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“ ABSTRACT

A basic analysis of the blade tip flow plienomena is presented.
The analysis is based on a steady relative flow of a viscous incompres=
sible fluid. A rotating cylindrical coordinate system which moves

with the blade at the same speed is used.

An order-of-magnitude a@alysis reduces the basic equations to
a set of simplified equations for both low and high Reynolds number,
Expressions are given for the éetermination of the distributions of
* pressure and velocity in the ciearance space and the mass flow across
oA the tip clearance space. The domputation of thé velocity distribution
is relatively simple and three methods of solution for the pressure

distribution are presented.
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INTRODUGTION

Because of the relative mption between the rotating blades
and the stationary casing wall iﬁ the turbomachines, a clearance space
has.to be provided to avoid phys}cal rubbing and consequent damaging
of the machine, The existence o?.the tip-=clearance complicates
greatly the internal fluid flow in‘turbomachines. Briefly, the tipe
clearance flow is a three-dimensional flour problcm. The tip~clcirance
flow has long been considered to be one of the factors responsible for
internal losses in trubomachinesfliithough opinjon of its importance
varies. The loss due to tip clearance flow has also been known to be
closely associated with the secondary-flow loss and the anmulus-wall
loss. The tip-leakage flow is due to the pressure difference across
the blade~tip section and the relative motion between the blade and’u
the bounding wall and is transverse to the main-flow direction, The
secondary~flow is due to the pressure difference across the space
between two adjacent blades and is also transverse to the main-flow
direction. The annulus wall loss is due to the boundary layer at the
walle. All these losses are originated within the boundar& layers of

the casing wall surfaces,

Of course, the tip-clearance should be kept as small as possible,

But the "warm cleara?cg" varies over a wide range under different

2
operating conditions. It is therefore advisable to provide a liberal
clearance in order to avoid rubbing under most unfavorable conditions,

"Shrouding" of blade tips decreases the tip-loss but introduces other

#Number in parehtheSis‘refers to the reference number given at the end
of the report.
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losses, In one compressor test, it has been found that the compressor
with shrouded blades has both lower pressure coefficient and overall
compressor efficiency than those of a compressor without shrouding,
However, this single test cannot be taken as conclusives Others(S)
claim shrouding will eliminate the indnced secondary flow loss which is
caused by the moving-wall, It secems that shrouding only changes the
tip-loss problem to a different one instead of being a simple remedy.

Our study is confined to free tip blades,

The purpose of this invéstigation is to make a basic study of
the flow phenomenon pattern aréund the tip-clearance space, to analyze
the design and operating paraméters which control this clearancé flow,
and to determine its effect on the machine performance. It is hoped
that cut of a thorough understanding of the tip-flow phenomena, the
limit of the permissible clearance may be calculated, This report

presents the initial theoretical study of this problem,
A BRIEF SURVEY OF PREVIOUS INVESTIGATIONS

Up to date, complete treatment of the tip-loss problem is not
available, even though it has attracted attention in the steam~turbine
development as early as 1905.(6) The available information regarding
the tip-loss problem can be summarized into the following different
groups: |

Theoretical Investigation
(7)

Betz made the first theoretical investigation of the tip-loss
in the Kaplan water turbines by applying the 1lifting line theory to a
(8)
simplified two-dimensional rectilinear cascade. ILater, Sedille

also using lifting~-line theory, treated the tip-loss problem in the
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axial compressor., The results obtained by this method were found
much larger than those observed in practice., The discrepancy was
attributed vy Sedille to the resistances which opposed the flow in
the tip clearance space which prévails in the actual machines but
are neglected in the snalyses. These resistances included anmulus
wall boundary laycrs, blade thickness, radial flow of blade boundary
layers, local turbulence, etc,

Semi-Empirical Estimation of Tip-Loss

In order to meet the urgent practical need in design, various
semi~empirical formulae have been suggested to estimate the tip-loss
in turbomachines., These formulac were chiefly based upon gimplified
theoretical analyses under certain assumptions or 1limitations, The
empirical constants have to be evaluated from test datas This group

(9) (10) (11)
of investigators includcs Meldahl, Traupel and Fickert., Their

suggested formulae respectively are:

Investigators Suggested Formulae Assumptions and
(1) Meldahl(1941) End Losscs: (1) Based upon
1ift-line theory
Lo = 1011 + L.667(2-) and 2-Diménsional

blades cascade
Yhere 8 = tip-clearance
' (2) Good only for
¢ = blade~-chord single.stage
. : rcaction turbine

(3) Including
secondary flow
loss
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(2) Traupel (1942) Tip loss: : , (1)

"3—“—-—
1y = Koo )IE)4U ()
Ag  sino
Where:K = Flow Coeff, (3)
Ae = clearance area
A5 = annular arca
t+ = pitch
4l = change of tangen-
tial component of
velecity

o = cascade angle

(3) Fickert (1943) Volumetric eff, (1)

- ( 4)
/f‘47l Yoo
)

/—( by

Where:y = coeff. of contrac-
tion

= casing diameter
Dh = hub I
&

throttling coeff,

Experimental Investigation

. it e A

Based on Berndﬁlli's
equation

Flow coeff, 'K! has to
be evaluated from test
data

K has different values
for rotor and stator

Based upon Bernoullits
equation

Cocff of contraction
3144t has to be evalua~
ted from test data

In axial compressor tests the variation of compressor efficiency

(8)

with tip-clcarance was obtained by Sedille, Ruden

(12) (13)
nd Lindsay,

These results show a nearly linear relationship betwcon the efficiency

drop and the tipeclearance increase. However, neither detailed
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explanations nor theory were advanced from those testing results.:

Qualitativé Investigﬁtion of the MovinéJWall Effect

Recently, cfforts have been made to understand the moving-wall
effect on the clearance flows. This is an attempt to separate one fac-
tor from others affccting the clearance flow. Ainley and Jeffs(S)
concluded from their compressor test that the rotating drum drags along
the adjacent fluld through the tip-clcarance space in addition inducing
a sccondary flow. Carter(Bindicatcd that, in the casc of a compres-
sor, the clearance flow will be augmented by the moving wall and that
the induced sccondary flow was the Wscraping cffect! of the moving-wallj
but in the turbinc, the clearance flow will be reduced by the moving
wall, Both the tscraping effect! and the reduced clearance flow in
the turbine were confirmed by Hansen, Herzig, Costelloflii their smoke
visualization oxperimont in a cascade tunnel, But thoir results

regarding the clearance flow in the compreossor were in contradiction

to Carterts prodiction, Their cxperiments show that the moving wall

has a tendency to diminish the ckearance flow rather than to promotc it,

This point nceds clarification by further cxperiments, and will be one

of the objeets to be studied in the oxperimental part of this research

project,

In hydraulic turbomachincs, such as pumps and marine ducted
(16)

propcllers, the so=called "vortex cavitation" has becn obscrved,

Fluid, passing through the tip clearance, forms the tip vortex. At the

' (1)
» Tt has come to our attention very recently that a report on Tip-Loss

has been published in Germany in 1952, However, that report is not

yet avallable to us at the present time,
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M center of this vortex, cavitics arc prodvecds These cavities appear
and form a nearly continuous corc which starts at about thc leading 1
cdge of tho blade and extends downstrecam, The magnitude of the

cavitics scems to depend upon the tip-clecarance.

From the preccding survey of the previous investigations, we may

conclude that:
(1) Tip=-cloarance flow contributes considerable loss in turbo=
1 ‘machines, cspecially when the clearance is large.
(2) Tip-clearance flow is affected by factors, such as bladc~
- tip thickicss, blade loading (espccially loading conditions near tip
- '7 scction), relative motion cffect, annulus wall boundary laycr, blade

boundary laycr, ctce Thorefore, it is a 3-Dtal boundary layer problem.
. ‘f PRELIMINARY STUDY OF TIP 1035 PROBLEM

When a lifting surface (cither a wing or a blade) is placed in
line with a passing fluid, a true 2-Dtal flow can be achicved only if
the lifting surfacc has an infinite span, However, in recality, the
lifting surfacc has only finitc span, thcreforc, 3-Dtal flow phenomcna
prevails. 1In the casc of a wing, the lifting surfacec has a frce end, or
tip, The fluid on the pressurc surface trics to flow to the suction
surface over the frce tipes Consequently, a trailing vortex shecet is
A0 formed behind the wing. (Fige 1). The vortex shecet causes the induced

drag of the wings In thc casc of a cascade of blades which arc attached

T et

to cn% w?lls, sccondary flow is developed both)in the cnd wall boundary
17 (18
layer and in the main flow (passage vortex)., The boundary layor fluid

on the pressurc surface of onc blade flows to the suction surface of its

-, B
i

’ adjacent blade along the cnd wall, (Fig. 2). Downstrcam of the cascade,
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a trailing vortcx shcet again is formed. If "clecarance" eoxists betwoen
the blade tip and the ond wall (consider for the time being that the
end wall is stationary), both thq:socondany flow in the ond wall and
the trailing vortices will still $c present bub with diffeorcent magnitudee
Becausc of the clearance, the fluid on the pressure surface will tend
to flow to the suction surface oﬁ the same blade (since the passage is
shortcer and the pressure differeéce is the same) instead of to the
suction surfacc of the adjacent blade. (Fige 3). Due to this
clearance flow, the pressure gra@ient between the pressure and the
suction surfaccs will no longer ;e the same as that when there is no
clcarancc. Thereforo, the secon?ary flow will somewhat decrease in
strengths No doubt, this roarrahge of flow pattern in the boundary
iayer will, in turn, influcnce thc flow in the main streams It may be
noted here that both the sccondéry flow and the clearance flow are in

a planc transversc to the main-flow direcction,

Now, lct the ond wall move, so we can have a condition corres=-
ponding to the actual onc in turbomachines, In the compressor, the
pressurc surfacc is loading in the moving dircction and in the turbine,
the suction surface is ledding. For the time bcing, let us agrce that
the moving wall, due to viscous offect, will drag along the fluid with
it when it passcs over the blade~tip, Thus, in thc compressor, because
the wall (rclative motion) moves in the same dircetion to that of the
pressure difforence (hence in the direction of the clearance flow)
across the blade tip, it is expected that the clcarance flow will be
augmented (Fig. U4) while in the turbine, thc wall moves in an opposite

dircetion to that of the pressure difference, it is cxpceted that the

clcarance flow will bo reduccd (Fige 5),
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It seems that it is necessary to point out that thore is a
difference botween the amount of fluid flow through the tipeclearance
and the strength of the vortex formed duc to this tip-clearance flow.
The amount of fluid-flow through the tip-clcarance, as will be seen
later, depends upon both the pressurc gradiont across the blade tipe
scction and the moving wall veclocity, ‘But the vortex strength depends
. only upon the pressurc gradjent across the blade tip-scction. Thore
arc two cxtreme cases: (a) For stationary wall (zcro velocity) and .
large pressuro gradicnt, the tip-clcarance vortex will be the strongcst.
(b) For large moving wall velocity and zero pressure gradient, there

will be no tip=-clcarance vortex and the amount of fluid flow may be or

may not be greater than that in casc (a)s In an actual machine, the
situation for thc vortcx strength and the amount of fluid flow will be |
somewhere botween cases (a) and (b), The moving wall, of course, tends
to minimize the pressurc gradicnt across the two sides of the blade W,l
/ when it drags the high-pressure fluid from onc side to the low pres- |

surc region of tho other side of thc blade,

Because the flow in the boundary laycr is primarily determined
' by the main flow, all the factors which affect the main flow will affect
the flow in the boundary layers The boundary layer flow condition in
turn affeets the tip-clearance flow, Thereforc, tho tip clearance flow

at is closely related to the main flow, The final forms of the main flow

influence arc manifesth_by the blade loading, casing wall boundary

Y ST T

laycr, rclative motion ceffect, ctc., as mentioned before. If these
conditions prevailing outside the clearancc space remain the same, the 5

flow through the tip-clcarance can bo expected to be the same cven

. though the main flow could be of differont patterns
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for different designse. Since the main flow in the turbomachine has
many natures (ii)thc onc hand, and the lack of full knowledge
regarding the throc dimensional boundary laycr flow (in this case, it
will be sccondary flow) on thc othcr hand, it scems unwise to attempt
to solve the tip~clcarance problem together with the boundary laycr
flow and the main flow, but rather to assume conditions outside the
clearance spacc and try to solve it accordingly. In other words, the

boundary conditions of tipeclearance flow are not cvident by themw

selves. Thcy arc rclated to the secondary flow and hence the main flow.

5o far we consider the blade tip is inside the casing-wall
boundary laycr. In other words, we have considered only the casc that
the "warm clcarance" is lecss than the thickness of the boundary layor
of the adjacent casing wall, This will be true for most conditions, at
least for latcr-stage rotors and stators in the compressor. In the
following, we will conccntrate our analysis on this assumption,
Fortunatcly, for thco casc when the blade tip is outside of the boundary
layecr, the problem is much simpler to handlc. Because both viscous
cffecet and the relative motion effcet can be ignored when the tip is
outside of thc boundary layer (Fig. 6), thoen the problam can be

approached by the convontional lifting-line thcory.
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SEMBOLS

The following symbols are used in this report:

A = Coefficient of cosines of the velocity Fourier series

B = Cocfficient of sines of the velocity Fourier 'serics

Q

= Airfoil chord length « ft,.
D ‘('sz‘ c:.'-/ANZ;«S + 2CF TAN 3 3IN l.l) + (:([)(/‘?’(n,u *K 7'AA//35//V1;‘
+ TN E) + &F .sec"/s PASEEY i3

L = Characteristic length of the turbomachine, either the blade chord
or the blade height - ft,
M = _/éi(r f,z) CHRTAN 12(D +(;~23]sw¢ -[4< R (D ~62¥IC»05 73 -g)&’zgka,;zy—
rh‘—, ce D 20D -c2) et AL (1 TN #2C R

i

¢

Q -= Rabs of mass flow 1b(M)/sece
R = Radius in % 7/’ plane (figure 1l)
Rt = Distance betwecn point P and origin O (figure L)

Re = Reynolds number =~ 1\1;

<3
n

Absolute velocity of the fluid = fte/soce

=!
a

Relative volocity of the fluid = ft./scc,

a = radius of the transformed circle in 5 -y plane (figure 13B)

b = distance between point on the circle and origin O (figure 13B)

¢ = Constant of Joukowsky's transformation equation :
i = Imaginary unit -

1 = componcnt of MO in 5 direction in ¢ of ¢ (figure 13B)

m = Distance botween M and O (figure 13B)

p = pressurc 1b(F,)/ft.2

‘7
Qo'é/%wo “
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r = Radial distanco in tho cyl,indrical coordinates
/. = Radial distance ¢f the cae%ing wall < ft4
I, = Radial distance of the hub’ = Tt
[. = Radial distance of the blz}{de tip = fte
s = Tip=clearance =~ in (or ft;)
t = Time - second :

: Wo = Relative velocity of the inlet fluid - ft/scce

Wy)= Relative velocity componeﬁts in r, { and z direction respece
8') tively = ft/scce

x = z8 +

y = Al - distance in the tangential direction = ft,.

z = Axial distance in the cylindrical coordinates

z! = Horizontal component in y¥ - z! plane (figure 13A)

o = Angle of attack of the inlebt relative fluid - dege

. /3 = fAinglc between MN and 7 - axis (figure 13B) = dege

3 - axis (figure 13B) ~ dege
- 2
h.
7 = 7+ :"?7 (figure 13B)

§a Angle betwecen Mo and
4

=%
5 = [ingle between OP and 3 -axis (figure 1l)
)= 7%; for rotor, = ;/"‘ for stator
U = Viscosity of fluid = lb(F)-tsec/ft.z
# = Kinematic viscosity of fluid = % - ft.2/secs
‘ ; = Radius distance from the blade tip inside the clearance spacs

«-in (or f£t,)
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= density of fluid = 1b,(M)/scce .

£ .

A !

Angular displacement in the cylindrical coordinates = dege -

= Blade cascadc stagger angle - deg.

Angle between PM and 5 ~axis (figurc 1) = deg.

E € € a ™

Rotating spood of the turbomachine - rade./scce .

Subscripts

a = At the contour of the airfoil section
c = Casing wall

h = Hub

t = Blade tip

r) '
¥ )= 1In the radial, tangential and axial directions of the cylindrical

5—)

coordinates rospcctively,
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BASIC EQUATIONS

The thrce-dimensional flow of a viscous incompressible fluid
is governed by the following set of the basic laws of fluid mechanics. ,

From the principle of conservation of matter

oo o o

From Newton!s second law of motion,

DV _ _op v
L7 = vp uvV 2)
- = I e -
or % + (Vv)V = "';.‘V'D +t PPV (22)

Since the absolute motion of fluid flow in a turbomachine is
generally ﬁnsteady while the relative motion w:.th respect to the
blade is cssentially steady, the preceding cquations are further
cxpressed in terms of the relative velocity W, which is rclated to the

absolute velocity by the relation,

V =W +a0 X (3)

In equation (3) (' is the angular velocity of the blade aboyt the

F -axis) and / is the radius voctor neasurcd from the z - axis.

Now, for the blade rotating at a constant velocity «) about the

z=axis,
2._[; - .D...: - W F , .\.)XW
Ct STE Wil +2v (L)
But -
| ODW 2W | = W (> =
F‘E ="7"E +(W'\/)W -zt +2’VW NX(VXN)(M)

When the preceding relations are used, cquations (1) and (2) become

(assuming steady pelative flow),

FUIIR Y TR ER e




VW =o ()
and
! 2 — - -— - | . ) 4 g 2.
VW - Wxlvxw) =t r +2wxw=~;vP PPV (6

Since the boundary walls of a turbomachinc are surfaces of
revolution, a relative cylindrical coordinate system /- 7 and z
with ¢ moasurcd with respect to the rotating blade and rotating with
angular speced - W about tho z=axis is cmployed. Then equation (5)

becomos

A _?._ 1.2W v Cile/
and cquation (6) gives

(a) in radial direction:

. a
WI“WI‘ + __V}/y. QW‘ 52,&‘7 - Wy ,(Afr -2 W W

?5 ¥ r Py - w/
Lk, ( Ay T Y -2 ote)
For ‘7,’ l/‘ f‘)V& ;75: ok y2ey¥
(b) in circumferential direction: (8a)
Wy 2We Wy W W,
(AR S e
L3P (T, Ve, IV, TV W, 2300
F”Y H( 7> TP TR +,‘,‘» T e Fp
| (8b)
(c) in md.al dircct:.on " aW
w Wa_ W g
ru: P ﬁ ’ 5w73' by, 2 ) (00
=-fa5 +2 (5 */’7r= =
Although equations (7), (8a) ) nd (8c) give four indepen-

dent cquations for the solution of four unknowns, Wj; Wy W: AP

there is yet no mathematical methods available for an exact solution of

‘thesc cquatiéns. In the following, the usual proccdurc of an order=of~

magnitude analysis is used to obtain a sct of simplified cquations for

an approximate solution of the problems

s drT

.‘;ﬁ’ 5 M'-.
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SIMPLIFIED EQUATIONS

We first transform equations (7) and (8) into dimensionless
forms., Let the representative f?elocity be Wy, which is the rclative
velocity of approach to the blaé,e just outside the boundary layer at
the wall, Let the rcpresentati{re length be L, which may be either the
radial lcngth of the blade or the chord of the tip scction of the blade,
Then the equations arc made diménsionless by introducing tho following

dimnsionless variables

’ Il . = ’ W/~ : ’
= 5% Wr:"W/: WP“%}

W r W l 7 p

w = — = et

Ws wo, Wo , F pPW,E
Equations (7) and (8) then become

L2 fwge) 4 2wy awg
- + - =
4 ! ’ l '2’ ’ .
Wi —2“,/" " Wy 7,w£‘. Z‘!_Yﬁ - _W_g_ o -2W W,
S roéy €3’ /“

=2k AW W oW W zae |

T Re] GRE TR A G G T R [ o)

7’
‘AW ‘AW r W
WO g 2y B W Wy

Q'P, / ! W, W, ';W’ W W,
=-S5 4L fowe M LT M Dy A

Foag T Re) R R e TR T g T r A

( Iob)
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T 7 [0
where R.= ____M;/.;‘.é. (11)

Now, r', z!,w WS; s Wy'y P! arc of the same order and taken

to be of order 1, The dimensionless tip-clearance st (= g/L) is

amnll of the first order, thec same as thc dimensionless boundary-layer

thickness along the wall &! (= 8/L). They beclong to the next smaller
order than 1 and are indicated by O( 3'). W, also has the order of

3’ ., Then, because ~Te

EM\’(/ ’ .
"o —_— —a N = (_’)(Z— \
w, - '/w - )

/ e .
2Wr /p/‘ " 1is of thc order 1, On the othcr hand, 2z /ﬁg’ and

-;L,' 2 NV/@ "3 are of the order 1 (excevt at the bounding wall and

the blade tip surface). Bascd on these orders of magnitudes, we found

the order of magnitudes of all other terms in the quations and they arc
listed below:
- 2 . 2 /
() e TP
A TV T pE

, ’
/ ‘ ;w,. ‘W& _?_ W
ol5r) i G Ta, Tapi
, 2 / L
s (1) o 2W. W, _12W; 17 e 7%
A I T A TR L




~18-

When these orders of magnitudes are used, and a term of order

(%) is omitted, the continuity equation (9) becomes

Vs

T A 4 %’ T
The relative importance of the various terms in equations (10)

depend, howcver, on thc order of magnitude of the Reynolds number,

For fluids of small viscosity, such as air and water at ordinary
temperaturc and pressurc, the characteristic Reynolds number is usually
large and is in the order of (1/3’%). For other fluids, such as
lubricating oil and some liquid chemicals, 4 is a hundred times greater
and, especially with relatively small characteristic length L, the
Reynolds number is of the order of ( ,'/g’). The following simplified
equations are thercfore given, for thesc two orders of magnitude of the

Reynolds number rospectively.

Case I, Reynolds numbor of order of 1/& . In this case, equations

(iO) reduce to

’ s 2 2,7
2F _ Wy 'S CW.. 4 L 2We
== = ../._;_ + [+ 2 (W +Ke‘- ZpE | (13a)
L2f 7w
r'iy¢ Re 2p* (13b)
2 7.
o A L. 3
25’ Re a1’ (13¢)
[

In cquation (13a), we scc that thc viscous term is of the same
order of magnitude as the inortia term, Thoy both contribute to the

radial pressure gradicnt.

e - = T e o s gam T R e

- 2‘ R ~ . w & T LI N
’ . O
£l . .
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In cach of equations (13b) and (13¢), only one viscous term
predominates and essentially détermines tho circumferential and axial

pressure gradient respcctively,

It is noted that the te%ms on the right-hand side of equation
(13a) are of thc order of 1, w%ile thosc on the right~hand sidec of
equations (13b) and (13c) are §f the order of Af}ﬁ Therefore, the
pressure gradient in the radiai dirertion is much smaller than the
pressurc gradients in the othc% two dircctions, In other words, only

equations (13b) and (13c) havelto be considcred in this case,

Casc II, Reynolds number of order of /6‘ In this case equation

(10) reduces to

o _ (WertwP L Ve (1e)
T e
Y y 2 , /ZWw }_A{_‘f;w, W/BW)
AU 2 (WIS T )
(R ST I
w =R T R T e

The inertia term now predominates in the right~hand side of
equation (1ha), which is recognized as the "simplified-radialwequili-

brium equation,

It is noted that in this case all terms that appear on the righte

hand side of thc three equations are of the same order of magnitude of
1, Therefore, the pressurc gradients in the three directions are in

general of the same order of 1,

<
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Govorning Equations and Bé,undary Conditions

With the prossure gradient in the radial direction negligible

compared to that in the circumferential and axial directions, we

have the equations of motion in i‘the latter two directions in dimene
sional forms,

2 Wy TRy,
2We %P
. / 2r* T r op (15)
Z
2 W3 27
oE -2 15b
Mgt T (zv)

The simplified continuity equation in dimensional form is

2%, L e, 2, (16)
n i oy 23

The boundary conditions are as follows:

(1) At the blade tip surface i.es at / =/ , (see Figs., 8 to 10),

W, = Wy =W, =0
’ LA (17)
(2) At either casing or hub,
= =0
Wr WS (28)
(3) At the casing for rotor blades (Figs. 8 and 10)
WV = - (L) I; (19)
At the hub for stator blades (Fig. 9)
Wso = (i (19a)
S f m et e e ——
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Variation of Velocities in the Clearance Spacing

Now, with pressure within the clearance space considersd to be
constant in the radial direction, the pressure p is a function of only
v and 'z, So are 3%y and 2%5,.. When equation (15a) is

integrated twice with respect to + at a fixed set of values of W

and z, we obtain.

Wy = L2Er(fr )+ v,

The constants Cy and Cy are determined by the use of boundary conditions
(17), (19) and (19a). In order to obtain one equation for either rotor
blade or stator blade, we let,

) = 7%— for rotor (20a)
= ;E'.'. for stator (20b)

Then; ]a
/vt(/rvt f Ayt 2= F WAk

whers the minus sign in the last term is used for the case of rotor
blades and the plus sign is used for the case of stator bla&es. We

solve the preceding equations for cl and C, and obtain,

' Al 272 - 2
(/- ol “"""'v )/?«f L P

= _A..&_A—- .—/-; 2 - —_._‘ [(’r

Hence,
/\/.w‘ =Lt k2t ..fi’-/
- - (i n,’”/a},«'vrm_r Al

(2/)
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Similarly, integrating twicé with respect to p» , we
obtain, "

_ .2k
Wa J/U'Dar ~+C3/~+C‘4

After the boundary conditions arc jised to determine the constants Cg

and Ch, we have,
2
= “("“’:‘)( )qa {'5%) (22)

>/, for rotor blades and ) = T{E < / for
‘ t

Where A = [:

stator blades.

Equations (21) and (22) then: give the complete radial variation
of the tangential and axial velocitles over the clearance space,
We see that the tangential veloclty is composed of two parts. The
first part is associated with the circumferential pressure gradient and
the second part is associated wit? the relative motion between the
blade and the wall, With the coo;dinate system chosen herein
(see Fig,7 ), the circumfereﬁtial pressure gradient is a positive
quantity either at the rotor blade tip (Fig, & ) of a compressor or
at the stator blade tip of the turbine, and is a negative quantity
either at the stator blade tip of a compressor (Fig. ¢ ) or at the
rotor blade tip of a turbine (Fige /0). The sign of the multiplier

of the pressuro gradient can be seen by the use of series expansion

as follows:

(1) Variation of Taggéntial Velocity over the Rotor Blade Tip.

In this case,

/¢ It (23)

"‘\"q vﬁl;‘}-
(L)

. = L -. e

R
L

sy

ettt

datinlioetindiindin st




B e

«23

Then A= /rs (2L)
| d'z 63 04
= N(/I76) = 5. & -~ -3 -
WA = W(1#6) = 5 & 3 -5
(25)
Let also ,_C - _,/_\E-‘:_{ = /4_..%.. =+ E (26)
F TR 2
Then > 63 64
/N—{:z/N(/*é):zé--Zé-i-;"‘é_‘*'“
e | (27)
and equation (21) becomes |
€6) [, SHE o pueE O RS R Y
W =Tz /"?"'“k S jMEe
Let 2 _ € (28)
s S

7/ =
(the: )/ Py ar = /«E’ 7 =/ a# /‘«.-/‘. ) Then,

WO-U)VT i It 9% 2 s 2
th = -/~~[~3--~X/" (‘*:Z-_‘[)o’ t /“""‘E"/*)G""“‘”',/4/}2_50

_ 7 WE | (29)

We see that s‘ince 7 and § are numbers never greater than unity, the
Quantity inside the bracket is always positive, So the coefficient of
7%90 is always negative., The first term on the right-hand side

of the equation is substantially proportional to the square of the
clearance 8 and to the eircumferential pressure gradient, It is
identically equal to zero at the blade tip and at the casing wall, On
the other hand, the magnitude of the 8econd term on the rightehand side

of the equation increases from zero at the blade tip to @, at the

casing wall,

Rl e LB L e B ST RO 3
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! In the case of the rotor blades in a compressor, the pressure
gradient is positive and, consequently, both berhe on the right-hand

side are negative and their magqitudes add together;

In the case of the rotor :blades in a turbine, the pressure
gradient is negative, and, consedquently, the two terms counteract each

other,

The variation of the coefficient in the first term on the right-
hand of equation (21) is plotted for several values of ¢ in Figs// »
It is seen that its magnitude increases at first with radius, reaches
a maximum at 7 equals to about ¢.% and then decreases to zero

at the casing.

(2) variation of tagential velocity over the stator blade tip.

In this case,

I’ ’;-—.’3 -
,% /‘l R -~ == -2 - /"6
2 3 4
Wh=~(v+Z+F 3 24
(Y+z +5 ) (25a)
Lo f e
s s . (26a)
2 3
& ¢ €
: (27a)

and equation (21) becomes . .
é/o €)f,, Stt oritre
W\( = o // it

/_’[_(Q/)Z (/H% f’JIJ +_]JZ

Wie see again that the quantity inside the bracket is always a

£
tr

"Jl'\;

2t
¢

positive one and that it is always slightly greater than that in

o e ——E
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equation (29) for the same value of ¢ and 7 o In the case of
aAcompressor, the pressure gradignt now is negative, both terms on the
right-hand side of equation (BO)Iare positive, In the case of a
turbine, the pressure gradient ip positive, and consequently the terms
counteract each other. The firs% term varies with 7’ in a similar
manner as that in the rotor case: The second term varies linearly

from a valuc of zero at F, to aivalue of W/, at /;) .

The variation of the axiai;velocity as given by equation (22) can
alsc be put in terms of the dimenéionless variable. 7 for either the

rotor or the stator blade as folldws-

-7)- 5 21” (31)

W qu ’)3

3= U
We sce that the axial velocity is.proportional to s* and the pressure
gradient and it has a parabolic variation with 7 inside the clearance
space. Since the pressure gradient in the axial direction is always
positive for compressor, the axial velocity is always negative;in the
case of a turbine, the axial pressure gradient is negative and the axial

velocity is positive,
Variation of Pressure in the Clearance Space

In order to compute the velocity variation by equations (21) and
(22) throughout the clearance space, it is nccessary to détermine first

the pressure gradicnt throughout the space, This is done as follows:

Multiplying the continuity equation by 4/ and integrating

from the tip of a rotor blade to the casing gives,
(I Fe ~Te

<.
- /f / . 2
t

3 A4




L g
But f M d4p = Wa =0
li or Iy
1 [y ~/e
hee [ 2 dp =/ Y ot
)'; r 2y e ?¢
Now, lebt
r A/ o
Th .
en R v 5 [b; w ZW
?7“’? dinr = [,’wf Ay =5 Wpdd +Wy i g ~ Miche
R i A
Since t t
<7t ‘ 2 \.A'
Therefore ‘ g-‘f 3
Ie . . ~O¢ v
L 2 [ gy 2 2 e
S T 2" Ple 7
Iy % re
Siﬂﬂ.la.rly,
R fe p . o
awa _ 2. Wd/"'f‘wl“ﬁ*-é‘?)
s 9% ar “?}/ & gl oy v
Sl ¢
Since
W - L = W‘g_'ft =0
/~
Hence i fe
Wy g =2 W ar
....... 7
® 3/f*-
The integral form of the continuity equat:.on is then
it
3‘* Yodi + ’s,/ W dr =c (32)
2¢ [ /
I+

When the values of W, and Wg, as given by equations (21)

and (22) are subst:.tuted into equation (32), we have,
Aly A ot AL E? dr
/ /%‘ (F ) /‘ 4/ /wztf A ‘//* I'j

4,225 //A-‘" ( )/ta 2 r o= o
Iy

au 2’/
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Carrying out integration and dﬁferentiation, and rearranging, we

finally obtain,
' (A—/)—/\(/m\)[ 2% 3%
)2 e —i—, * 3oy =0
(/ (A=1)4 - [ 237 (33)

This is a linear second-order p_;rtial differential équation and can

easily be transformed into a Lai;lace equation by le tting
A
(r-1)%

<
Y S A (3b)
/ 1z /00- -1)= )s(/w))” /) e

‘Q%E * j%;?i =0 (35)

The relation between 3, and ff can be more clearly seen by

Thus,

substituting equations (23) to (27) into equation (3L). This results

J } /:?....; 4/00‘ +-~'“,J]/;?

in

or

g =lts+- - Yrexlp
(3La)

Thus, y has the same sign as l,o and is approximately equal to the casing
radius times @

If the continuvity equation is integrated from the stator blade

tip to the hub, we again obtain equations (33) to (35). But, when

the rolations (23a) to (27a) are used, we obtain,

(Rney A
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: / ]
= foe - |1
¢ /+6+4,/1->d;+----7j 4
= (/-6 = ---)[tf |
» {3Lb)
%y , |
A general épproximate form for equation (3L) is
and an approximate form of equation (33) is,
3 2 2 :
/ 27? 2 Z) —_ ‘
A ier 7 23 % =0 (37)

Equation (37) is a second-order partial differential equation

of the elliptic type. Hence, the proﬁer boundary condition is the

pressure distribution around the blade surface at the blade tipe

Like other boundary~laycr problems, the potential flow outside

the boundary layer has to be known in order to solve the_boundary-layer
flow,

The pressure distributioh around the blade at the tip section
is mainly determined by the geometry of the blade (the shape, the
stagger angle, and the solidity), the angle of attack, the Mach number,
and the Reynolds number. The influence of these factors on the tip=
clearance flow is therefore exerted through the boundary condition for
the solution of equation (33) or (35). As the first approximate
solution, the effect of these factors on the pressure distribution
around the blade tip scetion can be obtaincd cither by using the
theorectical calculation based on two-dimensional potential flow
around the blade tip section or by using cascade tests. In the actual
three~dimensional flow, the pressure distribution around the blade
tip section is further influenced by the ratio of clearance to blade

b LT,

gor 1 .
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height, the relative specd between the blade and the wall, the secon-
dary boundary-layer flow, across the channel formed by the blades, and
the three~dimensional geometridél shape of the blade. These influences
can only be detcrmined, at the present time, by experiments, some of

which are scheduled in the second phase of this research project.

With a given geometry and the pressure distpibution around the
blade at the tip section, equation (35) can be solved, and the circum-
ferential and axial derivatives used in the preceding equations for the
computation of the velocity components. The method of solution will
be discussed after similar equations like those containcd in this

section are obtained for the second casee
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In this case the inertia forces are in general of the same
order of magnitude as the viscous force, and the pressure gradients in
all three directions are of the same order of 1. In dimensional forms,

the three simplified equations of Mmotion are:

, 2 z e
(W‘F +l('f) _ -_Z_ - _._{ 3.2

S A - = F 21 (383)
I r 2¢ 22‘N¢
oW Wy W oWy _ 1 27 4 pf
SR S TR 7f‘ CTP iy or*  (38b)
. g/ W,
Wz | Wy 2V Mg L L2E 4 p278
We 27 Vo * Mé? 2 Fz 2r*  (38¢)

The simplified continuity equation is the same as in the previous

20 T '3 (26)

Although the radial pressufe gradient is now of the same order
of magnitude of the pressure gradient in the other two directions, the
total variation of pressure across thc clearance space of ordinary size
is still relatively small (in the order of two to three percent). (in
reference 20, a measured differgnce of 3% across the boundary layer
along the wall of a compressor is reported), Therefore, for an approxi~
mate solution, we may still ignore the radial variation of pressure for
our problem, i.e. the pressure is considered to be a function of only

‘P and z,

Equations (38b) and (38c) ecach have three more inertia terms on
the right-hand side of the equation than the corresponding equations
of the previous case. At either thq blade tip or at the bounding walls,

howevar, these inertia terms are equal to zero, because eithei the

S Y e e
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i velocity component or its circmférential derivative is equal %o zero."
These terms exert their influence."m}’at in-between radii, Because of
their presence, the equations beélbme non-linear and it is found that
an exact solution of equations (}:'Bb), (38¢c), and (16) cannot be
obtained., In the following an a§proximate solution is obtained by
assuming polynomial variations f;:r the velocity components and

- determining the constants by the boundary conditions on the velocities

and their radial derivatives as' given by equations (38b) and (368c).

Thus we assume

Wy = Ao AT + A2y F Az 2

and

[#

5,9 + B 7-‘3+-~---'
Wy = B * 57 #8527 757 (10)

The boundary conditions are as follows:

At 7:0 (I“lt*.)‘ W, =0 (Lla)
| Wy =
f=9 (L2b)
Wg =0 (l1c)
at 7 =/ (r= r, for rotor blades or A =/;  for
stator i)lades),
Wy =0 Ld)
WV o ; A lU/Z (h]_e)

(where the minus and positive signs are used for rotor and stator
respectively)

Wz =0 (lae)
at 7 =0 , Equation (38b) gives |

E£ 4
.
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Wy _ 1. 2P,
22 = iR
Then, ) : |
oWy _ s 2P -
'_'f;/; T a2y
Also, Equation (38c) gives
22W5: L. ?3.7:“
-;;7” @ T /,U ck
or 2wy st 3P (i2h)
.-é,-] P; = ) /l'l 4 é: !
At » =1, equations (38b) and (38c) give, respectively
oWe _ s 2P ()
R Yr ¥
and 2 W3 =* 27 (L13)

(
the same as that at the wall ( 7'3- 1), In other words, the second

derivative of W, with respect to 7 at the blade tip ( }] = 0) is

partial derivative should not include 7 Thus, equation (LO) takes

the form,

Wy =B, + 87 '/'5;72

By the use of equations (Lle), (L1f), and (L1h), we obtain

Then

~ o7 (L2)
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second partial derivative of Wy with respect to 7 at the l;lade‘ tip
(7 =0) is slightly different from that at the wall (7 = 1). Sinte
‘) _ L 1 we have altogether four boundary cdnditions for W, and its derivative

to satisfy at the two end points, v";e vake,
A > y; 3
Wy = A, + A + A2 + A3y (43)

From equations (Lib), (Lle), (L;lg);, and (L1j), we find

Ao = 0 :
- : = + AW
| Aa *Al + Az.z +£3 = T Al t
' : s~ 2P
: zhe = TR ¥z 2
i ' r

2Az+b Az = 0K Ty

gives, \ f
A5, 4,2, A 3 s 2B 3300
Wv’*’/é'\"/”‘"-) Y oy T

When equations (L42) and (Ll) obtained herein are compared to
"respectively, equations (31) and (21) of the previous case, we see
immediately that the axial velocities as given by equations (42) and
(31) are exactly the same. To compare the tangential velocities, we

substitute equations (24) and (24a) into equation (Lk) resulting in

[plpy- U g - G j[ PRI,
Wy = - (100 s - s i 75kus)

for rotor blades and ) .y
-m7r ey ) * {3
Wy <= {22 0 505 e
=/

for stator blades, In these forms, we sce that equations (L5) and (L6)

N e
e TR ST s

are also equal to the corresponding equations (29) and (30) of the

. previous case if terms involving © * and higher orders are neglected,
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This is usually permissible, since ¢ 1is a very smell quantity.

Hence we see that if the radial variations of the velocity
components in this case can be represented by polynomials, the
éqnationa for the velocities are the same as those of the previous
cases, The validity of the assumption of polynomial representation
in this case should be verified in the futurc experiments. It should
be noted that, although the equations are the same, the pressure dise
tribution around the tip blade section and, conscquently, the circume
ferential and axial gradients of pressure can be a function of Reynolds
number. Therefore, the actual velocities can still be a function of

Reynolds nmumber, The values of /44 in the two cases are also different.

Inasmuch as the velocities of this case are the same as those

in the previous case, equations (34), (35); (36), and (37) obtained in

the previous case can also be used for this case,

ST et o B

= NS A G
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SOLUTION OF PRESSURE DISTRIBUTION IN
CLEARANGE SPACE

From the preceding two scctions we see that the pressure distri-

bution across thc clearance spatd is to be detetrmined by the equation

or
N z
2P
ifz * o3 TO (3)
vwhere
| (36)
vy ALY
= I{®  for rotor blades (3La)
= [, ¥ for stator blade (3Lb)

Now, the difficulty in solving the pressure distribution lies in
the arbitrary boundary values of the pressure given around the blade
section of agiven arbitrary shape, 1In general, a sufficiently accurate
answer can be obtained by the use of relaxation or matrix method
(Reference 20, 21), The difficulty introduced by the non-uniform grid
spacings can be helpcd out by the use of differentiation formuwlas for
non-uniform spacings (Reference 20. See example on pp. 27-29 for the
use of these formulas in conjunction with either the relaxation or
matrix method), .

A second method of solution is to replace the given blade section by
a Joukowsky airfoil section and to solve for the pressure variation over

the airfoil section aftcr a conformal transformation which converts the

airfoil into a circlees This method of solution is given below,
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Approximation ofthe Given Tip Section
by .a Joukowsky Airfoil

. Figure 13 shows the blade tip section in the y - z plané, X is the
angle between z-axis and the chésrd line which connects the leading edge
and the trailing edge of the aiéfoil. Also showm is the Joukowsky
airfoil approximating this tip 1%cction. ~ This Joukowsky airfoil is
obtained by matching the chord,‘_:rithe thickness ratio and t-he camber
(maximum value of mean line ord%:.jnate).

Referring to Figure 13, we first make a transformation of coordin-
ates fromy - z to yt ~ z! by, |

Y =g wosp ~GemX (u7)

—'J’zécvs/( *I uu/’l’ /
' Then this Joukowsky airfoil ‘with its chord (C) lying on the z!-axis
is obtained by transforming a circle of radius 'a! with center at M in

the '}-)Z plane by the Joukowsky transformation :

2
z=F+% (18)
where

7= 3+'7 (49)
X = §'+ "3' (50)
C =4c(1+m?) : (51)

a= C(/n‘*Iﬂ) (52)

(m is a small quantity)
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The coordinates of the airfoil are given by

j' = (b+-§) (me x 2¢C o058

JI

4

53}
b [ O A Z2C ol Al 7X/ .
( 5 ) Ay % C m (/f(&g) +‘ﬁ :6,

where

. I3 meos ¥ :
m ¢as b N 1T
/;‘. = tan csnsmd ¥ e+msmi (5L)

and is a small angle,

From eqs. (53), the maxdimum thig_kness is equal to 33?/4 mc

which occurs at one-quarter of the chord from the leading edge and the
camber is equal to 1/2 [:’ In :f;he approximation of the given blade
tip section by the Joukowslky airi‘o:.l s the geometrical data of the tip
section is to be uscd to obtain c (or ¢), my and B of ‘the Joukowsky
airfoil,

Velocity and Pressure Distributions Around the

Joukowsky Airfoil

In the ‘5 -plane, thc velocity at thc surface of the circle is

W, W, 2o (of + W /7

i -+ ——m
5 = (A+P) + 57
But

/
I = 47TGq We 2. (d f‘/@’)
Hence
_ 4, &
W/g &Wo/p(\d(x"zf QVH(‘X *ﬁ)) (\. 5)
The velocity around the airfoil in the & -~planc and that around

the circle in the ; -~plane are related by

PR T "ZH:W sy e smae o w
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where ____,_ /,_ % / //(/~ -—-roszﬂ)+/ ----- ﬂwo?é)

| TETTET e

From Fig. 13, we see

by 6 = Q (ﬂ"v"ﬂ ¢+ i /‘3)

‘ b cosl = awsy’#‘/(ﬁ, . (58)
and |
acesp = c(1+4) (59)
Hence
(ZC")Z' - “/~~ (60)

(/f'/),.lﬂ,(_ /3(4'0)¢*ﬂ“v8) ./-/(/1‘)()M/9 f05¢ *l/]

Substituting cquations (55), (57) and (60) into equation (56) gives

(2 Wi * ) = acﬁp‘a*s(&?f*#*ﬁ ) /[mw, *Zf‘“/w"w#/m/ f//,u./’ /f*z ) 4ty )os) B2 )ﬂ

PR — e ) .._-~- IS
f-/nn o (~—r‘)#/f“€/« ﬂ“/i*’“'(")*’/*/)fﬁ(‘“ﬁ)] +(/fl’lj/- fr5(¢*f/‘)]
(6/)

Equation (61) now gives the vclocity distribution around the airfoil
in terms of W, X, . Y and ¥ . Fora '
given airfoil and a given approach velocity at a given angle of attack,.
A A W, and of arc fixed values.

i
The pressure distribution around the airfoil is obtained by the use

of Bernoulli equation and the velocity distribution given by Equation
(61) |

2
, ” P,,..L :‘ .«¢/3 /""‘(u*y’*ﬂ)l{//*‘“'f*2/‘"/’)*"@+4f(°5(1 l, ]}

e G —

( &‘*‘“'ﬂm (1*-)*‘/#4/5[ ]} +(/w)[/-fo<($’*/3)]

(62)
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Solution of the Laplace Equation in Pressure

With the boundary values of the preruro around the airfoil section
given by equation (62), the variation of pressure across the blade tip
is obtainsd by the solution of equation (35). Because of the complica~
ted boundary shape of the airfoil in the z'=-pV plane, we attempt to
solve the equation in conformall-transformed 5 =plane with the simple

circular boundary, To do this, the Laplace equation is expressed in

polar coordinates R and ¥ (Fig. 1h).

p 12, L 2P
Sk TR 2 trptaygz: T° (63)

The solution of this equation can be expressed in a Fourier series

as follows (sce reference 22):=
PR )= A, + —»-(,,WA conpt B, mnp) ()

In order to detcrmine the Fourier coefficients At's and Bts, we first

write equation (6L) at thAc‘z boundary R = a:

plad) = A, +z~/A resny + B, Ann¥)  (65)

Then we express the known boundary values, equation (62) in a Fourier

i
series: :

Play) = A +Z(Aycosny + 8 AnnY)
n=

(66)
Equating equations (65) and (66) gives
Ao = A l
b = A, [ -
. i

B Wi S
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-In the case of cambered Joukowsky airfoil, it is quite a complicated

process to express eJq)iicitly the A'S and B ':5 in terms of V\/c

O(‘Fs and f .

In case it is desirable to solve the present problem with an
experimentally mecasured pressuro distribution ardu.nd the tip blade
scction, onc can obtain the coefficients A,'$ and B,.s bya
suitable numerical method and then obtain A,’s and B/ s by

equations (67).

In the case of a symmetrical Joukowsky section, it 48 found
relatively simple to obtain a gencral expression for the coefficients
(based on the theoretical presgure distributions In this special case,

/3-0

and

Wi (2 { 4(,fwb-)6’[/+/a7+(as¢)lj}2/ (mzdm¢+m~.4_a(%¢)
(-w-o-) S

o — s o — —

[(/-(05 ¥)+2 (/---cp.sy_»)/ -h?/z? (68)

Based on this equation we found, by the method given in reference 23

and using 30° intervals,

A = -4{2 £, )///2 TN, +4 14 /3, 5{) ( - /z +430 f/z)é’ff)aszx}
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These expressions are gencral that it can be used for any values of

X and A
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Pressure Gradient

To obtain thc pressure gradient, we differentiate equation (64) with
respect to R and ¥ , respectively

-’;%‘ = g(ﬂAr;Rﬂ—"'f" nyg + 8 ‘2”"/4"‘.'”?’)

| _%1: - ( AR e Y + 1 B,R T cosn¥) y (10

To lead these derivatives to ):'; and

‘2?; s we have to find the
relations among ‘gﬁ" 75 _?—11’, ﬂ arid '22} From equae-

t1ons(53), (5L), (55) and reforring Fig%re 13, /we obtain, -
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3= (~R"+ 53 Jeoso = Rieoso(1+3) )
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R biv © = R + & /a"”'ﬂ (72)
4 ‘ces 6 = Kesiyp + (C }'

‘ Equations (71) and (72) give,
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Differentiating the preceding equations with respect to z! gives,
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where D =

By sol ing for

R
?3 /)nd 25 we obtain
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Similarly, differentiating with respect to yl leads to
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In particular at R = a = (/*I)cac/; s equations (73) and (7L)
reduce to,
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Having found these derlvatlvea, we can compute ( k) and a
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_From Equation (36)

(%), = 2 +/ ) " ™

Equatlons (70), (73), (74, (76), (77) and (78) altogether give /2:;)

and ( ) , which are reqyired to compute the velocity distri~

'butlon across the tip clearance gpace as given by equations (42) and

(L5) or (L6)s ’
Alternate Jg'fppro:d.mation

Instead of appro:d.mtiné the given tip blade section by a
Joukdwshr section, as stated on ps’ 36, one may transform the given
blade section by the J'oukowskyf: transformation into a near circle,’
which can then be approximate by a true circle, thereby determining

the values of 7 and [5 o The rest of the procedure remains the

same,
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MASS FLOW ACROSS TIPiCLE&RANCE SPACE

After the velocity distriﬁgtion across the tip=¢learance
space is obtained, the mass flowiicross it can be obtained by adding
together the mass flow in the tangential and in the axlal directions,-
In the tangential direction, the mass flow is (Figure 15),
[('tc.z; f’?.
/ -
o

e

In the axial direction, the mass flow is,

- W, drd
@y = f | g
(4] //;

Therefore, the resultant mass flow across the tip=clearance space

will be, (Figure 15)
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SUMMARY

A basie analysis is made on the flow phenomena across the
blade tip clearance spaces The fluid is considered to be viscous
and ingompressible and the basic equations of motion and continuity
are expfessed with respect to a cylindrical coordinate system rota- N

ting with tho blades at the same speeds

Simplified equations are then obtained by an order=-of=magnitude
analysis. Two cascs are considercd; one with low Reynolds number and

one with high Reynolds number',

In the first casc, the equations of motion can be solved to
give an analytical cxpression for the velocity distributions in the
clearance space in terms of tho pressurc gradient and the relative
speed between thc blade and the bounding walls The pressure distri-
bution is governed by a Laplace equation which is obtained from the

continuity equation,

In the second case, the equations of motion cannot be solved
analytically, An approximate solution is obtained by assuming a third
order polynomial for the tangential velocity and a second order poly-
nomial for the axial velocity and using the proper boundary conditions,
The form of t;he equations obtainced is very similar to that of the first
cases |

Three méthods of solution are discusscd for the solution of the
v Laplace equation of prossure distribution, One is a direct numorical
solution by cither the relaxation method or matrix methed. The next

ono involves an approximation of the tip scction by a Joukowsky section.

The last ono inmvolves & transformation of the given blade section by

‘«' T T e = - mo AR

- 2 * . ™
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the Joukowsky transformation into a near circle, which is then
approximated by a true circle, In either of the last two methods the
pressure distribution in the transformed plane is expressed in the form
of a Fourier series, Eilther the theorotical or experimentally obtained
pressure distribution along the blade surface can be used as the
boundary values. Expressions are obtained to convert the pressure
gradients obtained in the transformed plane to those in the actual blade

tip section,

Finally an expression for the mass flow across the tip clearance

aﬁacq is obtained,

The pressure gradient over the blade section at the blade tip is
found to be affected by factors such as blade 1oading (1ece pressure
distribution over blade section) shape of blade airfoil section,
casing wall boundary layer, viscosity of the fluid, relative motion
between thc casing wall and the blade tip. Velocities through the tip=
clearance is found to be primarily determined by the pressure gradient
and varies with the square of the tip-clearance, whilec mass flow across
the tip-clearance is found to be determined by the velocity distribution,
hence by the pressure gradient and varies with the cube of the tipe

clearance.
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