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rtESPONSE OF AN. ELASTIC DISK TO IMPACT AND MOVING LOADS 

by 

1. 

A.  Cemal Eringen * 

Purdue    University 

ABSTRACT 

With the use of Fourier transforms a class of elasto- 

dynamic problems concerning disks have been solved. The disk 

is subjected to various types of dynamic loadings at the rim. 

The case of impact and tha moving loads are studied in detail. 

i 
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1. Introduction 

Cylindrical roller bearings in high speed mechanism are subject 

to dynamic loadings.    Yet the usual design procedure is based on Hertz 

formulae which are the result of elasto-static considerations.     In many 

other instances,  gears, rollers, or disks are subject to impact or mov- 

ing loads.    If we neglect the coriolis terms we can also bring the roll- 

ing disks on contact into the category of disks subject to moving loads. 

Thus the aim of the present paper is to obtain the  solution to this 

clasa of elasto-dynamic problems concerning the disk.    The dynamic load 

is applied to  the rim of the disk.    Two normal concentrated dynamic 

loads at the two ends of a diameter moving or otherwise are special 

cases. 

Some solutions of free oscillation of cylinders are known since 

, the time of Pochhammer /"l_7, and later Pickett /~2_7,  J. Mindlin /~3_7, 

T. Ghosh £kj»      Similarly,  the problem of rotating disks has attracted 

attention of many authors  (see,   for instance,  Lamb and Southwell /~5_7, 

Timoshenko and Goodier £k>J', Love /~7_7 )•  It seems,  however,  that the 

forced oscillation problems concerning disks and cylinders have escaped 

the attention of authors,  excepting  a paper by J. Mindlin /~8_7,  which 

consists of generalities in a related problem to ours. 

The present method is applicable to ring problems and to the 

plane elasto-dynamic problems concerning circular holes.    These prob- 

lems will be treated in later papers. 

I 
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2.    Formulation of the Problem 

Equations of motion of plane homogeneous  isoU'opic media in terms 

of plane polar coordinates r and 9 and the time t are J_ lj\   (See Fig.  1) 

Fig.  1.     Circular Disk 

y  u -    (A • 2M )L       - 2W. r 1a) 
,tt c        ,r L 

-1A 

,e 

Y   v =     ( X * 2 M )r    A        • 2 U. U) 
,tt " ,e r      ,r 

(1) 

where u (r, 9, t) and v (r, 9, t) are components of the displacement 

vector, A.  and U,  are the Lame constants, and Y    is the mass density 

per unit volume. Dilatation a and rotation cO  are related to u, v 

by: 

r A - (r u)  • v ,      2 r fJ - ( r v)  - un        (2) 
»" >w ,r    9 

Subscripts after a comma represent differentiation,  i.e.,    u 

^ u/   "b 0    etc  

Elimination of u and v among (1) and (2) leads to: 

,9 

. 
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*lr2*,tt   '   *<* WA,00   '     <   -   V /(X^tt) 

odr2cO..    -   r (r*>   )      • tJ        ,     od   -    Y / U 
2 »** ,r ,r        ,©0 2 « 

(3) 

lr 

These are the equations of dilatational and rotational waves. 

Components    0"   ,  0"   ,  0^    of the stress tensor are given by: 
z*r     rw     ww 

o^.    3    X  a • 2ft u>r        , (Te    -   p.   r"1 u>w    * ^ r(v/r)^ 

6^Q-Aa + 2p.rx(ve*u) 

The problem is to solve    (1),  (2)    under a given    0^r and   o~~ 

at the rim   r - a    of the disk: 

0^. (a, 0, t) - CQ (0,  t)    ,    <TQ (a, 0,  t) -    T   (0,  t) (5) 

subject to the condition that these surface tractions are in equilibrium 

at each instant. 

3.  The Solution 

The periodic solution of (3) with respect to 9 is obtained 

to be 

_   °° 
A - £   (A  sin n 0    + A  cos n 6) Zn ( A)  , 

nmo 
(6) 

£> - Jl (Bln cos n 0    - B2n sin n 0) Z ( /> ) , 
n•o 

Zn^j^CjnJn^y * Djn V /°J>  • /> ' <*j T r , (J - 1,2) 

where 2n(P) is the cylinder function /£_7; A , B , C  and D  are 

. 

4. 1 
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5. 

constants of integration; and the barred quantities represent the 

Fourier transforms, i.e. 

F (r)    -   f°° eirt F (t)  dt    ,    i =     \[Z 
•'-oo 

The inversion formula for (7) is 

lOO 

(7) 

F  (t)    -    i-    f      e-itr   F  (r) dr 
2n J_00 

(8) 

Substituting    (6)  into    (2)    after taking  the Fourier transforms 

of    (2)    and solving the resulting partial differential equations we 

obtain: 

u    »  ^^    Uln^    sin n y    *    U2n^  cos n tt 

oo r 
n*o 

oo 
X\    V,   (r)    cos n 0   -    V„ (r)  sin n y 

where 

-r"1    U. (r) jn 

-1 

A,     fi-1 2'   (A)    +B      2n  f>~}    Z    ( /? Jn/1       n     i l' jn        / 2        n v T2 

,-2 -1 

-r vr) • v "Pi Vi»*%2faw 
where prime represents differentiation. 

Combining (i«.)» (6), and (9) we obtain 

oo _ 
^^   m Z/Aln Nln(rr) + Bln N2n(r^^sin n G +£A2nVrr) 

• B2nN2n(r^7 c°8 n e 

^2^   "^Aln Sln(rr) * Bln S
2n^J•° n ° -^A

2n
Sln

(rC) 

+ B2nS2n(rf^ 8in n ° 
(cont'd.) 

n»o 

oo 

(9) 

(10) 

(11) 

• 
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(11,  cont'd.) 
oc 

-J^     ' Z f\n \n^> +  B
ln 

T
2n(^J sin n 0 • ZVjln^ 

• B T (rf;_7 cos n 0 

where: 

Nln (rf) " ( A /2 ft) Zn (/Ox) • (l- n2 f2) ZQ ( /O) • ^ Z«( ^) 

N2n(rr) - 2n^2n(/>2)-2n/>- Z' (/^ 

Sln(rr) - n^Z^^-n f"1 ZA (^) (12) 

S2n(rr) - d-^yo-2) Zn(y02) • 2 ffz'^fj 

Tln (rf) - U/2J4) Zn (^) • n2 ^2 Zn ( fi) -  /^Z' (/^ 

T2n(r^) " -N2n
(r^ 

4. Dynamic tractions applied to the rim of a disk 

In the case of a disk, the stress and deformation components 

must be finite at r • 0.  Hence Dj • 0. Without loss of generality 

we also take C, • 1. This means in all of our formulas we must re- Jn 
place Zn by Jn« 

We use boundary conditions    (5)    to determine the constants A 

and B.   .    The Fourier's theorem thus leads to: jn 

Aln   -f*P Dn Ulf'1 ^~S2n <«*> ^os " N2n {&Z)     ?oc-7 

jn 

Bln   -&JI Dn <•«? & Sln (ar)  ?„ • Nln(.t)      tQZJ 

A2n   "^2 P\ ^ fS
2n <•* £ * N2n (aT)      ZJJ 2n oc 

(cont'd.) 

/ 

6. 
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B2n • '2/< V^lT ^ Sln(aC)  %o " Nln^   %J 

(n=l, 2,   ...)   , 

jo     2 *•   jn-Vo Jo     2 ^    Jn-^n^      ' (13) 

where: 

M«T) - Nln(ar) S2n(aZ)  - N^atf S^arf 

,2n 

'o 

<~ _i r2" _ 
6"0C    -    n     /       <T  (0,r)  cos n8de 

/- -1 /•*" - 
6~      -    TT     f        (T  (e,t)  sinnOdfl 

08 i o 

similarly  f*  and "C      are defined. 
oc      os 

Various special cases are of interest: 

(a) Zero surface shear: r 
oc 

r 
OS 

(b)    Normal traction with central symmetry and (a):   6"*    » 0 
os 

(c)    (b) with constant amplitude over    o    -    G   - °<- 

(15) and    <T  (0, f) - <T(?) J 0 ^ 0 * <* 

0     cx^© - n - «; 

(14) 

(15) 

(16) 

Hence 
/~ — -1 
<r      =-    2 6-  (ZT)   •   (TT n)        sin n oC 

oc ° (17) 

l 
4 

(d)    Impact load and (c|: 

(16) and 

o 

lim        2 6~ (r) a<X   -    P    (T) o o 
« -*»   0 

»• oo 

I 
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8. 

Hence ff-      •    P    (f)/na (18) oc o 

(e)    Impulalve concentrated load and (d); 

(18) and PQ (t)     -    P   <T(t),  where    5"   (t) is the Dirac delta 

function defined by 

o"   (t) »voo t » 0 /* oo 
I <T   (t) 
vo t / 0    ,      «/-oo 

dt    =    1 

In this case, 

Po(D     =    PQ    , 6-oc    «    Po/na (19) 

where P      is the amplitude of the concentrated load. 

5.      kovlng load 

(a) Moving normal and tangential stresses: 

Moving loads can be represented by 

<r (o, t>^ .  a- (Q - -n. t)   ,     r (o, t) - rc« - -a., t) (20) 
O  A u U OX 

Fourier Transforms of these are: 

«r <©, r) - a eir0//\   8o(r/o-) ,   ro(©,r)- 2eiro//2i s^r/r^ ) 

(21) 
1    f°° -i7*0/«- 

aQ(T/Jl) - ^j-J       <T(0)e    ' "d 0      (in general) 

(22) 
2^-00 

1 

- —/       <T(0)cos (r0/a)d0    when tf£(-0) - <T(0) 
'O 

where    s^ T/^i-^i    follows from    SQ( V/^i)    by replacing J2. and <T (0) 

by   -A      and     Z"(0)    respectively.    Hence: 

J 
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9. 

S^c -  (2r/n^2i) ^(r/n.)2 - n2jT1(e2nri/-/2-l)  *,(*/*) 

8V  -  (2 n/n^l) fir/Cn)2 - n2J_1 (e2nri/r2-l)  s (fAD 
uo 0 

(23) 

Quantities     f"       and      f*       are obtained from (23)  by writing-rt.   and 
OC 08 1 

s,   (f/«A.)    in place of-^2 and    s    {'C/Si.)    respectively. 

(b)    Moving periodic loads; 
oo 

<5~  (© -SI  t)     =    (Q /rtaj   J*  p    cos n(© --/2tj+q sin n{£--A.t) 
n=o 

(24) 
oo 

2£ (0 - -TLA.)    -  (Qo/•0jf P    cos n(© —<2_t)*s sin n(0-   -fljt) 

After taking Fourier transforms of    o~"    and      7"   >  we  substitute into 
o o 

(13)  to obtain    <r     ,   ...   ,     f*    .      This gives: 
OC OS 

a CV/Q      -•   (pn - iqn)    5 (-An - 7" )  • ( p    •  iq  )  o" (-Yin -D n n 

(25) 
» 6V/Q      -  (ifp •  q )   5"Uln -r)  •   (-ip    •q)S"(-An-r) os    o n     n n       n 

Quantities   7*       and   7*       follow from (25)  by writing    r      and    s «-oc os " n n 

place of    p      and    q    .       In obtaining  (25) we used the formal relation    £/^J 

in 

2TT c" (u)    =   I 
•'-oo 

e"itu dt 

Components of displacements and stress tensor can now be obtained by 

combining    (9),  (11),   (13; and  (25) and taking  inverse Fourier trans- 

forms.    Thus 

* This is  justified in the sense of a distribution function /~llJ7» 
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-(2TT a M/Qor) u "JT U    (rjT. nj/~p cos n (©-.atJ-Kyjin n(£-.at)_7 
n»o   n n 

+ u      (r.a n)£rnsin n (8-iJ t)+sncos nCO-jT^t)../ 

oo    ,   . _ 
- (2TT a ii/Q r) v -JT v*i;(r.nn)£pn8in n(0--rit)+qncos n(8-j2t)_/ 

n=o 

• v^Cr/irOA- cos n(0-/l.t)-8nsin n(0-n.t)_7 
n n 1        n -L 

oo     /, \ 
(n a/Q )C     -^T  6^;(rAn)/"pncos n(G-.fl.t)+qnsin n(0-At)J 

—»o 

6^2hm,n)/Pr sin n(0-y2 t)+scos n(0-J2it)J7 
In -1- n 1        " 

n=o 

+ 
'In 

OO (1 \ 

(n a/Q )<T„ " y    T     (r/2n)A> sin n(0-^t)+qncos n(0-At)_/ 
'   o    TQ    ^tr*      n n n 

n=o 

• 7^2\rxin)^rnco8 n(O-^t) - 8n8in n(0-^Lt)_7 

(n a/Q )6Za " 22  *O    (mn)/*p cos n(Q-^2t)+ q sin n(©-.at)_7 
«oywOG     ^    2n 

• 6~(2'(wn)/-r sin n(0-A,t)  • s cos n(8-il t)J 
2n n * n 1 

where 

rrrz:  

(26) 

/ 
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u(l)(r^n) - /~D„ (a^n)_7   /£<  rjinf1 J«   (& r^in) S. (a.an) 

- 2n(ot2r^in)      JR (0/^02 n) S^ (a.nn)_7 

v^(mn) - /~Dn (a^n)J7   /"n (o^r^n) * Jn (c^r^n) S2naxin) 

- 2 (o^an)-1 j; ( oi2Tjxn) Sln (a^injj (27) 

(1) _1 

0*n'(rJan) - /i^ (a^inj_7   ZFln(r^n) S2n(a^n; -N2n(r.nn) Sln(a^n)_7 

Z^hrsta)- /5n (asin)J   ^(r^n) S2n(a.an) S^rsin) S^a.QrOj7 

(1) -1 

V  ;(Mn) - J)    (a-an)_7   /fln(mn) S2n(a.an) -T^r^jn) S    (a-cin)_7 

where 

Dn(aJln)  - N    (a-rtn) S2n(a^n) - N    (a.an)  S    (a^in) (28) 

Functions    u      ,    v*  ',    6"     .      r      and    oi        are obtained from the 
n n In c n 2n 

corresponding ones with superscripts    (1)    above by replacing J7. by SL 

and    S2_(a^2n)    and   Sln(a-rt.n)    by    ^2TS&J\n^    an<^   Nln^ayiin^    r9SPec_ 

tiveiy,  except in    D (aAn), where we replace -d by Ul^  . 

]1. 

"I -2 
/ n (od rr2 n) 

-1 
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(c) Two diametrically opposite, moving, concentrated loads 

(Fig. 2). 

This is a case of 

technical importance. 

In this case we have 

7"  » 0 hence 
o 

r_ • •_ • 0. The con- n   n 

centrated loads can 

formally be represent- 

ed by 

a .a 

Fig.  2.    Moving radial load. 

6"(Q-^2t)  - (Q /TT a) /"<f(Q-.at)  • £ (TT - 0 • ~at)J 
(29) 

oo 

E 
n=o 

(QQ/n a) JT  pn cos n(0 -.a t)  • qn sin n(0 -sit) 

where Q is the amplitude of each of the concentrated radial load. 

From (29) Fourier coefficients p and -i are calculated to be: 

2/n      for    n    even (2/ 

n    lo       - 
(30) 

for    n    odd 

Hence    (26)    together with    (29)    and    (30)    and    r    • s    - 0   gives 
n   n 

the displacement and stress components. Below we give displacement com- 

ponents. The rest ia obtained in an obvious manner. 

- (TT
2
 a Ji/QQ r) u - ^.        , u^ \rJln)  cos n (0 - Jit) 

0,2,4>... 

2 V* (1) 
(TT    a Ji/Q0 r)  v »   S     . v      {rjin)  sin n (0 -_^2t) 

0,2,4»«•• 

(3D 

where    ui     and   T_       are given by   (26). n n 

12 

i 

I 
4- 
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Concentrated moving shear loads and other types of load combina- 

tions may easily be obtained from   (24)    and    (26). 

13 

6.      Computation and Discussion 

Computations have been carried out to determine the roots of 

Dn(ai2n) • 0    given by    (28).    The roots of this equation give the 

resonance speed for the concentrated load. 

The ratio of the resonance speed    C    » a J\     of the concentrated 
r 

load to the dilatational wave velocity C, » Oi    '" has been solved from 

Dn - 0 for a steel cylinder with E - 30 x 106 psi and V " 0.3. First 

four roots of DQ • 0 for n • 1, 2, 3> 4 are listed on the table given 

below . 

The computation is carried out on I.B.M. Card Program Calculator 

machine and are correct up to two decimal places. 

The values of n C-/C-, • n a a.Jl..   (obtained by calculating the roots 

of Dn (a JX n) - 0).        Steel: E = 30 x 106 , l) • 0.3 . 

n Dj^ = 0 D2 - 0 D    - 0 D.   = 0 
4 

1 1.51 1.26 1.94 2.52 

2 3.43 2.35 3.21 4.08 

3 3.80 4.22 4.95 5.67 

4 5-33 5.06 6.22 7.19 

* For n - 0 we take the limit of the functions in (27) and find finite 

values. 

! 4- 
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From this table it is seen that the smallest Cf/bi is obtained 

for n-2.    This «lue is Cp/C^- 1.26/2 - .63.    We therefore expect a 

critical speed for the moving load in the neighborhood of 0.63 C^ which 

will create resonance in the disk. 

The Rayleigh surface wfve velocity for l) - .29 is 0.9258 times 

the velocity of shear waves or  .503 times the velocity of dilational 

waves.    Thus 0.63 C^ represents a velocity between the Rayleigh surface 

wave velocity and the shear wave velocity.    Further we notice that this 

velocity is minimum for n»2 rather than n-1.    Examining (31) we found 

that we have only even terms.    Hence diametrically opposite moving loads 

give a smaller critical speed than the case of a single load.    In the 

former case the fundamental mode n«0 represents a uniform lateral exten- 

sion which is not dependent on time.    Thus it is static in nature and 

has no resonance frequency associated with it.    The second mode is of 

cos 2 9 —type and gives the minimum critical speed mentioned above. 

It is interesting to know that the minimum critical speed in the case 

of a flat semi-infinite plate  (the Rayleigh surface wave velocity) is 

less than that of the curved surface ( the disk in the present case). 

With this point in mind perhaps one can classify the curved surfaces 

from the elasto-dynamic point of view.    This process will, no doubt, 

present mathematical difficulties. 

The present results,   of course, must be accepted tentatively 

until experimental verification. 

.1 
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