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GENERALIZED OPERATICNAL CALCULUS FCR
TIME-VARY ING NETWORKS

Part |

Er=-Chun Ho

Part | of this report con-
cerns (&) thz !nverse trans~
form for linear time-varying
wet=works and {b) the existence
and appilcablitty of the trans-
form method fcr Yime~varyfng
networks,




1, istrodvciios

With the Tatrodectice of the trensforme’lioa technique,
anslysls and synitesls of o certaln ciass of |ineer time=verviag
setworks mey be greatiy simpitified, The method has the ypeneral
edvantages of the Laplace trensformetion for |umped coanstant
retworks, The originai studlies of Alclflaci on the sublect
coveved the development of o gencral technique for obtalriag the
direct Integrel ftronsformation for & gltven $img~veryin~ metwork
and 1to epplications to the anslysis and svntesis of two specific

time-varying networks,

From the englneeriag pelist of view, the work of Ascltine Is
only @ beginaing ond s,ggests many arcas for further studies,
Amosg them, problems such as the method of developling lInvarsios
formula end the gemneral considerations of the applicablitty of the
frensiormation method to tiwz=-varvisn setworks are of nartblicviar
taterest, Thls raport summarizes the general results of the

sfudies on theese toplcs (sec 0izo ref. 2,3).

First, o bric? outline of the Aseltine method of finding %he
diract trensform for o glvenr time~virying vetwork will be glvex,
Then, @ penaral method of finding ¢th= inverse tronsformation in-
tegré: once the dirsct transformetion Integral 15 kaz=a w!il be
diszvsaned, Flaﬂ!iv, the existence and applicablility of & troms~
form for @ Qlven Yime=veorviag network will be conside-3d In some

detell,

- e At e o op——————




Il The Direct Traasform

A finear time-varyling network referred to In this report Is
8 network (or system) whose behevior is described by & second
order linear differential equation with variable coefficients in
the form:

a(4) ‘g."(t) +b() P4+ d?46t) = \(¢), .
Equation (1) =11} be called the network equation, The direct
integral traasformation for eq. (1) may be developed according to

the method given by Asciting as follows:

The desired transformation, a direct anaiogy of Laplace

transform, is defined as

00
Tl30] = QW) :fo 2ty Ay é) dt (2)

where -g(l[‘{-) Is the kernel of the transformetion, The kerne!l I3
so chosen that eq. (1) can be conv:irted into the foliowing alge-

breic equation by Yhe application of the transformation

[fop+d ] @0 =Vo+ [ Jina]

The method of finding the sultable transform kernel is o3

follows:

Define the transform kernel by

A4 = glé) 2(n.t) (4)

In eq. (4), 5(7'{) Is &8 sclution of the kernel equation

att) £, (8 + LW R, (1) + FOP Rne) =0,

§=2

ts)



Where T(Q) may be convenicently chosen to make %i(ﬁ;&):lmpic.
This can be shown by applving equation (2} to (1) ead Integrotlag

by parts. Ia eq., (4), glt) ts found from
‘( bit) - a.lﬂ A+
: g»({ =€ alt) 1A)

which makes the differential operator of ex, (1) self-adjoint,

That is

j(é)[a (f)%u({.) + b(f)%l({_)]\ _ [f(f)%‘(t)] /.

t(7)

‘4)e The laverse Transform

With the direct transform eq. (2), known, 1t Is also possible

to derlve explicit formulss for the inverse transform

(] = §@), (8)
The Inverse transform is sometimes cssentlal; particulerly in coese

that development of a generaliy apoiicable transform table becomes

t.ab.. A
IvEely 3

cdious 6nd §18LOTFIGuS due To the compiex form of the

X W N N
CAVESS

transform kerne!l,

’One may assume that the ° ;verse transform is essentlolly
vnique, since one can always prove the uniqueness for each partic-
viar transformation, This means that a given C}(q} cannot have
more than one Inverse form %{f) that Is continuous at almost all
positive to Note that not every functlon of )l is & transform of

some %(ﬁ) e Therefore, In addition to the uniqueness, one must

slsc conslider the conditions !mposed oa %({:) and Q(yz) .
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The method of finding the inversion formula s based on &
me thod usecd in the developrent of the complex ifanversion Integral

for the Laplace frdMsfor:naHon‘.

The iransform Q("()Is assumed to be &8 functlon of the complex
vsriable Vl , analytic in the haif plane R(yl) Z 0 22d of the order
of V(&as Y{—)oo (‘f{>0) .

Yhen the condifticas Imposed on Q(&l) &re satisfled, Q(Vl) may
be expressed In terms of Its values along a veriics! ifine by the
ltne Integratl as defined below:

\
a+)8 5 )
QL) = im -—I-. ( —Q—L—AP
G R > o ZﬂJj \ f-y( (
/ =43
{9)
where f Is also a complex number and R(f)?ﬁ. Equation (9)

iIs simply Canchy's integral formula in the complex plane.

Now, apply the inverse transformattion as defined by eq. (8) to

the function o,(fon both sides of eq. (9i; then

-1 et a‘y‘ov&(lz)
,T [Q(f)]‘—-Qi Lz”j[g:jao $-N c“‘(}’

If the order of the inverse transform operator T_' and the

(10)

tegration aslorg the ilae Rl'l)=(r can be Interchanged, then one

wilf have,
a0

_ -1y 1
T l[Q(g)}::z{a;f @(7)7— [}.-7]0{7.

g tse

(i)



Let (P(€)be the T transtorm of 4(¢) as defined by eq. i2), The

/ .
Inverse transform to of may be defined as
g of ol
_’ ‘ Y s %
—— | = ,(,( , T
T f-1 ] (G (12)
Substituting (12} and T“{Q(g)jz %(f), eq. 181, into {111,
there results | (00
1y = -1] Q) £(pt)d
% ) Jg-j00 r 7 (13)
Equstton (13) is the inversion formulas of the T transformation.

.

A (7;{) may be called the inverse kernel.

Equation (12) defines the inverse transform kernel /((7,{) .
-t
-

for a particular transiormation, one avtomaticaily defines the

Therefore, once one knows the inverse transform to :f of
Inversion formula of this transformetion,

The kevy step in this methed of finding the Inversion formula
{ies In the step from eq. (10} to eGe. (!1), where an interchange
of the Inverse transform operator 1—“and the integration aiong
the line K(n):o‘ must be performed, In suggesting this method of
finding the itnverstion formula, 1t has been, in fact, assumed that
the taverslicn formula takes the form of eq, (13), If for @ par~
ticular transformation, this sssumption Is valid, t.e,, there
exists an Inverston formule of the form of 2q. (13), then pr of
of the valldity of Interchange of the order of the cparstors

volved iIn eq, {10) becomes o rather #rivial matter.

1f cne spplics the direct transformatlicn of the function

i-5

- e A A} i



i' to both sides of equation (12} and uses equations (2) and

18Y, one will have
J i dsods _-;;-_-;-

where {(j’,f) Is the same as —,2(71{), the known direct transform
kernel, except substituting )2 by £ . Equation (14) suggests

(ia)

that for & perticulor transformation whose Inverse kerned is de-
filned by eq. (i2), the inverse transform kernei, ,[(7/-6), may be

8 solutlon of this integral equstion,

Tc gummarize, the direct transformation and Inverse trans-
formatton formuias of the generalized T transformation are as

foiiows:
bo
]p) =j ZJ Ay ) dt -
' 0

,l- G +)0S , ‘
ﬁ?({) A{j ‘ é?‘7)/((77£)6{7 ¢ 20

e R 3

Ta

v

(15)

t16;
In checking the validity of eq. (12) or eq. (14), one finds thatl
the direct and inverse kernels of the Laplace transformation palr

do satisfy these equattone, thus:
éo ;
e e =
e e = £
jo f-'z 7.

The trensform kernels of the transformation pair for the Cauchy

t17)

network (modified Mellin fransforms) as develored by Asclf!nc'

satisfy equaflon (14) as follows:
( ) f -/ /
dt = —1— <5 .
To {o n-% ¥ '( (183

1 =6

3




Note that the analytic region defined by this transformation Is
f‘iq . Ffor the Besse! network, the iransform pair glven by
Aselflnc' ts a modified form of the lMeljer fransformé. The In-
version formula of the Meljer transform with the Inverse kernel
m I»()lf) 1s defined to recover a function %{{") for the en-
tire range of t. 1f one desirecs a direct Laplsce enalog for the
Bessel network, the inverse kernel which contains only part of the

MeijJer Inverse kernel may be determined from eq. (141,

The zons'deration of the development of inversion formula
provides much deeper understanding of the transform method for
time-verving networks., By the procedure discussed above, 1t is
clear that transformation pairs directly analogous to the Laplace
transformation pair may be developed for both Cauvchy and Bessel

networks (with suitable modification of the lower limits of the

direct transfermation integral), ¢t

Is not necessary to obtatlr

the transformation pair by modifyuing th

-~
LR %

A = -4 h1
Meltltan and M

cijer trans-
forms,

IVo Guslitative Considerations of Transformation iethod

The main advantage of using a transform mettod in the solu-

tton of the differentiai equation representing a linear time-

varying network is that ‘e differential equatlion can be -“andled

digebraically, The itcchnique

involved 1s to convert eq. (!} fate

eqe (3) by the application of the integral transformation as

defined by eq. (2), in ordzer tc make this application possible,

the transformation mus? be capable of handling a large class of

-

i
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driving functions and the differential operators of the network
equaiion, These fundamental requirements are Important from the
: point of view of %4he practical application of the transformetion
i method tc time-varving networks. Iin viaw of eq. (2), the iImite~
, tions on the character of the funcilona %4{) and on the range of

the vartable of 7) depend obviously on the character of the trans-
LS

formation karnel *R()I,{:) .

Among the driving functions most commonly used in the

anslytical soluttons of physical systems, such as the electric

networks, are the sectlonslly continuous functions. An exemple

of this type of functions is shown below

0 +4¢,
gty =) ettty
| o (¢ft .
{19)
@) 4
a‘ —— - -
—
'é, “‘:2. 't'
Figure |
Any discontinuitles of such a function In the Interval (f', {2)

| ) must be a fintte jump, This class of functions includes the

i . Important unit step function deflned s&s

]
2%




0 + <0
UE) =§
, 0t | (20)

L !

For a transformation developed for & particular time-varying net-
work, if the character of its transform kernei is such that the
transformation Is not capable of handling the unlit~step function
and other more general functions, the transformation method Is
probably of little use for the solutions of the differential
equation of that particular network, Therefore, it Is possible
to se! up some basic requireme:nts that a ‘ransformation must
fulfllil., For the functional transformations, it Is very con-
ventent to choose the transformation of the unit step funcfloa'as
8 measure of the capability of a transform kernel, This lecds to

4 rather simple consideration of the existence of the transforma-

tion Integral:

8
k

n

A= 7L ;
R

?u¢r¢‘[j1)l} i3 the trsasform of the unit step functioa.

(21)

The transformation of the differentiai cperators of eq. (1}

Is performed in a manner somewhat diffaraent from that of the
ordinary Laplace transformatton. S'nce the transform kernel is
developed to make the differential operators self-adjoint, the

transformation of the differential operators is performed in the

following manner"

T [a) §°4) + ) @]
= Fop Qly) + f}(q) % (0+) +J('()‘(}(0+},

[
N




'n order that the transformation method be of practicai use,
equation (22) must be satisfied. So the initlal conditions ere

brought fato the transformation, Equation (22) givgs the funde-

ags

ments! operational greperiy of the "T" ¥ransformaiion, the
property that makes 1t possibie to replece the differential opera-
tion by a simple algebrsic operstion, Note that the differential

operatfors may not be decomposed or factored,

Vo FExlistence of Transformation

Thus far both the development of a transformation pair for a
!inear time~-varying network whose behavior is described by eq. (i),
end the fundamenta?! propertlies that the transformation must
possess, have been considered. Now, it is desired to knox the
iimits on the applicability of the transformetion method to time~
varying networks, !t is obvious that with the time=-varying
coefficlents of eq, (1) unrestricted, a satisfactory trsnsforma-
tion may not exist at all, Thus, 1t is Important to seitie what
kind of network cqustlons do, sad wh'st kind of network eauations

do not, permit the use of transformation method.

From the preceding section, a useful transformation must be
one which is capable of handling the class of sectionally comtinu~
ous functions (unit step function !s sctually considered) and the
differential operator of the network e¢quation. Reconsid-- the

"T" transformaiics of a unit step function

U(Q)=J.£w74{(7,.£-)dtf=

b =10

{213




Ia order thai the infinite Integra! on the right-hand side of
equaticn (21) converges uniformly, 1% is necessary that the trons-
form kernei —i’*’L(rZ‘{-) bc comtinuous aAnd bounded at Loih upper 222
iower iimits for all valves of V(’ in some In&crvai(o('g). Stace
%(,‘7’-&) is defined in 2q- (4) as the product of 8.({-) and ‘&(;7)6),

eq- (2!} becomes

o0
U :l 906 Ayt ) dt s

Foliowing & well=known test, it is convenient to establish the
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Integrai of equation (23),

t. ‘&(9;6) Is continuous for 047 < 02,

2. 3(4:) 1s continous for o< 1 £ 0,

3. The product of 3(£) and R(5+¢) is bounded st both upoer
and lower limits of the ‘integral for al!l )Z In scme

interval (A, g).

Note thet 1t Is not necessary for each Individual fuaction of 2.(6)
or R(nt) to be bounded at both upper and lower limits; but the

product of G(t) and R(nt) must be bounded at both limits.

The above three conditions will afford onre an ooportunity to
relate singuliar points of the network equation to its transform
kernei, thus permitting one to settle what kind of system equation
permiis the use of the fransformation method. To faclllitate

further discusston, re-establish the kernel equation in t!¢ follow~

irng manner:

étt_{i;,é) + @) ft(:z.é/‘ t+ 6¢) ‘75{9’;) =0 (241

N




: . \G({Z) T 18 £y
where y%@ corresnonds to oL In eguation (57 and B tOo —
a(t)

ian the same equatton,

1&(4{) ,» then, Is a soluilon of equatlon (24}, For & par<
ticuiar network equation, the questlon as to whether a satisfec—-
tory &(qi) &8s deflined in condition | exists or nct may be settled
by considering the singular points of the Lernel equation, In
eq. (24), F(q.) Is considered a function of fixed parameter n\ .
Considering the point 'o and its nefghborhood, 1t Is well known
from the fundamental theory of ordinary differential cquai!ou:7’a
that: (a) 1f P(£) and §(£) are continuous and analytic functions
of + In this netghborhood, 8 unique solutlion, continucus and
analytic In this same neighborhood can be determincd for eq, (24)3
(b) ¥ elther ¢%f) or H(f) or both possess a recular sinqular
poia?’ av *o’ ea, (24) hae two regular Integrais in the neighbor-

hood of this pcint; (c) If elther PE) or O(£) or boih possess an

*
irreaqular stngular polné at )

cannot have two reguliar
Integrals in the welghborhood of this point, But there may be

one reguier fntegrai or there may be none,

*Fuchs? fhecrem’ 1n Terms of eq. (24): If ?2%9 or¢9(ﬁ) or both of
eq. {24} possess a singular point &t 15::f1 and 1f this singular
point of ¢{{) snd &({) 1S removable by multiplying V/é) and @(é)
by the factors (f..l‘ﬂ) and (£ - i:‘?)z respectively, then the
egu2tion has fwo Intzgrais (In terms of coavergent development of
prwer serles solutlon! in the nelghborhood O'.ﬁk e A singular
point of this tvype 1t a regular singular polnt, otherwise an
trreguiar singuiar polnt,

HIC 124
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To decide whelher 8 regriar Integral exists or not, 1t is
most convenleéent %o conslider the indicltai equation of the power
series soluflon developed about a singuelar point., Note that the
above rules 're applicable to the noint at Infinlty onlv if a
transformation which trensforms the peint 2t tnfintty to the

origin Is performed.

As a rule, therefore, sclution of ea. (24) mey be found In
the neighborhood of a singular point as well as of an analytic
polnt. In general, the two Independent soluiions may be expressed
In terms of power serles about a point where one desires to ex-
pand them, These solutlons are only yvalld =lthin their coavor-
gence-clircles, centered st this point, and whose radii are equal
to the absolute v2luc of the distance between this point and the
ncarest singular polnt, |t becomes clear, ther, that for a given
kernel equation of the type of cg. (24]), the question of whether
a desired ‘ﬁ(y('{-) continvous for o <+ < exlsts or not may be

scttled by simply considering the number, nature and locations of

singular polints of the equation,

From tte above conslideration, one mdy conclude ths! for a
kernc! equatlion possessing one or two singular points, & desired
4&(7{f) s relativaly simpie Tn form, may exist, Cn the other
hand, for the kernel equa'lon of more complex form, & solution,
continuous for p< £t <69 may stiil be possible by applying the
technlique of analytic extension in the solutfion of the equation,

But the mathematlcal manipuletions would be very difficult, and

R e
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the resultant 1&(9/{) would be very complicated and often beyond
the possiblilty of practical development of the transformation,
In general, 1% might be more profitable to uvse 2 soluticn which
is oniy continuous for 1{:{4-[; < 02 where {2 Is the nea-vst singu-
lar point of the kernel! equation to the point of infinity, This,
of course, Involves a change of the lower limit of the direct
transformation integrai from zero to o finite valve of 7 ({o>§},
or one mey even deflne a direct tvansformation !ntegral with
finite timits, Finding -&(')l{-) is the mrs? difficult step In the
developmeni of the transform kernel, Therefore, 8 knowledge of
whether & sultable 7&(;?}{) Is obtainable from the kerne! equation
Is a great heip in deciding the use of transformattion method be-

fore becoming involved Ins the actual saluttion of the equatiom.

3&) of condition 2 may be redefined as follows

Yl VAP

J #t)at

J)=0K)e

1251
Equdtion (25) shows that infinfte discontinuities due to the
presence of singular points In &%) or &(f) or both may appear

in g(f') unless the effect Is cancelled out due to the mathematica!

cperaticn on the right-hand side of eq. (25! or due to some con-

ditlons Imposed on certaln parameters In ¢)(If) or (9({') « In genere!,

finding 3&')!3 a8 straightforward process, Therefore, whether a

sultable j(tj exists or not may be settled without difficulty,

Yhen the conslideration of singular points of the kernel

equation Indlcates that desired ﬁa(’,{)and g(fjas defined In

1-14



condlitioms | snd 2 respectively dc e¢xist, then ome may proceed to
evaluate 1&(}#9 from the kernel equation, To iasure the bouaded-
ness of —A(%{j 2t the upper limit, one chooses from the twe
tadependent sclutlons of equation (24) the onz which mehes «E(';{)
vanish rapldly as {369 If there exists such a solution, The
next step Is to perform the product of 3({1) and é(z{*} to obtain
A (7,£) 9nd to check the conditfon 3 which requires A (n4)te be
bouaded at both upper and lower limits of the ‘ransformation In-
tegral for all )Z in some interval (O(,g} e Note that when )’( is
considered 8 compiex varlable, -g(}z,{)ls to be bounded at both
limits for all R(IZ) in some reat interval (o(/ B) e

In some cases, the bouadedness of —f{%f‘/‘ oF g(é}‘& {Q,f‘)
may not be obvious. Many known mathematical mcfhodss are aveiiable
for tests of the unifTourm convergence of the trensformation Integrsl
eqe. {21) or eq. (23'. In many cases moaiflicatlion of the trans-
formetion Integral, such as the iimit of the Integral, or imposing
additional conditions con certaln parasmeters in either 3({') or
-fo;(lz'f) or both, Is ebsolutely necessary In order to insure the

boundedness of '{(7/{—) .

Thes £

-
DR ] v

Ge

s *he most difficult part in the orocess of develop-
Ing a transform for a narticular time-varying network has been
considered. The remalning basic requirement to be satisfied by a
particular transform Is Iis capabillity of the transformatlion of
the differenti1d] operators of the network equation., This can best

be dome bv the direct Integration of the left-hand side of eq,

=13



(22) by substituting 12(7;ﬁ)aad the differentiat operators of 2
particular network equatton into the integral, Again, in some
cases, a slight modification on the transformation Integrai's
limits might bz required In order to satisfy the righi-haad side
of eq. (22}, But, one does not wisk to Impose any condition on

%(é) other than those on WV {t), the driving function.

To complete the development of fransformation, one may then
derive the inverse trensform by the method indicated in Section
1% and discuss the limitattons on the chasracter of the function

\f(f)and on the range of the vartable n .

For example, consider 8 time-varving ne.wort wiih the foliow-

ing behavior,

! We . ! atran | G 14 /.41
= (€)= — (t) v — Fic; = y{<
+* I g3 J Co = 126)
The transformation pair obtatned is as follows:
00 -—)Z/'éz"' -Cloz)
Q= gw)te At T
= {271
%,
\
g+ )40 (42 f)
{ 5% AR £
F6) = 57 Q('()Ze)Z dn  +>%¢
/ 27 » ( (2]
Sy (281

which 1s an analogy to the Laplace transform, The reason for the
modificati~a of the lower limit of the direct transform integratl Is
obvious since the network equation Las & sinqular poiant st t = 0.
2

)

P
The direct transform kerne! # ¢“’((' 'o is now continuvous for

’o < t < 2O apd bounded ot both unper e&nd lower 1imits of the

i =43
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Integrai defined by eq., (27), iith little diffliculty, one may
show that this transform s capsble of transforming both ualt
step function (for ¢t > 90) and the differenttal operotors of the

network equstion,

1=17
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GENERALIZED CPERATIONAL CALCULUS FOR

TIME-VARYING NETSORKS

e Y

Fard 11

Harold Davis

Part 11 of this report con<
cerrs {(a) those toteogral %rens-
formatices whlch generate an
operatlionsl calcuoius for genersi
{incar differenilal operators,
and tb: the aspplicatioan of such
transforcatlions to the analysis
and syathesiis of a class of
fineer time-varyiag metworks.




1., latroduction

Much of present d2y flixed paremeter linesr network theory Iz
based on the orcoerties of thz Laplece iransform and iz relation
to ihe differentiai operstor /At ., To the exteat that this Is
essenttally all that Iz toval-ed 14 £5110ws that fixed perameter
netwart ftheory csa be embedded ! 2 formel iimear meitwork theory
!f the extistance of & suiltably gerneiatized Leplace itransform s

postuleted. For exemple, suppose that L s & differertial copera-

.

Lyz A L8 1g0 + - - vodiqb), odt b
and R )) 1s a solution to

N N : e add =
Py ) (A Jan by gyt - - + A =AY E) g9y
1LY 1+ the forma! 2djoint of Li. Swopose further that RUEDAD 1e
the kernel of 2 oae-to-one Integrel transformaticz (onm & sultfable,

complete class of functioms), say,

F(n) = S k) Ly AL i

It would thes follow that for Lf In this clsss,

JReny iyt = A (ke Tt + B(R,E)
1f ﬁﬂ(f,l) il"]({) vanish as ¢ ? o Oé P, % éN then B
is a billacar form In :fdl,£k°),~--$ﬁp {0 aad a setbt of N

functioas of ) nol depending upoa fFIt), T meke the picture

complete we would neced somes form cof Farseval's equality, 1'% Is

Pi-t




expected that, formally, such should exlist, Severai tramnsforas
sattsfying 81l the above requirements heéve been discussed by

A.!_g'!!“ 'S

The following materisl is concerned firstr with & discusslion of
the application of trensforms of the fvpe described above 1o the
endlysis and synthesis of 2 ciass of {inesr ilme-vsrying metworks,
Secondiy, It is pointed ovt thet for first order differential
operaiors such lIntegrai iransforms exist, The matertsl coaciudes
with & brief men lom of Coddimg?onts irecrem oa generallzed
Fourter fram:sforms,

-

i, Cm itz Formaittles of 2 Cemeralizesd Network Theory

we first ask whet genersl features or struciures of iinear
networks can be studled by apolication of an Ietegrat iragnsforma-
tfoa of the form described above, The znswer Is f2irly immedliate,
Cousldfr network elements such Fhat wher 3 volitsge elt) !z applled,

the current 1(t] that flows is related to elt! by,

d"”ii(i‘. @) -mipin  ofmnc 153
AP P
(v = (E)) )

where K Is & regl number, L a Itnear Jdifferentia) operator
(of the $ype comsidered above! and p &n Inizger. Ia Illusirating

retwork structures i1et us poriray these elements 2: folliocws:




STMBOL EQUAT IO

—f v 1— LPFi-e

D)

1§D
1 will be comvenient to distinguish the case where O(,P takes on

-~

caly noma-negative velues, %je shal! refer tc this &3 the cose of

positive clements.

Example:

Let at#! = 1, bit) = O3 then L = S/dt and w2 have the case

of ccaventlicasl fined paramelzr elzments.,

a-[I}—-ozo—/p—o & = gself Iaductance

r—@——*:"—-’-\f-—*’ d ‘= restsitsunce
» {2}
G—E——O'-:o——g '——0 X = elastance lreclprocsl

of capsciltancel.

Now coaslder any interconnection of the various types of
time-varving elenznts discussed above, Such & network will be 2
node~to-nrode cornection of branches 3s indlicated ¢n Filigure i,
Zvery tranch caa be sssumed to be a gseries connection of the
varfovs types ©f elements, znd a voltltage or current source, Ve
nzed only coaslder onc of eech zlement type &8s being present,

since for esch type & serizs connecticn of zlemenls is equivalent

.
1]="




to 8 singie ziement of that type., We will comsider the sources
to be voltage sources so that we can zet vp 8 loop current
2~a3lystis, Of course any or al! of the coefiicientes or voltages

can vantish,

q(l'\ ) “['\ =)
. 1 d

R 4R AW
Figure i

By assuming am aAopropriate chofce of mesh currents, and
svmming loop voltages to zero in every loop we get & svstem of

linesr tntegro-diffzrential equations In the mesh currents,

Tk = 51r= SE® (6)

where jﬁ\ 's an tontegro~differential operator of the form,

. h) n v W) - (7)
%h' 0('(;,‘&[_4--“1- 0(“1 L

11=-4
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in setting up these d!fferential equations we con siwdys in-
corpor2ts the initial conditions in the variouvus driving voltages
clH). Thset 1= to gsay, If we suitebly modify the assumed drives

e, lt), the values of

J
=W =i NOnsw )=t N(wam)=\ - .
L oAb L - ¢ L

- L{_‘oa’ W L \L‘-Q 3y ) & /A L -t39

wiil be zero for aii joop currents, LET Us Assume ThRE equatiums

have been set up In this way, Then, taking the transform of

these equations by that Integral transformation which Is associated

with. the operator L as described sbove, we have,

Ekz_s.kyém = £ ,0)) (8)
Y [} [ -m)
Zin =" ))“*“"'“1\:*'”'*'“;‘\ NEEE)

and £ LA} Is the trancform of cj(f), and I'(X) the transform

0
-,
-a
. e
afn
[ ]

.
L)
we.

This s the functional form of the loop equations in the
transform domair, 1} 1s the form which Is so familiar In the
Fixed parameter case, To proceed from here to the polint of 8
genzral theory of analvels and synthesis of retworks, we neced
only 2pe the steps taken In the case of networks of fixed param-
eter celements, That is, we replace the parameters of the Laplace
transform by the A of our genersilzed transform; replace In-

ductor by "type | eiemzai" and so om., Impedsice {orf Impedéance
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Admittance, image pdrsmeters, and general circuit parsmeters of

2 WS
> 1>

e
\ 2
B Y

four terminal networks follow in the same way,

11l, A Special Case

in the speclal case where only vositive elements are present,

| 0 i |
, L', or L ", and where !

and these 2rz characterized by elther L
ftself 1s a first order operator, the theory Is qultzs satisfectory
and complete., The facts of the matter are as fcollows: First, as
we shall seec, the formalism or an Integral operator can be made
precise under falriy general conditions on the operator L,
Secondly, most of the theorems of the oresent fixed parsmeter
network theory do not depend on the conrstancy of inductance and
capacitance with #$imz, Rather, they depend on the existance of
three types of ipositive) elements charactertzed by L', L°, and
L-'i where L = d/af (a great deal of network iheory omlts from

consideration the notlion of mutual Impedancei.

To make this more explicit we wiii suggest 8 sort of princt-
ple for Inventing statements of gencralizations of certain
stendsrd network theorems, In fixed parameter networ: dhospy,
there are 2 great maony theurems relating the physical structure
of & network to the fuscttonal form of impedance type functions,

in these theorems, one identifles the Impedance Z{s) = s with an

bi=G
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faductor. Zisl = 3 with & cepecitar, &ad sc om., Actually, thils
ldentifies element tvpes through the expenent of the basic cpera-
‘or assccltated witr fixed sarzmeter networks, namely d/ﬂi. This
tdentification car be consldered a3 the basic bridge between the
physical specification of the network, and the mathematicesi
specification of the Impedance functlion of thet network, Now,

we suggest that sny network theory which depends caly ca this
fdenilificatlion of clement ¥ypes, 3nd on the theory of enslyvitic
limpedance) functlions will hase 3 valid extension If we simply

translate 1t into the sppropriste "generalized operator™ language.

As 8 cavilom In this regard, no theocrem requiring the uvse of
ceupted colls (noa-ldeal transformers) can be extended, since
the coupled coii iavclves mcre than the two considerations men-
tiomed in the ozt paragraph,

Applyiag the above principie, we get @ generalizatioa of
Fostor's Reactasce Theorem Tfor iime-varying eiemeats, ihe canoce-
lce! forms for teo elemzat xiad nefworks, and so o=, Such
Thecrems being The very foundetiom of fixed paramelier neiwork
thecry, we thus have comsziderabl!y broadened the basls for the
an2iysis oad synthezis of the cizss of mneciworks comsidered here.
(For details of the applicatice of ihesec theorems in the classi~
cal £i1z3cd parameter caze see, e.g., Cullliemin’s "Communication

Nci'ort’or’e,

Possibly ihe most sionificent iheorem ts ithe foliowlag:

17
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sufficizat conditlon *he
of the complex carameter A represent the Impezdsnce of 10mez tws
terminal network of the three $ypes of eiements coasidered is
th1s section, 1s that this function be patitive real: that Is,
that it be 2 znaiytlc functlion which iIs real when A is real,

and whose re2l per? s posltive when the reaf part of .)\ is

postitive.”

The necesetlty of the condlilons cam be proven by foliowiag
8 stight =odiflcati_u of an argument of Brune‘ sppllied to fixed
parameter networks, However, Brune®s proof of the sufficiency of
the conditton for fixed parzmelter netsorks is molt adegquate for our
purposes; since he vied coupled coiis whenever necessary, ¥e
ceén, however, ca2ll ca the melthod of ﬁol!-DufflnS which depends
omiy on the ability to ldeaiify the three tvpes of elements
assumed,

AsS & simpie ex2apie o syatheésis vsing elgmenfary
merdods considei the following nrcblem: Supocse ths! we ars
requlired fo find & fwo igrminal aeltwork suchk that, when the
driving voltage 13 z{#) = S{ti, where O (}i js the Nirac Impeles

"fupncttoa.

s st which results wiii be

the curr

]

iy = (a2 2 ety tio)
ie ast for 2 nelwork of cigments chaérécterized by cowers of
the operator L = (1 + {i 6/&? + 1, Thes, kit, A ) = ¢! + H.)~ -
it we compute tie transforme of tne volisge and corveni by the

il~n

PO
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trensformation assoclated with this operator L, we shall find

AL

- ® =
Tnesy 7« %

-p

G o bs

™

EOS_ L (an+aR) (A 4R (1

(%)

Z\) =

[ L)

Expandiag the sdmitltance Y Y{A) = [Z!Ai]-' inte ceriiel fractlons
we hove,
Y= @GN+ 2ale22) R4=)

Now fei ws épply the principle of 1destiflicatlon meaticrsd
before. Te kwow that If this were 3%s caze of fixed parameter
synthesis with > -erlsced by the zomsvenliozal s = o + la the re~-
guired network mould be an irductance of 2 herries, in pireflel
with @ zeries comnectton cf s reslistance of § okm and & capacl-
tance of 2 foreds., Simce inductance Is !deniiflied with a plus 1
expoacalt, reslsiance &4 zero eaponeat, and carecitance with 2
mlavs | exponentl we can Immediately write dowa the clrcull with
proper elemenl fypes 2nd correct valuves of the coefTicients,
Thus, we !mmedletely hesc the sciutioa Indicuted In the followlag

disgram,

LR Rl



As a consequence of the fact that L ¥s a first orcer different’al
operator, the zlement charactertzed by the exponent | csn be

cornsldered as an ordinary inductor whose inductance is (] + t),

iy

-*
=r

or (X4 ]

LE sfae i/t wilich = At fashicd] = ech

as 15 required, Similarly the =i eclemen} can be considered as

an element with capacltance (1 + ¢) so that

it

| ez [eb)djdd +1Jecd) = rdd[cietrech] = L)

as requirsd. Thus, the above sclution can be redrewn as follous:

2{1+t)hearies
e L
14
Nl
} cohm ii+t) ferade

To summarize the case of posltive elements characterized by

-
..

£
[

35 Svuer diTierentlai operator taken !o oowers |, O, and -|
only, we obtaln time~varying generalizations of most of the more

powertu! theorems of Tixed parameter nelwsrt theory.

v, he Steady=-State Impedance Concent

It is worth calling attention to another aspect of what

might be called the transform domain 8pprosch, Let us fix our

ti=to




attention on refwoiks of elements charcctarlzed by powers of 2
differential operator L as before., !f we drive a8 single icon

of such elements with a voltage proportional to the functiom
KIV, A) (the bernci of the transform associated with L)1, then
the resvltsont zurrent wil! also be proportlional to this same
functiomn but will differ by a multiplicative factor = the value
of Zhe ;i-domaln Impedance of the loop at the value }\ s We
must expect this since we are driving the clrcult with & function
that bears the same relation fo these network elemente ae glnua-
oids do to fixed parameter elements, This suggests that the
conventional steady-state physlicadi interpretation of Impedaiice
deflined 22 the r2tic of voltage ecross to current through 8 two
‘erminal network when driven by a singie frequency cerries over
by etmnly thinking of functions of the form k(f,)\) a3 general-

Ized sinusoids aand of /X as a generalized frequency,

Vo Functional Transforms Associated with First Order Lincer

Differenttal Cperators

Ve now discuss brilefly the connection between a first order
iinear differenttal operator and an assoclated generalized Laplace

transform,

Throughout the following we shaii resirlict ourselves to

3 1 » 2 < < g
functions cdefined on the heif line, O = ¢ = CC

Let aft) and bit) be Functions such that biti and 92/dt are




142 of & Fas =it & =
‘e Vi v RO

S . 4 — .. Lons eQurentIivs

deflined and fintte, and *het

-~
-

th

>
either alt) > 0 ¢cvr ¢'se al¥) < O holds for all t =0, Without
loss of gsneraiiiv, we mey 8ssume thet aiti > O, and furither, that

éi0) =

=

Suppose &iso that ={t) and b(t) sre such functions that

there exist rumbers A and B such that,

&nd
(:/ﬁ)&jl b(u)l_aw\]"!_dv (B X (14)

Now, we define the linear flirst order differentlal operator

= [l /el + o)]yd)

-£
1"

ai operstor L s defined by,

* =

Ly = - (etiacdy + bthlyh (16

Let A be a complex parameter, and k!!,fh! be the solution

to the equation,

v =AY 5 Yeods i

or writter out

— a Ajjar F ‘"‘\{'io-o‘\ox/'d'ti:') 3%“\ SN =)

b=t
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rrespondingiy, let K(fi}\) he the solutlon to rhe eovae-
tion,

Becauvse L 1s only of the first order, we can write these solutlons

1s terms of & single aquadrature. Expliciily,

kN = e (§ (b Sl o) 1o

l‘t’
K () = exp(-| Iy idn) 00

g

We have the following:

Theorem

Let 7it) be & functtion such that for some ¢, O € ¢ < O |

o0
3‘0‘;£<L3{ga<4)"e-°'5d4 L o (21]
Thamn
Il"l"
0
\_Q(/)\\(\,\ln
Fxy=z Y R(ELR) ybiclt (22)
Is an dnalytic function of }\ in the haif plans 22 [A) > ng—g o
Furthermore,
(.sn'oo
O | Q\rli’\\:-f ok, . C+B
+(4)y = — N\ GinAg A /\) ’>\ Y (j)
P = ) [ A (23)

at every polint of continuvity of fFit),

We alsc have that 1 L"Fit), n = 1, also satisfles the some




sort of conditiom as f sbove, then, :

Tty g @y at = X LR Dot +

-1 LS -
X - X Lv?\-""““ M (24)
teo ‘'\t:0

if F(A ) and Gi A} are respectively the tréasforms of f(t) end

glt), and F, G are anaivtic for Re [(A12-5, &d>0, fh::,:f\PKﬁ,

(:'va:f:
omiyt FONGEY AL =

-t *

) 4 .
= § LachTexpa§ fachude) by gad)ddt or)

Here &re two examples of such Integral transforms.

b4

I, Let at#) = 1. bit) =0, Then LT vy =§-}. Ly ag-}, end

so kit )\l = ¢ /\i, Kit, )~) « e M7, This ts the case vielding

the ccaventlioral Laplace iransform,

)
9. Llet 2(#) = | + t, blt) =0, Then kit, A) =t + 1 >~V

and Kit, A) =)+ #)7 ;\. This ylields 8 modification of the
Meliin Transform, Specificalliv, the Image of a functlion under
this trensformation Is tdentical with the Image under the Meliia

Transformation of the same tuvnctiomn, but transisted orne unit to

the 7ight on the } oxis,

The first example is the simplest, but most instructive. 1I#
shows how the Lapliace iransforin Fifs into the scheme, The sscond
exampie exhibits 8 boaaflde varving operator,

Now suppose Tii!? s 23 reguired In the theorem, that le, for

some fintte 8and re2il number ¢,

m -
U 1eh] [ab) &7 <0 (26)
11=-14
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’ TISSTEE ‘,g’}a,}:, Syt < So\i(«i.})iﬂ:n\dé =

Y £ = s
SSleleperigiditjoaded iedide

Bovt

n* '

jci’q“'-{"“u ‘)A% )
z2ad

% 1 ¢ r{'
\[,brade| 2§ (b/ajdo ( pt

by hypothests, Hence,

tad | s K ']
IFo & S ladhlexp-ReDAL B E)EhldE (20
fy ressca of the hypothesis on Fitl, the fatter Integral is coa-

vergeat for ali A for which

> ¢+8
Re ‘.)‘1 = A

ta Fect 1t 1s clear the! convergeémce 15 valfora Tor A

Hencz, ia this bailf plene, FIX) s an snatytic functioa of A

and has nc singuiarities there.

Now wrlte_ '
Gres~
Q) s fom Guey? \‘kfl.l)?€>)i}=
'Jpo‘
_{3*;&- e ~
o Vd b 0 8T 1> tB
i LY ‘r(l) § 3>
A Jp- it o) H AT (201




miv convercen? for el

Siaze ke fntazgral for FIA G fs wniform
C
sech thad C+B

we may interchange ordere of integration, and

| - B ok
9ty = Li 3‘*\(7)‘_’;@ (11!._)"-\ . 'ML{T AAA (3G
A0 Jo 33 e
rlow, :
qﬁd—li (Gi-i*
: \ v
,3 r e (v}
J K'\L;}‘)\I—\( -,;‘“‘; @~ f- a”Lr) ‘QK?(- S}_A__?:;‘—— £ =
p-id T *
'LG‘--%.
=2t (@) &)Y er\p( (1,8 = PR, by se{dqui)) 1300
where,

i . - o "::, =
‘?{T‘é 5= \\t(a(u)) “ 5 y’-(‘»‘i-’t): \(U!_c;é‘u(u\)gak
~ bé

_~
. -
] [

for every flxed t, bcth ‘? and ?‘ ére continuvous functicas of

both 4 aad 9& vanlish wher § = #; and & i3 & stricily Incressiag

for—w{Y{+00 . Thus $ has a 3lngle vaived

e
[¢]
i
Q
"
..>

zoatinuous, tirictly Incressing Inverse,

- i 2 o P |
% [“?(u,t)] =5 ead «% ol = ¢, KX,

Thuse, for ea2chk fixed ¢,

3= tin §. 8 (c&[eemW"‘*w(m;'m.ﬂ—ﬁ@) 323

By the Qlenaaa~l¢bezgue fer=e, we Tia evalvelte gltd:

B . B i e 1333
3= L{R(T]) + HE oy} : £ IR

=15
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1t foliows from Creen’s formula thet,

)k(é M Liydt = Limktn S

The Tormula for the transform of = foltlows by Iaduction from the

Lo BY = Braye \Sh LA o isas

akowe .

¥Yi. Teneralized Fourler Traasforms

1a closling we point ovt that integral tronsforms of the

type described in the first part of this meterial do not exthaust

&ll avenues leadiag to en cperaiional calcuivs, e r2fer now ¢o
. 2
the genergllzed FT-orler transform of -, A, Toddiagaton 7",
th 2
t ff L s 2z = nerder A1FPerenilal

Coddinglor has 3hown fhat

tor defined om 2 « F < b, {a,b} boyaded or not, and If L s
formaily seif adjoint, 2nd 1f the coefficients of L heve con-—
tinuous dertvatlives of crder 25 hight 2z ‘heir resneciive indlices,

fhen the followiag ¥s frue: There 2rxists &n bermitian matrix of

fuactioas
\_Qig(l‘)j

with elicments of bovaded vartstlon on erery finite A-intervai
with this preperty. 1If E’i”’}“ }] ¥s & set of n lineariy in-
dependeat solufioms of iy = Jv, then for 3 square summable

functlon flr} it wil! be truve that

2~ ce® oL i. tC
3('({3: 3 L‘lisz(_“.)si :‘:‘:1'\ ‘,}-\}1\ T3chy id"i&(l) (3%}



Furthermore, the Parsevao: zquaiity

b 00
[lrcordt {2 donguandgon 3

where
\b
CHOSERRVEGY S b

For our network 2pplications we may toke 8¢ =0 2end b = %
Coddingion®s tisnsform, in ¢ffect mape cach functlon f(t) on 2n
n=tuplie of functlions '#'| A). Now the relation betwecer the
transform of voltage [E'l)J] and the transform of current [i,())]

must be reiated by,

Eid =z Tud®) , (= h2,.-00h (37

for any two fermindi network of clements which are characterized

.'.'“4\( k> f ;‘:(h = (8.

Thus, we ac3in héve & simpie Impedence function., Using the
Parseval equaiity we can show %o the same effect e&s before that
a necessary and sufficlent condition that Z(A\) be the impedeace
function of 8 two terminai network of poslitive elements with
p=1, 0, 20d =1 onaly, Is that Z(A) be real when A is reai and
Re Z = O when ReA = O,

Vi, Som¢ Unsaswered Questilions

We conclude thls report with a brief menticn of some out=
standing quaesitons which remain for future study, Ve have seen

1i=18



how 8 class of problens in network snalvysis and synthesis can &3
handled !f cne possesses 3 functional transformation for whizh a
form of Parseval's equallty holds, snd also which generstes &n

operational caiculue., 1f the restricilons to flrst order giffer~

i 1, T, =2nd =1 1ty dropped;

o

entisaf operators with only expos

-
-

: . = d
many new posslblilities arise., for sxémple, If L = “/dt and

eiements of type 2 are ellowed, the circult,

T
2 (e
L

Is not passlve from &n energy point of view, even though only
poslilive elemante 2ve allnwed Thus, passivity le nn longer
svnonymous wlth what 1s usvaliv termed stabliity, A quesiion is
therefore ralsed: How can one differentiatz between stabitity

'

In the sense of bounded response, and instsbi!lity in the sense of

unbounded response?

An examination of the situatinsn shows that 1§ Z{A) Is the
Impedance functlion of & twc termineg! network of positive eiements,
then Z{A ) has the followlng property: Z{A) Is resi when A s
real; and further, 1If L 1s 25 th order differential operator,

and t§ elements of type p, -m, s P s my Are present in the network,

then the real part of ZtAN) Is positive when -.-MM"I\'/L{}_ M‘%(Méhmx 5



whleh Is the shsded 2aree below,

As Tateresting GQuestlicn $0 riise !s whelher, 835 !z the c2se

whenr , = @, = 8 = |, the converse Iz 2i:5 frue; f.e., if Zi ]
. <

"

exists & nelwork o

has the above property whether or ancot

g posttive elements of type o where —&y =) o whese Impedance

foaciicoa f3 Z1 XY, Anolther questlon requiring an answer is to

ascertatns those condlitions on ZiA ) wmhich Insure stebtilty of the

correspoading nelwork,

Viil. Review

Rriefly, the colni of view taken ian ihis report Is as
follcwe: !f one has @ moltiloon nelacrk of llne2r time-varyiasc
elements, &ad cae knows the respomsc of 8 ivolical branch t= am
arbitra-y cxcltatlon: then f.rmally, the resoonse ¢cf the entire
network 1s expressadbie 83 & lincar combinaiics of suceh typlcal
rescontes icomnare the operatioaal zilcuius generated by the

o fixegs parameter neh-

L

taplace i-apsform, and its spniicatios

works?, Ith the 21d of certain inftegral fransformatlons, the



T

dzierminatior of the coefficients of ¥he !lagasr coxhinatilon
{which may Se, in the 1imiviag case én Infegrsil Iz simntiifled o

the formaltism of &n operetionel] calculus, From an ebstrect polat
of wiew, this does not differ from the 2pplicetlon of the leglace
trsnsform to the study of fixed paramelter networks. ‘Fe have
suggesied how much of what might be c3l1led classical fixed parem—
eter network theory hies Immediate extensics io fime-varylng net-
works when such & formallism Is at hand, For exexple, 20
clementary problem of time-varyiag network synthesis Is precsented

whichk foliloss steps simifar to flxed paramefer network svanthesis,

ia addition to providiag 2 disciplliane for the an2lysts and

- B
L A LAUR L

s of $¢img=varvian nelworks, i? orovides & simple picture

et
o
"
‘;‘

ot which ome can bulid & reiizblic tntui~+

os

2in

e

reger

fng cer

time=veryiag aetworks. Although Incomclzsis (& severs

L1

rezpecis,

57z spproach promises 2 better understandliang of & clsss of

)
)

problems of considerable Interesi.
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