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PI-ELECTRON FORCES BETWEEN
CONJUGATED DOUBLE BOND MOLECULES*

EUGENE FREDERICK HAUGH

Under the Supervision of Professor Joseph O. Hirschfelder

ABSTRACT

The dispersion forces between conjugated moleculeg are
treated in an attempt to obtain a simple explanation for i\heir compli-
cated angular dependence.

Such forces are of particular interest because of the great
mobility of the pi-electrons along the network of carbon ions. Pre-
sumably such forces are unusually large and calculations by Zoulson
and Davies (Trans. Faraday Soc. 48, 777 (1952)) have shown this to
he true. They used gquantum mechanical perturbation theory and used
molecular orbitals which are linear combinations of atomic orbitals
and evaluated all integrals in closed form. Their results show that
these forces have a highly directional characcer, but because of the
complicated nature of their calculations the angular dependence is not
easily understood.

Recently very simple molecular orbitals called free electron

molecular orbitals have been developed for the pi-electrons which treat

the pi-electrons as particles in a one dimensional box. These may be
employed to guod advantage fcr calculating the Zispersion forces to-
; . gether with an approximation suggested by F. London (J. Chem. Phys.

ﬁ, 305 {1942)) for evaluating the matrix elements which appear in the

A i o NI B 7Y A NSRBI A L8 T TL A O L0

> perturbation treatment. The matrix element is regarded as repre-
[ senting the Coulombic interaction between charges whose location and

magnitude are determined from the product of the ground state and

excited state wave furcctions. This provides a simple and convenient

This work was carried out at the University of Wisconsin

Naval Research Laboratory and was supported by Contract
N7onr-28511.
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method for calculating the dispersion forces between conjugated mole-
cules.

The results of the present calculations for linear polyenes and
benzene are in essential agreement with the results of Coulson and
Davies, the principal difference being a scale factor. Agreement would
be improved if the exchange integral which is treated as an empirical
parameter in the Coulson-Davies molecular orbitals was obtained from
spectroscopic data rather thanfrcm data on resonance energies.

It is also of interest to calculate the dispersion forces arising
because of the interaction of sigma-electrons of one molecule with the
pi-electrons of the other. It is found that these forces generally domi-
nate the sigma-sigma forces but are less important than pi-pi forces.

For long polyenes an approximate treatment is possible which
shows that to a first approximation the pi-pi forces are dominant and
the energy of attraction behaves as the square of the ordinary dipole-
dipole potential energy.

The polarizabilities of the linear polyenes are also calculated

nsing free electron molecular orbitals aand the results obtained agree

within a few percent with the results of Davies (Trans. Faraday Soc.

48, 789 (1952)).
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INTRODUCTION

The subject of intermolecular forces is a subject of increasing
importance and interest®. In principle, once the intermolecular
forces are known, it is possible to calculate the bulk properties of
matter such as the equation of state and the transport properties.
Generally speaking, intermolecular forces are of quantum mechanical
origin so that their direct calculation is frequently difficult and may
require severe approximations. For this reason, it has been the
practice to use quantum mechanical methods to deduce the general
mathematical form of intermolecular forces and to insert empirical
parameters to be determined by fitting experimental data to the
theoretically obtained expressions for the bulk propertiea of imatter.

One of the important approximations that is nearly always made
is that the potential energy of interaction may be given by the sum of
two terms, one representing attraction and the other representing
repulsion. The repulsive term arises from the Pauli principle.
Qualiitatively speaking, when two molecules are close together there
is an overlapping of charge clouds rasulting in regpulsion. This
energy term has an exponential dependence, although for convenience
it is often approximated as an inverse power in the separation. These

forces are often called exchange forces.

For a recent summary of intermolecuiar forces and their
methods of calculation see Hirschfelder, Curtiss and Bird,
"Molecular Theory of Gases and Liquids" ('MTGL), Wiley
(1954), Chapters 12, 13, and 14.
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Generally speaking, the attractive term is much more long
range than the repulsive term. If the molecules are non-polar the
attractive energy may arise from the interaction of permanent qua-
drupoles or from the socalled induced dipole-induced dipole inter-
action. The latter may be viewed classically as follows: Although
a non-polar molecule possesses no permanent dipele moment, at
»ny instant there is a dipole moment and this induces a dipole moment
in another molecule resulting in attraction. Such forces are called
dispersion forces and generally vary as the inverse z!xth power of
the separaiion.

Dispersion forces are usually treated by quantum mechanical
perturbation theory and for the spherically symmetric molecules
are not orientation dependent. ILondon has treated the dispersion
forces between molecules by picturing a chemical bond as a harmon-
ically bound electron and we shall discuss his treatment in Section
1.1. This is a reasonable approximation except for the socalied
mobile electrons which are present in compounds containing conju-
gated double bonds. These electrons have freedom to wander
throughout the network of the conjugated double bonds and therefore
represent extended oscillators. Because of this it may be anticipated
that the resultant dispersion forces may be much larger than for
localized electrons and are more angularly dependent.

Coulson and Davies’ have already considered this problem
and have calculated the dispersion forces between conjugated polyenes
and benzeue molecules which arise from the mobile or pi-electrons.

Their treatinent employs LCAO molecular orbitals and the various !

§. C. A. Coulson and P. L. Davies, Trans. Faraday Soc. 48,
777 (1952); P. L. Davies, Ph.D. Thesis, Kings College,
University of London (1949).
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integrals which occur are evaluated in closed form. The calculations
are complicated and the angular dependence of the dispersion forces
is not simply understood in terms of their theory. Their results show
that these forces are much larger than those arising from localized
electrons and have a strong orientation dependence.

1t is the primary purpose of this thesis to examine this problem
and to attempt to obtain a more convenient method of calculation. At
the same time it is found possible to obtain a relatively simple under-
standing of the behavior of these forces. It is found that to a good
approximation the molecules may be viewed as interacting with a poten-
tial energy which is the square of the interaction energy of two dipoles.

We shall also consider the dispersion forces arising from the
interaction of localized electrons in one molecule with the mobile
electrons in the other. It is found that thes: forces generally dominate
the forces arising from the interaction of localized electrons with

localized electrons.

\ e




GENERAL BACKGROUND 1.

1.1 Perturbation Treatmen*

In this section we shall discuss the treatment of iniermolecular
forces using quantum mechanical perturbation theory. At the same
time we shall obtain an expression for the polarizability and show
their intimate connection.

We shall concern ourselves principally with the intermolecular
forces between molecules which are nonpolar and are in their grourd
states. We shall always regard them as fixed in space and shall not
take account of vibrations of the nuclei, i.e., we assume that a
Born-Oppenheimer separation of coordinates is valid.

In deaiing with intermolecular forces the molecules are suffi-
ciently separated to make a perturbation calculation correct. Further-
more, it is not necessary to antisymmetrize the wave function since
we may assume that there is no overlapping between the wave func-
tions of different molecules. We may then employ a simple product
of the electronic wave functions cf the individual molecules as our
zero order wave function for the system and treat the potential energy
of interaction as the perturbation. At very small separations when
charge ciouds overlap, exchange forces arise resulting in strong re-
pulsion. This is of importance in collision problems and will not
be considered here.

Consider now two molecules, "A" and "B". Let « and A
be summation indices for nuclei, and a and b be summation
indices for the electrons in "A' and "B" respectively. The

potential energy of interacticn is then given by:

Ma Mg . /:‘f‘"nb__ Ma  Ma . ma ""_.‘ 2
- SFane Fiae Fiye Fie .
A= fpeg '”4/3 az=1 b=t Tab o=l ! ra/a az1 b=t ab ( .1-1)
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where N is the number of nuclei and n_ the nuinber of elec-
trons in "A", and Y\/g. is the number of nuclei and nb the
rnumber of electrons in "B". Here Z,e and Zpe are the
charges of the nuclei in "A'" and "“B" respectively. The zero
order wave function for the system of two molecules is:

‘QIS w = w: wog (lo 1-2)

where w: and Ufoe are the electronic wave functions for
the isolated molecules in their ground states. Performing the per-
turbation calculation in the usual fashion, we obtain for the first and

second order perturbation energies:

e - WA W) o (Whwl) det gc® hatea)
2
o o _y | Jwtet e (i) den ae] i)
(W,§)# (0,0) A, E?—E: -E5
where W‘.A is the wave function for molecule "A" in its i-th
electronic state with enexrgy E? and ii/‘; is the wave function for

molecule "B" in its j-th electronic state with energy Elj3 :
In order to facilitate the evaluation of the matrix elements in

the above expressions it is cus?omaryl to expand the potential

energy of interaction (l1.1-1) as a series in reciprocal powers of

the separation between t~c two molecules. This treatment is valid

as long as the separation between the molecules is greater than the

1. H. Margenau, Rev. Mecd. Phys. 11 1 (1939). See also
MTGL, p. 923.
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sum of the dimensions of the two molecules. In the case of the
first order perturbation the lead term is that involving quadrupole -
quadrupole interaction. If this is averaged over all orientaticns
with equal weighting it is found to vanish. For this reason there has
been little interest in calculating the first order perturbation. It
will clearly have little effect on equation of state calculations
inasmuch as it is the average interaction which is of significance;
however, it does affect the transport properties, since attractive and
repulsive collisions have the same effect. The first order term is
also of importance in crystal structure since quadrupole-quadrupole
energies vary as the inverse fifth power and may dominate the second
order term which varies as the inverse sixth power, as we shall
shortly see. The present work, however, is concerned principally
with the second order perturbation term.

In evaluating the matrix elements in (1.1-4) the lead term
in the potential energy of interaction which contributes is that repre-
senting dipole-dipole interactions. lLet R be the separation be-
tween the molecules "A" and "B" measured from convement
origins. Introducing parallel Cartesian coordinate systems with

z-axes lying along R, the lead term in (P, may be written:

ma Mh

- % zz (eza-zb"x'a.y'b'yaYb) (1.1—5)

a=f b=l

This is correct as longas R > r, + T Inasmuch as this

varies as the inverse cube in the separation,bthe second order term
is seen to vary as the inversc sixth power, since it i8 the squares of
the matrix elements which here enter. The second order term is
called the dispersion energy.

It should be noted that the only part of Qe which enters

into the second order perturbation term is that involving electron-
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electron interaction, because of the orthogonality of the wave func-
tions. The integrals which appear when (1.1-5) is inserted in
(1.1-4) may be recognized as giving the dipole moment associated
with the electronic transitions of the two molecules. The same inte-
grals also appear when we treat the polarizability of molecules
quantum mechanically.

To do this, let us consider a molecule with no permanent
dipole moment which is placed in a constant elaciric field F along
the axis of a molecule, which we take to be the z-axiis. In the case
that the induced dipole moment lies in the same direction as the

field (which is true for molecules with sufficient symmetry) we
have:

pl s F (1.1-6)

where A, is the polarizability in the direction of the field. The

increase in the energy of the molecule is given by:

(1.1-7)

We may also calculate this quantum mechanically using perturbation
theory. In this case the perturbation is F 2; e; 2%, where

the summation is over all electrons in the molescule. If we define:

Fmn = [ Wi (Si€i2) Wa o (1.1-8)

then by perturbation theory the increase in the energy of the molecule

above its ground state is given by:
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AE‘:F(Pi)oo-FzZ’M (1.1-9)

meld Em‘ Eo
Since we assume that the molecule has no pérma.nent dipole moment

(Ma)eo ie zero and comparing with (1.1-7) we see that:

= 2 l(/*g)om\z 1.1-10
g m#o Em” Eo ( thT )

London2 made use of this close relationship to develop a
simple method for calculating dispersion forces between molecules
having localized bonds, i.e., the electrons may be regarded as
being restricted to a given bond and not free to wander about the
nuclear framework of the fnole cule. London supposed that in this
case a chemical bond may be viewed as containing a harmonically
bound electron with different vibration freguencies J, and V,
perpendicular and parallel to the bond axis. It then follows that
the polarizabilities N and oy are different in the two
directions. The following result was then obtained for the dispersion

energy between two such bonds:

(=L -1 ~Mm)(sin 8, sinBg cos(®, - Bg) - 2 ceshy, cosd:

B o it + 2(L-M) cos? B, +3(L'-M) cos?Bg
R
+ L +L +4M J
{(1.1-11)
where R is the distance between the centers of the two
bonds, 54 and ®a specify the orientation of one bond and

2. F. London, J. Phys. Chem. if’; 305 (1942).
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b and Da specify the orientation of the other. The
quantities K, L, L' and M are defined as {ollows:
(VI\ (\) \B
h A LYY L]
K= 2 (an‘ (dh)a b B vk A
& * (Vu)a + (Wi)s
v , »), W)
L - % (dli)A (dL)B M L oy %. (dL)A(d"‘B _L_‘L,'.A_.I—“—;B—-
Fidat Vi) (pL)A*\Vu)B
M = % @), K)s NUANICATS
(DJ_)A" (VL)B {(1.1-12)
Loondon then assumes that /, = V, to a first approximation and

suggests that the vibration frequency may always be taken to equal
100000 cm”' for all bonds within a 20 per cent error. If

equation (1.1-11) is averaged over all orientations,

E“)-——S—Z—R—-&(K-}ZL*?.L'*“"M) (1.1-13)

and with the above approximations:

E¥= - -l—’alf%_". [(du)A 110 (d'ﬂ,g][(du)a t+ 2 (dt)a] (1.1-14)

The bond polarizabilities to be used are those due to
Denbigh3. some of which are listed in Table (1.1-1). This
then provides a convenient method for estimating the dispersion

energy between molecules possessing localized chemical bonds.

LR R S

3. K. G. Denbigh, Trans. Faraday Soc. 36, 9356 (1940).
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Table (1.1.1)

Bond Po larizabilities

Bond oly x 1025cm3 o, x10 ZE.’cm3
(C-C)aliph 18.8 0.2
(C-C)arom 22.5 4.8
C=C 28.6 10.6
C-H 7.9 5.8

This method does not apply to molecules possessing

delocalized electrons, such as the

double bond molecules.

pi - electrons in conjugated

Furthermore, the expansion of

as a series in reciprocal powers of the separation will not be

correct because the pi-electrons are free to move along the

network of carbon atoms, so that the separation will be com-

parable to the extent of the wave functions in most cases of

interest.
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1.2 The London Approximation

We have just seen that in certain cases it is incorrect to
expand the potential energy of interaction in a series of reciprocal
powers of the separation between the two molecules, and that the
simplified London theory is not valid for molecules having delocal-
ized electrons. In order to circumvent these difficulties, London2
has suggested an alternative approach, which we shall now discuss
in detail.

London treats matrix elements of the type appearing in
(1.1-4) with neither i ﬁor j equal to zero since the terms
in which these are zero are usually not of significance. Let us

now consider such a matrix elenient:
(0,01@l 1, 9) = [WA W) @ (W2 WE) deh des (1.2-1)

in which we have taken the wave functions to be real, as will
always be the case in what follows. The wave functions for

molecule '"A'" are themselves orthogonal and the same is true

for the wave functions of molecule "B'. Therefore, as has
aiready been roted, ithe only terms in ¢, which contribute to
the matrix element are those arising from electron-electron

interaction:

3
s
3

get (1.2-2)

If we now define a set of one electron charge densities associated

with the transition, namely:

e, A— o o
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(pa)e = @ [l wh) deh gct .o deh aeh - aeh,
(1.2-3)
-]
(), = @ J(W2 WP)de® aey el anl o an,
then the matrix element {(1.2-1) may be conveniently rewritten:
ma  mMb A e
( i) (a')
(0,01 Pel i, §) = L & j—’i—;—ﬁt—i de? dr? (1.2-4)
- ” ab

The ir.’  :grals in this expression are seen to represent the
Coulombic interaction between the two charge densities, (p:;\a

and (p,;),. . The usual approach would be to express the
charge densities in terms of spherical harmonics and to also expand
l/rab so that the resulting integrations become trivial. This
suffers from the difficulty that in the case we wish to consider we
must employ several different forms for the expansionof l/rab
arising because of different relations between the separation
between the two molecules and the spatial extent of the wave func-
tions. London has suggested an approximation which is8 much more
convenient.

The charge density functions are positive in some regions and
regative in others, and these regions may be expected to have
simple boundaries, Consider now one such region. We first inte-
grate the charge density over this region to obtain the effective
charge associated with it. We then determine a position in space
at which to localize this effective charge by calculating the first
moment of the charge density region. We then replace our initial

integral (l.2-4) by a sum of terms representing the Coulombic

4. R. J. Buehler and J. O. Hiraschfelder, Phys. Rev.

83, 628, (1951); 85, 149 (1952).
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10.

interaction between these effective charges located in space according
to their first moments. This, then, is the London approximation.

This approximation is seen to be equivalent to an expansion
of a charge density region in inverse powers of the separation in
which we ignore all but the lead term. This is correct as long as
the separation between the two such regions being considered is
greater than the sum of the dimensions of the two regions, as will
generally be the case. By including more terms it would be possible
to extend the method.

It is reasonable to use the first moment of the charge density
region for the following reason. At large separations such thatan
expansion of @, in reciprocal powers of the separation is jus-
tified, the lead term is given by (1.1-5) which is linear in the space
coordinates. For that reason we may say that the first moments of

the charge densities will give the best approximation for the integral.
Let us now consider the first order perturbation term E(l)
as given in equation (1.1-3). When the same analysis as above is

applied we find that we must evaluate integrals of the type:
A 8
J(-P“\)a; (E"’\)b dC: dt? (1. 2‘5)
ab 5

in addition to simpler integrals involving just one electron which
arise from the electron-nucleus interaction terms in :
We find, however, that (p}), and (Poc)s are everywhere
positive, so in applying the London approximation we must obtain
charge density regions using a different criterion than above. One
method would be to construct different regions by requiring that

in a given region the charge density be greater or smaller than

some suitable mean value. Then for each such region we first

determine the effective charge as before, and then locate the
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effective position. Instead of using the first moment of a given
region, it would be more correct tc use the second moment for the
following reason. At large separations when De may be expanded

the lead term represents quadrupole-quadrupole interaction. This
term is quadratic in the space coordinates thus suggesting that the
second moment represents the best ap “~oximation.

The first order perturbation term may also be evaluated by
taking the classic2l interaction energy between the quadrupole moments
of the given molecules. The quadrupole moments of many molecules
are becoming known through recent developments in the field of the
pressure broadening of microwave spectras. Such an approach,
however, is only satisfactory for long range forces.

Lastly we must consider dispersion energies which arise as
a result of the interaction between localized bonds in one molecule
and delocalized bonds in the other. This may be accomplished by
combining the two methods of London. Let us now consider the
interaction between a localized bond in molecule "A", and an
electron in molecule "B" which is delocalized having a wave function
with a large spatial extent. We make the further assumption that when
we regard the chemical bond in "A" to be represeunied by a
harmonically bound electron, that only one transition of this
electron is of importance in determining the energy of dispersion.
This assumption is generally found to be correct for calculations

that have been perforimed. We shall also assume that the vibrations

5. MTGIL, p. 1020-1035.
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inthe x, vy, and z directions, the 2z direction being along
the axis of the bond, are independent. Let us now consider the inter-
action between the electron of molecule "B" and the electron of
molecule "A" when it i8 undergoing a transition in the x dir-
ection only (we assume as London did, that V= VY so that

the energies associated with transitions in the x, y, and z

directions are the same). The matrix element may then be written:
(0,01 @eli, ) = f(w,,‘ v') ;e% (! w;) dr} de® (1.2-6)

The first step is to apply the London approximation to the integration
with respect to the electron of molecule '"B'". This is easily seen

to give:

(0,0l @eli, )= 2. eef.(f)]d/‘ M Mode ! 1.2-7
e ’ 1 4 ° [Ro’(l)]s Zpi Ta ( )

where EO: (2) is the effective charge of the {-th charge density
region associated with the O-j transition of the electren in
molecule "B'", X:(ﬂ) is the x-coordinate of it with respect to
a coordinate system with origin centered on the bond in molecule
"A? and z-axis directed along the axis of the bond, and h,;()
is the distance from the origin to the 1l-th charge density region.
We have assumed that x‘: is much smaller than I/rab so that
an expansion of ”rab is correct. This will always be the case.
Using the definition (1.1-8) the matrix element mav he written:
A
(#e)oi XB (2)

(001RIL4) =T €, (0) Lok
1

LRo;‘l”]s of (1.2-8)
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Including transitions in the y and 2z directions as well, the
expression for the dispersion energy becomes:
3 8 2
el X2 € ) Vo] u)} z[ €6 (a)zo.(g}
g® - 'ut)m[z R0} } * ('uy) [; [R uy' +( l)“ ; iﬁoi(l)]'
by h
740 h"o +hot oj (1.2-9)
Since we have assumed that only one transition counts, then using
(1.1-10) we may rewrite the result in the form:
B B g2
€l (1) X® (u\} [ €Ly, ,(4)” ) [ e‘,,(nzo,(n}
- Z dl{[g "W M (R t0)]? Ml ; l_R“(n]S
EW= -
440 e+ w3 /o) (1.2-10)
where we have used the fact thai:
2 (p1)a A . 2 (i)
= = J - ———re——
4 ot hw A " hot (1.2-11)

The value of l)oAl may again be taken to be 100000 cxu-l.

In summary, we have at hand approximate methods for obtain-

ing the dispersion forces between molecules for three cases:

a) interaction between electrons in localized bonds with electrons
in localized bonds, equation (1.1-11});
b) interaction betwesn electrons not in localized bonds with
electrons not in localized bonds, page 9
c) interaction between electrons in localized bonds with electrons
not in localized bonds, equation (1, 2-10).

The extent to ‘which we may properly subdivide our problem
and consider the localized and delocalized electrons independently

is dependent upon the molecular orbital theory of molecular structure

whirh we shall now discuss.
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1.3 Theory of IMolecular Orbitals

In this section we shall briefly summarize the method of mole-
cular orbitals and give the results of this method for hydrocarbons con-
taining double bonds.

The theory of atomic structure has been worked out using the
self-consistent field model. In this model one asgumes that the
electrons can be considered one at a time, and that each electron has
its own wave function called an atomic orbital. One starts by assign-
ing atomic orbitals to all the electrons except one, the particular
choice of the wave functions being a matter of judgment. Then the
quantum mechanical Hamiltonian is set up for this one electron and
the potential energy is taken to be that of the nucleus plus the charge
density of all the other electrons obtained from their wave functions.
This one electron problem is then solved to give a first approximation
for the "correct™ wave function for this electron. In this manner one
obtains a set of first corrected atomic orbitals. These may now bs
used to obtain a set of second corrected atomic orbitals, and aso forth.
This process is repeated until there is no apprzciable change in the
atomic orbitals.

This type of approach has also been used with success in
treating molecular structure. The various electrons in a molecule
are allotted to molecular orbitals which are the solution of a one
electron Hamiltonian. Because of mathematical difficulties, various
further approximations have been made in practice; more will be said
of this later.

In studying molecular structure one thing is apparent at the

outset. The constancy of such quantities as bond length, the existence
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of quantities such as bond energies, etc., suggests that the quantum
mechanical structure of certain types of bonds is the same in al]
molecules.  We thus arrive at the concept of a localized molecular or-
bital. In a carbon-hydrogen bond, for example, we assume that there
is a molecular orbital whose zpatial extent includes the carbon and
hydrogen ions of the bond and is negligible elsewhere. Nothing mere
need be said about such molecular orbitals except to point out that
these molecular orbitals cften are cylindrically symmetric with respect
to the bond axis, and are then called ¢ molecular orbitals. This is
always true for C-H bonds inorganic compounds. The molecular
orbital is approximated as a linear combination of the 1ls atomic
orbital of the hydrogen atom and a 2p - 28 hybrid atomic orbital of
the carbon atom.

In dealing with unsaturated compounds one must alse consider
the structure of the carbon-carbon double bond. This is regarded as
being composed of electrons in two different types of molecular orbi-
tals. One type is a linear combination of the 2p-28 hybrids giving
a o -type molecular orbital. The other is a linear combination
of 2p atomic orbitals and changes sign when reflected in a plane
containing the bond axis. Electrons in molecular orbitals of this
type are called 7 -electrons. A further difficulty occurs in treating

t -electrons. In treating unsaturated compounds cor ...ing conju-
gated double bonds, severai pairing schemes are possible, and the
concept of a localized chemical bond no longer holds. Instead it is
necessary to take a linear combination of all the 2p atomic orbitals
thus giving the electrons mobility in the sense that their molecular
orbitals extend throughout the network of ccnjugated double bonds.
The energy of such a structure is lower than it would be if the bonds
were localized; the decrease in energy is called the resonance ;

energy, or more correctly, the delocalization energy.

o it o+ e Y w5 o -
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In obtaining the molecular orbitals for the pi-electrons one
takes a linear combination of the 2p atomic orbitals and adjusts the
coefficients so as to give the lowest energy. This procedure has been
worked cu. ‘or many cases and we now give some of the results for
linear polyenes and for benzene.

Coulson6 has treated the problem of a linear conjugated
polyere with 2m carbon atoms, where m is an integer. He obtains
molecular orbitals which are linear combinations of the 2p atomic

orbitals which are given by:
. - Cla
X, =yc¥n EINO ! (1.3-1)

This is the atomic orbital of the j-th pi-electron for the x-th
carbon atom. rdj is the distance from the j-th electron to
the a -th nucleus, the 2z axis being perpendicular to the axis
of the molecule, and c is a constant which may be taken to be
equal to 1. 625/30 where a, is the Bohr radiue. Using theae

2m atomic orbitals he obtains 2m molecular orbitals given by:

2m

B = T V52m snlzmn) %eld) ©(1.3-2)

Eal

with the associated one electron energies:

ir
e.': = ZP Cos(2m+|) (1.3—3)

Here /6 is an integral called a resonance integral which may
be estimated empirically to have the value -40 kcal per mole.

- - - -

6. C. A. Coulson, Proc. Roy. Soc. 169A, 413 (1239)
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In this treatment it is assumed that the interaction of the pi and
o -electrons is negligible. This is the only type of polyene which
we shall consider in our treatment of intermolecular forces.
The pi-electrons of benzene may also be treated by the
method of molecular orbitals. In this case there are six pi-electrons
and if we use the same atoraic orbitals as given by equation (1.3-1) then
the molecular orbitals are given by:

o 2raiv=7

G- L Ae ¢ X () (1. 3-4)

a=1

with tue associated one electron energies:
e, = 2p cos (3F) (1. 3-5)

The above molecular orbitals are the ones employed by
Coulson and Davies in their treatment of dispersion energies between
conjugated hydrocarbons. Recently a different type of molecular
orbital has been introduced which is more satiafactory for the calcu-
lations that follow because of its greater simplicity. Moreover, it
is in no way inferior for predicting the energies of excited states
and contains no constants which require empirical determination.

This approach is known as the free electron model approxima-
tion. The delocalization of the pi-electrons is taken literally and
they are regarded as free to move in a one dimensional box which ex-
tends along the skeleton of the conjugated carbon atoms. Thus the
skeleton for a benzene molecule is essentially a circle around the
bengene ring and for a linear polyene it is a line along the carbon
network. Whenever there is a free endpoint such as the terminal

carbon atom of a linear polyene, the "box" is extended an additional

bond length.

- - . i s A PP
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This model has been successfully used io obtain the spectra of

conjugated moleculexa7 as well as other properties and we shall use

it for the calculation of dispersion energies while -at the same time

emplocying the London approximation.
For linear polyenes with N conjugated double bonds, the

free electron model molecular orbitals (which we shall henceforth

abbreviate as FEM MO's) are given by:

95”"/% m'l%é , 1,2, 2N (1.3-6)
with the energies:
E -« ok =2, 2N (1.3-7)
Imit

Here ) is the length of the one dimensional box and is equal

to (2N + 1)D, where D is the carbon-carbon bond length, which

we take to be conetant, x is the distance along the electron path

measured from one end, and m is the mass of the electron.
The FEM MO's ifor berzene, which we shall regargd as

having a circular free electron path, are given by:

!
RS
G = = csnb
i ne 1,2,3
(1.3-8)
Ppe = _Jl?r' smnb J
7. H. Kuhn, Helv., Chim. Acta 31, 1441 (1948), 31 , 1780, (1948)

J. Chem. Phys. 16, 840 (1948), 17, 1198 (1949); Bayliss,
J. Chem. Phys. 16, 287 (1948); Simpson, J. Chem. Phys.
16, 1124 (1948); Rue—a-enberg and Scherr, J. Chem. Phys.
21, 1565, (1953); Scherr, J. Chem. Phys. 21, 1582 {1953);
Platt, J. Chem. Phys. 17, 484 (1949}, 21, 1597 (1953).
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and with the energy;

Ey M pmct ) h=0,1,2,3 (1. 3-9)
Here ) is the angular coordinate of the electron and C is the

circumference of the ring. Note that for n greater than zero the
molecular orbitals are doubly degenerate.

$ We shall regard all other electrons in the polyenes and ben-
zene 28 being in localized molecular orbitals for which we use the
model suggested by London, namely that the electrons behave as

harmonic oscillators centered at the center of the bond.

S A U ML it WY A > e
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II. MOLECULAR ORBITAL FORMULATION

2.1 Perturbation Treatment Using Molecular Orbitals

In this section we begin by obtlaining niolecular wave functions
in terms of molecular orbitals; then we derive expressions for the
first and second crder perturbation energies as well as for the polar-
izability, in terms of molecular orbitals.

Let us consider a molecule containing 2M electrons where
each electron is allotted a molecular orbital. Inasmuch as the wave
function of the molecule must satisfy the Pauli Exclusion Principle we
must use a determinantal form. The wave function for the ground
state is then a Slater determinant involving the first M molecular
ortibals, which we take to be normalized and ordered adcording to

their energy, and is given by:

@0l 0. aW @0« (1) ©,(Mpwt R N F-2Y
' @, (21a(2) @) pl2) @, (2} (2) G2l pla) 0 Pu (2} p2)
V= o | |
Cozlamla(am) QaMipaMl  @amiacev) @, (am)dlaM) .- Q?M(iM)(&(IM)
(2.1-1)
Here « and p are the usual electronic spin functions. This

wave function may be conveniently abbreviated as follows:

w\ ) ( Q, @, (p& @1 U (p'd>

° JamiT \ » A « Ao (2.1-2)

The energy associated with the ground state is then the sum of the
energies of all the molecular orbitals that are occupied.

All molecules that we shall consider have a ground state that

can be represented as in equation {2. 1-2), which represents a singlet
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state. To the approximation that we are considering, the transition
singlet — triplet is8 forbidden. The excited states we need consider
are then only singlet states, and as we shall shortly see, we need
consider only those excited states in which only one of the molecular
orbitals present in the ground state wave function is changed to a
higher molecular orbital.

Let us now consider the case that the excited state differs
from the ground state by having the moiecular orbital @; instead
of & . In this case there are four possible spin assignments

giving four possible Slater determinants:

T e (Gk ©, @ Lp,---fon)
t T Jamit \ o A o @ e /3
\ (@. ® - G @ CPM)
Ui T Tamt \a a4 e & A p (2.1-3)
\ (@| @, @, Cf‘ Y ‘DM)
E 3(2M\i- o po B «
] (CD, o, 9 @ @M)
R O

Linear combinations of these give the singlet and triplet wave

functions, namely:

Singlet: W, = 75 (U= W) (2.1-4)
WQ = W,
Eriplat: Vo= u, (2.1-5)

|

e e R e e e e e ey 1 P eV o T Y PN WP .
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There are three important properties of Slater determinants

of molecular orbitals that we shall une:

a) All electrons are eguivalent.

b) When integration and summation over spins are performed
on the square of a Slater determinant the result is unity.

¢c) Different Slater determinants or different minors of
Slater determinants having the same order are ortho-
gonal when integration and summation over spins are

performed.

Property a) follows because any two rows of a determinant may be
interchanged without changing the value of the determinant. Proper-
ties b) and c¢) follow from the orthogonality of the molecular orbi-
tals and the spin functions. We are now ready to obtain explicit ex-
pressions for the perturbation energies and the polarizability in terms
of molecular orbitals.

The first order perturbation energy is given hy equation
(1.1-3) where Q. is given by equation (1.1-1). Using the fact
that th= electrons are equivalent the different summations may be

reduced as follows:

ng Ny i r, hg i
f(w;‘ b EZ Bl (p)yl) detoc” - Z%Z 2——49“5% (2.1-6)
= j(b’z‘:d/f) T e Wi w!)derde® = - n, L [ v Z-_e_e_l v oac® (2.1-7)
Kel bt rab =i v LPTY
na N : nz,a A 2.6t A
|3 S 2 A 1nE e. - n, e ot
-Jed £ L3 wlylaetact= - n E VS B U g (2.1-8)

)

=

Jrwrun E 5 e hwsetast= nons [t ) £ W wl)artiz. 1)
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Consider now the integral appearing on the right side of equation
(2.1-7):
9 = f wf égﬁi W2 det {2.1-10)
ab

Because of the equivalence of the electrons we may take b = 1 and

expand the determinantal wave function Y¥? by minors of the first

Tow:
? @ sz"'@M!]_ YD' P By Puag
é-—-_(jf';j&{@'mdm[ﬁ X g p AU D, Aop }

' CDI wy q)z"'CpM._ a)‘q)|q>1"'(vM_g
+@;(1)0\(|)[°{ pop ) QJZ(\)/}U)LI AR

(DICPI cpz(pz'..CPM E’Dz
IR QMng)[Q(l)[‘l g« p “a]}

r q s (D
L

/5“,/5[—(1).("/50) ) /5/5

—2

@, @ @ Dug P 0 @ -~Q>Ma]

@ @, wz@z"'(pNB] B8
*'"'(PMU),’%U)LL pod R }d‘c

{(2.1-11j
Here we have denoted the minors by using square brackets. Now
the minors involve the coordinates of all the electrons except electron
one, so that by integrating and summing spins over all electrons

except the first, we may use the orthogonality of the minors to give

the simple result:
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M
v e! 8 2.1-12
9= JZ XDl Z—r: dr | ( )

where we have also summed over the spin for electron one. In
this manner the integrals appearing in equations (2.1-6) - (2.1-9)
may be further simplified to give the following expression for the

first order perturbation energy:

ne m Ny nel? A 2 3
EW - D% Bafet | o Zie‘JZ (@Xn)] du.
S Y = (2.1-13)
ny n /2 2 A nal?2 nelz s 32 A [
s F e [Elral 9 wof Elerel ool eldvt
as ¢= P a

One important result of the above treatment is that in this
result the various molecular orbitals are seen to enter independently
with no cross terms. Hence we may speak of the interaction of cer-
tain types of electrons in one molecule with certain types of electrons
in the other. The same type of analysis may be applied to the second
order perturbation term, thus justifying the statement made earlier
at the end of section (1. 2).

In treating the second order perturbation energy we shall
employ the approximations summarized on page |2 . Hence the

quantity of interest is the electronic charge density:

(Po)y = ef(w-: Wi detdet o def, dra. o AT, (2.1-14)
where the wave functions include only the pi-clectrons.
We again note that all the pi-electrons are equivalent so we
shall take a=1. It is now advantageous to change our notaticn.
If U, represents the state in which the i-th molecular

orbital is replaced by the j th, we shall then define:

e e A B
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ol = nae |04 W2) artaet - aeh, (2.1-15)

Because all the pi-electrons are equivalent, in calculating the dis-
person energy we need use only Pl;

We now substitute the expressions for the wave functions in
terms of Slater determinants and, after expanding the determinants

by minors of the first row, we find that the only terms which contri-

bute are the following:

o ol et q’;”'ﬂ]
A R

<P‘-‘(|loun[
A - n, e
Py V2 (2Mp)) - (Pf(\)(e(\)[

A A

e b @L, @ CP»:A]
« pro p

A A A
- ?‘()U[CD." w @, q;i...@m}
@3 ! {s \ oL /Q o /g a4 /6 A
" a_[OT - df!\\b
A o @ o ot @m]
( )d( | ! L 4 -
+ @1 \ \){d (4 o (s ﬁ ' (s

(2.1-16)
Integrating and summing over spins and noting that na = ZMA’
we get:
A 2M, (2Ma- 1)l e A 4 . ,
i ¥ = e ———————tire e . b d + ) . 1-
Py TR S 8 S

Simplifying and summing over the spin of electron one, since this

is not of consequence, we have the final result:

P{.;. =vze@ cp; (2.1-18)

The simplicity of this result is indeed fortunate.

We miay now note that if the excited state involved the change
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of more than one molecular orbital to higher molecular orbitals,

then all the minors of the ground state wave function would be ortho-
gonal to all the minors of the excited state wave function, confirming
our earlier statement.

Finally, we conclude this section by obtaining an expression
for the matrix elements occurring in the expression for the polari-
zability, equation (1.1-8), in terms of molecular orbitzls.

The allowed excited states will be the same as those allowed
for the second order perturbation energy. Because of the equivalence

of the electrons we may write:
Do = [0l ) Y. de
(HFilox = J W nue 2z VW, de (2.1-19)

If we now introduce Slater determinants of the molecular orbitals and
take the excited state to be that in which the i -th molecular orbital
is replaced by the j-th, then the analysis follows through exactly
the same as for the second order perturbation energy and we obtain

the answer:

(F:)O,i"j = \/2—€‘[(P‘A(/) z2 (1) (D;(/) du’ (2.1-20)
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2.2 Results Usinthhe Free Electron Model

The results of the preceding section will now be expressed
for the case that the molecular orbitals are for pi-electrons only
and using FEM MO's. We will consider linear polyenes and ben-
zZene.

The quantity of significance in the first order perturbation
energy as given by equation (2.1-13) is the term:

nal2 2
f o= 2r o) (2.2-1)

{=)

For a linear polyene with N conjugated double bonds we have 2N

pi-electrons with the molecular orbitals;

¢ - E Simz-'fé (2.2-2)
Substituting into (2.2-1) we have:

N
b al i
{"-ZIZ..'%SWI‘?‘

(2.2-3)
This sum may be evaluated explicitly to give the finzl resuit:
\ _ S (Mle‘i“
fw= 7 [ZN*‘ S iF (2.2-4)

For a benzene molecule in its ground state, we easily find, using
the results given by equation (1. 3-8):
3

- Corind

fI?:enzene T (2.2-5)
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Let us now consider the dispersion energy. For linear poly-
enes the charge density (2.1-18) is givenby:
Y ST T T (2.2-6)
Py Powieg SO Fj e, 8 0
It is an 2asy matter to locate the nodes and hence obtain the various
* .
charge density regions and the integrations required may all be
performed analytically.
However, in the case of benzene we have an additional compli-
cation in that the excited states are four-fold degenerate in general.

For the transition 1 -—>2 we thus have the four charge densities:

(P:ezm!)a_ = V2 P15 Pec

(P:E“!)b = V2 ¢:x @zs

BENZ)C = NF QIC quC (2' 2-7)

12

(P'A'IE“)d = VZ Qic Qzs

The expressions for the polarizability are entirely comparable

to those for the dispersion energy.

%*x
The following integration formulas may be used:

Ll e EMITE L (NaMYE ]
quu ¢M dr = Tr{(.‘"-.‘-".) 6 ? (Nt W) s
e i (N-MI®X L oS (mww] ;.
JSt’N v Py de = F’*{(N-M\‘ SN (Nemp 0 7
| CONEMITE L (N W"‘i_}
2 %{(N-M\ M (N+M) .

e e o e ~ < e s g g s o e —————




III. LINEAR POLYENES 29.

3.1 Monopoles for the Polyenes

The calculation of the monopoles for linear polyenes is easily
carried out using the charge density (2.1-18) and the integrals as given
on page 29. We assume that the polyenes are truly linear although it
is not necessary to do so, and that all carbon-carbon bonds have
the same length, 1.4 ‘. Taking the 2 as the urnit of length and the
electronic charge e as the unit of charge, the results for the first
few polyenes are given in Figure 3.1. The notation (n, m) signifies
that the monopoles are for the transition in which the excited state
contains the m-th FEM MO in place of the n-th FEM MO in the
ground state

In each case the sum of the monopoles must be zero because
of the orthogonality of the wave functions. The signs of the monopoles
for a given transition may be changed simultaneously without affect-
ing the result, since the quantity of significance is the square of the
matrix element.

For a polyene with N double bonds, the transition (N, N + 1)
represents the largest contribution and is the only one that is listed
for hexatriene. We shall speak of such transitions as principal trans-

itions.




ETHYLENE

+.50021 -. 60021
(1, ‘-) 17825
BUTADIENE
+.29332 —-. 50064 +.29332
(1, 3) - — -
-21315 > 20315~
+.16377 - 40977 ~. 40995 -.16977
(1, 4) [ —— - — e
«lLbl93> «i 695> «.6193»
+ 4182 -.10749 + 769 -.Helt2
(2,3) A o Skl .
—~,5484> SRLLT & «[.5984~
=~ +.300:0 -.30010 - 30010 +.30010
(2, 4) e . —— .
« |, 48S4 -2.0146> | 454>
HEXATRIENE
+.36837% -.02963 +. 17081 - 18031 +.02963 -3637%
(3, 4) ”— — —&— *— & <
“1.5125 > €1.2575-> «|.57S5|> «12575- «),5125

Figure 3.1-1 Monopoles for the Polyenes (Length is measured

in Angstroms and charge in units of e, the
electronic charge).

Foapk
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3.2 Method of Calculation

We shall now discuss the methods that may be used to calculate
the perturbation energies and the polarizability.

The first order perturbation term may be handled approximately
using a London type approximation, as was mentioned on page 10. We
shall illustrate the method by carrying out the calculation in detail for
ethylene in the next section. For certain orientations the integrals may
also be evaluated in terms of tabulated functions.

In treating the second order perturbation energy we employ the
London approximation and approximate the matrix elements as being
the electrostatic interactiin between monopoles which are illustrated
in Figure 3.1-1. This presents a simple but nevertheless lengthy
calculation and inasmuch as this is an approximate method, an approxi-
mate method of calculation is desirable.

The fact that most of the monopoles including the monopoles for
the principal transition are distributed in such a way that we have a
sum of recal dipoles suggests that we think in terms of the intesraction.
of pairs of dipoles rather th'an in terms of pairs of charges. This
suggests then a graphical merthod in which we plot the equipotentials
for a veal dipole having unit length with positive and negative charges
of unit value. One quadrant of such a graph is given in Figure 3. 2-1.
To get the slectrostatic energy of interaction of a unit dipole with any
other dipole lying in this plane at an arbitrary position and orientation
we simply envision placing the other dipole on the graph in the desired
position and orientation and then read the energy at each charge from
the equipotentials, multiply the energy by the charge in these reduced
units and take the sum of the two terms. This then gives the electro-
static energy in reduced units. Thus instead of being faced with cal-
ulating four distances to obtain the interaction between two dipoles we
need only place the second dipole in the desired orientation and position

and take two readings from the graph. The saving in labor is of course
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even greater in obtaining the interaction of a dipole with a more compli-
cated monopole distribution such as that for hexatriene. Here we may
place the entire monopole distribution in the desired position and orien-
tation and take the sum of the six terms appearing.

In three dimensions the equipotentials are the surfaces of revo-
lution generated by rotating the figure around the x-axis. If the posi-
tion of the second dipole is not such that its axis lies in the x-y plane,

then it is necessary to carry out a '"projcction' onto the x-y plane. To

see how this may be done, let us now consider Figure 3.2-2.
z

Figure 3.2-2 Projection of Dipole
onto x-y Plane

We may take the center of the second dipole to lie in the x-y plane
without loss of generality. Let the coordinates of charge A be

x z,. We now ""project' the point A along a circle with

A VA %A
center on the x-axis and having a plane parallel to the y-z plane.
Under such a projection x, does nct change, and it may easily

be seen that YA yi + zy- The same type of law holds for
charge B. '

For calculations in positions beyond the range of the graph, it is
satisfactory to treat the interaction as the interaction between two

dipoles, for which we have the following familiar expression:
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P (ideal dipole: ideal dipolej =

Hakin | o6, o8y + by simbucos(B-g)] (3.2-1)
ob

where Ha and K, are the dipole moments and T b is
the separation between the dipoles.
In certain cases the integrals involved in the dispersion energy

may be evaluated in terms of tabulated functions but, as in the case of

the first order perturbation term, the result< are complicated.

We conclude this section by considering the calculation of the
polarizability of a polyene along its axis arising from the pi-electrons.
Let us consider now a polyene with N double bonds where N is
greater than one. Let us now take cognizance of the fact that the
carbon-carbon bond angles are approximately 120° (see Figure

3.2-3) and calculate the polarizability along the axis indicated in

3 A AN L =G
\\\J/ \\\ ‘(// \ // ~ / \\

& @ - C >

Figure 3 2-3;: Polyene Molecule for the case N = 4.
The dashed lines represent the extra
bond length that must be added for free
end points when the FEM MO's are
used.

the figure. We shall treat only the case of the transconfiguration.

The expression fcr the polarizability is given by Fquation (1.1-10):

(Le ?
=g e (3.2-2)

meo B, Eo



and for the case of FEM MO's the matrix element is obtained from

(2.1-20):

13
(/’L)O,f.-'} = ‘.’?@j@‘ (‘\(3_-3' x(i\)% g (3.2-3)

The factor +V3/2 arises from the fact that we must take the

component along the axis we are considering and

@, = 2 gim £—'?—/

i (3.2-4)

The case N = 1 (ethylene} must be handled slightly differently
since the axis of the molecule lies along the only carbon-carbon

dcuble bond.

=i el e 2 o e = 5 s ¢ et A e S 212 b 4 s 4w




3.3 Results

In this section we present the results of detailed calculations
using the methods we have just discussed. We shall first present
the results {or the first order perturbation energy for the case of the
interaction of two ethylene molecules. This is the only case that we
shall consider since our principal aim 1s the discussion of the dis-
persion energy The latter we shall discuss in considerable detail
and we shall compare the results with those obtained by Coulson and
Dav1e58 {we shall henceforth refer to Coulson and Davies by C. D.).
Lastly, we present the results for the polarizability and compare
them with the results of Davies

In calculating the first order perturbation term for ethylene

the quantity f which we defined by equation {2.2-1) is given by:
§ = i;_ sin® Tx (3.3-1)

In employing the London approximation we are to replace this
function by a set of discrete charges. The mean value of f' is
easily seen to be 2/ We then have the following charge

density regions:

Region a: f < 2/t 0 < x< (/4
Region b: f > 2/ £4< x < gJg
Region c: f > /e e < x ¢ 30/4
Region d: f < 2/ ¢ 3t/l4ex < )
8. C. A Coulson and P. L Davies, Trans. Faraday Soc

iﬁ, 777 {1952): P. L. Davies., Ph.D. Thesis, Kings
College, University of London [1949)

9 P L. Davies, Trans Faraday Soc. 4}§, 789 ({1952;
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We can now obtain the effective charges for each region (i.e., the
integral of { over the interval of the region times the electronic
charge, e) and their locations as given by the second moment. The
results are shown pictcrially in Figure 2,3-1 in which we als> include
the charges arising from the carbon ions.

A +1.0CoC0 - 1830 = 31¥31 +1.00000 ~ 18169

L 2 L . 4 —@ <
% 5732~ N> Lot 12> <« 5732->

Figure 3 3-1: Monopoles for the
Calculation of E{1) for Ethylene with
C-C Bond Distance 1.353

Units are again taken as Angstroms and the electronic charge, e.
The first order perturbation energy is then the classical energy of
interaction between such charge distributions We shall make no
attempt to include the effect of the sigma-electrons.

We may calculate the quadrupole moment of the above charge

distribution using the following definition of the quadrupole moment, q:

(3.3-2)

where X; is measured from the center of the ¢ 2ot ze distribution.

I
o

The value we obtain is 0.240 x 10 16 Sm  phe quadrupole

moment of the ethylene molecule including the effects of all the
electrons has been obfained experimentally from microwave collision

0-16

2 11
diameters and the value 0.48 x 1 ¢m  has been reported .

10. G. Glockler, J. Chem. Phys. 21, 1242 {1953).

155 W. Gordy. W. V. Smith, and R. Trambarulo, "Microwave
Spectroscopy'", Wiley (1953), P. 245
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The difference between the twa values 1s undoubtedly caused by the
neglect of the influence of the sigma-electrons. Despite the lack of
agreement, we shall obtain the first order perturbation energy to
make the discussion complete
Let us now consider two ethylene molecules in the same plane

oriented as shown in Figure 3 3.2.

Figure 3.3-2 Orientlation
of Ethylene Molecules for B

In this case it 1s not necessary to resort to the London approx-
imation since the integrals involved may be evaluated in terms of
tabulated functions. We may thus obtain the following expressions
for Enn" the energy arising from nucleus nucleus interaction,

E , the energy arising from nucleus electron interaction, and E ,

ne ee
the energy arising from electron-electron interaction:
c . 2 (_; 4 - 4 _i__)
Lpn € d d+D 4-D
[ 4o &F - ces zolcitza~27)- Cilza)]
1

alsit2aran)-Siteay) + in 2T

~

- Sun

e . 4e’
= T30 \ - cos2b|Ci2b+2m)- Ci(2b)]
_ sm bl sit2br2n) - sit2nl] |
2w+ (. Wc+cz
{ Sﬂﬁn——_r*c + qcmﬁ:.‘.—c\_l
£ el +(3cesec +2C sanc)[SL(qﬁvzd—ZSL(Zmzc)fSt(?_c)]
e = P SR

s 3r D +(2sm2c -2¢C CCSZC)[_ Ci(’-hT+2()+2Ci(2ﬂ‘-r2()+ci.(2()]

*Q‘T'LC:SZC;CL(‘-ifTwLZc\)—Ci(?_TT r2+simZegyitans2¢)-Cil2me 2<)}J
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where the quantities a. b, and c¢ are given by:

a-4pa-0) ,  b-J5-20) ,  c=25(d-3D)

(3.3-4)
and Si(x) and Ci(x) are the integral sine and integral cosine
fum:-tions12 which are defined by:

x X
A - Cile)= | cost
Si{x) 0[ T dt J Cilx) £ dt (3.3-5)

If we now compute Ene and Eee using the monopoles as given by
Figure 3.3-1 we find very good agreement with the values obtained
from equation (3.3-4), thus at a separation of 5D the two values
of Ene differ by only v.5 perxr cent and the two values of Eee differ
by only 1.0 per cent and as d increases the differences decrease.
However, the quantity of interest is El‘l) which is the sum of all
three. Unfortunately E plus E very nearly cancels E so

' (1) o ee ex .
that the error in E is so great as to make the London approximation
of no value. Thus at a separation of 5D, equation (3. 3-3) gives a
value of 0.1983 ev whereas the London Approximation gives the
value 0.00012 ev because of the almost completie cancellation We
thus conclude that the London Approximation can only have value for
the dispersion energy because of this inherent difficuity of the first
order perturbation energy.

We shall now discuss the calculation of the dispersion energy for
ethylene. We shall first consider the energy arising from the inter-
action of pi-electrons in one molecule with the pi-electrons in the
other and shall compare the results with those obtained by C-D.

Then we shall calculate the complete dispersion energy by taking
account of the sigma-electrons as well as the pi-electrons, and we

12. Jahnke and Emde., "Tables of Functions", Dover (1945), p. 1
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shall compare the result with experimental data. The same calcula-

tion will also be carried out for acetylene.
The first case that we shall consider is the case of two ethylene

molecules lyirng in the same place such that they are parallel and

opposite each other as shown in Figure 3.3-3, with the separation d.

C=C
P
d

EI=HE

Figure 3.3-3
Parallel Configuration

In this case we obtain the following results, as given in Table 3. 3-1:

Table 3.3-1 Ethylene (Parallel Configuration)
(o]
2
d (A) Minus  E'D  (e. v.)
4 3.94 x 10‘35
8 7.53 x 10 .
10 2.03 x 10
15 1.83 x 10‘7
20 3.28 x 10‘9
50 1.36 x 10

These results are expr-ssed graphically in Figure 3.3-4

which also contains the values obtained by C-D for the purpose of

comparison. It is se¢' Lhat the results of C-D are uniformly

4/3 larger than the results given &ove, but that the same behavior

is exhibited and an inverse sixth power dependence is rapidly

proached.

ap-

The next case that we shall consider is the case of two ethylene
molecules in the same plane and in a displaced parallel configuration

o
as shown in Figure 3.3-5. Results are given for d = 3 A and 8 2




40.

=g
0% ~

_ E(L] (ev)
S

0.5 [.O L5
fog o d (A

J>e°

2
Figure 3.3-4 E( ) for Ethylene in Parallel Configuration (Triangles

are CD results)
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in Table 3.3-2 Results are also expressed graphically in Figures

3.3-6 and 3.3-7 and a comparison with the results of C-D is again

given.
y >
i c=_¢
4
=
Figure 3.3-5
Displaced Parallel Configuration
Table 3.3-2
Ethylene (Displaced Parallel Configuration)
d = 3 & a - 88
2 2
y (2) Minus E( ) (e.v.) y (X) Minus E( ) (e.v.)
0 1.84 x 10';‘ 0 7.58 5% 10';
1 9.03 x 10’3 1 6.60 x 10:5
2 4,80 x 1073 2 4.27 x 10_§
3 4:48 x 10 ~, 3 2.18 x 10,
4 9.80 x 10’4 4 7.09 x 10 .
5 7.72 x 10'4 5 9 8¢ x 10’8
6 4.71 x 10'4 6 .29 x 10'6
7 2.68 x 10'4 7 1.13 x 10:6
8 1.52x10’5 8 2.33 x 10_,
9 8.81 x 10 5 9 3.04 x 10-6
10 5.25 x 10 = 10 3.22 x 10,
11 3.22 x 10'5 12 2.72 x 10'6
12 2.04 x 10 = 14 1.93 x 10‘6
13 1.32 x 10’6 16 1.28 x 10“7
14 8.84 x 10‘6 18 8.29 x 10'7
15 6.03 x 10 20 5.39 x 10

It may be seen that in this case E(Z) has a node and a secondary max-
imum. This can be easily understood in terms of Figure 3.2-1. If
we visualize the first molecule as being placed at the origin and the

second lying with its axis parallel and displaced, we see that the node
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arises when the pesitive and negative monopoles of the second lie on

the same equipotential. Indeed this will always be the case so that
Figure 3.2-1 furnishes a convenient means for visualizing the dis-
persion energy arising from the interaction of pi-electrons. For the
case that d = 3 R the position of the node is y = 2.43 K and
C-D obtained the value 2.45 K. For d = 8 K the node is located
at y = 5.58 £ while C-D obtained the value 5.60 £ . Thus the
qualitative behavior of the two results is the same.

Lastly, we shall investigate the angular dependence of the dis-

-

persion energy for the configuration illustrated in Figure 3.3-8.
CT—‘C
7R ////
Jore
C

Figure 3.3-8
Configuration for Angular Dependence

Numerical results are given in Table 3.3-3 below and are compared

with the results of C-D in Figure 3.3-9.

Table 3.3-3

Ethylene (Angular Dependence)
(2)

0 (Degrees) Minus E (e.v.)
Q 1.64 x 10:2
15 1.56 x 10._4
30 1.30 x 10_5
45 9.21 x 10_5
60 4.49 x 10_5
75 1.37 x 10
90 0.00

Once again we see that the qualitative features agree very well and
that the results obtained by CD are 4/3 higher than tke above re-

sults . Except for this factor the two methods appear to give nearly
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the satne results for the case of ethylene.

Let us now consider the complete interaction between two
ethylene molecules by taking account of the sigma-electrons as well
as the pi-electrons. We shall perform this calculation for a separa-

tion of 10 A and for four orientations illustrated in Figure 3.3-10.
Case A

Case B \ I
Case C _ l
Case D i

Figure 3.3-10. Orientations

Considered for Calculation of

Complete (%) for Ethylene.
The energy of dispersion is then the sum of three terms, E;,
arising from the interaction of the pi-electrons in one molecule with
the pi-electrons in the other, E,, arising from the interaction of
pi-electrons in one molecule with sigma-electrons in the other, and
E e which arises from the interaction of the sigma-electrons in
one molecule with the sigma-electrons of the other.

The calculation of E ;4 is carried out as has just heen des-
cribed. 7The calculation of E,, 18 carried out using equation (1. 1-14).
We wish to obtain the average interaction for the four orientations so
we introduce little error by using this equation instead of (1. 1-11).
We must, however, use the bond polarizabilities for a single carbon-
carbon bond rather than a double bond since we do not include the
pi-electrons in the calculation of E,. . This further approximation
is not completely correct because a double bond is shorter than a
single bond indicating that the sigma bond is aitered, thus changing
its polarizability. However, the error 1s probably not large. The

calculation o E .. is carried out using equation (1.2-10). Because

.
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of the large number of distances that must be calculated to use this

equation, the results were obtained using scale drawings from which
the required distances could be measured. This method is not satis-
factory for studying E.; because the London approximation of the
matrix element is the difference of two nearly equal terms so that a
small error in the distances causes a large error in E ;4 , but

fortunately this is not the case with E . . The results obtained are

-4
given in Table 3.3-4, in which the energy unit is 10 e.v.

Table 3.3-4
Complete E(Z) for Ethylene

Orientation -~ Eqr - Eq.f -Egv = E(Z)

a 0.91 1.30 2.07 4.28

b 0.20 1.00 0.28 1.48

C -——- 1.14 0.82 1.96

d -—— . 88 0.30 1.18
Mean Values 0.13 1.05 0.66 1.84

In obtaining the mean values the wvalues obtained for the different
orientations are weighted as suggested by Evett and Margenau13
They assuine that all orientations of a molecule are equally probable
and determine the volume of configuration space for the two molecules
in which the axes depart by not more than 45° for each given orienta-
tion. If the volumes are taken as weighting factors then orientations
A, B, C, and D have thc weights 0.085, 0.25, 0.415, and 0.25
respectively.

The mean value thus obtained is-1.84 x 10-4 e.v. for a

separation of 10 8. as long as an orientation is fixed the dependence

13. A. Evett and H. Margenau, Phys. Rev. _9_0~, 1021 (1053)
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of the dispersion energy on the separation is approximately an inverse

sixth power except at very small separations. We may therefore ex-
pect that the avcrage interaction depends on the sixth power as a first
approxirmation. This is done for many empirical potential energy

functions, such as the Lennard-Jones Potential:

s - ac[(5- ) 309

Here o and € are constants which may be obtained from experimen-
tal data by fitting viscosity or equation of state measurements, and

r is the separation. The twelfth power term represents the close
range repulsion. For ethylene the values of o and € have been de-
termined using viscosity measurements Lot to give 4.232 A and

2

- -4
1.77 x 10 " e.v respectively. This gives a value of -4.06 x 10

e.v. which compares favcrably with the above vaiue of-1.84 x 10-4

e.v.

The same calculations have been performed for acetylene. In
this case we have a triple boad so we have two pi bonds to consider.
Treating the pi-electrons just as in the case of ethylene and taking
the carbon-carbon bond length to be 1.207 2 and the carbon-hydrogen
bond length to be 1.060 R L0 we obtain the results given in Table

-4
3.3-5 in which the energy unit is again 10 e.v. The value ob-

tained using the Lennard-Jones potential is 3.61 x 10-4 e.v.

While the numerical values obiained for ethylene and acetylene are

too smail, the trend is in the right direction. It may thus be concluded
that the present method is at least qualitatively correct. Jn the case

(2) 4

of methane E is found to be~-0.63 x 10 = e.v.

14. MTGL, p. 1112.
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Table 3.3-5
(2)

Complete E for Acetylene

Orientation -E -E -E -E
a 1.97 0. 49 2.52 4.98
b . 45 0.33 0.45 1.23
c == ~.41 0.91 1.32
d -- 0.34 0.39 0.73
Mean Value 0.28 0.38 0.80 1.46
. . . -4
at 10 £ and the Lennard-Jones potential gives the value -1.62 x 10
e.v., s0 that in all three cases the Lennard-Jones values are approx-

(2)

imately 2.5 times larger. It is interesting to note that E is
more highly directional for acetylene than for ethylene because of
its greater proportion of pi-electrons.

We shall now present the results obtained for the pi-pi inter-
action energy for butadiene using the monopoles liated in Figure
3.1-1. The first configuration we shall consider is the parallel con-
figuraticn as illustrated for ethylene in Figure 3.3-3. We are to
consider four possible transitions: (1,3), (1,4), (2.3), which is
the principal transition, and (2,4). We shall follow the notation of
CD and let the symbol (nanb, mamb) denote the energy arising from
the transition (na, ma) in molecule a and (nb, rnb) in molecule b.
For this configuration CD list four energy terms®. These are com-
pared in Table 3.3-6 with the terms appearing using the free
electron model. The number preceding each energy term is its
degeneracy. It may be easily seen that the terms (11, 34), {21, 33),
(21, 44) and (22, 34) are zero by symmetry. The results of the

* If LCAO MO's are used it can be shown that for N-polyenes
{(n,m) = (2N + 1 -m, 2N + 1 - n)

R T X W R T L e e e Bt L B o D
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Comparison of Energy Terms Given
by LCAO and FEM MO's for
Parallel Configuration.

LCAO Terms FEM Terms
1 (11, 44) 1 (11, 44)
2 {21, 34) 2 (21, 34)
1 (22, 33) 1 (22, 33)
1 (11, 33)
4 (22, 44) 12 (21, 43)
(1 (22, 44)

calculations for these zxcited states are suimiarized in Table 3.3-7
and the total energy is compared with the values obtained by CD.
The energy unit is the electron volt. [t is seen that the results of the
present method give values consistently 3/5 as large as those
obtained by CD. The individual energy terms are compared graphi-
cally with the resuits of CD in Figure 3.3-11 and it is seen that the
qualitative agreement is very good.

We now consider the dispersion energy for the displaced
parallel configuration, s illustrated for ethylene in Figure 3.3-5.
The various terms which we include are compared with those founc
by CD in Table 3.3-8, and the results of the calculations aie pre-

sented in Table 3. 3-G, the energy again being in e.v.

fable 3.3-8

Comparison of Energy Terms given
by LCAO and FEM MO's for Dis-
placed Parallel Configuration.

LCAO 'l'erms FEM Terms
1 (22, 33) 1 {22, 33)
2 (21, 33)
4 (22, 34) 2 (22, 34)
1 {11, 33)

4 (22, 44) 12 (21, 43)
1 (22, 44)

s e e

D e




51.

|
O
FAN
_—
\\
-
Axés
10‘? ' | | ] | !
0.b 1.0 |5

Jlog .d (A)

TFigure 3.3-11 Energy Terms {or Butadiene in Parallel Con-
figuration (Squares, Triangles, and Circles are CD results)




52.

b'e am x ° X ° x ° x ° x ° .
g-0T L ToH 66°1 w:oa 29°9 nloa 66°h ¢.0T X 2h°T 20T X 90°h as
T X 9%°2 T X e 1 X Ih° x g2 x (€ 0T x 2/)°2 Ty
¢-0 9 To he K mco TH°6 n..oa lg ::2 o 103
= = 0T x 96° 0Y x C2°} 0T x 22°2 0T » g)°2 fth*22) T
T~ 95t ‘.. o e 9 (th*22)
- < X 91° x {¢- X Ghe x lo° :
gy X818 60T et o:oa Gheh TS Lo°tT (Ch°'12) 2
= = x 0)°¢ x 6¢e x Gf° X 24" ¢ rTy Y
o107 ol 0T X GE°9 o:oa G-z ::2 eh L (€ )
0T X2 0T x {6 g2t berG 0T X952 70T F 626 2.0T? 16°2 (f€*22) 1
0T x G2°1 0T X 94°2 0T X ox°2 0T X 2G°T 0T X 02° 0T 3 20°R (he'rey 2
et gl ¥ g~ ik I~ o 9= i
} - : - - 0T ¥ 86°6 " 1T) T
04 n¢ ) 02 ¢t ? (VY f = 0 wIsy AP1eum snoiw
o}
(UorieamATIvCy TATIRIRI) SUSTDPRING

YTy v

: 3TQE]

T —

p re— T T T T T T e e e e e e



53

muoﬂn:m.m g-0TX0T°8 g-0TX¥26°8 oﬁuoﬂmeoz o1-0TXe T2 oau0axo~.m oquxNN.ﬁ 02
¢-OTXEG T )0TX9RT ) OWXEECT . 0TX20°9 07 -0TX18°2 or-0TXGE" € 0TX06"T 8T
m.oﬁumm.m ) 0181 ) -0Tx68°1 oa.oﬂu:m.: oﬂuoHnNH,m or 07622 m-oaxmm.m 97
(OT¥TR'E ) 0TX80°2 ) OTXOT'2 . OTXRL'9 0 OTXHR'G 14 0TX09°T (OTxLEE Ut
mlOHumm.: N‘oanmﬂ.ﬂ )-0Tx90°T m104x:“.m m-oﬂaﬂm,m (-0TxGE"¢ m-oauomoz 21
m-oHNMN.: m-OHmom.m muoaaom.: g-0T¥08°9 wuoax@w.m wloauNH,: mIOHuHN,: 0T
muoﬂumo.: | -0TXhE “{ N-OHNwm.m N‘oﬂaoN.H w-oaaNm.N }-0TxT0°1 m-OauHm.m 6
muoﬁuom.m w-oﬂuwa,m m-oaxOmom Nuoﬂan.m )-0TX19°1 N.o:mo,m ¢_0TX9¢ "2 @
¢-0TxXho 2 @‘oﬂxm:.o @uoaumo.N _0TXE1°9 Nuoqxnnom Nuoax@m.n oxoﬂxmm,m L
m:oﬂnom.m muoﬂx::.ﬂ nuoﬂnﬂm.ﬂ N.oanwo.m N:oanqo.: Nuodnoﬁ.: @-0ﬂn:w.ﬁ 9
muoﬁnm:.m muoauom.m ¢-0T™X09°2 Nuoﬂnmm.o Nuoﬂxwm,m NsoquNm.m n.oanna.: G
porxee e muoﬁ*w:.m j.o™ore , otxor-e NIOHNmm.H o-OTXH2"8 :-oanwm,ﬂ f
:uoﬂumq.: m.Omew.m m-OHno:.n wuoauom.n w-oﬂum“.ﬂ wuoﬂnam.: :uoanmo.m ¢
MR S R m10ﬁumm.m o-OTXOT"T _0TX6g°G,_0TxK9 yITFE"9 2
:uoaumm.w @noauuﬂ.w @uoax::.N ouoanmm.m ouoaum~.ﬂ muoﬂxm@.ﬁ :uo«uaz.n T
:uoﬂnwm.m 0 0 @uoﬂx@:.: wuo-mm.m maoaxmm.m :uoqum.m )
18307~ (£€'2)2- (K¢ '22)2- (Cx't2Ye- (£9°TT) - (th'22)- (Cgea2)- (x)~

(voy3BIn@uU0) ToTTRIBY Paov1dsyQ) auUsTLERING

f~£ ¢ o1qQ8]

|




54.

In Figures 3.3-12 through 3.3-15 we compare the various
energy terms with the values reported by CD. It is clear that the
qualitative features of the results of the two methods are nearly
identical and that the principal difference is a factor of proportion-
ality. The total pi-pi dispersion energy is thus lower than that
obtained by CD by a factor of approximately 3/5. It is interesting
to note that the different FEM MO energy terms which are equal
for the LCAO MO's compare very closely.

The last polyene that we shall consider is hexatriene for the
parallel configuration. The results of the calculation are presented

in Table 3.3-10 for the principal transition.

Table 3.3-10

Hexatriene (Parallel Configuration)

a (R Minus (33, 44) (e.v.)
4 6.04 x 10’2
8 3.57 x 10_4
15 1.43 x 107,
20 2.86 x 10‘6
30 2.75 x 107,
50 1.35 x 10

These values are compared graphically with the results of CD in
Figure 3.3-16 and it is seen that they are approximately 3/5 of
the values of CD, although the qualitative appearance is again
the same.

We conclude this section by discussing the results obtained
for the polarizability of the polyenes arising from the pi-electrouns.

We assume that only the principal transition contributes ap-
preciably so that according to (1.1-10) we have:

2) (e weif?
"7 B Ea (3.3-7)
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Figure 3.3-15 Total Dispersion Energy for Butadiene in Dis-
placed Parallel Configuration (Triangles are CD results)
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According to equation (2.1-20) the dipole moment integral may be
rewritten in terms of FEM MO's as:

(/u,,__)N.“” - ﬁeijN () @yyy T, (3.3-8)

We shall now take account of the bond angles and shall assume that
all carbon-carbon bond angles are equal and have the value 120°
and we shall carry out the calculation for the trans configuration. If

we let x be the coordinate along the free electron path we then see

that z, = (\/—Z:}/Z)x1 so that we have:
'
5 . \
e = B [snf o n (@020 G
0

This integral may be easily evaluated to give the result:

Veel L .
(,“z)N.Nﬁ‘ —ﬂ\_z—i(;_N“)l l] (3.3-10)

We then obtain the following expression for the polarizability of

an N-polyene:

Wy = 1.81 <10 25 Jone'-] L (3.3-11)

2N + |

We have assumed that all carbon-carbon bonds have the bond length
1.4 £ . InTable 3.3-11 we present the results for the first five

polyenes and compare the results with those obtained by Da.vies9

e v 4 A0 1 e s e eryeg.
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Table 3.3-11
Polarizabilities of N-Polyenes
N Calculated Value Davies
= -25 3
1 38 x 10 25cm3 35 x 10 cm
2 209 204
3 596 596
4 1290 ————
5 2370 2400

The case of ethylene, however, really requires special attention
since the axis of the molecule lies along the carbon-carbon bond and
is not inclined at an angle of 120° as the above calculation treats.
When this is taken into account, the polarizability of ethylene has the
value 9.1 x 10.'25cm3 . This value compares very well with the
data on bond polarizabilities as given in Table (l.1-i). We see

that difference between the bond polarizabilities of single and double
carbon bonds (which is presumably due to the contribution of the

- 3
pi-electrons) is 9.8 x 10 25cm so that the agreement is very

reasonable.

Daviea also obtains an expression for the polarizabilities of

long chain polyenes and finds that:

(Andopnes = 18210 Clanen® om? (3.3-12)
Equation (13.3-11) reduces to:

3

an= 1.8l x 1072 (2n+ cm (3.3-13)

80 that the two methods caompare satisfactorily.
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3.4 Approximate Treatment of Long Polyenes

We shall now develop an approximate method for treating the
dispersion enezgy between linear polyenes for the case that the number
of double bonds, N, is large and the separation between the two mole-
cules is large compared to the length of the molecule. We shall con-
sider the energy arising from the interaction of pi-electrons with
pi-electrons, E ;g , the energy arising from the interaction of
sigma-electrons with sigma-electrons, E ., , and the energy
arising from the interaction of sigma-electrons with pi-electrons,

E on
We shall include only the principal transition for the pi-

electrons so that the transition charge density is given by:

3f2
2% . Wme o (N#DAX A
)o‘ __2_ v _T Swnm, 1 (34 1)

Using a familiar trigonometric identity this may bec rewritten:
p= f_;?- Icas T - cos ‘—Qﬁ;—”—%} (3.4-2)

For large N the second term in the brackets is a rapidly oscillating:
function so we make the approximation that it inay be neglected. Our

approximate charge density is then given by:

~ %

p = cos & {3.4-3)
In using the London approximation we then obtain a '"dipole" and
it may easily be seen to consist of a positive and negative charge
of magnitute (VZ/T)e separated by a distance of 21L/r.

In Table 3.4-1 we compare the dipole moment with the dipole mo-
ments for the principal transitions for ethylene, butadiene, and

hexatriene.

\ —
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Table 3.4-1

Comparison of Principal Transition
Dipole Moments with Asymptotic Value

Molecule Transition Dipole Moment
Ethylene 0.25473 e
Butadiene 0.27512 e
Hexatriene 0.28073 et
Asymptotic Value 0, 28658 el

It is seen that even for ethylene the deviation is not great and that
the asymptotic value is rapidly approached which suggests that the
approximation i8 a good one. We now make a further approximation
that the interaction of two such dipoles may be given by the inter -
action of two ideal dipoles as in equation (3. 2-1). Finally, making
use of the fact that the length of the molecule i8 (2N + 1) x 1.4 X
we obtain the following result for the dispersion energy arising from
pi-pi interaction:

2 ces b, cosEy +SinBL VN CCS(@;,—@AT

Eqq = - C 14003 (2N+l)5[_

RG
13.4-4)
where R, the separation, is mmeasured in A Averaging over angles
introduces a factor of 2/3 and gives the result:
5
) £, = -0.09335 (—Z—N——R*?— (3.4-5)
It is seen that E is proportional to the fifth power of the

length of the polyene, a result also reported by CD. However, their
coefficient i8 somewhat larger. Thus for 6, =6,= "%, , ¢, = @, their

coefficient is 0.246 compared to the above value of 0.14003,

In treating E . we make the approximation that it is
independent of orientation, 8o that we treat all bonds as if they

were at the center of the molecule and use equation {1.1-14).

V- S = = s e S o
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For a polyene with N double bonds there are (2N - 1) C-C bonds

and (2N + 2) C-H bonds. The quantity o,+ 2«, has the value

- -2
0 25 3 5

19.2 x 1 cm fora C-C bond and 19.5 x 10 cm3 for a

C-H bond. We shall then take both values to be equal to the mean
value of 19.35 x 10-2'5cm3 . We then easily obtain the following
expression for the dispersion energy arising from the interaction of
sigma-electrons with sigma-electrons:

B = = ﬂ%qb—”f—')— (3.4-6)
We have, of course, regarded all double bonds as single bonds in
this calculation inasmuch as we do not wish to include the pi-
electrons in this expression. It is seen that E__ varies approx-
imately as the square of the length of the molecule so that for suffi-
ciently long molecules it is negligible compared with E ..

To simplify the treatment of E . we shall make the
approximation that all bonds essentially lie along the axis of the
molecule and that the polarizability contribution of each bond is the
sum Ay + 20« Thus the orientation dependence is not strictly
correct but the average over orientations should be nearly correct.
We then have the following expression for the interaction of the sigma-
electrons of one molecule with the pi-electrons of the other from

equation (1.2-10):

E = =

= o 2
A moecure Eoi(i) ZGQ(Qﬂ
g 2 (1 +Ve /) %

R0 | (3.4-7)

The polarizabilitv of the molecule is then given by:

-25
Xpprecore = EN+1) 1935 <10~ em’ (3.4-8)

i e A e 7 — e At e e b b ) M £ W e ¥ * T = eres
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The quantity 1)“ /1),_r is easily evaluated for the principal transition

and has the value 1.55/(2N + 1). In order to evaluate the quantity in
brackets consider Figure 3.4-1 in which we portray the dipole aad the

-
axis of the second molecule. We need to know the quantities é%' @)
i
| |
(Ba, a) +o (04, )

=7

Figure 3.4-1

Configuration of the Two Molecules Showing
the Axis of One and the Monopoles of the other

which are the projections of the positive and negative charges on the
axis of the second molecule. It is not difficult to show that they have

the following values:

Z,= RcesH, + b[s'vn O swm B, cas(d, - PL) + cos éauseb]

{3.4-9)
Z =Rcosb, - bisimeq tm Oy cos(P,- ¢) + COS eacoseb]
If we now make the approximation that R+ = R and note that
2b = (2/ mw ) (2N + 1)1 we obtain the following result:
2
c2t e 02NN [Svn 8. S B, ces(@,-8,) +cos Ba CoS‘Qb]
£ =- (3.4-10)
S (N+127) RE®

where R is again in X Averaging over angles introduces a factor

of 1/3 giving the result

0747 (4N+N 2N+
U (N +1,27) R® (3.4-11)

E
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We see that E  .varies approximately as the cube of the length of the
molecule so that its significance for large molecules is greater tha=n
E 5o but less than E ;.

In Table 2.4-1 we present the coefficients of l/R6 for the
three dispersion energy terms for various values of N and a graphi-
cal comparison is made in Figure 3.4-2. 1t is interesting to compare

the results for N equals one with our previous results for ethylene

Table 3.4-1

6
Cocfficients of /R for Approximate
I’ispersion Energy Terms for Different

Polyenes.

N -Eco’ -E;rr ‘E_TN'T‘ 'E—Tm\

2
1 9.78 x 102 4.44 x 102 2.27 x 102 1.65 x 10;
2 3.17x102 2,56x102 2.92 x 103 8.65 x 103
3 6.61 x 103 7.80 x 103 1.57 x 103 3.01 x 102
4 1.13x103 1.76x103 5.51x104 8‘40x10;
6 2.44 x 103 4.40 x 104 3.47 x 105 4.15 x 105
8 4.26x103 1,31x104 1.33x105 1.50x105
10 6.57 x 10 2.52 x 10 3.81 x 10 4.13 x 10

which are given in Table 3.3-4. The diiferent values are compared
in Table 3.4-2. It may be concluded that the approximate method

for large polyenes is fairly satisfactory even in the case of ethylene.

Table 3.4-2

Comparison of Dispersion Energy Terms for
Ethylene Using Standard and Approximate Methods.

Method ~Ese -_E—eyﬁ -Eﬁﬂ 'ETQT/\I

Standard 105 66 13 184
Approximate 97.8 44. 4 22.7 164.9
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IV, BENZENE 68.

4.1 Monopoles for Benzene

In treating benzene we shall consider only the principal
transition, 1 — 2. Because of the degeneracy of the molecular orbi-
tals we have four possiole transition chargr densities as given by
equation (2.2-7). Substituting the FEM MO's as given by (1.3-8)

we have the following expressions for the transition charge densities:

Pa = [ﬂg.— sinB cos 28
po = 12 sing sinze (4.1-1)

pe = J_:Zr_ cos & cos 28

py = %‘ cosB sm2b

The energy associated with the transition may be deduced from

equation (1.3-9) and has the value:

3n?
AE, = Fme: (4. 1-2)

where C 1is the circumference of the ring.

In calculating the monopoles it is helpful to note that

p. = (Rotration by 900) X pa
ps = (Rotation by 90°) x p, (4.1-3)

8o that we need carry out calculations only for Pa and p, -
In each charge density region we locate the effective charge by
calculating the first moment, i.e., we obtain the meanvalues of

x and y and find that in general the monopoles are not located on

i G Y = st ——- S g 8 - el i b % R 388
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the ring but are inside it. If we now assume that all carbon-carbon

bond lengths are equal and have the value 1.4 R we easily obtain

the moncpoles which are illustrated in Figure 4.1-1. Urits are

again £ and the electronic charge, e.

= . 42494/
° —.30010 +.30010
+.06215 +. 06215 T
| I
1.0389 2. 5317 20054
l I
— 06215 -06215
[ 3 d & ° Y
+ 4204 30010 + 30010
< —2 #207-——- > “«— . 5750—>
a b
+.06215 =~ 0e215
r—o
+.3¢c1C +.30010
—.420N) + W44
S ®
- 3C010 ~ 30010
b— o
+. 06215 —-.062/5
c d
Figure 4 1-1. Monopoles for Principal Transitions for Benzene

(Units are Angstroms and electronic charge, e).
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4.2 Perturbation Energies

We shall calculate the dispersion energy between two benzene
molecules arising from pi-pi interaction for the orientation in which
the two benzene rings are parallel and facing each other and are

separated by a distance, d (see Figure 4.2-1).

Figure 4, 2-1

Parallel Configuraticn for Benzene

Let us denote the energy arising from the interaction of
monopole distribution "a" with monopole distribution "b" by the
symbol (a,b) and so forth. From symmetry considerations we
see that the terms (a,b), (a,c), (b,d) and {c,d) are zero. The
terms which contribute are (a,a) = (c,c), (b,b) = (d,d) and
{a,d) = (b,c), the last two being each two-fold degenerate. It is
then a straight forward matter to calculate the different energy terins
and the results are presented in Table 4.2-1 and are compared

graphically with the results of CD in Figure 4.2-2.

Table 4.2-1

Dispersion Energy for Benzene for
Parallel Configuration (in e.v)

d(R) -2(a, a) -2(b, b) -4(a, d) £'?

5 3.07 x 10.'53 1.17 x 10:: 2.31 x 10:: 6.55 x 10:2
10 6.19x10_6 2.36x10_6 4.71x 10"/ 1.33x 10",
15 5.72x 10 2.18 x 10", 4.36 < 10~ 1.23 x 107
25 2.74 x 10" 1.04 x 10" 2.09 x 10 o 5.87 x 10_g
50 4.34 x 10 1.65 x 10 - 3.30 x 10 9.29 x 10
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Figure 4.2-2 Dispersion Energy for Benzene in Parallel Config-
uration (Triangles are CD results)
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It may be seen that the above results are consistently 3/5 the
values obtained by CD but that once again, the qualitative behavior
is identical.

Let us now calculate the first order perturbation energy for
the interaction of two benzenc molecules. As we have seen earlier,
(Equations (2.1-13) and (2. 2-5)) this is given by the Coulombic inter-
action between two charge distributions and each charge distribution
consists of a uniformly charged ring having a total charge of -6e
and six charges of +e equally spaced around the ring.

In order to evaluate the electrostatic interaction we make use

of the following expansionlb

- ‘2
~ - n - ” + i
5 W~ MR ERBIRNEGL ) ) D8 S R VR (I - n*b\)!J (Na+ 7o)l
( Y _ L :
= ,

™
|

My Lll ar tm (g -1 ing 4 i DU ey s im O (ny - tmit ) T {ny um\.l)‘,]‘ll )
iy My

m
—Fr Tm D™ (Sadmam DS
X ~ a my v ( almgm b)"blh
\’(V‘lg Ny r g v Np +1

ab (4.2-1)

in which the quantities Dn(S)mm, are the representation coefficients
for the three dimensional rotation group and S is the rotation that
takes the ring fromn its given orientation into a suitably chosen stan-
dard orientation. This expansion 18 valid so long as the s8eparation

between the centers ci the rings, i8 greater than the diameter

Tab’

of the rings. The quantities QI: are defined as follows:

15. MTGL, p. 846

e - A AT, £ 4o Ty o el i e
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m o Ter Pleosbite™

3

(discrete c‘r.&v-ges)

O
i

il

gﬂp(r,e,gb)r“ P (cos B eim¢ rt sinb drdbdg

(4.2-2)
{continudus charge distribution, p(f‘.e,aﬁ))

As our standard configuration let us take the ring to be centered at
the origin and lying in the x-y plane. It is then a straightforward
calculation to evaluate the quantities Qr: and the following result

is obtained:
o7 = AnPOi s TE v 2cos?BL ¢ (0™ 68 (4.1-4)

where 2 is the radius of the ring and PI:'(O) is the associated

Legendre function of zero argument. It may be readily seen that

Qr: is zero except for m =46, +12, +18, ...... Since |m| < n
1
we see that the leading termn in the series (4.2-1) is 1/rag oIt

(1)

may thus be concluded that which arisee fromn the

pi-electrons may be neglected.

S e = e
e - ~
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C ONC LUSIONS

The use of FEM MO's and the London approximation for
obtaining the dispersion forces between conjugated mclecules which
arise because of the presence of mobile pi-electrons gives results
which are in good agreement with the more elaborate calculations of
CD which employed LCAO MO's and did not make use of the
London approximation. The principal difference between the results
is a scale factor, the present calculations giving results approximately
3/5 of the values obtained by CD. It may be pointed out, however,
that the energy levels of the molecules as given by the LCAO method
are proportional to the exchange integral, /o which is treated
as an empirical parameter. CD employed a value for p of
-40 kcal/mole which was obtained by fitting data on resonance
energiesl6. However, in order to fit the spectroscopic data for the
polyenes it is necessary to choose a much larger value of -90 kcal/
molel—{‘ If CD had employed this value all their results would be
decreased by a factor of 4/9. It may be concluded that except for a
scale factor the two mmethods give nearly the same results.

In this connection, it i8 necessary to point out that in his
treatinent of pclarizabilities Davies employs more exact LCAO MO's
which include the effect of overlap and that the energy parameter is
16.  Mulliken, Rieke and Brown, J.A.C.S. 63, 41 (1941).

17. Scherr, J. Chem. Phys. 21, 1952 (1953).
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here adjusted to fit spectroscopic data. It is encouraging to note
that in this case the results of the two methods agree within a few
per cent.

In the case of ethylene and acetylene the complete dispersion
energy including the effects of sigma-electrons was calculated. The
results are in fair agreement with the dispersion energy as given
by the Lennard-Jones potential when fitted to data on viscosities.

It may be concluded that the imethods outlined in this thesis
provide a simple understanding of dispersion forces between conju-

gated molecules and permit at least a qualitative description of their

behavior.




COEFFICIENT OF INDUCTANCE

The magnetic energy between two current loops a and b is

N o
‘/l _[ i dSq"d":"[,

l wb ¢/7:'/ T

+b
. far (1)
Cq Ch
= i'JbIaIb

where Lab is the coefficient of inductance. This may be generalized
for the case that the current loops have a finite cross section by intro-

ducing current densities ja and jb:

7 =-&-
at AT

> o
rjfé%lﬁddeL (2)
vV, Vy ab
Putting A= p/Er1,T,) we may write
3 ’- .
a b
B RSN (3)
o z=:J Tas
\/cx vb
where i =1, 2, 3 denotes the x, y, z components respectively for

the coordinate system shown in Figure 1.
Kow

5y <)

Let us now consider a new reference frame in which each set of

Figure 1 Coordinate System

Cartesian axes is rotated leaving origins fixed. The rotations are
chosen so as to facilitate the calculations and to make the orientation
dependence of the coefficient of inductance explicit. We shall denote
quantities in the rotated coordinates with bars.

The scalar product of the current densities may the be written

3

3 e -_—
ZGakip) = 2 Rady (Rudy (4a), (5),

(4)
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Here (R,)jx denotes the i, k-th element of the matrix!

/Cosoc,.cos,sa cos ¥a - Cos¥, cosp, s,
D N
-simo, s ¥ - smdgcos ), Cos xy simfia
SUM o, CESag COSE - S¥n oty CCSa, S K . .
Re = Ve C6Ae =55 Ta e * SVT\QASW\/Q@
= +C0S Ap SN o + cos a, cos,

l (5)
_s&n/@acos&, SVY\/A‘simK,_ ccs/aa /

where o, W ¥, are the Eulerian angles describing the rotation of
the unbarred coordinate system to the position of the barred coordinate
system. (Ry)j; is defined similarly.

It is advantageous to expand the current density components in

terms of spherical harmonics

3 3 00 *VYax +/bt an - Lol + g — st
> (G (48, = '.:2; Z 2 2 el e

U Ve Pp1=0 /*a"-'-l)“ HAeL= -Vt <—)

(=1

: )iz_vig.*l)(da“‘Hax()‘.(l)bl",ub“)l_]’i
1 1 i {/e\v. - paw il “}bl + sl J (Ra)(k (Rb)il (6)
T ax ( Y Hax , - Met *—- .
A ug (red 7y p () V. (6, g ‘%Q)Y‘,” (61, pu)
where
i T oen . o B
- ak oK - —{acly | = e -
7 2e ) fax (fal = Of [(/a),( f;}u (cosg)e sinba d6, dg, {7)

1. C. F. Curtiss, '"'The Separation of the Rotational Coordinates
from the N-Particle Schroedinger Equation, I{"; University of
Wisconsin-OOR -2 (4 December 1952)
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We employ the following convention for the spherical harmonics:

{A IILL’ (._ ’, m b r:’
Y . 2v e+l (L =Tl N . A
Y, (¢ ¢4) =1 v/“rn G (cosble

(8)

and the associated Legendre functions for integer ux are defined by:

J +V/
plry = LU (1o xy gqmr (1- x2) g
v BVV! dx’,/MHV (9)

The quantity ”rab may also be expanded in spherical harmonics

using the 'two-center' expansion

(10)
= ( o 'I"b#"\"]: rr*” (,rr
e -n Mg t JE i o,
- - Ce——— E .————.—-‘ I—-——‘———I .C.a $u) L \95/@.‘)
[2r 0t Zrnrd 0 am) (o - Iind) J fia b
where v, is the smaller of Bey and n - These spherical harmonics

may be related to the spherical harmonics in the rotated coordinate sys-

terns in the following manner:

) ® (11)
(e, = 2 O (Rn W YOG, )
o .
with a similar expression for Y. 5(9\_‘ ¢). The quantities D (Ri), o

are the representation coefficients for the three dimensional rotation

group3 and are of the form:

Na (mado Na mux
D (R m,m= © d (padm,m @ . (12)
2i. R. J. Buehler and J, O. Hirschfelder, Phys. Rev., 83, 628 (1951]);
85, 149 (1952)
3 E. P. Waigner, "Gruppentheorie und ihre Anwendung auf die Quan-
tenmecnanic der Atomspektrer.', Edwards Brothers (1944). For

a summaryof their important features see Hirschfelder, Curiiss,
and Bird; 'Molecular Theory of Gases and Liquids', Wilev {1954),
pp. 905-912.
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. ne, . . .
where the d ‘(/ﬁ.)ma,, are, except for a normalization factor, the Jacobi

polynomials and are given by:

(/]
rn m - l
d (8 = o [azmating-mt 'S Ma>0, m>0
(/ﬂ)m’»‘m l_(na-rma)!'(rla+m),’ J * ! (13)

(5 o™
) =N el m! 1 +COSgg

T SA
Sa (Sa=mall(S,- MYl (Mg +iM - 5q) ! |—cos/ea) P,,A (005/44)

(ma+tm-sga)f2

The expressions for negative values of the indices are as follows:

ra+m

m‘(/qa)ma-m = 1) “dn‘(n'/}a)mam

Ngt M Dq (14)

A" Ba) = (1) (7- a) oy m

Na +1n

Ng Na
d (/.Q;)_,nn'_m o (") €] (/gg)mam
If we now substitute equations (6), (10), and {11) into equation (3)

and make use of the orthogonality of the spherical harmonics:

T 2T

J f YK (S,é)\if((é,as)smedéd;é- cfm, {,‘,, (15)

oo *
we obtain the following resuli after simplifying:

MNq +1.p N

= A Z Z Z AL Lmﬂ""‘“*mh-"’“b!

Nens0 Mg=-na mMp=-nk m=-nNg D

{ th iV R - Ima  (ing s im0 (0] + Im ] (16)

12 *
la} Ny
(Ma+1m V(g b g g - i) ! (T\L'lm’)l] D Q(Ra)m,mb (Rb)vin—q)

@”( Rk fwre‘“'

r, r
e "a."‘h( ay b)

bl %
J ﬂna mg("«\/gnbmb(f‘b) aredradry

This expression has the advantage that the orientation dependence of the
cefficient of inductance has been made explicit and the integrals which

are required may be evaluated once and for all.
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RESULTS FOR CIRCULAR LOOPS e

Let us now consider the special case of two circular current loops,
each carrying unit current and having negligible crcss section. We
make the further restriciion that the separation, R, is greater than the
sum of the radii of the two loops, in which case the two-center coef-
ficients have the simple form:

B (rarRy= 0 (e it " 0 N

Ny, Ny
. (Ng £ ng +m1yt RNatNb !

It is convenient to choose the barred coordinate systems so that

the current loops lie 1in the X-.-y plane and are centered at the origin
Y

Figure 2 Orientation of Current Loop
(Figure 2). The current density components may be written in terms of
delta functions;

= (6, 2/2)8(ry —Ca) . 7
(ja)l G rosim éa °m¢)a

(18)

(" ) - S(E, - T2) é_(‘"a‘ Ca) c~os?p7u
de) r, sim B,
where C, is the radius of the current loop. Using Equation (7) we

easily obtain the following results:

oo () = TUPION S, | - 8,y SlEaz o)

Na L r.k
r (19)
- Mma o(.Y‘ - Ca)
Poametr) = T PO (S 7 S, ) S
with simi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>