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ABSTRACT 
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The dispersion forces between conjugated molecules are 

treated in an attempt to obtain a simple explanation for their compli- 

cated angular dependence. 

Such forces are of particular interest because of the great 

mobility of the pi-electrons along the network of carbon ions.    Pre- 

sumably such forces are unusually large and calculations by Coulsoi: 

and Davies (Trans.  Faraday Soc.  48,   777 (1952))   have shown this to 

he true.    They used quantum mechanical perturbation theory and used 

molecular orbitals which are linear combinations of atomic orbitals 

and evaluated all integrals in closed form.    Their results show that 

these forces have a highly directional character,  but because of the 

complicated nature of their calculations the angular dependence is not 

easily understood. 

Recently very simple molecular orbitals called free electron 

molecular orbitals have been developed for the pi-electrons which treat 
* 

the pi-electrons as particles in a one dimensional box.    These may be 
it 

employed to good advantage for calculating the dispersion forces to- \ 

gether with an approximation suggested by F.   London (J.  Chem.  Phys. 

46,   305 (1942)) for evaluating the matrix elements which appear in the if 

perturbation treatment.    The matrix element is regarded as repre- -\ 
] 

senting the Coulombic interaction between charges whose location and ] 
. I 

magnitude are determined from the product of the ground state and i 

excited state wave fur.ctions.    This provides a simple and convenient 

>-«N 



method for calculating the dispersion forces between conjugated mole- 

cules. 

The  results of the present calculations for linear   polyenes and 

benzene are in essential agreement with the   results of Coulson and 

Davies,   the principal difference being a scale factor.    Agreement would 

be improved if the exchange integral which is treated as an empirical 

parameter in the Coulson-Davies molecular orbitals was obtained from 

spectroscopic data rather than from data on resonance energies. 

It is also of interest to calculate the dispersion forces arising 

because of the interaction of sigma-electrons of one molecule with the 

pi-electrons of the other.    It is found that these forces generally domi- 

nate the sigma-sigma forces but are less important than pi-pi forces. 

For long polyenes an approximate treatment is possible which 

shows that to a first approximation the pi-pi forces are dominant and 

the energy of attraction behaves as the square of the ordinary dipole- 

dipole potential energy. 

The polarizabilities of the linear polyenes are also calculated 

using free electron molecular orbitals and the results obtained agree 

within a few percenc with the results of Davies (Trans.  Faraday Soc. 

48,   789 (19 5?.) ). 
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INTRODUCTION 

The subject of inter molecular forces is a 3ubject of increasing 

importance and interest   .      In principle,  once the intermolecular 

forces are known,   it is possible to calculate the bulk properties of 

matter such as the equation of state and the transport properties. 

Generally speaking,   intermolecular forces are of quantum mechanical 

origin so that their direct calculation is frequently  difficult and may 

require severe approximations.    For this reason,   it has been the 

practice to use quantum mechanical methods to deduce the general 

mathematical form of intermolecular forces and to insert empirical 

parameters to be determined by fitting experimental data to the 

theoretically obtained expressions for the bulk properties of matter. 

One of the important approximations that is nearly always made 

is that the potential energy of interaction may be given by the sum of 

two terms,  one representing attraction and the other representing 

repulsion.    The repulsive term arises from the Paul! principle. 

Qualitatively speaking,   when two molecules are close together there 

is an overlapping of charge clouds resulting in rerpulsion.      This 

energy term has an exponential dependence,  although for convenience 

it is often approximated as an inverse power in the separation.    These 

forces are often called exchange forces. 

* 
For a recent summary of intermolecular forces and their 
methods of calculation see Hirschfelder,  Curtiss and Bird, 
"Molecular Theory of Gases and Liquids"   ('MTGL),   Wiley 
(1954),   Chapters 12,   13,   and 14. 



C. A.  Coulson and P. L. Davies,   Trans.  Faraday Soc.    48, 
777   (1952);   P.  L. Davies,  Ph.D.  Thesis,  Kings College, 
University of London (1949). 

n 

Generally speaking,   the attractive term is much more long 

range than the repulsive term.    If the molecules are non-polar the 

attractive energy may arise from the interaction of permanent qua- 

drupoles or from the socalled induced dipole-induced dipole inter- 

action.    The latter may be viewed classically as follows:   Although 

a non-polar molecule possesses no permanent dipole moment,  at 

?ny instant there is a dipole moment and this induces a dipole moment 

in another molecule resulting  in attraction.    Such forces are called 

dispersion forces and generally vary as the inverse aixth power of 

the separation. 

Dispersion forces are usually treated by quantum mechanical 

perturbation theory and for the spherically symmetric molecules 

are not orientation dependent.    London has treated the dispersion 

forces between molecules by picturing a chemical bond as a harmon- 

ically bound electron and we shall discuss his treatment in Section 

1. 1.     This is a reasonable approximation except for the socalled 

mobile electrons which are present in compounds containing conju- 

gated double bonds.    These electrons have freedom to   wander 

throughout the network of the conjugated double bonds and therefore 

represent extended oscillators.    Because of this it may be anticipated 

that the  resultant dispersion forces may be much larger than for 

localized electrons and are more angularly dependent. 

Coulson and Davies^   have already considered this problem 

and have calculated the dispersion forces between conjugated polyenes 

and benzene molecules which arise from the mobile or pi-electrons. 

Their treatment employs LCAO molecular orbitals and the various 

- 

• 
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integrals which occur are evaluated in closed form.    The calculations 

are complicated and the angular dependence of the dispersion forces 

is not simply understood in terms of their theory.    Their results show 

that these forces are much larger than those arising from localized 

electrons and have a strong orientation dependence. 

It is the primary purpose of this thesis to examine this problem 

and to attempt to obtain a more convenient method of calculation.    At 

the same time it is found possible to obtain a relatively simple under- 

standing of the behavior of these forces.    It iB found that to a good 

approximation the molecules may be viewed as interacting with a poten- 

tial energy which is the square of the interaction energy of two dipoles. 

We shall also consider the   dispersion forces arising from the 

interaction of localized electrons in one molecule with the mobile 

electrons in the other.    It is found that thes_- forces generally dominate 

the forces arising from the interaction of localized electrons with 

localized electrons. 



I.    GENERAL BACKGROUND 

1. 1   Perturbation Treatmen* 

In this section we shall discuss the treatment of iniermolecular 

forces using quantum mechanical perturbation theory.    At the same 

time we shall obtain an expression for the polarizability and show 

their intimate connection. 

We shall concern ourselves principally with the intermolecular 

forces between molecules which are nonpolar and are in their ground 

states.     We shall always regard them as fixed in space and shall not 

take account of vibrations of the nuclei,   i.e. ,   we assume that a 

Born-Oppenheimer separation of coordinates is valid. 

In dealing with intermolecular forces the molecules are suffi- 

ciently separated to make a perturbation calculation correct.    Further- 

more,   it is not necessary to antisymmetrize the wave function since 

we may assume that there is no overlapping between the wave func- 

tions of different molecules.    We may then employ a simple product 

of the electronic wave functions of the individual molecules as our 

zero order wave function for the system and treat the potential energy 

of interaction as the perturbation.    At very small separations when 

charge ciouds overlap,   exchange forces aris<? resulting in strong re- 

pulsion.    This is of importance in collision problems and will not 

be considered here. 

Consider now two molecules,.     "A,!    and   ••B".     Let    oL    and   jS> 

be summation indices for nuclei,   and     a     and     b     be summation 

indices for the electrons in   "A"    and   "B"   respectively.    The 

potential energy of interaction is then given by: 



where 

2. 

is the number of nuclei and n       the number of elec- a 
trons in   "A",    and      n*      is the number of nuclei and     n,      the 

number of electrons in   "B".    Here     Z»e       and Z*e are the 

charges of the nuclei in     "A"     and     »'B"     respectively.    The zero 

order wave function for the system of two molecules is: 

*: v. (1.1-2) 
••"SYi    dM 

where        l^0 and l|/8        are the electronic wave functions for 

the isolated molecules in their ground states.    Performing the per- 

turbation calculation in the usual fashion,  we obtain for the first and 

second order perturbation energies: 

-<ei 

01 -   JlU^uO"   9e   (<K M drA dve 

JWu>iv
<* w:^°)dt*drr -z 

E* * E? -E: 

(1.1-3) 

(1.1-4) 

where 1/A is the wave function for molecule     "A"     in its     i-th 
A 

is the wave function for 
A 8 

electronic state with energy     E .     and       'V, 
1 ? 

molecule     nBM     in its     j-th    electronic state with energy    E, . 
j 

In order to facilitate the evaluation of the matrix elements in 

the above expressions it is customary     to expand the potential 

energy of interaction   (1.1-1)   as a series in reciprocal powers of 

the separation between \ht   two molecules.    This treatment is valid 

as long as the separation between the molecules is greater than the 

1. H.   Margenau,  Rev.  Mod.  Phys.   \\_       1 (1939).      See also 
MTGL,  p.  923. 
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sum of the dimensions of the two molecules.    In the case of the 

first order perturbation the lead term is that involving quadrupole- 

quadrupole interaction.    If this is averaged over all orientations 

•with equal weighting it is found to vanish,    r'or this reason there has 

been little interest in calculating the first order perturbation.    It 

will clearly have little effect on equation of state calculations 

inasmuch as it is the average interaction which is of significance; 

however,   it does affect the transport properties,   since attractive and 

repulsive collisions have the same effect.    The first order term is 

also of importance in crystal structure since quadrupole-quadrupole 

energies vary as the inverse fifth power and may dominate the second 

order term which varies as the inverse sixth power,  as we shall 

shortly see.    The present work,   however,   is concerned principally 

with the second order perturbation term. 

In evaluating the matrix elements in   (1. 1-4)   the lead term 

in the potential energy of interaction which contributes is that repre- 

senting dipole-dipole interactions.    L,et    R     be the separation be- 

tween the molecules     "A"     and     "BM   measured from convenient 

origins.    Introducing parallel Cartesian coordinate systems with 

z-axes lying along    R,      the lead term in     Cpe     may be written: 

ma.     ir<b 

This is correct as long as     R    >     r       +     r   .     Inasmuch as this 
a D 

varies as the inverse cube in the separation,   the second order term 

' is seen to vary as the inverss sixth power,   since it is the squares of 

the matrix elements which here enter.    The second order term is 

called the dispersion energy. 

It should be noted tnat tiie only part of       <$e        which enters 

into the second order perturbation term is that involving electron- 
i 
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electron interaction,  because of the orthogonality of the wave func- 

tions.    The integrals which appear when   (1. 1-5)   is inserted in 

(1. 1-4)    may be recognized as giving the dipole moment associated 

with the electronic transitions of the two molecules.    The same inte- 

grals also appear when we treat the polarizability of molecules 

quantum mechanically. 

To do this,   let us consider a molecule with no permanent 

dipole moment which is placed in a constant electric field   F   along 

the axis of a molecule,  which we take to be the   x-a*ii8.      In the case 

that the induced dipole moment lies in the same direction as the 

field   (which is true for molecules with sufficient symmetry)   we 

have: 

rr ,<X,F d.i-6) 

where      <X,     is the polarizability in the direction of the field.    The 

increase in the energy of the molecule is given by: 

AE   =   -i ** F* (1.1-7) 

We may also calculate this quantum mechanically using perturbation 

theory.    In this case the perturbation is F  zJj Qi^i where 

the summation is over all electrons in the molecule.    If we define: 

^eW   "   JVm(2ieti;)^m dt (1.1-8) 

then by perturbation theory the increase in the energy of the molecule 

above its ground state is given by: 
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• E = F (/*,).„- F*2 !</*• 
(1.1-9) 

Since we assume that the molecule has no permanent dipole moment 

L/u.t)co is zero and comparing with   (1. 1-7)   we see that: 

*•"   ZZ      E   -E (1.1-10) 

; 

London     made use of this close relationship to develop a 

simple method for calculating dispersion forces between molecules 

having localized bonds,   i.e.,  the electrons may be regarded as 

being restricted to a given bond and not free to wander about the 

nuclear framework of the molecule.    London supposed that in this 

case a chemical bond may be viewed as containing a harmonically 

bound electron with different vibration frequencies       ^      and    i^ 

perpendicular and parallel to the bond axis.    It then follows that 

the polarizabilities ot^ and        ott       are different in the two 

directions.      The following result was then obtained for the dispersion 

energy between two such bonds: 

(K. -L - U'-^)(S*^6A ^ea C0S(«£.-<t>$ - Z cos$K ccbfe- 

+ 3(L-M) cos2 6*  +-3lt'-M) cosa6o 

+• L  tL' + tM 

(1.1-11) 

where     R     is the distance between the centers of the two 

bonds,        6*       and        $>A       specify the orientation of one bond and 

2. F.   London,  J.  Phys.  Chem.    46,    305   (1942). 
i  a 
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6 B       and 0s specify the orientation of the other.    The 

quantities     K,    L,    L'   and   M   are defined as follows: 

v>   /- N   IM ^     C»H)A(>MS 

(*JAH^I)B 

M- j- (cCx)A (O. /^* T^- 
(1. 1-12) 

London then assumes that to a first approximation and 

suggests that the vibration frequency may always be taken to equal 

100000   cm for all bonds within a   20   per cent error.    If 

equation   (1.1-11)   is averaged over all orientations. 

E ,M fc-   I K + 2 L + 2L' + 4 M) 
Q  O la      » 3R<« 

and with the above approximations 

^ [W^2WA][K)8t2K)J 

(1.1-13) 

(1.1-14) 

The bond polarizabilities to be used are those due to 
3 

Denbigh ,   some of which are listed in Table (1. 1-1).    This 

then provides a convenient method for estimating the dispersion 

energy between molecules possessing localized chemical bonds. 

3. K.  G. Denbigh,   Trans.  Faraday Soc.    36,   936   (1940). 



Table   (1.1*1)     Bond Po larizabilities 

Bond 
25       3 

tfn « 10     cm lrt25       3 
<XX*10     cm 

(C-C)aliph 18.8 0.2 
(C-C) arom 22.5 4.8 
C=C 28.6 10.6 
C-H 7.9 5.8 

This method does not apply to molecules possessing 

delocalized electrons,   such as the     pi- electrons in conjugated 

double bond molecules.    Furthermore,   the expansion of 

as a series in reciprocal powers of the separation will not be 

correct because the   pi-electrons are free to move along the 

network of carbon atoms,   so that the separation will be com- 

parable to the extent of the wave functions in most cases of 

interest. 



1. 2   The London Approximation 

We have just seen that in certain cases it is incorrect to 

expand the potential energy of interaction in a series of reciprocal 

powers of the separation between the two molecules,  and that the 

simplified London theory is not valid for molecules having delocal- 
2 

ized electrons.    In order to circumvent these difficulties,   London 

has suggested an alternative approach,  which we shall now discuss 

in detail. 

London treats matrix elements of the type appearing in 

(1. 1-4)   with neither    i     nor     j     equal to zero since the terms 

in which these are zero are usually not of significance.    Let us 

now consider such a matrix element: 

(0,0Kpeli,4) = JOI/^ U/,*)  <pe (U/o
A US*) dtA dt6 (1.2-1) 

in which we have taken the wave functions to be real,   as will 

always be the case in what follows.    The wave functions for 

molecule   "A"   are themselves orthogonal and the same is true 

for the wave functions of molecule   "B".    Therefore,   as has 

already been noted,  the only terms in    (fie    which contribute to 

the matrix element are those arising from electron-electron 

interaction: 

Z £   4- (1.2-2) 

If we now define a set of one electron charge densities associated 

with the transition,  namely: 



la*,)    =   e f(pk \U*) dr* dt-V-. dr* </rA    •drA 

(AJh -   e J(^e ^)dr« dr8
2 •••drk

8, drj, ••; dr 

9. 

(1.2-3) 
s 

then the matrix element   (1.2-1)   may be conveniently rewritten: 

/Pa,      T*l 

* 
Coulombic interaction between the two charge densities,   {p<,i)a, 

and        (PO!)L The u8ual approach would be to express the 

charge densities in terms of spherical harmonica and to also expand 
4 

1/r , so that the resulting integrations become trivial.    This 

suffers from the difficulty that in the case we wish to consider we 

must employ several different forms for the expansion of     1/r 

arising because of different relations between the separation 

between the two molecules and the spatial extent of the wave func- 

tions.    London has suggested an approximation which is much more 

convenient. 

The charge density functions are positive in some regions and 

negative in others,   and these regions may be expected to have 

simple boundaries.    Consider now one such region.    We first inte- 

grate the charge density over this region to obtain the effective 

charge associated with it.    We then determine a position in space 

at which to localize this effective charge by calculating the first 

moment of the charge density region.  We then replace our initial 

integral   (1. 2-4)   by a sum of terms representing the Coulombic 

4. R.   J.  Buehler and J.   O.  Hirschfelder,    Phys.  Rev. 
83,    628,    (1951);   85,    149   (1952). 

The in jgrals in this expression   are seen to represent the 
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interaction between these effective charges located in space according 

to their first moments.    This,  then,   is the London approximation. 

This approximation is seen to be equivalent to an expansion 

of a charge density region in inverse powers of the separation in 

which we ignore all but the lead term.    This is correct as long as 

the separation between the two such regions being considered is 

greater than the sum of the dimensions of the two regions,   as will 

generally be the case.     By including more terms it would be possible 

to extend the method. 

It is reasonable to use the first moment of the charge density 

region for the following reason.    At large separations such that an 

expansion of      <pe        in reciprocal powers of the separation is jus- 

tified,  the lead term is given by (1. 1-5)   which is linear in the space 

coordinates.    For that reason we may say that the first moments of 

the charge densities will give the best approximation for the integral. 

Let us now consider the first order perturbation term   E 

as given in equation   (1. 1-3).    When the same analysis as above is 

applied we find that we must evaluate integrals of the type: 

(ftJcu (P»U   dcA  dT.s (1.2-5) 
.8 

in addition to simpler integrals involving just one electron which 

arise from the electron-nucleus interaction terms in       Cpe 

We find,   however,  that       (p«U and (p0®)k        are everywhere 

positive,   so in applying the London approximation we must obtain 

charge density regions using a different criterion than above.    One 

method would be to construct different regions by requiring that 

in a given region the charge density be greater or smaller than 

some suitable mean value,    Then for each such region we first 

determine the effective charge as before,   and then locate the 



11 

effective position.      Instead of usinf, the first moment of a given 

region,   it would be more correct tc use the second moment for the 

following reason.    At large separations when        <p&        may be expanded 

the lead term represents quadrupole-quadrupole interaction.        This 

term is quadratic in the space coordinates thus suggesting that the 

second moment represents the best aj.   -oximation. 

The first order perturbation term may also be evaluated by 

taking the classical interaction energy between the quadrupole moments 

of the given molecules.    The quadrupole moments of many molecules 

are becoming known through recent developments in the field of the 
5 

pressure broadening of microwave spectra   .     Such an approach, 

however,   is only satisfactory for long range forces. 

Lastly we must consider dispersion energies which arise as 

a result of the interaction between localized bonds in one molecule 

and delocalized bonds in the other.    This may be accomplished by 

combining the two methods of London.    Let us now consider the 

interaction between a localized bond in molecule    "A",      and an 

electron in molecule     "B"   which is delocalized having a wave function 

with a large spatial extent.    We make the further assumption that when 

we regard the chemical bond in   "A"   to be represented by a 

harmonically bound electron,   that only one transition of this 

electron is of importance in determining the energy of dispersion. 

This assumption is generally found to be correct for calculations 

that have been performed.    We shall also assume that the vibrations 

5. MTGL,    p.   1020-1035. 
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in the     x,      y,    and     z     directions,    the     z     direction being along 

the axis of the bond,  are independent.    Let us now consider the inter- 

action between the electron of molecule     "B"   and the electron of 

molecule     !!A"     when it is undergoing a transition in the     x    dir- 

ection only   (we assume as London did,  that       A>x -  ^ so that 

the energies associated with transitions in the   x,    y,    and   z 

directions are the same).    The matrix element may then be written: 

(O.OKP.U,*)-    JO,* V,')   g   (1/A>;)  drUrl (1.2-6) 

The first fitep is to apply the London approximation to the integration 

with respect to the electron of molecule    HBM.      This is easily seen 

to give: 

U>,ol<pe|i,p- Z e^U)j fr* j < X°V4 ^    dt* (1.2-7) 

where     6e, (£)    is the effective charge of the    £-th    charge density 

region associated with the   O-j     transition of the electron in 

molecule    "B'\ Xe,(|)       is the x-coordinate of it with respect to 

a coordinate system with origin centered on the bond in molecule 

"A'1   and z-axis directed along the axis of the bond,   and     KOj(J0 

is the distance from the origin to the    1-th   charge density region. 
/^ 

We have assumed that     x        is much smaller than   1/r .      so that a ab 
an expansion of    1/r is correct.    This will always be the case. 

Using the definition   (1. 1-8)   the matrix element may be written: 

(o,oicpeiM) = z: £0> -0^ x0>) (1.2_B, 
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Including transitions in the     y     and     z     directions as well,  the 

expression for the dispersion energy becomes: 

EW= ~y  

QMJlitW ,..«»'TntimZW 

E««-    -I 

v fr„?iuw^il r^e^uiv^uiiM      rg6j(«z.vi) 

j*o i (i 1- "»" /»>.*! (1.2-10) 

where we ha ire used the fact that; 

<*± 
a 

2(^A):; a(/*S>i 
hl,» (1.2-11) 

i* 

7 <"- °i (1.2-9) 

Since we have assumed that only one transition counts,  then using 

(1. 1-10)   we may rewrite the result in the form: 

B ,,,'!< 

The value of       i)^       may again be taken to be 100000   cm"   . 

In summary,  we have at hand approximate methods for obtain- 

ing the dispersion forces between molecules for three cases: 

a) interaction between electrons in localized bonds with electrons 

in localized bonds,   equation   (1.1-11); 

b) interaction between electrons not in localized bonds with 

electrons not in localized bonds,  page 9 

c)        interaction between electrons in localized bonds with electrons 

not in localized bonds,  equation (1, 2-10). 

The extent to v/hich we may properly subdivide oar problem 

and consider the localized and delocalized electrons independently 

is dependent upon the molecular orbital theory of molecular structure 

which we shall now discuss. 
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1. 3   Theory of Molecular Orbital* 

In this section we shall briefly summarize the method of mole- 

cular orbitals and give the results of this method for hydrocarbons con- 

taining double bonds. 

The theory of atomic structure has been worked out using the 

self-consistent field model.    In this model one assumes that the 

electrons can be considered one at a time,  and that each   electron has 

its own wave function called an atomic orbital.    One starts by assign- 

ing atomic orbitals to all the electrons except one,  the particular 

choice of the wave functions being a matter of judgment.    Then the 

quantum mechanical Hamiltonian is set up for this one electron and 

the potential energy is taken to be that of the nucleus plus the charge 

density of all the other electrons obtained from their wave functions. 

This one electron problem is then solved to give a first approximation 

for the "correcf1 wave function for this electron.  In this manner one 

obtains a set of first corrected atomic orbitals.      These may now be 

used to obtain a set of second corrected atomic orbitals,   and so forth. 

This process is repeated until there is no appreciable change in the 

atomic orbitals. 

This type of approach has also been used with success in 

treating molecular structure.    The various electrons in a molecule 

are allotted to molecular orbitals which are the solution of a one 

electron Hamiltonian.    Because of mathematical difficulties,   various 

further approximations have been made in practice; more will be said 

of this later. 

In studying molecular structure one thing is apparent at the 

outset.    The constancy of such quantities as bond length,  the existence 
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of quantities such as bond energies,  etc.,  suggests that the quantum 

mechanical structure of certain types of bonds is the same in all 

molecules.    We thus arrive at the concept of a localised molecular or- 

bital.    In a carbon-hydrogen bond,  for example,  we assume that there 

is a molecular orbital whose spatial extent includes the carbon and 

hydrogen ions of the bond and is negligible elsewhere.    Nothing more 

need be said about such molecular orbitals except to point out that 

these molecular orbitals often are cylindrically symmetric with respect 

to the bond axis,  and are then called cr molecular orbitals.    This is 

always true for   C-H   bonds inorganic compounds.    The molecular 

orbital is approximated as a linear combination of the   Is   atomic 

orbital of the hydrogen atom and a   2p - 2s   hybrid  atomic orbital of 

the carbon atom. 
i 

In dealing with unsaturated compounds one must also consider 

the structure of the carbon-carbon double bond.    This is regarded as 
I being composed of electrons in two different types of molecular orbi- 

tals.    One type is a linear combination of the   2p-2s   hybrids giving 

a     <r -type molecular orbital. The other is a linear combination 

of   2p   atomic orbitals and changes sign when reflected in a plane 
•. 

containing the bond axis.    Electrons in molecular orbitals of this 
l. 

type are called TT -electrons.    A further difficulty occurs in treating 

ir -electrons.    In treating unsaturated compounds cot,   ... ling conju- 

gated double bonds,   severa. pairing schemes are possible,   and the 

|» concept of a localized chemical bond no longer holds.    Instead it is 
it' * necessary to take a linear combination of all the   2p   atomic orbitals 
?       •  ) 

thus giving the electrons mobility in the sense that their molecular 

orbitals extend throughout the network of conjugated double bunds. , 

The energy of such a structure is lower than it would be if the bonds 

were localized; the decrease in energy is called the resonance 

energy,   or more correctly,   the delocalization energy. 

6 i 
<• 
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In obtaining the molecular orbitals for the pi-electrons one 

takes a linear combination of the    Zp   atomic orbitals and adjusts the 

coefficients so as to give the lowest energy.    This procedure has been 

worked ca.    or many cases and we now give some of the results for 

linear polyenes and for benzene. 

Coulson     has treated the problem of a linear conjugated 

poiyenewith   2m   carbon atoms,   where    m   is an integer.    He obtains 

molecular orbitals which are linear combinations of the    2p   atomic 

orbitals which are given by: 

- cr, 
XtW-WV z^e    « (1.3.i) 

This is the atomic orbital of the   j-th   pi-electron for the   x-th 

carbon atom.      r    .       is the distance from the     j-th   electron to 

the   x -th   nucleus,    the     z     axis being perpendicular to the axis 

of the molecule,   and   c   is   a constant which may be taken to be 

equal to   1.625/a       where     a       is the Bohr radiue.    Using these 

2m   atomic orbitals he obtains    2m   molecular orbitals given by: 

2m 

4<i>- 2^5-(^7r) KH) (1.3-2) 

with the associated one electron energies: 

€;   -   Ifi  cos(¥^) (1.3-3) 

Here       A        is an integral called a resonance integral which may 

be estimated empirically to have the value    -40 kcal per mole. 

C.  A.  Coulson,  Proc. Roy.  Soc.   169A,   413 (i?39) 
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In this treatment it is assumed that the interaction of the pi and 

<T   -electrons is negligible.    This is the only type of polyene which 

we shall consider in our treatment of inter molecular forces. 

The pi-electrons of benzene may also be treated by the 

method of molecular orbitals.    In this case there are six pi-electrons 

and if we use the same atomic orbitals as given by equation (1. 3-1) then 

the molecular orbitals are given by: 

1>M- hw*^^W d-3-4) 

with tiie associated one electron energies; 

6i « 2£ cas(^) (1.3-5) 

The above molecular orbitals are the ones employed by 

Coulson and Da vies in their treatment of dispersion energies between 

conjugated hydrocarbons.    Recently a different type of molecular 

orbital has been introduced which is more satisfactory for the calcu- 

lations that follow because of its greater simplicity.    Moreover,  it 

is in no way inferior for predicting the energies of excited states 

and contains no constants which require empirical determination. 

This approach is known as the free electron model approxima- 

tion.    The delocalization of the pi-electrons is taken literally and 

they are regarded as free to move in a one dimensional box which ex- 

tends along the skeleton of the conjugated carbon atoms.    Thus the 

skeleton for a benzene molecule is essentially a circle around the 

bengene ring and for a linear polyene it is a line along the carbon 

network.    Whenever there is a free endpoint such as the terminal 

carbon atom of a linear polyene,  the   "box"   is extended an additional 

bond length. 
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This model has been successfully used to obtain the spectra of 
7 

conjugated molecules      as well as other properties and we shall use 

it for the calculation of dispersion energies while at the same time 

employing the London approximation. 

For linear polyenes with   N   conjugated double bonds,  the 

free electron model molecular orbitals   (which we shall henceforth 

abbreviate as   FEM   MO's)   are given by: 

jir - ^   ^ "f       ,    »-   <,V   2N (1.3-6) 

with the energies: 

F   =    -!?ibL     .    n-  \,l, ...IN (1-3-7) 

Here       L       is the length of  the one dimensional box and is equal 

to   (2N   +   1)D,    where     D     is the carbon-carbon bond length,  which 

we take to be constant,      x     is the distance along the electron path 

measured from one end,  and     m    is the mass of the electron. 

The FEM   MO's   for benzene,  which we shall regard as 

having a circular free electron path,   are given by: 

6 - 4=* 

(1.3-8) 

7. H-   Kuhn,  Helv.  Chim.  Acta   31,   1441   (1948),   _31_ ,   1780,   (1948) 
J.  Chem.  Phys.  16_,   840 (1948),_17,   1198 (1949); Bayliss, 

I J.  Chem.  Phys.    J_6,   287 (1948); Simpson,  J.  Chem.  Phys. 
16,   1124 (1948); Ruedenberg and Scherr,  J.  Chem.   Phys. 
21,   1565,   (1953); Scherr,   J.   Chem.  Phys. _21,     1582(1953); 
Platt,  J.  Chem.  Phys.   17,    484   (1949),   21,   1597 (1953). 
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tn 2mCJ j     n.« 0,1,2,3 (1.3-9) 

Here       6        is the angular coordinate of the electron and     C     is the 

circumference of the ring.   Note that for    n     greater than zero the 

molecular orbitals are doubly degenerate. 

We shall regard all other electrons in the polyenes and ben* 

zene   as being in localized molecular orbitals for which we use the 

model suggested by London,   namely that the electrons behave as 

harmonic oscillators centered at the center of the bond. 



II.    MOLECULAR ORBITAL FORMULATION 
20. 

2. 1   Perturbation Treatment Using Molecular Orbitals 

In this section we begin by obtaining molecular wave functions 

in terms of molecular orbitals; then we derive expressions for the 

first and second order perturbation energies as well as for the polar- 

izability,   in terms of molecular orbitals. 

Let us consider a molecule containing     2M     electrons where 

each electron is allotted a molecular orbital.    Inasmuch as the wave 

function of the molecule must satisfy the Pauli Exclusion Principle we 

must use a determinantal form.    The wave function for the ground 

state is then a Slater determinant involving the first     M     molecular 

ortibals,  which we take to be normalized and ordered adcording to 

their energy,   and is given by: 

fe- /UMTT 

a?,ii)«ci>       (P.oi/jM cpl(o«(o <p»Ct)/%o) 

«,(i-,«(l) <i,Ul/4(i) CP,U)oc£i) <j\Ul/*k' 

ipClM)t((2M)   <P,teM^(l»)        <W?H)(S(t¥\) (pJlMltfUM) 

CpMCl)(%(i) 

(2.1-1) 

Here      eC      and      A        are the usual electronic spin functions.    This 

wave function may be conveniently abbreviated as follows: 

V.   = 1 

\ a. a ft     ' 

<PM 

y/(iv0 ! 
• '   ^ 

(2. 1-2) 

The energy associated with the ground state is then the sum of the 

energies of all the molecular orbitals that are occupied. 

All molecules that we shall consider have a ground state that 

can be represented as in equation (2. 1-2),   which represents a singlet 
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state.    To the approximation that we are considering,   the transition 

singlet —* triplet is forbidden.    The excited states we need consider 

are then only singlet states,   and as we shall  shortly see,   we need 

consider only those excited states in which only one of the molecular 

orbitals present in the ground state wave function is changed to a 

higher molecular orbital. 

Let us now consider the case that the excited state differs 

from the ground state by having the molecular orbital      (Pj       instead 

of      <fii       .      In this case there are four possible spin assignments 

giving four possible Slater determinants; 

U,   - 
Q>,   cp,   • • •    q>i    <Pf  • • •   <P* 

(TMTT \CL     /3    • • •     «.      a.   • • •    (i 

u»  - 

w.^ 

_j  (<P,    <P, 

/TIMTT v <*     />, 

(cp,    cp, 

I 
cp,     cp, 

WM)!   U       ,4 

CPi    <Pj   • • 

<k    ft   • • 

cpt   <tt  • •   <PM\ 

fi   * • ••   /J 
CPi   q?} • • •  <W 

•/»/»• .-/.y 

(2.1-3) 

Linear combinations of these give the singlet and triplet wave 

functions,   namely: 

Singlet: K '   k (U'"~U,) (2-1_4) 

U, 

Triplet: <(   ^ -    u4 (2.1-5) 
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There are three important properties of Slater determinants 

of molecular orbitals that we shall ur.e: 

a) All electrons are equivalent. 

b) When integration and   summation over spins are performed 

on the square of a Slater determinant the result is unity. 

c) Different Slater determinants or different minors of 

Slater determinants having the same order are ortho- 

gonal •when integration and summation over spins are 

performed. 

Property    a)    follows because any two rows of a determinant may be 

interchanged without changing the value of the determinant.    Proper- 

ties   b)    and   c)   follow from the orthogonality of the molecular orbi- 

tals and the spin functions.    We are now ready to obtain explicit ex- 

pressions for the perturbation energies and the polarizability in terms 

of molecular orbitals. 

The first order perturbation energy is given by equation 

(1.1-3) where       <pe        is given by equation (1. 1-1).      Using the fact 

that the electrons are equivalent the different summations may be 

reduced as follows: 

JV; K
s)ni I up i>: v) dr*drG - z 2 *•%* (2. i ..6) 

a*"   /*'   '«A ' 'tt.A v ' 

(U/>e
B)r E £ (^ ^dt'dt'-   ^nj(^* ^)|l(^>:j^a-r^, U9) 
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Consider now the integral appearing on the right side of equation 

(2.1-7): 

J <   H*JEl ^ drB (2.1-10) 

Because of the equivalence of the electrons we may take b = 1 and 

expand the determinantal wave function !//0
8 by minors of the first 

row: 

J = 
Vc-ai-V - 

cp.li) cciof (p,  cp2   CP, • • • 0>Mi 

/a    <*.   /S •  - /« 
8   - Cp,(i)/3ti 

rep, cpt CP2-'(PM8 

'[«     a    ^} •   • fi   J 

•+ «<»«»R??'.: :*•]- *«M? *y*«::: >] 

rep, cp,  cp4 <p2 • 

C 
L /»   *   p >>• f /        I  x      <L     A   > • •   p  I 

2 L «   A    /»•••/» J ' 

cp. cp,  c?t ••• q?M»"| 

L *   p   <* ' • •  /»  J 

, Jcp, cp, cp, cpt-••?*,] 1   . 

(2.1-11) 

Here we have denoted the minors by using square brackets.    Now 

the minors involve the coordinates of all the electrons except electron 

one,   so that by integrating and summing spins over all electrons 

except the first,   we may use the orthogonality of the minors to give 

the simple result: 
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s~k l£^("}'¥d' (2. 1-12) 

where we have also summed over the spin for electron one.    In 

this manner the integrals appearing in equations (2. 1-6)  - (2. 1-9) 

may be further simplified to give the following expression for the 

fir3t order perturbation energy: 

E<" = z z ^^' 2 l Kel\'£ (rfdJ]1 -d->£l 
(2. 1-13) 

"f f"»/2r     A      I2  A     A f"«/?r T2"b/2r      «      V   A    »   J     B 

One important result of the above treatment is that in this 

result the various molecular orbitals are seen to enter independently 

with no cross terms.    Hence we may speak of the interaction of cer- 

tain types of electrons in one molecule with certain types of electrons 

in the other.    The same type of analysis may be applied to the second 

order perturbation term,   thus justifying the statement made earlier 

at the end of section (1.2). 

In treating the second order perturbation energy we shall 

employ the approximations summarized on page     13 Hence the 

quantity of interest is the electronic charge density: 

</£).-     ej(^>;)^dt/..  di£,d*L      •<, (2.1-14) 

where the wave functions include only the pi-electrons. 

We again note that all the pi-electrons are equivalent so we 

shall take a= 1. It is now advantageous to change our notation. 

If        l|*M represents the state in which the       i-th      molecular 

orbital is replaced by the       j   th,        we shall then define; 

• 
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ft, -n*ej(^>;j^dr;...d< (2-1-15) 

Because all the pi-electrons are equivalent,   in calculating the dis- 

person energy we need use only    p.*.    . 

We now substitute the expressions for the wave functions in 

terms of Slater determinants and,   after expanding the determinants 

by minors of the first row,   we find that the only terms which contri- 

bute are the following: 

?H 
n^e 

ft. (2MAM 

*<••««[??'•'• 
•   <2MA 

|-*M-?: 
• • /• J 

(2. 1-16) 

Integrating and summing over spins and noting that   n      =   2MA, 

we get: 

.   __   _ztt,(2M,-<)/e       *    - f   ,      4J (2.1-17) 

Simplifying and summing over the spin of electron one,   since this 

is not of consequence,   we have the final result: 

A A 
fy   - YF e ft   9/ (2. 1-18) 

The simplicity of this result is indeed fortunate. 

We   may now note that if the excited state involved the change 

OKI 
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of  more     than   one     molecular orbital to higher molecular orbitals, 

then all the minors of the ground state wave function would be ortho- 

gonal to all the minors of the excited state wave function, confirming 

our earlier statement. 

Finally, we conclude this section by obtaining an expression 

for the matrix elements occurring in the expression for the polari- 

zability,  equation   (1. 1-8),    in terms of molecular orbitals. 

The allowed excited states will be the same as those allowed 

for the second order perturbation energy.    Because of the equivalence 

of the electrons we may write: 

.      A 

^OK     *    J^e    "*e   iU)   ^«    dr" (2.1-19) 

If we now introduce Slater determinants of the molecular orbitals and 

take the excited state to be that in which the    I -th   molecular orbital 

is replaced by the   j-th,    then the analysis follows through exactly 

the same as for the second order perturbation energy and we obtain 

the answer: 

(/4)0<H    •   &eJ<p?(,)iU>q>fti)dxrt (2.1-20) 
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2. 2   Results Using the Free Electron Model 

The results of the preceding section will now be expressed 

for the case that the molecular orbitals are for pi-electrons only 

and using   FEM   MO's.     We will consider linear polyenes and ben- 

zene. 

The quantity of significance in the first order perturbation 

energy as given by equation   (2. 1-13)   is the term: 

rA   = i£ WY (2-2-1) 

For a linear polyene with    N     conjugated double bonds we have    2N 

pi-electrons with the molecular orbitals: 

&- Vf si*^ (2.2-2) 

Substituting into   (2.2-1)   we have: 

f.-tZ^'f (2.2.3, 

This sum may be evaluated explicitly to give the final result: 

f« "     3 
i 

For a benzene molecule in its ground state,  we easily find,   using 

the results given by equation (1. 3-8): 

f -        X 
Benzene " (2. 2-5) 

nan 
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Let us now consider the dispersion energy.    For linear poly- 

enes the charge density   (2. 1-18)   is given by: 

ih 

P<1 sm tj* sim. i*f- (2.2-6) 

It is an easy matter to locate the nodes and hence obtain the various 
* 

charge density regions and the integrations required     may all b6 

performed analytically. 

However,   in the case of benzene we have an additional compli- 

cation in that the excited states are four-fold degenerate in general. 

For the transition     1 —> 2     we thus have the four charge densities: 

(2.2-7) 

,     &EHt\ </2    %   <PiS 

/    UNt\ V2    Q5,c Cpec 

(D„    L    = ^2    ?>'C   <?>2S 

The expressions for the polarizability are entirely comparable 

to those for the dispersion energy. 

The following integration formulas may be used: 

J0N0Mdlt ? L CM-MJ   m( (KtM) SVa I      ] 

r , .     , j   f _J  rM CN-MWx _ \        .  „ LiltMiEll 

tM-M)iTA _ _J__  sla <^Mk*l 
j IM+M) *       J ir    CN-MJ 
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3. 1    Monopoles for the Polyenes 

The calculation of the monopoles for linear polyenes is easily 

carried out using the charge density   (2.1-18) and the integrals as given 

on page 29.    We assume that the polyenes are truly linear although it 

is not necessary to do so,   and that all carbon-carbon bonds have 

the same length,     1.4 A.      Taking the A    as the unit of length and the 

electronic charge     e     as the unit of charge,   the results for the first 

few polyenes are given in Figure     3. 1.    The notation   (n, m) signifies 

that the monopoles are for the transition in which the excited state 

contains the    m-th   FEM MO     in place of the     n-th   FEM MO   in the 

ground state 

In each case the sum of the monopoles must be zero because 

of the orthogonality of the wave functions.     The signs of the monopoles 

for a given transition may be changed simultaneously without affect- 

ing the result,   since the quantity of significance is the square of the 

matrix element. 

For a polyene with     N     double bonds,   the transition   (N,  N + 1) 

represents the largest contribution and is the only one that is listed 

for hexatriene.    We shall speak of such transitions as principal trans- 

itions . 



ETHYLENE 

30. 

(1.2) -!.7B2?-> 

-icOOZi 

BUTADIENE 

(1.3) 
+ 29332 

*  
sukt +,?t332 

*- 2 i3IS -» •-2.1315-• 

(1.4) 
+ .11*117 -MOIf: -«- w(59M -.lt.1>T 

• • • • 
*-l.bill* *-II,95H-* «-i.tC)3-» 

(2.3) + 4(,13Z               -.10749          +   IC7f>             -.Hfc7*2 
• • • • 

(2,4) 
1- J00IO -.300'0 -.30010 t.30010 

• • • « 

HEXATRIENE 

(3,4) 
+ 3fcS7? -02")fe3 +.H6BI -   tgOSI -t-.029b3 -.3fa37f 

• • f # * c 
•-I.S12.5-* «-i.2575-» «-l.575l->       <-12575-»        <M,SlZ5-> 

Figure    3. 1-1     Monopoles for the Polyenes    (Length is measured 
in Angstroms and charge in units of     e,      the 
electronic charge). 
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3. 2   Method of Calculation 

[ 
:- 

We shall now discuss the methods that may be used to calculate 

the perturbation energies and the polarizability. 

The first order perturbation term may be handled approximately 

using a London type approximation,  as was mentioned on page 10 .    We 

shall illustrate the method by carrying out the calculation in detail for 

ethylene in the next section.    For certain orientations the integrals may 

also be evaluated in terms of tabulated functions. 

In treating the second order perturbation energy we employ the 

London approximation and approximate the matrix elements as being 

the electrostatic interaction between monopoles which are illustrated 

in Figure 3. 1-1.    This presents a simple but nevertheless lengthy 

calculation and inasmuch as this is an approximate method,   an approxi- 

mate method of calculation is desirable. 

The fact that most of the monopoles including the monopoles for 

the principal transition are distributed in such a way that we have a 

sum of real dipoles suggests that we think in terms of the interaction, 

of pairs of dipoles rather than in terms of   pairs of charges.    This 

suggests then a graphical method in which we plot the equipotentials 

for a z'eal dipole having unit length with positive and negative charges 

of unit value.    One quadrant of such a graph is given in Figure 3. 2-1. 

To get the electrostatic energy of interaction of a unit dipole with any 

other dipole lying in this plane at an arbitrary position and orientation 

we simply envision placing the other dipole on the graph in the desired 

position and orientation and then read the energy at each charge from 

the equipotentials,   multiply the energy by the charge in these reduced 

units and take the sum of the two terms.    This then gives the electro- 

static energy in reduced units.    Thus instead of being faced with cal- 

ulating four distances to obtain the interaction between two dipoles we 

need only place the second dipole in the desired orientation and position 

and take two readings from the graph.    The saving in labor is of   course 
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even greater in obtaining the interaction of a dipole with a more compli- 

cated monopole distribution Buch as that for hexatriene.    Here we may 

place the entire monopole distribution in the desired position and orien- 

tation and take the sum of the six terms appearing. 

In three dimensions the equipotentials are the surfaces of revo- 

lution generated by rotating the figure around the x-axis.    If the posi- 

tion of the second dipole is not such that its axis lies in the x-y plane, 

then it is necessary to carry out a "projection" onto the x-y plane.    To 

see how this may be done,   let us now consider Figure  3. 2-2. 

>XJ 

Figure 3. 2-2 Projection of Dipole 
onto x-y Plane 

We may take the center of the  second dipole to lie in the x-y plane 

without loss of generality.     Let the coordinates of charge   A   be 

x   ,   y    ,   z    .    We now "project" the point   A    along a circle with 
A        A A 

center on the x-axis and having a plane parallel to the y-z plane. 

Under such a projection   x      does not change,   and it may easily 
•A, 

be seen that   y ..-> A / 
2 2-1 

y     + z~ .     The same type of law holds for 

charge   B. 

For calculations in positions beyond the range of the graph,   it is 

satisfactory to treat the interaction as the interaction between two 

dipoles,   for which we have the following familiar expression: 

i~f 
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<p (ideal dipolc.  ideal dipole)  = 

/4^(-2cos6.oisdb+ c.n6a s./n 6 bccA(^-0j|    (3.2-1) 

•where u.^        and       ,UJ        are the dipole  moments and      r is 

the  separation between the dipoles. 

In certain cases the integrals involved in the dispersion energy 

may be evaluated in terms of tabulated functions but, as in the case of 

the first order perturbation term    the  resultc  are complicated 

We conclude this  section by  considering the calculation of the 

polarizability of a polyene along its  axis     arising from the pi-electrons. 

Let us consider now a polyene  with     N     double  bonds where     N      is 

greater than one       Let  us  now take  cognizance of the fact that the 

carbon-carbon bond angles  are  approximately      120        (see Figure 

3.2-3)    and calculate the polarizability along the axis  indicated in 

^ 
xS>~\. ,C L . 

Figure   3   2- 3; Polyene  Molecule for the case    N    =    4. 
The dashed  lines  represent the extra 
bond length that must be added for free 
end points  when the    FEM MO's  are 
used. 

the figure.     We  shall treat only the  case of the transconfiguration. 

The expression fcr the polarizability  is  given by Equation (1.1-10): 

m*0   Em" E0 

(3.2-2) 
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and for the case of   FEM MO's    the  matrix element is obtained from 

(2. 1-20): 

i 

W«,t-j  " ^
eI^Cf *<o)9,<>*. (32.3) 

The factor      V3 / 2     arises from the fact that we must take the 

component along the axis we are considering and 

<Pi "   f"  ^^ (3-2-4) 

The case     N    =    1      (ethylene)    must be handled slightly differently 

since the axis of the molecule  lies along the only carbon-carbon 

double bond. 
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3. 3    Results 

In this  section we  present the  results of detailed calculations 

using the methods  we  have just discussed.     We shall first present 

the  results  Tor the first order perturbation energy for the case of the 

interaction of two ethylene molecules       This is the only case that we 

shall consider since our principal aim is the discussion of the dis- 

persion energy      The   latter we  shall discuss  in considerable detail 

and we  shall compare the   results with those obtained by Coulson and 
Q 

Davies       (we  shall henceforth  refer  to Coulson and Davies by C.   D). 

Lastly     we  present rhe   results for the polarizability and compare 
9 

them with the  results of Davies 

In calculating the first order perturbation term for  ethylene 

the  quantity      f     which we  defined by equation    (2. 2-1)    is  given by: 

-   jS,n 
t (3. 3-1) 

In employing the  London approximation we  are to replace this 

function bv a set of discrete  charpes.     The mean value of     f'    is 

easily seen to be       2/ x 

density regions: 

We then have the following charge 

Region a. f <c III 0 <   x < £/</ 

Re gion b: 1 > Z/> ih < x < HZ 

Region r ; f > Hi 2/2 < x c 3LH 

Region d: t < 2/fl 3£/^<x < X 

8. C     A     Coulson and P.   L     Davies,   Trans.   Faraday Soc 
48,     777    (1952):    P.   L    Davies.   Ph.D.   Thesis,   Kings 
College,   University of  London    (1949) 

9 PL    Davies     Trans     Faraday Soc       48,     789    (1952/ 
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We can now obtain the effective  charges  for each regLon    (i.e.,   the 

integral of     f     over the  interval of the region times the electronic 

charge,      e)    and their  locations  as  given by the second moment.     The 

results  are  shown pictcriaily in Figure    2,3-1    in which we also include 

the charges  arising from the carbon ions 

-.t«lfe1 +1.00000   -?i83l        -.8l»3l + 1.00000 -.'Sit1) 
• • • • • • 

«    r;732->        <-'H2i->   <-ictY?->   «-.m2|-»       «• '732-> 

Figure    3   3-1:    Monopoles for the 
Calculation of     E(l)      for Ethylene  with 
C-C    Bond Distance     1. 353 ^ 

Units are  again taken as    Angstroms    and the electronic charge,       e. 

The first order perturbation energy  is then the classical energy of 

interaction between such charge distributions      We  shall make no 

attempt to include the effect of the  sigma-electrons. 

We may calculate the quadrupole  moment of the above  charge 

distribution using the  following definition of the quadrupole  moment,   q: 

b - (3.3-2) 

".•here     X;   is  measured from the center of the charge distribution. 

16 2 
The value we obtain is    0. 240    x    10 cm      .      The quadrupole 

moment of the ethylene molecule including the effects  of all the 

electrons  has been obtained experimentally  from microwave collision 

diameters and the value    0.48   x   10 c in      has been reported 

10. G.   Glocklar,   J.   Chem.   Phys     _2l,     1242    (1953). 

11. W    Gordy.   W.   V     Smith,   and R.   T r ambar ulo.   ''Microwave 
Spectroscopy",   Wiley    (1953),     P.   "45. 
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The difference between the ! «/o  values is undoubtedly caused by the 

neglect of the  influence of the  sigma-electtons,    Despite the  lack of 

agreement,   we shall obtain the  first order perturbation energy to 

make the discussion complete 

Let us now consider  two ethylene molecules in the  same plane 

oriented as  shown in Figure   3   3-2 

-d- 

c= c c = c 

Figure      3   3-2     Orientation 
of Ethylene  Molecules for    E 

In this case it is not necessary to resort to the London approx- 

imation since the integrals involved may be evaluated in terms of 

tabulated functions.     We may thus obtain the following expressions 

for     E the energy arising from nucleus   nucleus  interaction, 

ne 
the energy arising from nucleus electron interaction,   and     E 

ee 
the energy arising from e lectron-electron interaction 

c * [2 '     ,     I    \ 

f  fa iU _ ces2aJcU2on-Z.fr)- Cl(2a)] 

-   CosEb^CiUb+2<r)- Ci(2b)] 

^ -    sm 2b[si(2b*-2ff)- 51 (2b)] 

21T+C 

7 

Zvkn. 
T< 4c i* ^c-^r l rr +• c )'• 

(3 ccs 2c *• tc simEc)[Si[fl -Ec)- 2 SU2ir * 2c) - Sl(2c)] 

ii^2c - 2e ccs2c)[- CUMT+2c) + ZCUZir+Zc)fCL(2c)] 

Mir[cos2c iCiHn +2c) - Ci (2TT 12 c)i + Sm 2c [t i I4n + 2c)- ?t (2ir i 2c)] , 

(3. 3-3) 
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•where the quantities    a.     b,     and    c    are  given by: 

cx-^(d-D)        j b-^d-aD)       ;       c=^-(d-3D) 

and   Si(x)    and   Ci(x)    are the  integral sine and integral cosine 

functions        which are defined by: 

s;u)=   f^tdt J ciU)-   j   «*t dt ,3.3.5, 

If we now compute    E and   E using the  monopoles  as given by 

Figure    3. 3-L   we find very good agreement with the  values obtained 

from equation    (3. 3-4),     thus at a separation   of    5D    the two values 

of   E differ by only    *  . 5   per  cent     and the two values o(    E differ 
ne ee 

by only    1.0    per cent and as    d    increases  the differences decrease. 
(1) 

However,   the  quantity of interest is   E'        which is the  sum of all 

three.     Unfortunately    E plus    E very nearly cancels    E so 
'        nn ee ne 

that the error in   E is so great as to make the London approximation 

of no value      Thus at a separation of    5D,    equation   (3   3-3)    gives a 

value of   0. 1983    ev     whereas the  London Approximation gives the 

value 0.00012   ev   because of the almost complete cancellation      We 

thus conclude that the   London Approximation can only have value  for 

the dispersion energy because of this inherent difficulty of the first 

order perturbation energy. 

We shall now discuss the calculation of the dispersion energy for 

ethylene.     We shall first consider the energy  arising from the inter- 

action of   pi-electrons    in one  molecule with the    pi-electrons    in the 

other and shall compare the results with those obtained by    C-D. 

Then we shall calculate the complete dispersion energy by taking 

account of the  sigma-electrons  as well as the    pi   electrons,   and we 

12.      Jahnke  and Emde,   "Tables of Functions",   Dover (1945),   p.   1 
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shall compare the result with experimental data.    The same calcula- 

tion will also be carried out for acetylene. 

The first case that we shall consider  is the case of   two ethylene 

molecules  lying in the same place  such that they are parallel and 

opposite each other as shown in Figure  3. 3-3,    with the separation   d. 

C  = C 

C = C 

Figure  3.3-3 
Parallel Configuration 

In this case we obtain the  following results,   as given in Table  3. 3-1: 

Table   3.3-1 Ethylene  (Parallel Configuration) 

o 
d   (A) 

4 
8 

10 
15 
20 
50 

Minus 
.(2) 

(e.   v.) 
-3 

3 94 X 10 -5 
V 53 X 1U-5 
I 03 X 10-n 
1 83 X 

3 28 X 1U-9 
1 ifa X 10 

These results are expr   ssed graphically in Figure    3.3-4 

which also contains the  values obtained by   C-D    for  the purpose of 

comparison.    It is  see     -hat the  results of   C-D    are  uniformly 

4/3    larger than the results given 4ovc,   but that the   same behavior 

is exhibited and an inverse sixth power dependence  is  rapidly     ap- 

proached. 

The next case that we shall consider is the case of two ethylene 

molecules in the same plane and in a displaced parallel configuration 

as shown in Figure    3. 3-5.    Results are given for   d    =    3 A    and    8   A 
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> 

(2) 
Figure  3.3-4   E for Ethylene in Parallel Configuration (Triangles 
are CD  results) 
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in Table    3. 3-2       Results are also expressed graphically in Figures 

3. 3-6   and    3. 3-7   and a comparison with the results of   C-D    is again 

given. 

C 

d 
c = c 

Figure  3. 3-5 

Displaced Parallel Configuration 

Table    3.3-2 

Ethylene    (Displaced Parallel Configuration) 

d    =    2,  % d    =    8 £ 

(%)   Minus     E( (e.v.) y (X)    Minus     E (e.v.) 

0 7.53 x   10"! 
1 6.60 x   10" 
2 4.27 x   IOZ5 
3 2. 18 x   10 
4 7.09 x   10" 
5 9   80 x   10" 
6 6.29 x   10" 
7 1.13 x   10", 
8 2.33 x   10"6 

9 3.04 x 10", 
10 3.22 x 10", 
12 2.72 x 10" 
14 1.93 x 10' 
16 1.28 x 10" 
18 8.29 x 10" 
20 5. 39 x   10" 

(2) 
It may be seen that in this case    E has a node and a secondary max- 

imum. This can be easily understood in terms of Figure 3.2-1. If 

we visualize the first molecule as being placed at the origin and the 

second lying with its axis parallel and displaced,   we  see that the node 

-2 
0 1.84 X l°-3 
1 9.03 X 1U-3 

10 .4 2 4. 80 X 

3 4.48 X 10 -4 
4 9.80 X i0-4 
5 7. 72 X 1U-4 
6 4. 71 X 10-4 
7 2.68 X 10-4 
8 1.52 X 10 -5 
9 8. 81 X 10 -5 

10 5. 25 X i0-5 
11 3. 22 X 10-5 
12 2.04 X 

13 1. 32 X i0-6 
14 8.84 X 10-6 
15 6.03 X 10 
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(2) 
Figure 3.3-6     E for Ethylene in Displaced Parallel   Config- 
uration for   d = 3 A     (Triangle8 are   CD Results) 
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> 

y CA) 

.(2) Figure 3. 3-7   E for Ethylene in Displaced Parallel Config- 
uration for   d = 8 A    (Triangles are CD results) 
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arises when the positive and negative monopoles of the second lie on 

the same equipotential.    Indeed this will always be the case so that 

Figure    3. 2-1    furnishes a convenient means for visualizing the dis- 

persion energy arising from the interaction of   pi-electrons.    For the 

case that   d    =   3   A     the position of the node is     y    =   2.43 A     and 

C-D   obtained the value    2.45 A  .      For   d   =   8   A     the node is located 

at     y    =    5. 58   A     while C-D   obtained the value    5.60   A  .    Thus the 

qualitative behavior of the two results is the same. 

Lastly,   we shall investigate the angular dependence of the dis- 

persion energy for the configuration illustrated in Figure    3. 3-8. 

T 
?A 

J-srA'! 
0 

Figure    3. 3-8 
Configuration for Angular Dependence 

Numerical results are given in Table    3. 3-3   below and are compared 

with the results of C-D   in Figure    3. 3-9. 

Table   3.3-3 

Ethylene    (Angular Dependence) 
(2) 

6 (Degrees)    Minus   E     ' (e.v.) 

Q 1.64 x 10" 
15 1.56 x 10" 
30 1.30 x 10" 
45 9.21 x 10" 
60 4.49 x 10" 
75 1.37 x 10" 
90 0.00 

Once again we see that the qualitative features agree very well and 

that the results obtained by CD are 4/3 Higher than the above re- 

sults .    Except for this factor the two methods appear to give nearly 
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> 
QJ 

O 

CM 

LL1 

0 30 60 
9    (d96re?s) 

(2) 
Figure  3. 3-9   E for Ethylene for Angular Dependence (Tri- 
an.-les are CD results) 
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the same results for the case of ethylene. 

Let us now consider the complete interaction between two 

ethylene molecules by taking account of the  sigma-e lectrons as well 

as the   pi-electrons.    We shall perform this calculation for a separa- 

tion of    10 A     and for four orientations  illustrated in Figure  3. 3-10. 

Case A 

Case B 

Case C 

Case D 

Figure  3.3-10.    Orientations 
Considered for Calculation of 
Complete E^'    for     Ethylene. 

The energy of dispersion is then the sum of three terms,     E^ 

arising from the interaction of the pi-electrons  in one molecule with 

the pi-electrons in the other,     EJJ        arising from the  interaction of 

pi-electrons in one molecule with sigma-electrons in the other,   and 

E g-g. which arises from the interaction of the  sigma-electrons in 

one molecule with the sigma-electrons of the other. 

The calculation of   E nlT       is carried out as has just been des- 

cribed.     The calculation of   Err     is carried out using equation (1. 1-14) 

We wish to obtain the average interaction for the four orientations so 

we introduce little error by using this equation instead of (1. 1-11). 

We must,   however,   use the bond polarizabilities for a single carbon- 

carbon bond rather than a double bond since we do not include the 

pi-electrons in the calculation of   E ac     .    This further approximation 

is not completely correct because a double bond is shorter than a 

single bond indicating that the sigma bond is altered,   thus changing 

its polarizability.    However,   the error is probably not large.    The 

calculation of   E Jir   is carried out using equation (1. 2-10).    Because 
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of the large number of distances that must be calculated to use this 

equation,   the results were obtained using scale drawings from which 

the required distances could be measured.    This method is not satis- 

factory for studying   E¥ir     because the London approximation of the 

matrix element is the difference of two nearly equal terms so that a 

small error in the distances causes a large error in   E t, ,  but 

fortunately this  is not the case with Eff)r      .      The results obtained are 
-4 

given in Table    3. 3-4,   in which the energy unit is   10 e. v. 

Table 3. 3-4 
(2) 

Complete E for Ethylene 

urientation E IT IT " ETf "   EJTT -E<2) 

0.91 1. 30 2.07 4. 28 
0. 20 1.00 0. 28 1.48 
  1. 14 0. 82 1.96 
  . 88 0. 30 1. 18 

a 
b 
c 
d 

Mean Values        0.13 1.05 0.66 1.84 

In obtaining the mean values the values obtained for the different 
13 orientations are weighted as suggested by Evett and Margenau 

They assume that all orientations of a molecule are equally probable 

and determine the volume of configuration space for the two molecules 

in which the axes depart by not more than 45      for each given orienta- 

tion.     If the volumes  are taken as weighting factors then orientations 

A,  B,   C,   and D   have the weights   0.085,   0.25,    0.415,   and   0.25 

respectively. 
-4 

The mean value thus obtained is-1. 84   x   10 e. v.   for a 

separation of 10 A  .      As long as an orientation is fixed the depend ence 

13.    A.   Evett and H.   Margenau,   Phys.   Rev.   90,   1021 (1053) 
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of the dispersion energy on the separation is approximately an inverse 

sixth power except at very small separations.    We may therefore ex- 

pect that the average interaction depends on the sixth power as a first 

approximation.    This is done for many empirical potential energy 

functions,   such as the Lennard-Jones Potential; 

Here     <r    and    6     are constants which may be obtained from experimen- 

tal data by fitting viscosity or equation of state   measurements,   and 

r      is the separation.      The twelfth power term represents the close 

range repulsion.    For ethylene the values of    a   and   £   have been de- 
14 o 

termined using viscosity measurements        to give    4. 232   A     and 
-2 -4 

1.77   x    10       e.v    respectively.     This gives a value of -4. 06    x    10 
-4 

e.v.    which compares favorably with the above  value of-1   84    x    10 

e. v. 

The  same calculations  have been performed for acetylene.     In 

this case we have a triple bond so we  have two    pi bonds to consider. 

Treating the pi-electrons just as in the case of ethylene and taking 

the carbon-carbon bond length to be    1. 20 7 A    and the carbon-hydrogen 
/     P  10 bond length to be  1.060 A we obtain the results given in   Table 

-4 
3. 3-5     in which the energy unit is again    10        e.v. The value ob- 

_4 
tained using the Lennard-Jones potential is    3.61    x    10 e.v. 

While the numerical values obtained for ethylene and acetylene are 

too small,   the trend is in the  right direction      It may thus be concluded 

that the present method is at least qualitatively correct.    In the case 
(2) -4 of methane   E is found to be-0. 63   x    10        e.v. 

14.       MTGL,   p.     1112. 
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Table   3. 3-5 

Complete   E for Acetylene 

Orientation -E -E ^ ~E 

a 1.97 0.49 2.52 4.98 
b . 45 0.33 0.45 1.23 
c -- 0.41 0.91 1.32 
d -- 0.34 0.39 0.73 

Mean Value    0.28 0.38 0.80 1.46 

P -4 at    10 A     and the Lennard-Jones potential gives the  value - i. 62 x 10 

e.v.,      so that in all three cases the Lennard-Jones values are approx- 
(2) 

imately    2. 5   times larger.      It is interesting to note that   E is 

more highly directional for acetylene than for ethylene because of 

its greater proportion of pi-electrons. 

We shall now present the results obtained for the   pi-pi   inter- 

action energy for butadiene using the monopoles listed in Figure 

3. 1-1.      The first configuration we shall consider is the parallel con- 

figuration as illustrated for ethylene in Figure    3. 3-3.    We are to 

consider four possible transitions;    (1,3),     (1,4),     (2.3),    which is 

the principal transition,    and   (2,4).    We shall follow the notation of 

CD     and let the symbol   (n  n   ,   in  ITL )    denote the energy arising from 

the transition (n   ,   m )    in molecule   a   and   (n,,   ITL )    in molecule     b. 

For this configuration   CD    list four energy terms*.      These are com- 

pared in   Table    3. 3-6   with the terms appearing using the free 

electron model.     The number preceding each energy term is its 

degeneracy.    It may be easily seen that the terms    (11,   34),     (21 , 33), 

(21,44)    and   (22, 34)    are zero by symmetry.    The results of the 

If LCAO MO's   are used it can be shown that for   N-polyenes 
(n, m)    =   (2N +  1  - m,   2N + 1  - n) 
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Table    3. 3-6^ 

Comparison of Energy Terms Given 
by LCAO    and   FEM MO's for 
Parallel Configuration. 

:LCAO    Terms FEM   Terms 

1 (11,44) 1 (11,44) 
2 (21,34)                                                2 (21,34) 
1    (22,33)                                              1 (22,33) 

1 (11,33) 
4    (22,44) <2 (21,43) 

ll (22, 44) 

calculations for these excited states are  summarized in Table    3.3-7 

and the total energy  is compared with the values obtained by    CD. 

The energy unit is the electron volt.     It is seen that the results of the 

present method give  values consistently  3/5 as  large as those 

obtained by CD.       The individual energy terms are  compared graphi- 

cally with the results of   CD    in Figure    3. 3-11    and it is seen that the 

qualitative agreement is  very good. 

We now consider the dispersion energy for the displaced 

parallel configuration,   £.s illustrated for ethylene  in Figure    3. 3-5. 

The various terms which we include are compared with those founfl 

by    CD    in Table    3- 3-8,     and the results of the calculations are pre- 

sented in   Table 3. 3-9,   the energy again being in   e. v. 

fable    3,3-8 

Comparison of Energy Terms given 
by LCAO and FEM MO's for Dis- 
placed Parallel Configuration. 

LCAO   Terms FEM   Terms 

1    (22, 33) 1 (22, 33) 
(2 (21,33) 

4    (22,34) \2 (22,34) 
f\ (11,33) 

4   (22,44) <^2 (21,43) 
.1 (22,44) 
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Figure   3. 3-11    Energy Terms ior Butadiene in Parallel Con- 
figuration (Squares,   Triangles,   and Circles are CD results) 
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In Figures    3.3-12   through   3.3-15   we compare the various 

energy terms with the values reported by CD.    It is clear that the 

qualitative features of the results of the two methods are nearly 

identical and that the principal difference is a factor of proportion- 

ality.    The total   pi-pi   dispersion energy is thus lower than that 

obtained by   CD   by a factor of approximately    3/5.      It is interesting 

to note that the different   FEM   MO   energy terms   which are equal 

for the LCAO   MO's compare very closely. 

The last polyene that we shall consider is hexatriene for the 

parallel configuration. The results of the calculation are presented 

in Table    3.3-10   for the principal transition. 

Table 3. 3-10 

Hexatriene (Parallel Configuration) 

d (%) Minus (33,44)    (e.v.) 

4 6.04   x   10"^ 
8 3.57   x    10" 

15 1.43   x   10"* 
20 2.86   x    10"^ 
30 2.75   x   10"!? 
50 1.35   x   10" 

These values are compared graphically with the results of   CD   in 

Figure    3. 3-16   and it is seen that they are approximately    3/5   of 

the values of   CD,   although the qualitative appearance is again 

the same. 

We conclude this section by discussing the results obtained 

for the polarizability of the polyenes arising from the pi-electrons. 

We assume that only the principal transition contributes ap- 

preciably so that according to   (1. 1-10)    we have: 

^N       * 
E

N*< "" E» (3.3-7) 
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y   (A) 

Figure 3.3-12   (22. 33) for Butadiene in Displaced Parallel Con- 
figuration (Triangles are CD results) 
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Figure 3.3-13   (22. 34) and   (21   33) for Butadiene for Displaced 
Parallel Configuration (Triangles are CD results for   (22. 34) ) 
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Figure 3.3-14   (Z2.44),   (11,33),   and (21. 43) for Butadiene in 
Displaced Parallel Configuration (Triangles are CD results 
for   (22.44) ) 

u— 
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Figure 3.3-15   Total Dispersion Energy for Butadiene in Dis- 
placed Parallel Configuration (Triangles are CD results) 
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Figure  3.3-16   (33.44) for Hexatriene in Parallel Configuration 
(Trianeles are CD results) 
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According to equation (2. 1-20)   the dipole moment integral may be 

rewritten in terms of FEM MO's as: 

ty**Wi   "  ^eJcpN£(>l<pNt|dT, (3.3-8) 

We shall now take account of the bond angles and shall assume that 
o 

all carbon-carbon bond angles are equal and have the value    120 

and we shall carry out the calculation for the trans configuration.     If 

we let     x    be   the coordinate along the free electron path we then see 

that     z.    =   ( V~3/2)x.      so that we have: 

I 

</*.W'   -   T-J   Si*ptt)*   ^pp)dx (3.3-9) 
o 

This integral may be easily evaluated to give the result: 

^MT^-'I 13-3-10) y"*lN,H+l~ nz     |(2M + |)2 

We then obtain the following expression for the polarizability of 

an   N-polyene: 

*„ -   i.8l*lC.-aSfoNtl)*-lT    ^i (3.3-11) 
IN + I 

We have assumed that all carbon-carbon bonds have the bond length 

1.4A.    In Table    3. 3-11    we present the results for the first five 
9 

polyenes and compare the results with those obtained by Davies   . 
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Table   3.3-11 

Polarizabilities of   N-Polyenes 

N Calculated Value Davies 

-25  3 -25  3 
1 38 x 10   cm 35 x 10   cm 
2 209 204 
3 596 596 
4 1290 
5 2370 2400 

The case of ethylene,   however,   really requires special attention 

since the axis of the molecule lies along the carbon-carbon bond and 

is not inclined at an angle of   120      as the above calculation treats. 

When this is taken into account,  the polarizability of ethylene has the 
-25       3 

value    9.1    x    10   "cm    .    This value compares very well with the 

data on bond polarizabilities as given in   Table (l • 1-1).      We see 

that difference between the bond polarizabilities of single and double 

carbon bonds    (which is presumably due to the contribution of the 
-25       3 

pi-electrons)    is 9. 8   x    10    '   cm      so that the agreement is very 

reasonable. 

Davies also obtains an expression for the polarizabilities of 

long chain polyenes and finds that: 

(*NU,E,  =    l.?a*IOi!W05    err.3 (3.3-12) 

Equation   (13.3-11)    reduces to: 

a„-   i.SI  *iO"a5(2N + rt3    cm3 (3.3-13) 

so that the two methods compare satisfactorily. 
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3. 4   Approximate Treatment of Long Polyenes 

We shall now develop an approximate method for treating the 

dispersion energy between linear polyenes for the case that the number 

of double bonds,    N,    is large and the separation between the tv/o mole- 

cules is large compared to the length of the  molecule.    We shall con- 

sider the energy arising from the interaction of   pi-electrons with 

pi-electrons,    E ^        ,   the energy arising from the interaction of 

sigma-electrons with sigma-electrons,    E c<5      ,   and the energy 

arising from the interaction of sigma-electrons with pi-electrons, 

We shall include only the principal transition for the pi- 

electrons so that the transition charge density is given by: 

Zi/z    •     NTT*     •      cN^iinx .,   .   .. p-   — Si/n. ^jr   sm -—j  (3.4-1) 

Using a familiar trigonometric identity this may be rewritten: 

/>-    f Uo^-f   -   ccs^f^ (3.4-2) 

For large N the second term in the brackets is a rapidly oscillating 

function so we make the approximation that it may be neglected. Our 

approximate charge density is then given by: 

p -   y cos ^ (3.4-3) 

In using the  London approximation we then obtain a   "dipole"    and 

it may easily be seen to consist of a positive and negative charge 

of magnitute    (/2/tr) G       separated by a distance of    2JL/ff. 

In Table    3.4-1    we compare the dipole moment with the dipole mo- 

ments for the principal transitions for ethylene,  butadiene,   and 

hexatriene. 
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Table    3.4-1 

Comparison of Principal Transition 
Dipole Moments with Asymptotic Value 

Molecule Transition Dipole Mo men t 

Ethylene 
Butadiene 
Hexatriene 
Asymptotic Value 

0.25473 ei 
0.27512 ei 
0.28073 ei 
0, 28658 ei 

It is seen that even for ethylene the deviation ia not great and that 

the asymptotic value is rapidly approached which suggests that the 

approximation is a good one.    We now make a further approximation 

that the interaction of two such dipoles may be given by the inter - 

action of two ideal dipoles as in equation (3. 2-1).    Finally,   making 

use of the fact that the  length of the molecule is    (2N   +    1)   x    1.4 K 

we obtain the following result for the dispersion energy arising from 

pi-pi   interaction: 

• fir C m-003 (2M + I) 
"' 

(3.4-4) 

where   R,   the separation,   is measured in   A  .    Averaging over angles 

introduces a factor of 2/3 and gives the result: 

(2Nt!)5 

0.0^335 
R' 

(3.4-5) 

It is seen that   E vv is proportional to the fifth power of the 

length of the polyene,   a result also reported by CD.    However,   their 

coefficient is somewhat larger.    Thus for    Q^. =0k= n/2 ; 0a = 0b   their 

coefficient is    0.246   compared to the above value of   0. 14003, 

In treating   EOT        we make the approximation that it is 

independent of orientation,   so that we treat all bonds as if they 

were at the center of the  molecule a.nd use equation (1. 1-14). 
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For a polyene with   N   double bonds there are    (2N -   1) C-C bonds 

and   (2N   +    2)    C-H bonds.    The quantity      oC„-(-2oij.        has the value 

19.2   x    10"     cm3   for a   C-C   bond and    19.5   x    10"     cm      for a 

C-H bond.    We shall then take both values to be equal to the mean 
-25       3 

value of   19.35   x    10        cm    .    We then easily obtain the following 

expression for the dispersion energy arising from the interaction of 

sigma-electrons with sigma-electrons; 

3.91  (MN+-1)1 ,,    .   ,. 
E-   " ^  (3-4"6) 

We have,   of course,   regarded all double bonds as single bonds in 

this calculation inasmuch   as we do not wish to include the pi- 

electrons in this expression.     It is seen that   ECTC-       varies approx- 

imately as the square of the length of the molecule so that for suffi- 

ciently long molecules it is negligible compared with   ET)r. 

To simplify the treatment of   E T1T we shall make the 

approxiination that all bonds essentially lie along the axis of the 

molecule and that the polarizability contribution of each bond is the 

sum otn r 2c(,.       Thus the orientation dependence is not strictly 

correct but the average over orientations should be nearly correct. 

We then have the following expression for the interaction of the sigma- 

electrons of one molecule  with the pi -electrons of the other from 

equation   (12-10): 

ITT "I 2 

i     [R.ji«V J (3.4-7) 

The polarizability of the molecule  is then given by: 

O-Metecuue   "   (4Ntl)*l<U5 *I0~25   cm3 4_g) 
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The quantity      i)^ /Vj-     is easily evaluated for the principal transition 

and has the value    1. 55/(ZN f  1).    In order to evaluate the quantity in 

brackets consider Figure 3.4-1 in which we portray the dipola and the 

axis of the second molecule.    We need to know the quantities    £- 0j [*) 

(ek,^b) 

Figure 3.4-1 

Configuration of the Two Molecules Showing 
the Axis of One and the Monopoles of the other 

which are the projections of the positive and negative charges on the 

axis of the second molecule.    It is not difficult to show that they have 

the following values; 

Z+=   R COS 9a. *• b[s'w\&». sw1Gbcas(0Q-^b) + cC's6ftcos6b] 
<3.4-9) 

Z_ = Rccs8a - b[simB»swebCfts(&-0k)+cos6.cos0k] 

If we now make the approximation that   R      =   R and note that 

2b = (2/ ft   ) (2N + 1) I     we obtain the following result: 

-<T1t (N-M.27)     RL 
(3.4-10) 

where    R    is again in   A   .    Averaging over angles introduces a factor 

of 1/3 giving the result 

E«n> 
0747 (4N-H)(2.N+l) 

(3.4-11) 

i—- 
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We see that   E ^varies approximately as the cube of the length of the 

molecule so that its significance for large molecules is greater than 

E cpj-       but less than     E   n„ 

In Table    3.4-1     we present the coefficients of    1/R      for the 

three dispersion energy terms for various values of     N   and a graphi- 

cal comparison is  made  in Figure    3.4-2.       It is interesting to compare 

the results for     N     equals one with our previous  results for ethylene 

Table 3._4-j_ 

Coefficients of    1/R      for Approximate 
Pispersion Energy Terms for Different 
Polyenes. 

N -Eocr -ECTT -E frn- -E 

1 9. 78 x 10 
17 x 10 
61  x  10 
13 x 10, 

2 3 
3 6 
4 1 
6 2 44 x 10^ 

26 x 10^ 
57 x 10 

8 4. 
10 6 

    a\u\ 

4.44x10 2.27x10 1.65x10" 
2.56x10 2.92x10 8.65x10 
7.80x10 1.57x10 3.01 x 10^ 
1.76x10 5.51x10 8,40 x 10' 
4.40 x 10 3.47 x  10 4.15 x 10 
1.31 x 10 1,33 x 10 1.50 x 10 
2. 52 x 10 3. 81 x 10 4. 13 x 10 

which are given in Table    3. 3-4,    The different values are compared 

in Table 3.4-2.    It may be   concluded that the approximate method 

for large polyenes is fairly satisfactory even in the case of ethylene. 

Table 3.4-2 

Comparison of Dispersion Energy Terms for 
Ethylene Using Standard and Approximate Methods. 

Method •E^-(r -Ecy-ir -Ejrff -
E

TCT«I 

Standard 
Approximate 

10 5 
97. 8 

66 
44. 4 

13 
22. 7 

184 
164.9 



67. 

b       u 
Hi ILU u    IUJ 

\\ 

\\ \ 

\ 

CO o 
_^_ 

(A'e)   ^udpi^jacr)  ^9^au^ __ 

o- 

&D 

CO 

-M 

;. 

JO 

•S 
M 

Is* 

IS) *' 
T3 .j, 

C '' 
o 

^°o 
> 

v9 ** 
Si -i- 

-O 
3 I" 
O • * 

IPQ 2 
<-*-. '.'I' 
o -V 
i. V 
Q, V , 

_C> 

* £ ' o 
o (:',' 

a 

0) 

i 



•-.-—_ 1 

IV.    BENZENE 68. 

4. 1    Monopolas for Benzene 

In treating benzene we shall consider only the principal 

transition,   1 —* 2.      Because of the degeneracy of the molecular orbi- 

tals we have four possible transition chargo densities as given by 

equation (2.2-7).    Substituting the FEM   MO's   as given by    (1.3-8) 

we have the following expressions for the transition charge densities: 

p    =   %• 9wi6 cos 26 

0   =   5.  ccs 6 cos 26 
fc ff- 

o   =    5. cos6  svnZb 
Td IT 

The energy associated with the transition may be deduced from 

equation (1.3-9)    and has the value: 

where     C     is the circumference    of the ring. 

In calculating the monopoles it is helpful to note that 

pc - (Rotation by 90°)   x   pa 

o (4  1-3) 
pd = (Rotation by 90  )   x   pb 

v ' 

so that we need carry out calculations only for       p^        and     pt . 

In each charge density region we locate the effective charge by 

calculating the first moment,   i.e.,   we obtain the mean values of 

x   and   y   and find that   in general the monopoles are not located on 
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the ring but are inside it      If ve now assume that all carbon-carbon 

bond lengths are equal and have the value    1.4   A     we easily obtain 

the monopoles which are illustrated in Figure    4. 1-1.    Units are 

again   A     and the electronic charge,    e. 

+- ob2i<; 

0fc2i5 

03J1     2.5317 

30010 

-  30C1O 

.SO0IO 

Z OOSf 
I 

3001C 

* 1-5750 > 

a 

t-.C UI5 - 0 fc2'5" 

i42*'Hi +    4?* 

i »  —i ft 

-I--3COC +.3c:io 

3C0IC - 3CCIC 

OkZlt -0bZI5 

Figure    4.1-1.        Monopoles for Principal Transitions for Benzene 
(Units are Angstroms and electronic charge,    e). 
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4. 2     Perturbation Energies 

We shall calculate the dispersion energy between two benzene 

molecules arising from   pi-pi   interaction for the orientation in which 

the two benzene rings are parallel and facing each other and are 

separated by a distance,      d     (see Figure   4.2-1). 

d 

Figure 4. 2-1 

Parallel Configuration for Benzene 

Let us denote the energy arising from the interaction of 

monopole distribution   "a"   with monopole distribation   "b"   by the 

symbol     (a,b)     and so forth.    From symmetry considerations we 

see that the terms     (a,b),    (a, c),     (b, d)     and     (c,d)   are zero.    The 

terms which contribute are    (a, a)    =   (c, c),    (b,b)    =   (d, d)     and 

(a, d)     =   (b,c),    the last two being each two-fold degenerate.    It is 

then a straight   forward matter to calculate the different energy terms 

and the results are presented in   Table 4.2-1    and are compared 

graphically with the results of   CD   in Figure 4. 2-2. 

d<a> 

Table 4.2-1 

Dispersion Energy for Benzene for 
Parallel Configuration   (in e. v) 

-2(a, a) 2(b,b) -4(a,d) -E 
(2) 

_3 -3 -3 -3 
5 3 07 x 10 1 17 x 10 2.31 x 10 6 55 x 10 

10 6. 19 x 10", 2. 36 x \0 4.71 x 10", 1. 33 x 10"* 
_ 5 

15 5. 72 x 10 _ 2 18 x 10 , 4.36 x 10 ° 1 23 x 10 „ _7 -7 -7 _7 
25 2. 74 xlO . 1 04 x 10 2.09 x 10 5 87 x 10 ' 
50 4. 34 x 10 1 65 x 10 3.30 x 10 9. 

-9 
29 x 10 
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Dnrr.. d (A) 

Figure 4   2-2   Dispersion Energy for Benzene  in Parallel Config- 
uration (Triangles are CD results) 
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It may be seen that the above results  are consistently    3/5   the 

values  obtained   by    CD   but that once again,   the qualitative behavior 

is identical 

Let us now calculate the first order perturbation energy for 

the interaction of two benzene molecules.    As we have seen earlier, 

(Equations  (2. 1-13)  and (2. 2-5))    this  is  given by the Coulombic inter- 

action between two charge distributions and each charge distribution 

consists of a uniformly charged ring having a total charge of    -be 

and six charges of     +e    equally spaced around the  ring. 

In order to evaluate the electrostatic interaction we make use 
15 

of the following expansion      ; 

n«.»b    Kit* t lml)!lr>»- |mi)'(ru •» hhj, 1)1. (r, b , I m 0 I (rb- 1ml) \ (n b t InuU!     *        \ 

r "» * l"\b «-' 
(4.2-1) 

in which the quantities     D   (S) ,     are the  representation coefficients mm 
for the three dimensional rotation group and     S     is the rotation that 

takes the  ring from its given orientation into a suitably chosen stan- 

dard orientation.    This expansion is valid so long as the separation 

between the centers of the rings,     r      ,      is greater than the diameter 

of the rings.     The quantities      Q        are defined as follows; 

15. MTGL,    p.   846 
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Q•   -   Ee.rr Pn
m(cos6^e    * (discrete chafes) 

=    j j J p(r,0,0)rn P^lcose1  e""^ r2 <;'un6 dr<jDd(ZJ 

(continuous    charge diS+ribution, pl<~,6,0)) 
(4.2-2) 

As our standard configuration let us take the ring to be centered at 

the origin and lying in the     x-y     plane.    It is then a straightforward 

calculation to evaluate the quantities     Q and the following result 

is obtained: 

Q^   »   ?.n P•(0)[l + cos ?£- +• Zcos^ ¥ (_,r- <bSn (4.1-4) 

m. where     a     is the radius of the ring and     P   \0)     is the associated 

Legendre function of zero argument.     It may be readily seen that 

Q is zero except for     m   = ±6,   ±12,   ±18         Since      | ml  < n 
n 13 

we see that the leading term in the series     (4. 2-1)    is  1/r  ,    .      It ab 
(1) 

inay thus be concluded that     E which arisee froin the 

pi-electrons may be neglected. 
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C ONC LUSIONS 

The use of   FEM MO's     and the London approximation for 

obtaining the dispersion forces between conjugated molecules which 

arise because of the presence of mobile pi-electrons gives results 

which are in good agreement with the more elaborate calculations of 

CD     which employed      LCAO    MO's    and did not make  use of the 

London approxiination.     The principal difference between the results 

is a scale factor,   the present calculations giving results approximately 

3/5   of the  values obtained by    CD.     It may be pointed out,   however, 

that the energy levels of the molecules as given by the LCAO    method 

are proportional to the exchange  integral,        A which is treated 

as an empirical parameter. CD   employed a value for     £       of 

-40   kcal/mole    which was obtained by fitting data on resonance 
16 

energies      .      However,   in order to fit the spectroscopic data for the 

polyenes it is necessary to choose a much larger value of   -90   kcal/ 
17 

mole      .      If   CD    had employed this value all their results would be 

decreased by a factor of   4/9.      It may be concluded that except for a 

scale factor the two methods give nearly the same results. 

In this connection,   it is necessary to point out that in his 

treatment of polarizabilities Davies employs  more exact    LCAO MO's 

which include the effect of overlap and that the energy parameter is 

16. Mulliken,   Rieke and Brown,   J.A.C.S.   63,     41 (1941). 

17. Scherr,   J.   Chem.   Phys.     21,     1952 (1953). 
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here adjusted to fit spectroscopic data. It is encouraging to note 

that in this case the results of the two methods agree within a few 

per cent. 

In the case of ethvlene and acetylene the complete dispersion 

energy including the effects of sigma-electrons was calculated.    The 

results are in fair agreement with the dispersion energy as given 

by the Lennard-Jones potential when fitted to data on viscosities. 

It may be concluded that the methods outlined in this thesis 

provide a simple understanding of dispersion forces between conju- 

gated molecules and permit at least a qualitative description of their 

behavior. 



COEFFICIENT OF INDUCTANCE 

The  magnetic energy between two current loops    a    and    b    is 

-/i. r i vv u ^ $ r 
• it 

^   Ct, 
(1) 

=  UbV 
where    L   ,     is the  coefficient of inductance.     This  may be generalized 

ab ' 5 

for the case that the  current loops have  a finite  cross  section by intro- 

ducing current densities    j      and   j   • 
' a b 

T    =^ , at   *jrrj WkJi 
V.   VL 

ak 
du-a d-u-j. 

Putting    A = ^/(wrr I„ 11) we  may write 

•ab"    I 
^ff^k^Ld^d,^ 
i"J 

(2) 

(3) 

'4 ^fc 

where    i =   1,   2,   3    denotes the    x.   y,   z    components  respectively for 

the coordinate   system shown  in Figure   1. 

/—~*   **,Z i 

Figure   1    Coordinate System 

Let us now consider a new reference  frame in which each set of 

Cartesian axes  is  rotated leaving origins fixed      The  rotations are 

chosen so as to facilitate the calculations and to make the  orientation 

dependence of the  coefficient of inductance explicit.    We  shall denote 

quantities in the  rotated coordinates  with bars. 

The scalar product of the  current densities may the be written 

?(H(J^%S,(RJ-(R^^^(I^/ (4) 



Here    (R^jk       denotes the    i,   k-th element of the matrix 
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I     - swaa sim^ - simdtCosX,. 

K - 
sm.ofA ccs&,. cos i 

+ ccs a a cos!fA 

siflia,swi!li yftcos!L S"Y 

CCS ««. 5>m/3a 

sm cusi/n /3« 

CCS /3 a. 
/*' 

(5) 

where ^a /Sfc , („. are the Eulerian angles describing the rotation of 

the unbarred coordinate system to the position of the barred coordinate 

system.     (ROil   *s defined similarly. 

It is advantageous to expand the current density components in 

terms of spherical harmonics 

3 3 <x> +>>aK 

/*** - -J-'U 

(2 VAK + i )(2"tltl)| i^ - l/tt..l)!(i;bJt-l/Ub«|)!] lt 

:^URJa 
(6) 

where 

(7) 

1.      C.   F.   Curtiss,     "The Separation of the Rotational Coordinates 
from the N-Particle Schroedinger Equation.     II ;    University of 
Wisconsin-OOR-2 (4 December 1952) 
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We employ the following convention for the  spherical harmonics; 

u     l/J-i 

(8) 

and the associated  Legendre  functions for  integer     u      are defined by: 

>!*(*)- 
2    v' 

t1) *z       d ' 
d*' ̂  + ^ (/-X'J 

(9) 

The   tmantity     1/r   ,     may also be expanded in  spherical harmonics ab 
using the    "two-center" expansion   - 

*'' 

r«b n«.m=0     m= -n< 
Bn„nk

(r«,rt   R) 

(10) 

- ' Cr'a t '"'')'    jn b -* I'M)11 1    '   > , ^ 

2r.ni 1     2n.i,t i   (na- imi)>   (r.t, - li ̂ i   Y^(ft.,A)VBi.*J 

where     iv      is the  smaller of   n      and   n,  .        These  spherical    harmonics 
*• a b r 

may be  related to the  spherical harmonics  in the  rotated coordinate  sys- 

tems  in the  following manner; 

Yfla(eft,0J- „$_n,D*{R*WnYn; (§.,&) 

with a similar expression for        Yt   (£\   0j .       The quantities   D  *(R«.)m m 

are the  representation coefficients  for the three dimensional rotation 
3 

group     and are of the  form. 

D a(FU G d i Pa.) rna r 
imSc 

(12) 

2. R„   J.   Buehler and J„   O.   Hirschfe lder,   Phys     Rev. ,   83, 628 (1951); 
85,   149 (1952) 

3 E„   P.   Wigner,   "Gruppentheone und ihre Anwendung auf die Ouan- 
lenmecnanic  aer Atomspektrer",   Edwards Brothers (1944).     For 

a suminaryof thei r  important features  see Hirschfe Ide r,   Curtiss, 
and Bird;    "Molecular  Theory of Gases and Liquids",   Wiley (1954), 
pp.   905-912. 
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n«. where the    d    l'Ai !„,„.« are,   except for a normalization factor,   the Jacobi 

polynomials and are given by: 

d' X(f. =     (-l)m     [(na-*^A).'(nft-m; 

(13) 

dJTlJ  ffCflSftA "g,v f. 

The expressions for negative values of the indices are as follows: 

d     <Mm„m    -    (-0 d     (rr-pa)„am 

(14) 

d^u.-n,- (-irT'"d""^ 
If we now substitute equations  (6),   (10),   and (11) into equation (3) 

and make use of the orthogonality of the  spherical harmonics; 

0    0 
Y"" (e^)K, (B,{>)simbd6d{>- <L-<L. (15) /*/*.'   >v 

we obtain the following result after simplifying: 

00 **U +i.b *-n<. 

U-AE       E       £       £    L 
"V - ,,Y1«I t-^t - l^bl 

*} 
[     (Hn- IIT'J)1 (ru- imwilKoar lml)l (rq t- I mill 

.'"'«+im^l\!(hl>+. Irf.k|)l(ria-lml)!  (nf Irn')1 /2D^(Ra)WarnD
r'b(Rb) 

(16) 

mfcrn 

00   oo 
3 

</t, 1 • I 
£   teJiK(RJU J J   ^^^^fZ^^^t^^rlvU^n 

This expression has the advantage that the orientation dependence of the 

coefficient of inductance has been made explicit and the integrals which 

are  required may be evaluated once and for all. 
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Let us now consider the  special case of two circular current loops, 

each carrying unit  current and having negligible cross section.    We 

make the further  restriction that the separation,     R,   is greater than the 

sum of the  radii of the two loops,   in which case the two-center coef- 

ficients have the  simple  form: 

r—, Iml 
ib tm 

(-11 (nft+-nb)! ra    r« (17) 

(,na + imi)linb+lmOi  R "»-»• ^ >> + ' 

It: is convenient to choose the barred coordinate  systems  so that 

the current loops  lie  in the    x-y    plane and are centered at the origin 

^£ 

Figure  Z   Orientation of Current Loop 

(Figure  2).    The  current density components  may be written in terms  of 

delta functions; 

WWl " rA Sun 6. 

( 7 \ A|L- T/zUlr.-Cj ^ 
(18) 

Pa r
a   sun ©a 

where    C^ is the  radius of the current loop.     Using Equation (7)   we 

easily obtain the  following results; 

with similar  results for current loop   b 

If we now define   (K\I  to be; 

<J(ry- Ca) 

ot>v- a) (19) 

V^u; 
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then upon substitution of (19)   into (16)  we obtain the following result: 

Cnq-i)!(ni.-)J! friflt imDjfhb-fiml)! 

(nftti)! (hb«-0! (h».-iml)l(nb-li»>0! 

°.IU       »r' j-,na + r\bt-'       C 

D 
D 

(21) 

We have here introduced the  representation coefficients as given in (12) 

and have set        t^ - £.   «. O »   since by symmetry the  results must be 

independent of      \^    and        ob 

This expression may be  simplified further using the following 

identities; 

+ ^L_d°(/n( 
xvr\ A sm A 

(22) 

to give the  result 

, V 7"         . -•_•__ •0     2irjatna-nib)1.   Pn„(c) PnJO) • b 

(na/n> odd) 

i_ - sm LM,o^ft--b:j^12 rno i^jG"b (^b)-<x:2l 6^(4*] Fn"[(/Sj,yj 
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where we have introduced the symbols: 

F"l /»>- i^ prcc0S/fl) 

and have used the fact that   P* (0) is zero when   n   is odd. * 

The quantities   (£Ki  may easily be shown to be: 

(£„    '     C0S/i& coy*,   cos- (arA - rfi.)   +   sm«4sw>jb 

#?„   =      Cos/3* sw  (<*«- <*i) 

^e ?2 cos  (aa - uL) 

(24) 

(25) 

Finally,   by using the  relations: 

Pn
mt'(cDS^= -  A- P^Wf)   +   rn Cot/6   P^U^O     ;       m*0 

d/3 

(n-m M)(nttti) Ld 
j- Pn

m(cos/a)+ mcot^ P^Ccos/3) 

Equation (23) may be shown to reduce to the following 

(ntt,«i, odd) J 

(26) 

ID  2 

pr.»*i      tun 

Cos[mc«.-«b)]Pn|L(cDs^)Pn
,;(ws/8v)   -^J^r      (27) 

If     (n-m) is even, 

Pm(o) H 
in- rn 

2 
tn + m)J 

2n(iOML)|(A-l)| 
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More explicitly: 

La\»   ~     ^tt-Ucos^ cosySb -   siniyJ* s«yfc «*(«*-<*fc)] _   ., , 
c£ ct 

,^z f'3 cos (ja- o<b) sVn./Sb lsm^ai 5s'm.3^«.)] 

- ^   co^,, (.5 cos 3,v +- 3 oo5,sa) J 

3 cos (aa-«:b) si/n,/3a C SurvAh t 5 Sm3j8kl 

- 4  cos- ^ C 5 cos Z/S b +-3 ccs^J 
R5 

|28) 

+ 

so that the    1/R3   term is seen to represent the interaction energy of 

two   ideal   magnetic dipoles. 
I 

CASE    I       of^-^rrfb^k-O CASE II        ^^fO^^Ak.   ^/2 

Figure  3    Special Cases 

The results for the two special cases illustrated in Figure   3 are 

as follows: 

CASE I. 

in&,nb odd) 

CASE II. 

-al> 

(r>i,pi,ocld]     (nnortd) 

r>b*-l 
t  
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