methods suggested in the patent. When a solvent was used the starting materials were recovered unchanged. Without a solvent a higher boiling material was produced which boiled over a wide range and was never successfully purified. The patent claims were tested by reacting our keto ester with \(m\)-dimethylaminophenol and a crystalline material was recovered. Ring closure probably did not occur between the amino and hydroxyl group but rather para to the amino group.

Sulfur Analogs

Since the preparation of \(3\)-mercapto-5-ethylphenol appeared improbable at this time\(^c\), and it was possible to prepare \(3\)-mercapto-5-methylphenol, it was decided to prepare a sulfur analog (II) having a methyl group in place of ethyl in the three position.

![Chemical Structure](image)

(II)

---

\(^a\) Winkler, D.E., Progress Report 8 (1953).
\(^c\) Winkler, D.R., Progress Report 9 (1953).
This sulfur derivative was prepared by first adding 3-mercapto-5-methylphenol to pulegone to form a thioether and then cyclizing by refluxing in benzene solution with phosphorus oxychloride. We feel certain that the thioether and not the oxygen ether is formed in the first step in the above reaction for it has been demonstrated that phenol does not add to pulegone under the conditions used for adding the mercapton group. The low sulfur value (85% of theory) for our final compound is probably due to the presence of arcinol in the 3-mercapto-5-methylphenol, which could have been formed during the diazotization of 3-amino-5-methylphenol. During the cyclization of the thioether the arcinol would have reacted with pulegone to form 1-hydroxy-3,6,9,10-tetramethyl-7,8,9,10-tetrahydro-6-dibenzo-pyran which is probably the impurity in our thiopyran. A better product might have been obtained if the thioether had been distilled before cyclization.

An alternate route to the thiopyran which involved the reaction of ethyl 5-methylcyclohexanone-2-carboxylate with 3-mercapto-5-methylphenol was tried but the yield of thiopyrone was too low to be attractive, so the conversion to thiopyran was not attempted.

To obtain a reference standard for use with the sulfur compound the oxygen analog was prepared by reacting the usual keto ester with arcinol to form a crystalline pyrone which was purified and converted to the pyran with methyl magnesium iodide.

Changes in Alkyl Groups

In a previous report the start of the synthesis of a compound having an aminocetyl group in the three position of tetrahydrocannabinol (I) was described. At that time the synthesis was at the stage of 3,5-dimethoxyphenylacetic acid. This acid has now been converted to 3,5-dihydroxyphenylacetic acid, which has been condensed with ethyl 5-methylcyclohexanone-2-carboxylate in the presence of 80% sulfuric acid to form a crystalline material whose analysis is consistent with (III). Termination of the task has prevented further work.

For an alternate route, 3,5-dihydroxyphenylacetic acid has been condensed with pulegone. An acidic material of higher molecular weight was recovered but due to the termination of the project it has not yet been purified.
APPENDIX

1-Hydroxy-3-n-Amyl-6,6,9-Trimethyl-7,8,9,10-Tetrahydrophenanthridine Hydrochloride ............................................ page 1
3-Dimethylamino-5-Amylphenol ........................................ 2
3-Amino-5-Methylphenol ................................................... 3
3-Mercapto-5-Methylphenol ............................................... 4
1-Hydroxy-3,6,6,9-Tetramethyl-7,8,9,10-Tetrahydro-6-Dibenzothiopyren ........................................... 5
1-Hydroxy-3,9-Dimethyl-7,8,9,10-Tetrahydro-6-Dibenzopyrone ......................................................... 6
1-Hydroxy-3,6,6,9-Tetramethyl-7,8,9,10-Tetrahydro-6-Dibenzopyran ....................................................... 7
3,5-Dimethoxyphenylacetic Acid ........................................ 8
3,5-Dihydroxyphenylacetic Acid ......................................... 9
1-Hydroxy-9-Methyl-7,8,9,10-Tetrahydro-6-Dibenzopyrone-3-Acetic Acid .............................................. 10
1-Hydroxy-3-n-amyl-6,6,9-trimethyl-7,8,9,10-tetrahydrophenanthridine Hydrochloride, C_{21}H_{32}ClNCl

An excess of gaseous HCl was passed into a solution of 92 g of 1-hydroxy-3-n-amyl-6,6,9-trimethyl-7,8,9,10-tetrahydrophenanthridine in 1000 g of benzene at room temperature. The hydrochloride precipitated as a viscous oil from which the HCl-saturated benzene was decanted after three hours at room temperature. The phenanthridine hydrochloride was oven dried to an amorphous solid. The yield was 57 g or 98%.

Anal. calc'd for C_{21}H_{32}ClNCl: C, 72.0; H, 9.22; N, 4.90; Cl, 10.13.
Found: C, 71.1; H, 9.3; N, 3.9; ionic Cl, 10.1.
3-Dimethylamino-5-Arylphenol, C₁₅H₁₂ON

bp 141-5°C/0.2 mm

A mixture of 35 g. of amyl-3,5-dihydroxybenzene, 27 g. of dimethyl amine, 40 g. of water and 12 g. of 85% phosphoric acid was shaken in a steel tank for twelve hours at 175°C. The excess dimethyl amine was removed under vacuum, and the product dissolved in 500 ml of ether and extracted with 300 ml of 1N HCI. The amine was sprung by adding sodium bicarbonate, extracted with ether, washed with water and Claissen distilled. A 50% conversion to product was recovered.

Anal. calc'd for C₁₅H₁₂ON: C, 75.3; H, 10.2; N, 6.76.

Found: C, 74.9; H, 9.9; N, 6.5.
3-Amino-3-Methylphenol, C₇H₉NO₆

mp 135-6°C

\[
\begin{align*}
\text{CH₃} & \quad \text{HO} \quad \text{OH} \\
+ \quad \text{NH₃} & \quad \text{175°C} \\
\text{HO} & \quad \text{OH} \\
\text{CH₃} & \quad \text{NH₂}
\end{align*}
\]

A solution of 192 g of orcinol, 112 g of diammonium phosphate, 200 ml of 28% ammonium hydroxide, and 300 ml of water was shaken in a steel bomb for 12 hours at 175°C. The excess ammonia was removed under vacuum, and the product taken up in 1 l of ether and extracted with 150 ml of concentrated HCl in 1 l of water. The 3-amino-3-methylphenol was sparingly soluble from the acid solution with sodium bicarbonate, and after cooling, filtering, washing, and drying, 124 g (80% yield) of product was recovered. It can be purified by recrystallization from water.

Analysis calc'd for C₇H₉NO₆: N, 11.37

Found: N, 11.2
A solution of 47 g (0.34 mol) of 3-mercapto-5-methylphenol, 51 g (0.34 mol) of pulegone and 2 ml of piperidine was allowed to stand overnight at room temperature and then heated for four hours at 100°C. The thiglycerol was taken up in 600 ml of benzene, washed twice with water, dried under a phase-separating head, and after adding 17 ml (0.18 mol) of POCl₃ it was refluxed gently for nine hours in a water bath. The product was then washed thoroughly with water and distilled. A precipitate was discarded and the fraction boiling at 160-180°C at 0.02 mm was collected. The low sulfur value is believed to be due to the presence of 1-hydroxy-3,6,6,9-tetramethyl-7,8,9,10-tetrahydro-5-dibenzopyran as explained in the body of this report.

Anal calc'd for C₁₇H₂₀OS: C, 74.3; H, 8.08; S, 11.7.
Found: C, 74.5; H, 8.1; S, 9.9.
1-Hydroxy-3,9-Dimethyl-7,8,9,10-Tetrahydro-6-Dibenzoylenone, C_{15}H_{16}O_3

mp 56-7°C

![Chemical Structure]

The procedure of Adams and Baker\textsuperscript{a}) was followed with the exception that equal molar amounts of keto ester, orcinol, and \( \text{POCl}_3 \) were used. A 70\% yield of product, recrystallized from ethanol, was recovered. The highest melting point which we were able to obtain on an aluminum block was 256-7°C. Adams\textsuperscript{a}) reported 262-3°C.

Anal Calc'd for C_{15}H_{16}O_3: C, 73.7; H, 6.62

Found: C, 73.2; H, 6.6

1-Hydroxy-3,6,6,9-tetramethyl-7,8,9,10-tetrahydro-6-dibenzopyran,
C17H22O2
bp 145-155°C/0.02 mm

The procedure followed was similar to that used in the preparation of 1-hydroxy-3-secondary nonyl-6,6,9-trimethyl-7,8,9,10-tetrahydro-6-dibenzopyranea)

Anal calc'd for C17H22O2: C, 79.0; H, 8.60.
Found: C, 78.7; H, 8.6

2,5-Dimethoxyphenylacetic Acid, C₁₀H₁₂O₄

mp 100.5-101°C

The Kindler modification of the Willgerodt reaction as used by Neumann and Schwenk was employed for this synthesis. A mixture of 50.5 g (0.28 mol) of 3,5-dimethoxyphenyl methyl ketone, C₁₀H₁₂O₄, 13.5 g (0.42 mol) of sulfur and 36.5 g (0.42 mol) of morpholine was brought slowly to boiling and then refluxed fourteen hours. The crude thiomorpholide was hydrolyzed by refluxing for twelve hours with 74 g of KOH in 740 ml of water. After springing with HCl, the crude acid was filtered and purified by recrystallizing from water with the aid of decolorizing carbon. A 69% yield of acid was recovered.

Anal. calc'd for C₁₀H₁₂O₄: C, 61.2; H, 6.17
Found: C, 60.9; H, 6.2

3,5-Dihydroxyphenylacetic Acid, C₆H₈O₄

mp 126-128.5°C

\[
\begin{align*}
\text{OCH}_3 & \quad \text{CH}_2\text{COO}^- \quad \text{HBr} \quad \rightarrow \\
\text{OCH}_3 & \quad \text{OH} \\
\end{align*}
\]

A solution of 85 g (0.43 mol) of 3,5-dimethoxyphenylacetic acid, 440 ml of 48% HBr, 440 ml of acetic acid, and 42 ml of H₂O (sp. gr. 1.7) was refluxed for 16 hours according to the method of Levine⁹ for the preparation of o-hydroxyphenylacetic acid. About half of the solvent was removed under vacuum and the remainder diluted with 1 l of water and extracted with three 1 l portions of ether. An 83% yield of crude acid was obtained which could be purified by dissolving in ethyl acetate and precipitating with benzene or chloroform.

Anal calc'd for C₆H₈O₄: C, 57.1; H, 4.80.

Found: C, 57.2; H, 4.9

---

1-Hydroxy-9-Methyl-7,8,9,10-Tetrahydro-6-Dibenzopurone-3-Acetic Acid, C_{18}H_{16}O_{5}

mp 240-41°C

\[
\text{CH}_3
\hspace{2cm}
\text{HO}
\hspace{2cm}
\text{CH}_2\text{COOH}
\hspace{2cm}
80\% \text{H}_2\text{SO}_4
\rightarrow
\]

\[
\text{CH}_3
\hspace{2cm}
\text{OH}
\hspace{2cm}
\text{CH}_2\text{COOH}
\]

The method of Desai\(^a\) for the condensation of methyl \(\beta\)-resorcylic acid with ethyl cyclohexanone-2-carboxylate was used.

A solution of \(2.0 \text{ g}\) of 3,5-dihydroxy-phenylacetic acid and \(2.0 \text{ g}\) of ethyl 5-methylcyclohexanone-2-carboxylate in \(20 \text{ g}\) of \(80\%\) sulfuric acid was allowed to stand five days at room temperature. Upon pouring into \(200 \text{ g}\) of ice and water a precipitate formed which was filtered and washed. The yield was \(3 \text{ g}\) of crude material. After three recrystallizations from \(40\%\) ethanol, \(1.0 \text{ g}\) was recovered which melted at 240-41°C.

Anal calc'd for C\(_{18}\)H\(_{16}\)O\(_5\): C, 66.7, H, 5.60.

Found: C, 66.4, H, 5.5.

---

\(a\) Desai, R.D., Gaitonde, M.M., Mehdi Hanson, S., and Shah, R.C., Indian Acad of Sci 25 345 (1947).