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GENERAL IZED OPERATIONAL   CALCULUS   FOR 

TJ.V.E-VARYIN3  NETWORKS 

Pert     J 

Er-Chun  Ho 

Part   I   of   this   report  con- 
cerns   la)    the   inverse   trans-* 
form for   linear   time-varying 
iiet-ort.5   and   ib)   the   existence 
and   applicability  of   the   trans- 
form method  fcr   Mme-vSrylng 
networks. 



I,      litfodwcHo« 

With   the   l»trod»cHc«   of   the   treasforai'los   technique, 

4*«lr»l«   end  synthesis  of   «  certain  class   of   linear   t Ime-varylag 

network*   may  be  greatly  simplified.     The method   hii   the  gesernl 

advantages  of   the  Laplace   transformation  for   I umped  constant 

networks*     The original   studies  of Ascltinc'   on   the  subject 

covered  the development of   a general   technique  for  obtaining   the 

direct   Integral   transformation for  a  given   Jisj-yiryjs-  network 

and   Its  applications   to  the  analysis  and  synthesis  of   two specific 

tlme-verylng networks. 

From  the  engineering   point of   view,   the work  of Aselttnc   Is 

only a  beginning  and  suggests many areas  for  further  studies* 

Among   them,   problems   such   as   the method of  developing   Inversion) 

formula  and   the general  considerations  of   the applicability of   the 

transf or mat low  method  to   ttana-varyiaa networks   are of  parMcvltr 

Interest*     This  report  summertxet   the general   results of   the 

studies on   these  topics   (aec also rcf. 2,3). 

First, a brief outline of the Anelttac method of finding *!»« 

direct transform for a given ttme-vtrylng network w>ll be gives* 

Then, a general method of finding th- Inverse transformation In- 

tegrfi! once the direct trensformatton Integral Is fcnstra w!lt be 

discussed* Finally, the existence and applicability of a trans- 

form for a given time-vary I eg network will be considered In some 

detail* 
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II.  The Direct Transform 

A linear time-varying network referred to In this report Is 

a network (or system) whose behavior Is described by a second 

order linear differential equation with variable coefficients In 

the form: 

a.(-b)|'Vo fb(0^td^«)=:\r^# m 

Equation (I) will be called the network equation.  The direct 

Integral transformation for eq« (I) may be developed according to 

the method given by Ascitine  as follows: 

The desired transformation, a direct analogy of Laplace 

transform. Is defined »t 

wberc -f^Chi:) \t the kernel of the Iras sf ormfit Ion. The kerne! Is 

so chosen that cq. (I) can be conwried into the following alge- 

braic equation by the application of the transformation 

The method of finding the suitable transform kernel is as 

follows: 

Define the transform kernel by 

In eq„ (4), £?(>/,^) '* 6   solution of the kernel equation 

aft) ittW
+ W ifyt) + T(^i(^)^°. 

(5) 
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Where  "R*l) *»*v  be  conveniently  cnoicn   to  make  -^(>;-t) s imp! e. 

This   can   be   shown   by   applying   equation   (2)    to   (!)   find   integrating 

by   parts.      In   eq.   (4),   9(f)    Is   found   from 

which  makes   the   differential   operator   of   «•>.   (I)   self-adjoint. 

That   Is 

jM[a(*>vw4 ^H^^rO' (7) 

!il.  The Inverse Transform 

With the direct transform eq. (2), known, It Is also possible 

to derive explicit formulas for the Inverse transform 

The Inverse transform Is sometimes essential; particularly In cite 

that development of a generally applicable transform table becomes 

csccss •¥£• y iculuv* oiiu liuuf ioiis ovc fo the complex form of the 

transform kernel• 

One may assume that the * verse transform Is essentially 

unique, since one can always prove the uniqueness for each partic- 

ular transformation.  This means that a given Q(>^) cannot have 

more than one inverse form ^(i)   that Is continuous at almost all 

positive t.  Note that not every function of W  Is a transform of 

some % (-t)  •  Therefore, in addition to the uniqueness, o«e must 

also consider the conditions imposed on %&)   and QlYl)   • 
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The method of finding the Inversion formula 1$ based on a 

method used in the development of the complex Inversion Integral 

4 
for the Laplace transformation . 

The transform Q(»j)ls assumed to be a function of the complex 

variable Y) , analytic In the half pi ane R(h) = <F «*d of the order 

of Vf as V) -» oo (\>o} 

X'hen the conditions Imposed on Qlh) are satisfied, Q(Y[)   m*Y 

be expressed In terms of Its values along a vertical line by the 

line Integral as defined below: 

(9) 

where  J  Is also a complex number and /\ t j /.? 0"^ •  Equation 19) 

Is simply Canchy's integral formula In the complex plane. 

Now, apply the Inverse transformation as defined by eq. 18) to 

the functIon o£ fon both sides of eq. (9); then 

T-'f(?(D] = T"'uv Ct'^      *K\ l°<      J   '      ^r,)j^.K   i_y( CJ#      (|0) 

If the order of the Inverse transform operator ~f" and the In- 

tegration along the • *R€ J^(ri) = (T can be Interchanged, then one 

w.I 5 have, 

(in 
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Let£)(f)be the T transform of *j-(i)  as defined by eq. *2).  The 

Inverse transform to *f of -,  may be defined as 

Substituting (12) and T~*(QLiA~ %&)'   <q# ,8,» fnto M,,» 

ults there   resuIts 

( 13) 

Equation   113)    Is   the   Inversion   formulas   of   tSe   T   transformation. 

A (h -k) may   be   called   the   Inverse  kernel. 

Equation    (12)   defines   the   inverse   transform   kernel   /^y"e/ • 

Therefore,   once  one  knows   the  inverse   transform   to   j    of 
/ 

1-1 
for a particular transformation, one automatically defines the 

Inversion formula of this transformation. 

The It ev tteo In this method of flndlna the Inverilon formula 

lies In the step from eq. (90) to eq. (II), where an Interchange 

of the Inverse transform operator "T° And   the Integration along 

• he line f^(rj)=(p must be performed.  In suggesting this method of 

finding the Inversion formula, It has been, In fact, assumed that 

the Inversion formula takes the form of eq. (13).  If for a par- 

ticular transformation, this assumption ts valid, I.e., there 

exists an   Inversion formula of the form of eq. (13), then pr of 

of the validity of Interchange of the order of the operators In- 

volved In eq. (50) becomes a rather trivial matter. 

!f one applies the direct transformation of the function 
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of ^ to both $ld«$ of equation (12! and uses equations (2) and 

S3!, one wl I I have 

J~A<^)4(l,4)ct$~~ 1-1 a*) 

m where ~7\(i^J  '» *h* same as ~J\ (h^) »   *h« known direct transfor 

kernel- except substituting Y)   by ^f •  Equation (14) suggests 

that for a particular trantformalIon whose Inverse kernel Is de- 

Fined by eq. (12), the Inverse transform kernel, X(^^)»   maV be 

a solution of this Integral equation. 

To summarize, the direct transformation and Inverse trans- 

formation formulas of the generalized T transformation art   as 

foi Sows: 

<r >&~k. 
(15) 

•£  > tf 

(16; 

In checking the validity of eq. (12) or eq. (14), one ffnds thai 

the direct and Inverse kernels of the Laplace transformation pair 

do satisfy these equations, thus: 

I 
to 

*V*fc» 
*•* 

*>1. 
ill) 

The transform kernels of the transformation pair for the Csuchy 

network (modified Mellln transform ) as developed by Aseltlne 

satisfy equation (14) as follows: 

,&> 1-1 
*<l ( 18 i 
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Note that the analytic region dcflr.ee! by this t r an jf orma t Ion 1$ 

^f < tl  .  For the Bessel network, the transform pair given by 

Aseltlne' !$ a modified form of the Meljer transform .  The In- 

version formula of the Meljer transform with the Inverse kernel 

r^TTL l\(*]t)  ls Hef ,ncd *° r*cover a ^""c'rlon i (£) *or    *h< en~ 

tire range of t.  If one desires a direct Laplace analog for the 

Bessel network, the Inverse kernel which contains only part of the 

Meljer Inverse kernel may be determined from eq» (14). 

The cons!deratIon of the development of inversion formula 

provides much deeper understanding of the transform method for 

tlme-v«rylng networks.  By the procedure discussed above, It It 

clear that transformation pairs directly analogous to the Laplace 

transformation pair may be developed for both Cauchy and Bessel 

networks Cwlth suitable modification of the lower limits of the 

direct transformation Integral).  !t Is no* necessary to obtain 

the transformation pair by modifying the Me!!In and Wcijer trans- 

forms . 

IV.  Qualitative ConslderatIons of TransformatIon Method 

The main advantage of using a transform method In the solu- 

tion of the dlfferentloj equation representing a linear time- 

varying network Is that :-hc differential equation can be handled 

aigebraicalfy.  The technique involved Is to convert eq. (!) Into 

eq„ 13) by the application of the integral transformation as 

defined by eq. (2).  in order to make this application possible, 

the transformation must be capable of handling a large class of 



driving funcMoes and the differential operators of the network 

equation.  These fundamental requirement* »rt   Important from the 

point of view of tlit practical application of the transformation 

method to tIme-varylng networks*  In view of eq. (2), the limita- 

tions on the character of the function %&)  *"d on the range of 

the variable of Yj    depend obviously on the character of the trans- 

formation kernel  7i(>7,-cJ • 

Among the driving functions most commonly used ?n the 

analytical solutions of physical systems, such as the electric 

networks, are the sectlonally continuous functions.  An example 

of this type of functions is shown below 

v*>= 
•t-t-t. 

i<-i<-ix 

V* 
<i9; 

H) \ 

CL 

F igure I 

Any discontinuities of such a function In the Interval (t., t„) 

must be a finite Jump.  This class of functions includes the 

Important unit step function defined as 
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0 C t (20) 

For a transformation developed for a particular time-varying net- 

work, if the character of Its transform kernel Is such that the 

transformation Is not capable of handling the unit-step function 

and other more general functions, the transformation method Is 

probably of little use for the solutions of the differential 

equation of that particular network.  Therefore, It Is possible 

to set up some basic r equ I rente:, ts that a transformation must 

fulfill*  For the functional transformations, It is very con- 

venient to choose the transformation of the unit step function as 

a measure of the capability of a transform kernel*  This lead: to 

a rather simple consIderatIon of the existence of the transforma- 

tion Integral: 
(so f 

1  17.. \ _ I £ lr> J.\ J4- 
l-    Jo 121) 

.here \J (Ylj  *3 the transform of the unit step function. 

The transformation of the differentia! operators of eq. (I! 

Is oerformed in a manner somewhat different from that of the 

ordinary Laplace transformation.  S nee the transform kernel Is 

developed to make the differential operators sc If-adJolnt, th« 

transformation of the differential operators is performed in the 

following manner : 

I, 

1-9 



Sn order that the transformation method be of practlca* use, 

equation (22) must be satisfied.  So the initial conditions «r€ 

brought Into the transformation.  Equation (22) give* the funda- 

mental operational prepcrfv of the "T" tronsformatIon, the 

property that makes It possible to replace the differential opera- 

tion by a simple algebraic operation.  Note that the differentia! 

operators may not be decomposed or factored. 

V.  Ealstence of Transformation 

Thus far bot^ the development of a transformation pair for a 

linear time-varying network whou behavior Is described bv eq. ii), 

end the f und*mef» *5! properties that the transformation must 

possess, have been considered.  Now, if is desired to knov? the 

limits on ths applicability of the transformation method to time- 

varying networks.  It Is obvious that with the tlme-varytng 

coefficients of eq. (I) unrestricted, a satisfactory transforma- 

tion may not exist at all.  Thus, It Is Important to settle what 

klr.d of network cq;;oiior. s do, and what kind of network equations 

do not, permit the use of transformation method. 

From the preceding section, a useful transformation must be 

one which Is capable of handling the class of sectionally continu- 

ous functions (unit step function !s actually considered} and the 

differential operator of the network equation.  Reconsld"" the 

"T" transf orma} ;or. of a unit step function 

U(i> = ( Aoi.+xtt. 
o (21) 
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Ifi order that t*ie Infinite Integra! on the right-hand side of 

equal! or. (21) converges uniformly. It Is necessary that the trans- 

form kernel -f\„(Y} -^) be continuous *nd bounded at both upper ss^ 

iower limits for all values of V}    In some In ter v«l («4 0) .  Slace 

\(y\-k)    »« defined In eqs (4) as the product of g-fcj • »<* i<C*]A)' 

eqs (2 i) become* 

\J(r{)~j"$(*)-h(%4)<«:. (23. 
Following   a  well-known   test,   It   Is   convenient   to   establish   the 

foSlowing   conditions   for   the   uniform  convergence  of   the   Infinite 

Integral   of   equation   123). 
/ 

1. "$(>?/eJ Is continuous for £>*--£*• °°. 

2. %&)  '* contlnous for o £ -i C Ac, 

3»  The product of %•&)   and -f^Cn-6)  is bounded &i   both up»>er 

and lower limits of the integral for al! tf    In SMO« 

Interval ( c<y 0) «, 

Note that It Is not necessary for each Individual function of 5&J 

or /? Lf),~i)  ; o be bounded at both upper and lower limits; but the 

product of %(•£)  and -$(>?/£) must be bounded at both limits. 

The above three eond! Hons will afford one an ooportunlty to 

relate singular points of the network equation to its transform 

kernel, thus permitting one to settle what kind of system equation 

permits the use of the transf orma t ton method,,  To facilitate 

further discussion, re-establish the kernel equation In t'.e follow- 

ing manner: 



where   #V/) c:or r e$ -und$    to    ——.i.     In   equaMon    (5)    and    tf\f:j   to  
^'  ' ft. CO 0.(i:J 

In   the   same   fniMHoit. 

I 
I 

Fuchs* theorem9 In terms of eq. 1241:  If $¥) or &(£)  or both of 

eq. (24) possess a singular point at ~t-~t»     an<*   '^ this singular 

point of <P(4)   and Qtf)   IS  removable by multiplying f/Gj and £(£) 

by the factors (£ - •£  j and (-6 - tj )*     respectively, then the 

equation has two Integrals (In terms of convergent development of 

power scries solution! In the neighborhood of -h    .  A singular 

point of this type Is a regular singular Dolnt, otherwise in 

Irregular singular point. 

1-12 

K&i-t)*   then. Is a solution of equation (24).  For « par- 

ticular network equation, the question as to whether a tattsfec- 

tory ^Crt-t) as defined In condition I exists or not may be settled 

by considering the singular points of the kernel equation.  In 

eq. 124), F C V7 ) Is considered a   function of fixed parameter V)  • 

Considering the point t  and Its neighborhood, It Is well known < 

7 8 
from the fundamental theory of ordinary differential equations ' 

that:  (a) If $(4:)   and 0(4J    are continuous and analytic functions 

of t In this neighborhood, a unique solution, continuous and 

analytic In this same neighborhood can be determined for eq. (24)} 

(b) If either pCt)   or 6(£j  or both possess a re&ular singular 

polar  at f , ea. (24) has two regular Integrals In th« neighbor- 

hood of this point; (c) If either (pfe)  or $(£)  or born DOSS ess an 

Irregular singular p«!«*  fit t , eq. {24* cannot have two rtguiar 

integrals In the -neighbor hood of this point.  But there may be 

one regular integral or there may be none. 



To decide   whether a regular Integral exists or not, It Is 

most convenient to consider the Indlclai equation of the power 

scries solution developed about a singular point.  Note that t^c 

above rules ve applicable to the point at Infinity only If * 

transformation which r r ensf orins the point at Infinity to the 

origin Is performed. 

As a rule, therefore, solution of eqe (24) may be found In 

the neighborhood of a singular point as well as at an analytic 

point.  In general, the two Independent solutions may be expressed 

In terms of power series about a point where one desires to ex- 

pand them.  These solutions are c»s 5 y valid within thesr conver- 

gence-circles, centered at this point, and whose radii are equal 

to the absolute vslue of the distance between this point and the 

nearest singular point.  It becomes clear, then, that for * given 

kernel equation of the type of *q. (24), the question of whether 

a deslred-jh/^-Meontlnuous forO^-/;^/*^ exists or not may be 

settled bv simply considering the number, nature and locations of 

singular points of the equation. 

From the above consideration, one may conclude that for a 

kernel equation possessing on? or   two singular points, a desired 

7<(>lf'^)    »   relatively simple In form, may exist.  Cn the other 

hand, for the kernel equation of more complex form, a solution, 

continuous for o^ir^^   may still be possible by applying the 

technique of analytic extension In the solution of the equation. 

But the math ern^t !c* • manipulations would be very difficult, and 



the resultant ^(h-6)   would be very complicated and often beyond 

the possibility of pr<scticaf development of the transformation. 

In general, !t might be more profitable to use 9   solution which 

Is only continuous foa- / X -fc <• °*   where Tg    Is the neaest singu- 

lar point of the kernel equation to the point of Infinity.  This, 

of count, Involves a change of the lower limit of the direct 

transformation Integral from zero to a finite value of "jr^ (•£  »£]» 

or one may even define a direct transformation Integral with 

finite limits.  Finding i^in^)  is the nv»s* difficult step In Vhe 

development of the transform kernel.  Therefore, a knowledge of 

whether a suitable "$(«-£) I* obtainable from the kernel equation 

Is a great help In deciding the use of transformation method be- 

fore becoming involved l» the actual solution of th« equation. 

~it£)of condition 2 may be redefined as follows 

(2 5? 

Equation 125) shows that infinite discontinuities due to the 

presence of singular points In (fH-j    or &(4)  or both may appear 

In 9-(ir)   unless the effect Is cancelled out due to the mathematical 

operation on the right-hand side of eq. 125) or due to some con- 

ditions Imposed on certain parameters in J&)  or &(£)  .  In gencre!, 

finding ^ i±) I s a straightforward process.  Therefore, whether a 

suitable £(tj  exists or not may be settled without difficulty. 

tt'hcn the consideration of singular points of the kernel 

equation Indicates that desired fc(hi)in4   Q(i) ta   defined In 
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conditions I and 2 respectively do «x!ste then one may proceed to 

evaluate ~f((*)4")  from the kernel  equation.  To insure the boy*d«d- 

ocss of -/[(*) £)**   The upper limit, one chooses from the two 

Independent solutions of equation 124) the one which mates -j^(').^) 

vanish rapidly as -£->*? If there exists such a solution*  The 

next step Is to perform the product of fyU) *nd &(%+)  *°  obtain 

-^ (h tj and to check the condition 3 which requires ~f>u(h^)*G  *»* 

bounded at both upper and lower limits of the transformation In- 

tegral for all Yj    In some Interval {cK^Sj  .  Note that when Yi    Is 

considered a complex variable, ~f\(t7^) '* *° be bounded at both 

limits for all /? (n)  In some real Interval (<£   /$)  • 

In some cases, the boundedncss of -j\(h-&) or    Q(£)+( i?/^) 

may not be obvious*  Many known mathematical methods  are «»«iiable 

for tests of the uniform convergence of the transformation Integral 

eq. (21) or eq. 123!,  tn many cases moolflcatlon of the trans- 

formation Integral, such as the ilmit of the Integral, or Imposing 

additional conditions on certain parameters in either 5 (•(:)  or 

•f\tn.~t} &r   both, Is absolutely necessary In order to Insure the 

boundedness of 

Thss far, the most difficult part Jn the process of develop- 

ing a transform for a particular time-varying network has been 

considered.  The remaining basic requirement to be satisfied by a 

particular transform Is Irs capability of the transformation of 

the differential operators of the network equation.  This can best 

be done bv the direct Integration of the left-hand side of eq. 

S-IS 



(22) ?y substituting •&(*?,•£)  and the dlf f erent!»! operators of a 

particular network equation Into the Integral.  Again, In some 

case*, a slight modification on the transformation Integral's 

limits might be required In order to satisfy the right-hand side 

of eq. 122).  But, one does not wish to Impose any condition on 

Hrt-t:)   other than those on \T(£) , the driving function. 

To complete the development of tronsformatIon, on< may then 

derive the Inverse transform by the method Indicated In Section 

ill and discuss the limitations on the character of t*-.c function 

V"^) and on the range of the variable V? . 

For example, consider a time-varying nelworV. with the follow- 

ing behavior, 

126) 

The transformation pair obtained is as follows: 

f«)te *•      *V*       <r>l 
1275 

-a 

J (28) 

which Is an analogy to the Laplace transform.  The reason for the 

modification of the lower limit of the direct transform Integral Is 

obvious since the network equation has a singular point «* t * 0- 
o   o 

• W 11 »•  I 
The direct transform kerne! t c  (     o   Is now continuous for 

f^ < f < 0O and bounded at both upper and lower limits of the 
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Integral defined by eq. (27).  7. 11 h HHIc difficulty, on* may 

show that this transform Is capable of transforming both unit 

step function (for t > t ) and the differential operators of th« 
o 

network equation. 
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GEMERALI2ED OPERATION   CALCULUS  FOR 

TIME-VABYIhG NETWORKS 

Fart   H 

Harold Davis 

Part II of (Mi report eon- 
ccrr3 la! those Integral trans- 
formations vbfch generate an 
operational calculus for general 
linear differencial operators, 
and lb! the application of such 
transformations to the analysis 
and synthesis of a class of 
linear time-vary tag networks. 



i.      Introduction 

Much  of   prtscat   d*y  fixed   parameter   linear   network    theory   1* 

htttd   on   the  orcpcrtles   of   t fc*   Laplace   IrtntCorn  end   I ft   relation 

to   the  differentia!   operator d/dl   .     To   the  cstent   that   this   Is 

essentially  all   that  Is   U-"'?--?,   It  fo!Sow*   t^-at fixed parameter 

network   theory  cat   be  embedded   la   a   formal   iia*«r   network   theory 

If   tfee  cxlstancc  of   a  suitably  generalized  Laplace   transform  Is 

postulated.     For   example,   suppose   that   I   Is   a  differential   opera- 

u. 

and  kCi.^O   Is   a   solution   to 

»L     Is   ir.e for-*!   ad«o!«»t  of   Li.     Suppose  further   that R\t.^) Is 

the  kernel   of   a  oac*to*oac   Integral   fransfcrmaf Scs   Jon  a   suitable, 

complete  class  of  f wesef Ions I ,   say. 

It  would   the*  follow   that  for   Lf   in   this   class, 

mm £* 

'f      VTVtJO^CO uanlsh   as*->«*    ,    o4P,«V^N   then   B 

Is   a   blllaear   form  In  \t «1, V <°\ -. • t        \Oj a;id  a  s<f ^ N 

functions   of    X   ao*  deoendiog  v&&»  fill.     T»  make   the  picture 

complete  we  would  seed   some  form of   P«rseval*s   equal!ty,      !t   Is 

i I-l 



expected that, formally, such * how id exist*  Several tr*«>for»i 

satlsfyifte. all the above retjuf rcwents have bee« discussed fey 

Aseltlne . 

The following material fs concerned ftrsr «?th a discussion of 

the application of transforms of the type described above to five 

analysis end synthesis of *   class of linear His*— varying networks* 

Secondly. It is pointed ©et that for first order differential 

operator* avch Integral transforms exist*  The materiel concludes 

with a brief men'Ion of Coddington's theorem on generalised 

Fourier transforms. 

it*  On ih*  Fora^i if jes of 5 Geggrai ized Network Theory 

we first ask what general features or   structures of linear 

networks can be studied by application of an integral transforma- 

tion, of the form desert bee above,  The answer ts fairly Immediate* 

Consider network elements such that when a voltage eft I J's applied, 

the current Htl that flows ts related to e(tl by, 

a£w££t4» = ec*) ; - *» 4 *» 4"« \  oi».« <- *°   :s: 

where ot  Is a real »u»nber# i a ifnear differential operator 

(of the type considered above! and p an Integer*  In Illustrating 

network structures ief us portray these elements as follows: 

11-2 
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« 1   P    J- 
i 

EQUATION 

f^ti- e 

,0>> 
II   -III   be  convcn!ent   to  distinguish   the  case  where.     *<       tsfces   os 

only non-seget1ve   values.     We  shall   refer   to   this   as   the  case  of 

post H*J5   elements. 

Example: 

Let  attJ   =  1,   biH   = 0;   then   L   s    /dt   sad  *?.   have   fhc  case 

of  ccA«cnfloss I   fined  psraneter   elements. 

*—I    *     I—*=" «l    n» self   Inductance 

—C3—•=• 

HTH-Hr ^ s el as lance i reciprocal 
of capecitsneel_ 

No* consider say Interconnection of the various types of 

time-varving elements discussed above.  Such a network will be a 

node—to—node connection of braoches ss Indicated In Figure I. 

Every branch can be assumed to be * series connection of the 

various types of elements, and a voltage or current source*  We 

need only coaslder one of eech element type ss being present, 

since for each type a series connection of elements Is cqu!?a leat 



to a < Ingle siemeut of that type.  We will cons Idler the sources 

to be uoltage sources so that we can set up a loop current 

2"<!ytti,  Of course any or ill of the coeffIcIentt or voltages 

can vanish. 

eAU> 
—-^4^1—*-gjh° 

ii-»«i 

Sv 

f- Igurc i 

Bv assuming an appropriate choice of mesh currents, and 

summing loop voltages to zero In every loop we get a system of 

liHiar Integro-dlfferastIal equations In the mesh currents, 

rhere %•.   Is an t« tegro-dlf feren Ha I operator of the form. 

16) 

y«k» °<ib L 
(7) 
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In setting yp these differential equation* we can always In- 

corporate the initial condition* !n the various driving voltages 

e.ltJ.  Ths* !s to say, If we suitably modify the assumed drives 

e . It), the values of 

will be zero for aij loop currents*  Let us assume THC equation* 

have been set up In this way.  Then, taking the transform of 

these equations by that Integral transformation which Is Associated 

with the operator L as described above, wc have, 

^Zi'J^ ' t;(» 
(8! 

•iv *?>%•••*<*•••+ <V"   .9. X4W V^ 
and E !^l Is the transform of e.(t), and I. I A ) the transform 

J J J 

J 

This is the function*! form of the loop equations In the 

transform domalr.. It Is the form which Is so familiar in the 

fixed parameter case. To proceed from here to the point of a 

gsner*! theory of analysis and synthesis of networks, we netd 

only ape the steps taken In the e*se of networks of fixed param- 

eter elements. That Is, we replace the parameters of the Laplace 

transform by the A of our generalized transform; replace In- 

ductor by "type I efsroent" and so on.  Impedance lor ImpedAnce 

i i - :> 



• 

• 

fraction) Is again defined as 

Adm{ t tance* In:age parameters, and general circuit parameters of 

four terminal networks follow In the same way. 

. • 

III.  A Special Case 

In the special case where only oosittve elements are present, 

and these trz   characterized by either L , L , or L  , and where L 

Itself ts a first order operator, the theory Is quits satisfactory 

and complete.  The facts of the matter arc as follows:  First, as 

we shall see, the formalism or an   Integral operator can be made 

precise under fairly general conditions on the operator L. 

Secondly, most of the theorems of the oresent fixed parameter 

network th«ory do not depend on the constancy of Inductance and 

capacitance with time.  father, they depend on the exfstone* of 

thr»# types of '.positive) elements characterized by L , L°, and 

"I d / 
L   where I • /dt (a great deal of network theory omits from 

consideration the notion of mutual Impedance). 

To make this more explicit we wiii suggest a sort of princi- 

ple for Inventing statements of generalizations of certain 

standard network theorems.  In fixed parameter net-c?: ^hecry, 

there art   a greaf many theorem* relating the physical structure 

of a network to the functional form of impedance type functions, 

in these theorems, one identifies the impedance Z(s) • s with an 

I i-6 
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Inductor. Zisi « 5   with « capacitor* ««<J to o».  Actually, this 

Identifies element types through the exponent of the basic opera-* 

Jtr associated with fixed parameter networks, namely /dt.  This 

?denHf icetioa cae be considered! as the basic brldce between the 

physical specification of foe network, and the nafhematIca1 

specif leaf to* of the Impedance function of thet network.  Now, 

we svggest that any network theory «Mrh deoe-(d» oa I y on thl* 

Identification of element types, and on the theory of analytic 

(Impedance} functions will ha*« a valid extension If we simply 

translate It Into the appropriate "general lied opera for" language. 

As a caution In this regard, no theorem requiring tnie use of 

ccboled colls tooa-tdcat transformers! can be extended, since 

tHc coupled coil Involves tnor€   t^an the two cons I der at fans men- 

tioned In the last paragraph. 

Applying the above principle, we gjcr • gentf a* Ixat lo* of 

FOB tor's Reactance Theorem for rise-varying elements, the canon-" 

leaf fors*s for two element kind ncrworks, and so os.  Such 

tneorcms being the very founder ion of fisec p«i«acf«f itiwurt 

theory, we thus have considerably broadened the basis for the 

analysis and synthesis of the class of networks considered here. 

(For details of the applicable* of these theorems In the classi- 

cal fixed p*r»aei*T  case see, e.g., Cutflcmln** "Comnunlcatl 

Networks."81 

Possibly the most significant theorem Is she following; 

i i_7 
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"^A sscstisry ssd syfffc'^r.l condition '"«! «n «n«iyfic funcnoa 

of the complex pirmcltr A  represent the Impedance of «eat bmo 

terminal network of the three types of elements considered S» 

this section* Is that this function be positive res!; that Is, 

that It be •» analytic function which Is real when A     Is real, 

and whose real part Is positive when the real parf of A  Is 

posItl»e.5 

The necessity of the condition can be proven by following 

4 a slight ~odlf !cati_« of an argument of Brunt  applied to fixed 

parameter networks.  However, Bruae's oroof of the sufficiency of 

the condition for fixed psr$<neter networks Is not adequate for our 

purposes, since He used coupled cotli whenever necessary*  TFe 

can, however, call on the method of Bolt—Ooffin  which depends 

oaiy on the ability to Identify the three types of elements 

assumed. 

*•.« a j !--•(» example of o«t*orlE synthesis using elementary 

ncrhods consider Ihe following trebles:  Suppose that we **••> 

required   Jo find a two icrnrinal network sue*1 that, when the 

driving voltage Is e'rJ — «S I e*. where  <5 It? is the rsir#c Impels* 

"function";   the Current which results will be 

Zen -  ((i^y^-i'j/Ks+n^        l,0! 

We ask for »   network of elements characterized by powers of 

the operator i   =11 * tl a/dt + I.  Thus, kit, A 1 m  IJ + ti~ 

if we cos-.pute t!*e transforms of the voltage and current by the 

I !-« 



transformition   associated  with   this  operator   L,   we  shall   find 

I n« • r     roiiw     »s*    DC 

r / •>, N 
ZIV) =   -~- -- C^>+4^)0+1*+ 4>*X' un 

Expending   tt>e  admittance YCAl   •  [ZlAl]~*   Info  par ltd   fractions 

vt   have, 

YCX>- (x^y1   * xACu-aJOT1 ll£l 

Mow lei »* apply the principle of IdeattflentIon **sS.os^d 

before* We inow that ff this were the ease of fixed parameter 

synthesis with X replaced by the £99»«ntlon«l « • o* • lai the r«- 

ovtrad network fOufd be an inductance of 2 henries, ia parallel 

with a scrlc* connection cf • resistance of I ohm and a capaci- 

tance of 2 farads*  Since inductance Is Identified with a plus I 

exponent, reals fence a zera capon eat, and c*j?a< I lance with £ 

atlaus i exponent we can Immediately write down the circuit with 

proper element types 2nd cor: eel values of the coefficients* 

Thus, we Immediately have the solution Indicated In the following 

diagram* 

tZ-H « 
r 

•V* -1 ***>-   'A- 

II- 



As a COD sequence of the fact that I ! s a first ore'er different!*! 

operator, the element character tied by the exponent I can be 

considered as an ordinary inductor whose Inductance !s (I + t), 

for the* 

as Is required,  Similarly the -I element can be considered as 

an element with capacitance (I + t> so that 

at required-.  Thus, the abew* solution can be redrawn %t  foHc-vs: 

2(l+t)hearles 

"V It- 
I ohsn  i'ji+tJ farads 

To summarize th<t case of positive elements char ectcr Ized by 

« f'fii oiu«.r differential operator taken to oowers I, 0, and -I 

only, we obtain tlme-'varylng generalizations of most of the more 

powerful theorems of fined parameter network theory. 

?y»  TSe Steady-State Impedance Concept 

It Is worth calling attention to another aspect of what 

might be called the transform domain approach,.  Let us fix our 

l-!0 



attention on networks of e!emert$ charic^rlisd by powers of a 

differential operator L at before.  If we drive a single {eop 

of such elements with a voltage propor 15 cna I to the function 

kit,A) (the kernel of the transform associated with 15, then 

the resulted current will also be proportional to this same 

function but will differ by a multiplicative factor - the value 

of fhe  A-domain Impedance of the loop at the value A .  We 

must expect this since w? are driving the circuit with a function 

th*t bears the same relation to these network »!»«?»*« *• sinus- 

oids do to fixed parameter elements*  This suggests that the 

conventional steady-state physical Interpretation of impedance 

defined i: the ratio of voltage across to current through a two 

terminal network when drlvan by a single frequency carries over 

by simply thinking of functions of the form kit,A) as general- 

ized sinusoids and of A as a generalized frequency, 

V,,  Functional Transforms Associated with F Yr s_t Order linear 

Differential Operator* 

We now discuss briefly the connection between a first order 

linear differential operator and an associated generalized Laplace 

transform* 

Throughout th« following we shaii restrict ourselves to 

functions defined on the half line, 0 = t » CvO , 

Let alt) and   bit) be functions such that bit) and   /dt are 



defined and finite, srxii   that *it! ^ t for *!! t « O,  Consequently 

either altl > 0 o* cNc a(tl < 0 hold* for «ti t * 0.  Without 

lots of genera li'iy, »e may assume that aiti > 0, and further, that 

t   9 

• 

*{0) = I 

Suppose   «isfi   that   «" 11)   and   bltJ   are   such   functions   that 

there   exist   numbers  A   and  B   such   that, 

and 

C i/ r ) j Is-^- o   <**-  > /n / v M3I 

Now, we define the linear first order differential operator 

«. by 

i i •'" • 

The adjoint operator L  !» defined by, 

[fua [-(^^cU/) +Wa)]^C*> (16) 

Let A be a complex parameter, and feItt A I be the solution 

to the equation, 

or wr11 ten out 

'• i -! 



cspond"ngSy, let K(t,^l be the solution to {ht   equa- 

tion, 

Becaus* L 1$ or*!y of the first order, we can write these solution* 

!» terms of a single quadrature*  Explicitly, 

Ktt.*) ^* K -\ lU'->) ->]fa^ )]"dto)  190) 

We have the following: 

Theorem 

Let f\i)    be * function such that for some c, 0 < c < oO  , 

\>0\Ui)[Zz.ai\'xe-ct<At  •(.<*> (21 i 

00 

ts   an   analytic   function   of   /<    in   the   hajf   zU-z  Bs   {?. \  > $- *   F 

(22 
+ 

F urt herrriore, 

(in*9 

"**-    J/3-l0O A 73-100 

at   every   oolnt   of   continuity   of   fit). 

123) 

We also have that ff LnfiH, n » I, also satisfies t^e sane 



tort  of   condition   as   f   above,    t^en, 

»fc*o lt-0 

If   F(A)   andGiXl   are   respectively   the   trfiuiforms   of   fit)   and 

g(t),   and   F,  G   »rm   analytic   for   Re   [A]  » -   cf ,    6" > 0,   then, if |pl<S, 

• 

• 

Her» *r*- two examples of such Integral transforms. 

1, let at*) « I- bit) -0.  Then I* y * -|^.  Ly » ||, and 

so kit, A) o«" At, Kit, A ) « e Ar.  This !« ?ha case yielding 

the conventional Laplace transform, 

2. Let alt) « I + t, b(t) • 0.  Then kit, A ) • U + t)    \ 

and Kit, A) « (I + t)"A.  This yields a modification of the 

MeliID Transform.  Spec If!caI Iy; the Image of a function under 

this transformation Is Identical with the Image under the Mel Ha 

Transformation of the same function, but translated one unit to 

the fight on the t axis. 

The first example Is the simplest, but most Instructive* It 

shows how the Laplace Transform fits into the scheme. The second 

example exhibits a boiaflde varying operator* 

Now supoose fit) Ss ss required In the theorem, that Is, for 

some finite and real number c, 

O^ML^Y'efctu <°° <26> 
M-14 



r b nf ~ •*> 

*27) 

But 

J.t«**lU« >Ai-, 

sad 

by hypothesis.     Hence, 

By  rctica  of   the  hypothesis  on  f«*l#   the   latter   Integral   is  con- 

vergent  for   all   ^   for  which 

*m  fact   It   Is  clear   that  convergence   »s  valforffi for  A 

Ret>H ^ 

Hciics^   In   this  half   plane,  FlA)   Is  an   analytic  function  of   A 

and   has  nc  singularities   there. 

Hnm   artt«_ , 
_ _ * J 

{3* i»« 
O 

V-*- ^o I ^ I2SM 
Si-15 



c    at-   t~s.— .1   #«r   Fl!Xi    I*   wnSfsral*   COB*«''CM*   *£-r   ail   A 

*«cii th*t Re>£ ^r 

we  ra*¥   Interchange  orders  of   Integration,   and 

3. ft • 
o,»>_   j-      ^ ^-Lj- ^. c1- \ Kf i>\ bf t A\^> W 

•fcere. 

for   e*ery  fS«ed   f#   both   <f   and   y*  arc COBHUOOUI   functions   of   T    S 

both   *f   and   C^ vanish  when   T  =  t;   and   f   l»   «  strict**   Increasing 

f«S£*!ss  «*   '•     for — mi^i *• on       .     Thus  «$   has   a   single  vatwed 

continuous,   strictly  Increasing   Inverse, 

Tn»»#  f«*r   each  flsied   t. 

By  the  Rlemaan-lebesgue   ie-asa,   we  Ci«  evaluate  g'-t!; 

$d> = i\ ?«V]) * K<[o-l^ :  £K«+>* W1". 
33} 



It fallows from C-rtm*9t   fornula that. 

The formula for the tra^sf err?) of I  follow* by induction from th« 

aboveS 

VI,  Generalised Courier Transforms 

In closing *« Mint oul that Integral transforms of the 

type described In the first part of this mater iat do not exhs-sr 

all avenues lending to an operations! cs!eu!ux.  We refer «o« ^o 

the general Izcd F^t-rler transform of E„ A. roddinaton **. 

Coed Jagton hat shown thai if I *s 5s a ' <?rdtr JIrr er en i I a I 

operator defined cs * < t < b, la,bl bounded or not, and If I   I* 

formally **8f adjoint, and If the coefficients of L i»i»€ con- 

tinuous derivatives of order as high as their r«r>ecil*t Indices, 

Ihea the following Is fro*:  There e*ifts an Permit!*': matrix of 

functions 

\StjC**] 

with   efsKients   of   bounded   war I at Ion   on   every   finite     ^,—Interval 

with   this   property.      !f   fa.4t_ X   -1 1   Is   a   set  of   a   Stn>e*rly   in- 
" I 

dependent solutions of Ly =  Av» f*!€B f0i" a square summable 

function f(ri It wilt be true that 



it- r,._. 

•• 

• 

Furthermore, the Parseva! *quai!fy f»W» 'He fc- 

fWtfoU. f^«»i(MA())^.a)      ,36> 
where 

!> o 

For oor network applications we may tok* a » 0 and b « °° 

Codaingionf s iraniforra, In effect r?»*p« **ch function f ( t) on an 

w-tupie of functions  <f I A ).  Now the relation between the 

transform of voltage [E.i^l] and the transform of current [l.lAl] 

must be related by- 

for any two rermlnal network of elements which are characterized 

by 

Thus, we acfiin hive a simpie Impedance function.  Using the 

Parseval equality we can show to the same effect as before that 

a necessary and sufficient condition that Zt'X) be the Impedance 

function of a two terminal network cf positive elements with 

p » i, 0, ssd -I only, Is that ZlA ) be real when %   is reai and 

Se Z » 0 when Se A  « 0. 

VI ?s joiTit Unanswered Questions 

We conclude this report with a brief mention of some out" 

standing questions which rs'.r.&lr.   for futur* ttndys  We have seen 

i (-S8 



how * class of problems in network analysis and synthesis can b« 

handled If one possesses a functional transformation for which A 

form of Parseval's equal!ty hc!dsf 5-d also w'tch generates An 

operational calculus,  !f the restriction* to first order differ* 

ential operators with only exponents s, 0, snd -I ! r> dropped^ 

many new possibilities arise.  For example, If L * /dt and 

elements of type 2 are allowed, the circuit. 

Is not passive from an   enerqy point of view, even though only 

positive elem?r>*» !?r*s «?!o***d_  Thus, passivity !« no longer 

synonymous with what Is uluflMy termed stability*  A qutstion 5» 

therefore raised:  How can one differentiate between stability 

in the sense of bounded response, and instability ! r. the sense of 

unbounded response? 

An examination of the situation shows f-^at if Z(^) Is the 

Impedance function of a two terminal network of positive elements, 

then Z {A ? has the following property;  Z{^5 Is real when /\ It 

realj and further, If L Is ar. n   order differential operator, 

and If elements of type ps -m. - p - nu *re present In the network, 

then the real part of Z i >> ) is positive when -*w\,TT/^4 o-^ai^i VxYY*^/, K 



thlch   Is   the   sh&d?4   ?re*   below. 

•3 r. c 

FIgure 2 

As interesting question to raise is whether, as Is tv>e can 

when •. * su * a m I, the converse ft aSao frti«r; i.e.. If 15  * 

has Use above propcrry whether or not there exists a sef^crk of 

poif M*c elements of type p where -«. = p - aw whose Impedance 

?*«..?? on *s !!/,!«  Another qiesHoa requiring en answer Is to 

ascertain those conditions os ZfA« which Insure stability of the 

correspond!ng network. 

VHi«  Review 

Rr!#fiye the point of view taken In this report Is a* 

follows:  If one feas a mult I loon network of linear t Irae-veryf no 

elements* and one knows the response of a iyolcal branch to an 

arbitrary -recitation? then formally, the resoonse of the entire 

network is exprcssable as a linear combination of such typical 

rctsossca {compare the operat ioa-s! eclcuius generated by the 

Laplace ?rai»sform, and Its application to fined parameter   n«»- 

works?.  Clth thz  aid of certain integral itansformatIons, the 



**«?«rmJnaHoR of frhe coefficients of the linear c+~—blnat !os 

(which may be, «a Hi* Hairing cat* *n Integral! Is simplified to 

the fofiaiiSstn of an operational calcubt,  From a» abstract point 

of view* tfcls docs not differ fro* th* application of the lapface 

transform to th* study of f Iscd parameter networks.  V« have 

suggested how much of what night b* called classical flved param- 

eter sictwork theory lies liwaedlate extension to tl»c—varying wet- 

works when such a formalism Is at hand*  For ciitipic, an 

eSementary prob!*** of time-varying network synthesis Is presented 

which follows steps similar *o fixed oaramefcr net-work synthesis. 

!» addition to providing a discipline for th* analysis and 

Systkesls cf tfae— rarylsg networks. It provides a slmofe picture 

on which owe can but id a rc;«£bie Intuition: regarding certain 

ttme~v*rylag networks* Although Ii»ein««2;!rf* • « several respects, 

InSs approach premises a better undcrs!adding of a class of 

problems of considerable interest. 
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