**UNCLASSIFIED**

<table>
<thead>
<tr>
<th>AD NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD043798</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLASSIFICATION CHANGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO:</td>
</tr>
<tr>
<td>unclassified</td>
</tr>
<tr>
<td>FROM:</td>
</tr>
<tr>
<td>confidential</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LIMITATION CHANGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO:</td>
</tr>
<tr>
<td>Approved for public release, distribution unlimited</td>
</tr>
<tr>
<td>FROM:</td>
</tr>
<tr>
<td>Distribution authorized to U.S.Gov’t agencies and their contractors; Administrative/Operational Use; 07 APR 1954. Other requests shall be referred to U.S. Naval Ordnance Laboratory, White Oak, MD.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AUTHORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Apr 1966, DoDD 5200.10; USNOL ltr, 29 Aug 1974</td>
</tr>
</tbody>
</table>

THIS PAGE IS UNCLASSIFIED
RESULTS OF CHAMBRAGE EXPERIMENTS ON GUNS WITH EFFECTIVELY INFINITE LENGTH CHAMBERS

7 APRIL 1954

U. S. NAVAL ORDNANCE LABORATORY
WHITE OAK, MARYLAND
RESULTS OF CHAMBRAGE EXPERIMENTS ON GUNS
WITH EFFECTIVELY INFINITE LENGTH CHAMBERS

Prepared by:

A. E. Seigel and V. C. D. Dawson

ABSTRACT: In previous work the effect of chambrage, the ratio of the diameter of the propellant chamber to the barrel bore of a gun, had been analyzed theoretically. This analysis has been applied to a gun of effectively infinite chamber length and of varying chamber diameters in which the propellant is all burned before the projectile begins to move. The present paper describes experiments performed to check the theoretical results. These were conducted with two different length 0.50 caliber gun barrels and with chambers of various diameters up to 2.44 inches. Air was compressed in the chamber behind light plastic projectiles, which were released at the proper pressures. The projectiles broke timing wires outside of the gun barrel, yielding projectile velocities. The experimental and theoretical results are in very good agreement.
This report presents the results of an experimental study of gun chambrage (the ratio of the propellant chamber diameter to barrel bore) on the muzzle velocity of guns. The experiments were performed on a simplified gun system to which the theoretical results described in NAVORD Reports 2691 and 3635 were applicable. The ultimate aim of this study is to obtain high gun velocities from an increase in our knowledge of interior ballistics. The work was carried out under project No. FR-33-(54). The authors are indebted to Dr. Z. I. Slawsky for his aid in designing these experiments and also wish to express their thanks to Mr. C. Crist and Mr. J. Fitzpatrick for their help in performing the experiments.

JOHN T. HAYWARD
Captain, USN
Commander

H. H. KURZWEG
By direction
CONTENTS

INTRODUCTION ........................................... 1
PREVIOUS THEORETICAL WORK .......................... 1
DESIGN OF THE EXPERIMENT ............................ 2
DESCRIPTION OF EXPERIMENTAL APPARATUS .......... 3
PROCEDURE FOR FIRING ................................. 4
METHOD OF ANALYSIS .................................. 4
RESULTS .................................................. 6
CONCLUDING REMARKS .................................. 6
REFERENCES .............................................. 8
APPENDIX I .............................................. 9

ILLUSTRATIONS

Figure 1. Projectile Velocity vs Travel Curves for Chambered Guns with Effectively Infinite Length Chambers For \( \gamma = 1/4 \) ............................................. 11
Figure 2. The Percentage of the Optimum Chamberage Velocity Increase as a Function of Chamber Diameter-to-Bore Diameter for an Infinite-Chamber-Length Gun .......................... 12
Figure 3. 1.125-Inch-Diameter Chamber with 77.5 Cm. Barrel ........................................ 13
Figure 4. Exploded View of 1.125-Inch-Diameter Chamber and 0.75-Inch-Diameter Chamber .................. 14
Figure 5. Mounting of 2.44-Inch-Diameter Chamber with 77.5 Cm. Barrel and 0.575-Inch-Diameter Chamber with 42.5 Cm. Barrel ........................................... 15
Figure 6. 0.575-Inch-Diameter Chamber with 42.5 Cm. Barrel ........................................... 16
Figure 7. Schematic Drawing of Gun System .......................... 17
Figure 8. \( U_0/A_0 \) vs \( P/Ax/M_0^2 \) .................................. 18
Figure 9. \( U_0/A_0 \) vs \( P/Ax/M_0^2 \) (Corrected for Friction) .................................. 19
Figure 10. \( U_0/A_0 \) vs \( P/Ax/M_0^2 \) (Corrected for Friction) .................................. 20
Figure 11. Experimental Drag Coefficient of Projectile ........................................... 21
RESULTS OF CHAMBRAGE EXPERIMENTS ON GUNS WITH EFFECTIVELY INFINITE LENGTH CHAMBERS

INTRODUCTION

1. In ballistic calculations the effect of chambrage, the ratio of the diameter of the propellant chamber to the barrel bore, on the muzzle velocity of guns is usually taken into account by assuming that the actual chamber can be replaced by an equal-volume, imagined chamber of cross-sectional area equal to the bore cross-sectional area. Experimental results of gun firings are inconclusive as to the validity of this assumption.

2. In an effort to understand the geometric effect of chambrage in guns, theoretical work was done on a simplified gun system with well-determined initial conditions. The results of the theoretical work are reported in references (a) and (b), where a qualitative picture of the effect of chambrage in guns, as well as quantitative results applicable to the simplified gun system, are presented. In order to check the theoretical results, chambrage experiments were performed at the Naval Ordnance Laboratory. This paper presents the results of these experiments.

PREVIOUS THEORETICAL WORK

3. In references (a) and (b) it is shown that the junction between unequal cross-sectional areas of the chambered gun gives rise to compression impulses which increase the projectile velocity. This increase in projectile velocity is greater for the cases of large chambrage and vanishes for the constant-cross-sectional-area gun.

4. The quantitative analysis of chambrage was performed for the following conditions:

   a. The chamber and the bore are cylindrical.

   b. The propellant gas is all burned and at rest at known pressure and temperature before the projectile begins to move.

   c. The propellant gas is an ideal gas, and each part expands isentropically.

   d. The chamber is of sufficient length so that the breach has no effect on the projectile motion.

Thus, by (b) and (d) above the effects of the propellant burning during firing and of the breach are not present (but the influence of chambrage
is). The change of state of the propellant gas in passing through the transition section between the chamber and barrel bore was obtained by applying the steady state equations of continuity and energy. One-dimensional unsteady flow was assumed in all other parts of the gun.

5. With the above assumptions, the influence of chambrage is calculated in references (a) and (b). The term "optimum chambrage" designates an infinite ratio of chamber diameter to barrel bore. It is shown that this most favorable condition of chambrage yields a maximum possible projectile velocity for given values of projectile mass, projectile travel, bore cross-sectional area, propellant gas sound velocity, and peak gas pressure. Curves of the dimensionless projectile velocity versus dimensionless travel for the optimum-chambrage gun and for the constant-diameter gun (i.e., with chambrage equal to one) are shown in Figure 1 (taken from reference (a)). The propellant gas was assumed to have a specific heat ratio \( \gamma = 1.4 \).

6. The optimum-chambrage gun gives velocities which can be as much as 28 percent higher than those given by the constant-diameter gun for a \( \gamma = 1.4 \) gas. Reference (b) demonstrates that the velocity increase, expressed as a percentage of the maximum possible velocity increase above that for no chambrage, is a function of the chamber-to-bore diameter ratio, \( D_1/D_2 \). This relation is shown in Figure 2 as the solid line. For example, it is seen from this figure that for a gun with \( D_1/D_2 \) equal to 1.5, 50 percent of the possible chambrage increase is achieved.

DESIGN OF THE EXPERIMENT

7. From the theoretical analysis it is evident that the muzzle velocity is a function of chambrage and the gun system parameter, \( p_{max}/m_0^2 \), only. This makes it possible to simulate 60,000 psi propellant behavior by performing experiments with low-pressure air. Further, low-pressure air is approximately an ideal gas; and the theoretical analysis assumes a propellant gas which is ideal.

8. Laboratory guns with various degrees of chambrage were constructed. To insure effectively equilibrium conditions, the low-pressure air at room temperature is bled very slowly into the chamber. The projectile is released at the desired pressure by the rupture of a shear disc made integral with it. Muzzle velocities are obtained by the breaking of timing screens outside of the gun by the projectile.

9. Since the theory predicts that the effect of chambrage is relatively large only for muzzle velocities more than about 1.5 times the sound speed in the undisturbed propellant gas, a barrel length and projectile mass were chosen to give muzzle velocities about two times this sound speed (see Figures 1 and 2). After the barrel length was known, the chamber length was chosen as follows: picturing the gas expansion as a
transient traveling wave phenomenon, one sees that the maximum useful chamber length is that which just permits the rarefaction front generated at the beginning of projectile motion to overtake the projectile at the muzzle after having been reflected at the breech. This length was obtained from reference (b) (where it was designated as the effectively infinite length), and the chambers were made considerably longer.

DESCRIPTION OF EXPERIMENTAL APPARATUS

10. The test scheme was to use the shear-type projectile mentioned above, which ruptured at approximately 3,000 psi of air at room temperature. Supersonic velocities (referred to the sound speed in the undisturbed propellant gas) were obtained by limiting the projectile weight to approximately 1 gram. Five chambers of different diameter were used in the tests in conjunction with two barrels having different lengths of travel. It was thus possible to have ten different firing conditions. Approximately ten rounds were fired with each combination. Muzzle velocity was determined by a chronograph system consisting of three screens, which operated two electronic counters. The projectile was caught in a butt from which it was recovered and weighed.

11. Figures 3-6 are pictures of the experimental apparatus. Chamber diameters of 0.527", 0.75", 1.125", and 2.44" were used. The length of each chamber was somewhat over 16 inches to insure that no reflected rarefaction would reach the projectile before shot ejection (see Figure 7 for schematic drawing). Both barrels had smooth bores and were 0.520" in diameter. Their lengths were 77.5 cm. and 42.5 cm.

12. Figure 3 shows the 77.5 cm. barrel mounted in the 1.125" chamber. A steel nut was used to join the chamber and barrel. On the chamber side of this nut a 60° included angle was machined to facilitate smooth flow of the air in this section (Figure 7).

13. Figure 4 shows a disassembled view of the 1.125" chamber. The tube shown in the foreground is the 0.75" chamber, which was so constructed that it fit snugly into the 1.125" chamber, being anchored at the front by the nut and in the back by the spiral spring shown in the picture. Two projectiles are also shown in this figure. These were designed as shown in Figure 7. Part 1 fit into the barrel, which was then screwed into the nut tight enough so that Part 2 seated against an "O" ring and sealed the chamber. At about 3,000 psi the projectile sheared, leaving a ring (Part 2) in the gun chamber, while Part 1, weighing approximately 1 gram, acted as the projectile. The projectiles were constructed from a linen-base phenolic plastic.

14. The loading was accomplished by bleeding air from a 1500 psi supply bottle into an air-operated compressor, which compressed it
slowly into the chamber (see Figures 5 and 6). Control of the rate of feed was maintained by suitable valves.

15. Figure 5 shows two of the arrangements used. To the right is the 0.575" chamber and 42.5 cm. barrel, and to the left is the 2.44" chamber and 77.5 cm. barrel. The compressor appears in the center. In front of the larger chamber the chronograph can be seen. This consisted of an aluminum frame on which the three screens were mounted. These screens were spaced at 50 cm. intervals, the first being placed 50 cm. from the muzzle of the gun. The screens were a fine grade of light drafting paper upon which a printed grid was made with silver conducting paint. When the screens were punctured by the bullet, the electrical continuity was interrupted and the counters were operated in proper sequence.

PROCEDURE FOR FIRING

16. The shear-type projectile was placed in the barrel, which was then screwed into the nut attached to the chamber. Air was bled slowly from the supply bottle, compressed by the air compressor, and fed to the chamber. At about 3,000 psi, the design shear pressure, the projectile would shear and travel down the barrel. During free flight it would break the screens and operate the counters, and it would finally come to rest in the butt. Temperature was read during the pumping process, and the bullet weight was measured after firing, so that all of the parameters were determined.

METHOD OF ANALYSIS

17. For each of the ten sets of firings made, the initial pressure ($P_0$), bore area ($A$), length of travel ($x$), and room temperature were all determined at the time of firing. The mass of projectile ($M$) was determined by weighing after each set of tests. From the temperature it was possible to calculate the initial sound velocity ($a_0$), or the impetus, which is proportional to $a_0^2$. In addition, the counter readings provided the average velocity at 75 cm. ($u_1$) and 125 cm. ($u_2$) from the muzzle. It was thus possible to plot directly $u_1/a_0$ vs ($P_0 A x/Ma_0^2$) for all the tests.

18. Since $u_1$ and $u_2$ were both known, an approximate drag coefficient could be determined and the muzzle velocity ($u_m$) calculated. For a given set of firings $u_1$ and $u_2$ were averaged, and a drag coefficient based on this average was determined and roughly checked against drag coefficients of blunt-nosed missiles. Figure II is a plot of the experimental drag coefficient vs Mach number. The correction for drag was made as outlined in Appendix I. This experimental value of drag coefficient was then used to calculate the average muzzle velocity.

CONFIDENTIAL
(\(u_m\)) based upon the average experimental velocity at 75 cms. (\(u_I\)) for each set of firings.

19. It was thus possible to plot \(u_m/a_0 vs (P_{Ax}/Ma_o^2)\) for each set. This provided ten points, representing the ten possible combinations of barrels and chambers. The points for each size chamber (e.g., 0.75" chamber, 42.5 cm. barrel; and 0.75" chamber, 77.5 cm. barrel) were joined by a straight line to give curves of \(u_m/a_0 vs (P_{Ax}/Ma_o^2)\) with chamber diameter as parameter.

20. By using the results given in reference (1), a curve of \(u_m/a_0 vs (P_{Ax}/Ma_o^2)\) can be obtained for the case of optimum chambrage and also for that of uniform bore. These curves hold for vacuum ahead of the projectile and must be corrected for the experimental conditions. This was accomplished by calculating the back pressure effect of the air in the barrel in front of the projectile.

21. The pressure ahead of the projectile can be calculated by use of the method of characteristics. The unsteady characteristic equations with terms to account for the entropy change are used with the shock equations in a step-by-step numerical computation. This calculation was done for a constant-diameter gun with initial conditions the same as those of the experiments reported here. (The details of this calculation will be given in a future report.)

22. It was found from the calculation that the pressure-velocity relation for the air directly in front of the projectile in this case of relatively low Mach number is approximately the same as for unsteady compression without shocks or reflected impulses:

\[
\rho = \left(1 + \frac{\gamma}{\gamma a_i}\right)^7
\]

where \(\rho\) is the pressure in atmospheres in front of the projectile, \(U\) is the projectile velocity, and \(a_i\) is the initial sound velocity of the air in the barrel. The above pressure-velocity relation was used to account for the effect of the resistance of the air in the barrel on the projectile in the chambered guns.

23. By applying a correction for air resistance to the theoretical curves, it is possible to compare them directly with the experimental one as plotted on a \(u_m/a_0 vs (P_{Ax}/Ma_o^2)\) graph. If this is done, it is found that the experimental curve for a uniform bore falls below the theoretical one. This is to be expected, since friction and gas leakage are ignored in the theoretical considerations.

24. It is, therefore, necessary to make some correction for friction. If it is assumed that friction force is a function of velocity or a function of propelling pressure, since the range in velocities and propelling pressures is relatively small for a given \(\rho\) (and, therefore,
in this (case a given barrel), it seems reasonable that the friction
effect is approximately the same for all chambers fired with the same
initial conditions and the same length barrel.

RESULTS

25. Figure 8 is a plot of $u_1/a_0$ vs $(P_0 A x/m_0^2)$ as determined directly
from the experimental data. Each straight line represents the same
chamber and was fitted to the data on the basis of the least mean square
calculation. The probable error in the experimental values is about
0.02 in $u_1/a_0$. The effect of increasing diameter is clearly apparent.
The data presented in Figure 9 were obtained by taking the average
values of the points given in Figure 8 and correcting them for drag
loss in order to obtain muzzle velocity $u_m$.

26. The next step was to correct the curves given in Figure 9 for bore
friction. This was done by shifting the experimental uniform bore
curve into coincidence with the theoretical curve.\* The same correction
for friction was then applied to the experimental results for all
chambers. The resulting curves are given in Figure 10.

27. By the use of Figure 10 the velocity increase due to chambers
can be plotted against diameter ratio. The increase is plotted in
Figure 2 in terms of percentage of the maximum possible increase for
values of $x = 10$ and $x = 20$.

CONCLUDING REMARKS

28. The satisfactory agreement between the experimental and theo-
retical results (see Figure 2) indicates that the assumptions used in
the theory are valid. Thus, the use of the steady state equations
at the junction between the chamber and bore seems justified.

29. It is to be emphasized that the conditions for which this study
is applicable are not satisfied by conventional guns, and caution must

\*The theory indicated that these lines, instead of being straight, are
actually curved. In the range under consideration, however, this curva-
ture is small and a straight line approximation is within the accuracy
of the data.

\**From previous results with an experimental uniform-bore gun of the
type used here, it was found that differences between the experimental
and theoretical projectile behavior could be attributed to friction
between the projectile and the barrel (see reference (c)).
be exercised in the application of these results to such guns. For conventional guns (i.e., in which the propellant burns during the projectile motion) the velocity gain from chambering can be less or more than shown in Figure 2, depending on the rate of burning of the propellant. With the aid of Appendix IV of reference (a), it can be demonstrated that for a conventional gun, in which the propellant burns so as to maintain a constant peak chamber pressure during the propellant motion, the maximum velocity gain over a gun with no chambering is about 7 percent. This percent velocity gain is smaller than the 28 percent obtainable from a preburned propellant in a gun of the type considered here; the smaller gain is due to the fact that the conventional gun can achieve a pressure-sustaining effect behind the projectile from the continued burning of the propellant, thus leaving less room for gain from chambering. This pressure-sustaining effect from continued burning is more and more difficult to obtain as projectile velocities are increased (because of the high rates of burning required to maintain the chamber pressure), but a pressure-sustaining effect from chambering is obtainable at high velocities. Thus, the use of chambering is particularly advantageous in high-velocity conventional guns. NAVORD Report 3717 (in preparation) gives an approximate method of treating chamber in conventional gun calculations.

30. The conditions of preburned propellant and long chamber for which this study is applicable are approached in some unorthodox guns. Such guns are now in use by the Aeroballistic Research Department of the Naval Ordnance Laboratory. The results of this study are being applied directly to these guns.

*Note that this discussion assumes that the propellant burns only in the chamber; if unburned propellant is pushed along the barrel and then is burned, an additional pressure-sustaining effect behind the projectile results.
REFERENCES


APENDIX I

Symbols

\( u_1 \) - Average velocity over range \( x_1 - x_0 \)
\( u_2 \) - Average velocity over range \( x_2 - x_1 \)
\( u_m \) - Muzzle velocity
\( \rho \) - Air Density
\( c_d \) - Drag coefficient
\( A \) - Area of bullet
\( M \) - Mass of bullet

The deceleration of the projectile in free flight is

\[
\frac{d\dot{u}}{dt} = - \frac{1}{2} \rho \frac{C_d A}{M} u^2 = u \frac{d\dot{u}}{dx}
\]

Letting \( \beta = \frac{1}{2} \rho \frac{C_d A}{M} \) and assuming \( C_d \) is constant over the range considered,

\[
- \beta x \left|\frac{u}{u_a}\right| = \ln \left|\frac{u}{u_a}\right|
\]

\[
\beta = \frac{1}{x_a - x} \ln \frac{u_a}{u_a} \quad \text{where subscript "a"}
\]

\[
\text{refers to any reference point.}
\]

and \( u = u_a e^{\beta(x_a - x)} \)
In connection with the experimental firings, $u_1$ and $u_2$ are known from the counter readings. Therefore,

$$
\beta = \frac{1}{\frac{x_1-x_0}{2} + x_0 - \frac{x_1-x_1}{2}} \ln \frac{u_1}{u_2}
$$

or

$$
\beta = \frac{2}{x_1-x_0} \ln \frac{u_1}{u_2}
$$

Since everything is known on the right side of this equation, $\beta$ can be calculated. Figure 11 represents the best straight line through the $\beta$ values calculated from the experiments. Next, by using the value of $\beta$ taken from this curve, it is possible to obtain the muzzle velocity, since

$$
\omega_m = u_1 e^{\beta \left( \frac{x_1-x_0}{2} + x_0 \right)} = u_1 e^{\beta \frac{x_1+x_0}{2}}
$$

In all of the experimental firings $x_0 = 50$ cm., $x_1 = 100$ cm., and $x_2 = 150$ cm. Therefore,

$$
\beta = \frac{1}{50} \ln \frac{u_1}{u_2}
$$

$$
\omega_m = u_1 e^{75\beta}
$$
FIG. 1 PROJECTILE VELOCITY VS TRAVEL CURVES FOR CHAMBERED GUNS WITH EFFECTIVELY INFINITE LENGTH CHAMBERS FOR $\gamma = 1.4$
FIG. 2 THE PERCENT OF OPTIMUM CHAMBRAGE VELOCITY INCREASE AS A FUNCTION OF CHAMBER DIAMETER TO BORE DIAMETER FOR AN INFINITE CHAMBER LENGTH GUN
FIG. 3 1.125 INCH DIAMETER CHAMBER WITH 77.5 CM BARREL
FIG. 4 EXPLODED VIEW OF 1.125 INCH DIAMETER CHAMBER
AND 0.75 INCH DIAMETER CHAMBER
FIG. 7 SCHEMATIC OF GUN SYSTEM
FIG. 9 \( \frac{U_m}{d_0} \) vs \( \frac{P_a A_l}{M_{d_0}^2} \)
Figure 10: \( \frac{U_m}{q_0} \) vs \( \frac{P_{oA}}{M\rho_0^2} \)

- Optimum Chamber (Theoretical)
- Uniform Bore (Theoretical and Experimental)

Confidential
FIG. 11 EXPERIMENTAL DRAG COEFFICIENT OF PROJECTILE
## EXTERNAL DISTRIBUTION LIST FOR NAVORD REPORT 3636

<table>
<thead>
<tr>
<th>Department of the Air Force</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hq. USAF, DCS/D</td>
<td></td>
</tr>
<tr>
<td>Washington 25, D. C.</td>
<td></td>
</tr>
<tr>
<td>Attn: AFDRD-AN, Maj. H. R. Schmidt</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commanding General</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wright Air Development Center</td>
<td></td>
</tr>
<tr>
<td>Wright-Patterson Air Force Base</td>
<td></td>
</tr>
<tr>
<td>Ohio</td>
<td></td>
</tr>
<tr>
<td>Attn: WCEDH-2</td>
<td>1</td>
</tr>
<tr>
<td>Attn: WCLPN-2</td>
<td>1</td>
</tr>
<tr>
<td>Attn: WCRRSC</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commanding General</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aberdeen Proving Ground</td>
<td></td>
</tr>
<tr>
<td>Maryland</td>
<td></td>
</tr>
<tr>
<td>Attn: Ballistic Research Laboratories</td>
<td></td>
</tr>
<tr>
<td>CRDBQ-BLI</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commanding General</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frankford Arsenal</td>
<td></td>
</tr>
<tr>
<td>Bridge and Tacony Streets</td>
<td></td>
</tr>
<tr>
<td>Philadelphia, Pennsylvania</td>
<td></td>
</tr>
<tr>
<td>Attn: Pitman-Dunn Laboratory</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department of the Army</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office, Chief of Ordnance</td>
<td></td>
</tr>
<tr>
<td>Washington 25, D. C.</td>
<td></td>
</tr>
<tr>
<td>Attn: ORDTA - Propellant and Primer Section</td>
<td></td>
</tr>
<tr>
<td>Attn: ORDTU</td>
<td>1</td>
</tr>
<tr>
<td>Attn: ORDTX-AR</td>
<td>2</td>
</tr>
<tr>
<td>Attn: ORDTR</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commanding Officer</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office of Ordnance Research</td>
<td></td>
</tr>
<tr>
<td>Box CM</td>
<td></td>
</tr>
<tr>
<td>Duke Station</td>
<td></td>
</tr>
<tr>
<td>Durham, North Carolina</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commanding Officer</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Picatinny Arsenal</td>
<td></td>
</tr>
<tr>
<td>Dover, New Jersey</td>
<td></td>
</tr>
<tr>
<td>Attn: Library</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commanding General</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redstone Arsenal</td>
<td></td>
</tr>
<tr>
<td>Huntsville, Alabama</td>
<td></td>
</tr>
<tr>
<td>Attn: Technical Library</td>
<td></td>
</tr>
</tbody>
</table>
No. of Copies

3

Commanding General
White Sands Proving Ground
Las Cruces, New Mexico
Attn: Technical Librarian

1

Department of the Navy
Bureau of Aeronautics
Washington 25, D. C.
Attn: SI-5

1

Department of the Navy
Bureau of Ordnance
Washington 25, D. C.
Attn: Ad3, Technical Library

1

Attn: Re2a

1

Attn: Re2d

1

Attn: Re3e

2

Commander
U. S. Naval Air Missile Test Center
Point Magu, California
Attn: Technical Library

1

Commanding Officer
U. S. Naval Air Rocket Test Station
Lake Denmark
Dover, New Jersey
Attn: Technical Library

2

Commanding Officer
U. S. Naval Powder Factory
Indian Head, Maryland
Attn: Research and Development Department

1

Commander
U. S. Naval Proving Ground
Dahlgren, Virginia
Attn: W. T. Division

3

Commander
U. S. Naval Ordnance Test Station
Inyokern, China Lake, California
Attn: Technical Library Branch

1

Department of the Navy
Office of Naval Research
Washington 25, D. C.
Attn: Code 429

1

Commanding Officer
Office of Naval Research
Branch Office
86 E. Randolph Street
Chicago 1, Illinois
Attn: LTJO. M. C. Laug
Commanding Officer  
Office of Naval Research  
1030 E. Green Street  
Pasadena 1, California

Department of the Navy  
Bureau of Aeronautics  
Washington 25, D. C.  
Attn: TD-4

Aerojet-General Corporation  
P. O. Box 296  
Arcusa, California  
Attn: Librarian via INSMAT

Allegany Ballistics Laboratory  
P. O. Box 210  
Cumberland, Maryland via INSMAT

Armour Research Foundation of  
Illinois Institute of Technology  
Technology Center  
Chicago 16, Illinois via INSMAT  
Attn: Propulsion and Structures  
Research, Department M

Atlantic Research Corporation  
812 North Fairfax Street  
Alexandria, Virginia via INSMAT

Bureau of Mines  
4300 Forbes Street  
Pittsburgh 13, Pennsylvania  
Attn: Explosives & Physical Sciences Division

E. I. du Pont de Nemours and Company  
10th and Market Streets  
Wilmington, Delaware via INSMAT  
Attn: W. F. Jackson

The Franklin Institute  
23rd and Parkway via INSMAT  
Philadelphia 3, Pennsylvania  
Attn: Chemical Kinetics and Spectroscopy  
Section, W. E. Scott

Goodyear Aircraft Corporation  
1210 Massillon Road  
Akron 15, Ohio via INSMAT  
Attn: H. E. Sheets
Hercules Experiment Station
Wilmingon, Delaware via INSMAT
Attn: A. M. Bull

Hughes Aircraft Company
Florence Avenue at Teale Street
Culver City, California via INSMAT
Attn: M. C. Beebe

Director
Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena 3, California via INSMAT

The M. W. Kellogg Company
Foot of Danforth Avenue
Jersey City, New Jersey via INSMAT
Attn: Special Projects Department
R. A. Miller

Arthur D. Little, Inc.
Cambridge 42, Massachusetts via INSMAT
Attn: W. A. Sawyer

Arthur D. Little, Inc.
Cambridge 42, Massachusetts via INSMAT
Attn: W. C. Lothrop

Midwest Research Institute
Kansas City, Missouri via INSMAT
Attn: Technical Director

University of Michigan
Engineering Research Institute
Ann Arbor, Michigan via INSMAT
Attn: J. C. Brier

Naval Ordnance Research
School of Chemistry
University of Minnesota
Minneapolis 14, Minnesota via INSMAT
Attn: B. L. Crawford, Jr.

Phillips Petroleum Company
Bartlesville, Oklahoma via INSMAT
Attn: J. P. Alden

No. of Copies

1
1
2
1
1
1
1
<table>
<thead>
<tr>
<th>Company Name</th>
<th>Address 1</th>
<th>Address 2</th>
<th>City, State Via</th>
<th>Attn. Name</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purdue University</td>
<td>Department of Chemistry</td>
<td>Lafayette, Indiana</td>
<td>via INSMAT</td>
<td>H. Feuer</td>
<td></td>
</tr>
<tr>
<td>U.S. Rubber Company</td>
<td>General Laboratories</td>
<td>Market and South Streets</td>
<td>via INSMAT</td>
<td>P. O. Tawney</td>
<td></td>
</tr>
<tr>
<td>Reaction Motors, Inc.</td>
<td>Rockaway, New Jersey</td>
<td></td>
<td>via INSMAT</td>
<td>Librarian</td>
<td></td>
</tr>
</tbody>
</table>
Phillips Petroleum Company
P. O. Box 546
McGregor, Texas   via INSMAT
Attn: Librarian, J. Wiss

University of Arkansas
Institute of Science and Technology
Fayetteville, Arkansas    via INSMAT
Attn: M. T. Edmison

B. F. Goodrich Company
Research Center
Cleveland, Ohio    via INSMAT
Attn: Vice President/Research

Universal Match Corporation
P. O. Box 191
Ferguson 21, Missouri    via INSMAT
Attn: Res. and Dev. Division

British Joint Services Mission
Technical Services
1200 K Street, N. W.
Washington, D. C.
Attn: C. O. Lawson
    Via: Department of the Navy
        Bureau of Ordnance
        Washington 25, D. C.
        Attn: AdS

Canadian Joint Staff
2001 Connecticut Ave., N. W.
Washington 6, D. C.
Attn: Defense Research Member
    Via: Department of the Navy
        Bureau of Ordnance
        Washington 25, D. C.
        Attn: AdS

Catholic University of America
7th St. and Michigan Ave., N. E.
Washington 17, D. C. via INSMAT
Attn: F. O. Rice

Detroit Controls Corporation
806 Chestnut Street
Redwood City, California    via INSMAT
Attn: Research Director

No. of Copies

2
1
1
1
4
4
1
1
Superintendent
U. S. Naval Gun Factory
Washington 25, D. C.

Redel, Incorporated
7405 Varna Street via INSMAT
North Hollywood, California

Mathieson Chemical Corporation
Research Division
Niagara Falls, New York via INSMAT

Experiment, Incorporated
P. O. Box 1-T
Richmond 2, Virginia via INSMAT
Attn: Librarian

Navy Research Section
Library of Congress
o/c Technical Information Division
Washington 25, D. C.

Office of Naval Research
Department of the Navy
Washington 25, D. C.
Attn: Code 463

Cornell Aeronautical Laboratory, Inc.
4455 Genesee Street
Buffalo 21, New York via INSMAT
Attn: Mr. J. T. Grey

Olin Industries, Inc
Winchester Division
New Haven, Connecticut via INSMAT
Attn: Mr. R. S. Holmes

Stanford Research Institute
Palo Alto
California via INSMAT
Attn: Librarian

Hercules Powder Company
Wilmington, Delaware via INSMAT
Attn: Laboratory

Commanding Officer (R & D) (PC)
Springfield Armory
Springfield, Mass.
Mr. E. H. Smith  
E. H. Smith and Company  
901 Pershing Drive  
Silver Spring, Maryland  
via INSMAT

Dr. Bernard Levis  
Combustion and Explosives Research, Inc.  
ALCOA Building  
Pittsburgh 19, Pennsylvania  
via INSMAT

No. of Copies

1

1