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ABSTRCT

A basic analysis of the blade tip flow phenomena is presented.

The analysis is based on a steady relat-ive flow of a viscous incompres-

sible fluid. A rotating cylindrical coordinate system which moves

with the blade at the same speed is used.

An order-of-magnitude analysis reduces the basic equations to

a set of simplified equations for both low and high Reynolds number.

Expressions are given for the determination of the distributions of

pressure and velocity in the clearance space and the mass flow across

the tip clearance space. The computation of the velocity distribution

is relatively simple and three 'methods of solution for the pressure

distribution are presented.
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INTRODUCTION

Because of the relative motion between the rotating blades

and the stationary casing wall in the turbomachinesp a clearance space'I has to be provided to avoid physical rubbing and consequent damaging

of the machine. The existence of the tip-clearance complicates

greatly the internal fluid flow in turbomachines. Briefly, the tip-

clearance flow is a three-dimensional flow problcm. Tho tip-clc ..rauico

flow has long been considered to, be one of the factors responsible for4l)*
internal losses in trubomachinesi although opinion of its importance

varies. The loss due to tip clearance flow has also been known to be

closely associated with the secondary-flow loss and the annulus-wall

loss. The tip-leakage flow is due to the pressure difference across

the blade-tip section and the relative motion between the blade and

the bounding wall and is transverse to the main-flow direction. The

secondary-flow is due to the pressure difference across the space

between two adjacent blades and is also transverse to the main-flow

direction. The annulus wall loss is due tO the boundary layer at the

wall. All these losses are originated within the boundary layers of

* the casing wall surfaces.

Of course, the tip-clearance should be kept as small as possible.

But the "warm clearance" varies over a wide range under different
(2)

operating conditions. It is therefore advisable to provide a liberal

clearance in order to avoid rubbing under most unfavorable conditions,

"Shrouding" of blade tips decreases the tip2-loss but introduces other

Mumber in parenthesis refers to the reference number given at the end

of the report.

II
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losses. In one compressor test, it has been found that the compressor

with shrouded blades has both lower pressure coefficient and overall

compressor efficiency than those of a compressor without shrouding.

However, this single test cannot be taken as conclusive. Others

claim shrouding will eliminate the induced secondary flow loss which is

caused by the moving-wall. It seems that shrouding only changes the

tip-loss problem to a different one instead of being a simple remedy.

Our study is confined to free tip blades.

The purpose of this investigation is to make a basic study of

the flow phenomenon pattern around the tip-clearance space, to analyze

the design and operating parameters which control this clearance flow,

and to determine its effect on the machine performance. It is hoped

that out of a thorough understanding of the tip-flow phenomena, the

limit of the permissible clearance may be calculated. This report

presents the initial theoretical study of this problem.

A BRIEF SURVEY OF PREVIOUS INVESTIGATIONS

Up to date, complete treatment of the tip-loss problem is not

available, even though it has attracted attention in the steam-turbine• (6 )
development as early as 1905. The available information regarding

the tip-loss problem can be sunmrized into the following different

groups:

Theoretical Investigation

Betz made the first theoretical investigation of the tip-loss

in the Kaplan water turbines by applying the lifting line theory to a
(8)

simplified two-dimensional rectilinear cascade. Later, Sedille

also using lifting-line theory, treated the tip-loss problem in the

I 'I•



axial compressor. The results obtained by this method were found

much larger than those observed in practice. The discrepancy was

attributed oy Sedille to the resistances which opposed the flow in

the tip clearance space which prevails in the actual machines but

are neglected in the analyses. These resistances included annulus

wall boundary layers, blade thickness, radial flow of blade boundary

layers, local turbulence, etc.

Semi-Empirical Estimation of Tip-Loss

In order to meet the urgent practical need in design, various

semi-empirical formulae have been suggested to estimate the tip-loss

in turbomachines. These formulae were chiefly based upon simplified

theoretical analyses under certain assumptions or limitations. The

empirical constants have to be evaluated from test data. This group
(9) (10) (11)

of investigators includes Meldahlp Traupel and Fickert. Their

suggested formulae respectively are:

Investigators Suggested Formulae Assumptions and
Limitation

(1) Meldahl(19l) End Losses: (1) Based upon
lift-line theory

Lo  .1011 + 4.667(Ls ) and 2-Dimensional
C blades cascade

Where s - tip-clearance (2) Good only for
c blade-chord single stage

reaction turbine

(3) Including
secondary flow
loss

4, '4! ' 4%
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(2) Traupel (1942) Tip Loss, (1) Based on Bernoulli's
equation

L- K(Ac (2) Flow coeff, 1K' has to
Aa sinor be evaluated from test

data

Where:K - Flow Cooff. (3) K has different values
for rotor and stator

Ac - clearance area

Aa - annular area

t = pitch

40 - change of tangen-
tial component of
velocity

D( - cascade angle

(3) Fickert (1943) Volumetric off. (1) Based upon Bernoullits
equation

_ _ _ _ (2) Cooff of contraction
'2 1/,t has to be evalua-

....... ted from test data

WhereyA - coeff, of contrac-

tion

Da casing diameter

Dh hub /F

4' =throttling coeff.

Experimcntal Investigation

In axial compressor tests the variation of compressor efficiency
(8) (12) (13)

with tip-clearance was obtained by Sodillc, Ruden and Lindsay,

These results show a nearly linear relationship between the efficiency

drop and the tip-clearance incroase. However, neither detailed

A



explanations nor theory wore advanced from those testing results.*

Qualitative Investigation of the Moving-Wall Effect

Recently, efforts have been made to understand the moving-wall

effect on the clearance flow. This is an aTtempt to separate one fac-(5)
tor from others affecting the clearance flow. Ainley and Jeffs

concluded from their compressor test that the rotating drum drags &long

the adjacent fluid through the tip-clearance space in addition inducig
(3)

a secondary flow. Carter indicated that, in the case of a compres-

sor, the clearance flow will be augmented by the moving wall and that

the induced secondary flow was the "scraping effectl of the moving-wall;

but in the turbine, the clearance flow will be reduced by the moving

wall. Both the tscraping effectt and the reduced clearance flow in
(15)

the turbine wore confirmed by Hansen, Herzig, Costello, in their smoke
visualization experiment in a cascade tunnel. But their results

regarding the clearance flow in the compressor were in contradiction

to Carter' s prediction. Their experiments show that the moving wall

has a tendency to diminish the clearance flow rather than to promote it.

This point needs clarification by further experiments, and will be one

of the objects to be studied in the experimental part of this research

project.

In hydraulic turbomachines, such as pumps and marine ductod
(16)

propollcrs, thc so-called !"vortex cavitation, has been observed.

Fluid, passing through the tip cloaranceforms the tip vortex. At the

*It has-come to our attention very recently that a reort Tip-Loss

has been published in Germany in 1952. However, that report is not

yet available to us at the present time.
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center of this vortex, cavities arc produced. Those cavities appear
and form a nearly continuous core which starts at about the leading

edge of the blade and extonds downstream. The magnitude of the

cavities seems to depend upon the tip-cloarance.

From the preceding survey of the previous investigations, we may

conclude that:

(1) Tip-clearance flow contributes considerable loss in turbo-

machines, especially when the clearance is largo.

(2) Tip-clearance flow is affected by factors, such as blado-

tip thicki css, blade loading (especially loading conditions near tip

section), relative motion effect, annulus wall boundary layor, blade

boundary layer, etc. Therefore, it is a 3-Dfal boundary layer problem.

PRELIMINARY STUDY OF TIP LOSS PROBLF4

When a lifting surface (either a wing or a blade) is placed in

line with a passing fluid, a true 2-Dial flow can be achieved only if

the lifting surface has an infinite span. However, in reality, the

lifting surface has only finite span, therefore, 3-Dial flow phenomena

prevails. In the case of a wing, the lifting surface has a free end, or

tip, The fluid on the pressure surface tries to flow to the suction

surface over the free tip. Consequently, a trailing vortex shoot is

formed behind the wing. (Fig. 1). The vortex sheet causes the induced

drag of the wing. In the case of a cascade of blades which are attached
to end wallsp secondary flow is developed both in the end wall boundary

(17) (18)

layer and in the main flow (passage vortex). The boundary layer fluid

on the pressure surface of one blade flows to the suction surface of its

adjacent blade along the end wall* (Fig. 2). Downstream of the cascade,

- r - -
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a trailing vortex shoot again is formed. If "clearance" exists between

the blade tip and the end wall (consider for the time being that the

end wall is stationary), both the secondary flow in the end wall and

the trailing vortices will still ,bo present but with different magnitude*

Because of the clearance s the fluid on the pressure surface will tend

to flow to the suction surface oi the same blade (since the passage is

shorter and the pressure difference is the same) instead of to the

suction surface of the adjacent blade. (Figs 3). Due to this

clearance flow, the pressure gradient between the pressure and the

suction surfaces will no longer be the same as that when there is no

clearance. Therefore, the secondary flow vill somewhat decrease in

strength. No doubt, this rearrange of flow pattern in the boundary

Layor wkill, in turn, influence the flow in the main stream. It may be

noted here that both the secondary flow and the clearance flow are in

a plane transverse to the main-flow direction.

Now, lot the end wall move, £o we can have a condition corres-

pending to the actual one in turbomachinos. In the compressor, the

pressure surface is loading in the moving direction and in the turbine,

the suction surface is leading. For the time being, lot us agree that

the moving wall, duo to viscous effeot, will drag along the fluid with

it when it passes over the blade-tip. Thus, in the compressor, because

the wall (relative motion) moves in the same direction to that of the

pressure difference (hence in the direction of the clearance flow)

across the blade tip, it is expected that the clearance flow will be

augmented (Fig. 4) while in the turbine, the wall moves in an opposito

direction to that of the pressure difference it is expected that the

clearance flow will be reduced (Fig. 5),



It seems that it is necessary to point out that there is a

difference between the amount of fluid flow through the tip-clearance

and the strength of the vortex formed duo to this tip-clearance flow.

The amount of fluid-flow through the tip-clearance, as will be seen

later, depends upon both the pressure gradient across the blade tip-

section and the moving wall velocity. But the vortex strength depends

only upon the pressure gradient across the blade tip-section. There

are two extreme cases: (a) For stationary wall (zero velocity) and

large pressure gradient, the tip-clearance vortex will be the strongest.

(b) For large moving wall velocity and zero pressure gradient, there

will be no tip-clearance vortex and the amount of fluid flow may be or

may not be greater than that in case (a). In an actual machine, the

situation for the vortex strength and the amount of fluid flow will be

somewhere between cases (a) and (b), The moving wall, of course, tends

to minimize the pressure gradient across the two sides of the blade

when it drags the high-pressure fluid from one side to the low pros-

sure region of the other side of the blade.

Because the flow in the boundary layer is primarily determined

by the main flow, all the factors which affect the main flow will affect

the flow in the boundary layer. The boundary layer flow condition in

turn affects the tip-clearance flow. Therefore, the tip clearance flow

is closely related to the main flow, The final forms of the main flow

influence are manifested by the blade loading, casing wall boundary

layer, relative motion effect. etc., as mentioned before. If these

conditions prevailing outside the clearance space remain the same. thQ

flow through the tip-clearance can be expected to be the sapie oven

though the main flow could be of different patterns
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for different designs. Since the main flow in the turbomachine has

(19)
many natures on the one hand, and the lack of full knowledge

regarding the three dimensional boundary layer flow (in this case, it

will be secondary flow) on the other hand, it seems unwise to attempt

to solve the tip-clearance problem together with the boundary layer

flow and the main flow, but rather to assume conditions outside the

clearance space and try to solve it accordingly. In other words, the

boundary conditions of tip-clearance flow are not evident by them.

solves. They arc related to the secondary flow and hence the main flow.

So far we consider the blade tip is inside the casing-wall

boundary layer. In other words, we have considered only the case that

the "warm clearance" is less than the thickness of the boundary layer

of the adjacent casing wall. This will be true for most conditions, at

least for later-stage rotors and stators in the compressor. In the

following, we will concentrate our analysis on this assumption,

Fortunately, for the case when the blade tip is outside of the boundary

layer, the problem is much simpler to handle. Because both viscous

effect and the relative motion effect can be ignored when the tip is

outside of the boundary layer (Fig. 6), then the problem can be

approached by the conventional lifting-line theory.
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SVBOLS

The following symbols are used in this report:

A * Coefficient of cosines of the velocity Fourier series

B - Coefficient of sines of the velocity Fourier series

C a Airfoil chord length - ft.

D -(R' . /.. + ,.41. r,./. ,, / z.,'(o: . r- 4 A 51 : ,v

L u Characteristic length of the turbomachine, either the blade chord

or the blade height - ft.

- rA7' " -. . " k t ' -'

Q .= Rab of mass flow lb(M)/sec.

R * Radius in - "/' plane (figure 14)

R1 = Distance between point P and origin 0 (figure 14)
vv0

Re = Reynolds number

-= Absolute velocity of the fluid - ft./soc.

= Relative velocity of the fluid - ft./so.

a a radius of the transformed circle in 5 - plane (figure 13B)

b a distance between point on the circle and origin 0 (figure 13B)

c * Constant of Joukowskyls transformation equation

i a Imaginary unit

1 - component of MO in direction in % of c (figure 13B)

m w Distance between M and 0 (figure 13B)

p - pressure ib(F.)/ft. 2

" 4.



X,
r - Radial distance in the cylindrical coordinates

I'" Radial distance of the casing wall - ftj

1; =Radial distance of the hub- ft.

• =Radial distance of the blade tip - ft.

s Tip-clearance - in (or ft,)

t - Time - second

Wo a Relative velocity of the inlet fluid - ft/sec.

wt))
W, ) Relative velocity components in r, p and z direction respec'

w tively - ft/sec.

x " zI + yl

y =x f t -distance in the tangential direction- ft.

z - Axial distance in the cylindrical coordinates

zI - Horizontal component in yt - zt plane (figure 13A)

Angle of attack of the inlet relative fluid - deg.

Angle between IV and - axis (figure 13B) - dog.

Angle between M and / - axis (figure 13B) - deg.

- ~-i~' (figure 13B)

- Angle between OP and 3 -axis (figure 14)

•for rotor, for stator

- Viscosity of fluid - lb(F)-sec/ft.2

, -Kinematic viscosity of fluid - ft. 2 /sec.

* Radius distance from the blade tip inside the clearance space

-'in (or ft.)

4 , I• .
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density of fluid - lb.(M)/Soc.

Angular displacement in the cylindrical coordinates , dego

, "Blade cascade stagger angle - deg.

Angle between PM and 5 -aids (figure 14) - deg.

4.) aRotating speed of the turbomachine - rad./sec.

Subscripts

a a At the contour of the airfoil section

c a Casing wall

h,= Hub

t = Blade tip

r)
,e )" In the radialo tangential and axial directions of the cylindrical

I ) coordinates respectively.

I

I " -, " , " " ' Jo '4



BASIC EQUATIONS

The three-dimensional flow of a viscous incompressible fluid

is governed by the following set of the basic laws of fluid mechanics.,

Fr'om the principle of conservation of matter,
a(" p W.V .:'- 0 * - *(1)

From Nowtonls second law of motion,
Dr- z-
f - -I .1 +. V V (2)

or V V a- (2a)

Since the absolute motion of fluid flow in a turbomachine is

generally unsteady while the relative motion with respect to the

blade is essentially steady, the preceding equations are further

expressed in terms of the relative velocity W, which is related to the

absolute velocity by the relation,

IT) (3)

In equation (3) C-0 is the angular velocity of the blade about the

-axis) and F is the radius vector measured from the z - axis.

Now, for the blade rotating at a constant velocity (A) about the

z-axis.,

i r- 1 2 x vV (4)
But

=k 7'I + WX 4a

When the preceding relations are usedI equations (1) and (2) become

(assuming steady :relative flow)
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and_()
.~~ -v -  ( v x~v -  r / 2 x  = i X+;VVV (6)

Since the boundary walls of a turbomachinc are surfaces of

rcvolutionp a relative cylindrical coordinate system I-, and z

with :i masured with respect to the rotating blade and rotating with

angular speed w about the z-axis is employed. Then equation (5)

becomes

W- -( (7)

and equation (6) gives

(a) in radial direction:
'we' 'r '. r .

r ?h ~ W

(b) in circumferential direction:

e is l n 2eti ot st

2 1 -. 1 , _

anrxi mathe a solution ofto lAlthug equations") (8a) (8b)e olwtg huand proc)dure four anoeo-

magnitude arnalysis is used to obtain a sot of simplified equations for

~an approximate solution of the problem*



SIMPLIFlED EQUATIONS

Wnmfirst transform equations (7) and (8) into dimonsionless

forms. Lot the representative Velocity be We, which is the relative'

velocity of approach to tho blade just outsido the boundary layer at

the wall. Lot the ronresentativo length be L, which may be either the

radial length of the blade or the chord of the tip section of the blade.

dimensionless variables

rW
We L,

Equations (7) and (8) then become

,W.

tl" (9)

+ WK
4, 2,

Wi, I, W.

wt

+ - -Wl

"I~~~J (0J'+1'

(rob)

'Si

th al Ltterersnaiv egh eL hchmyb ete h
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-A4

;/ L (i1)
where /?>

Now, rt, zl,(# W , VIZ pt are of the same order and taken

to be of order 1. The dimensionless tip-clearance st (- a/L) is

=11 of the first order, the same as the dimensionless boundary-layer

thickness along the wall .I (= 1/L). They belong to the next smaller

order than 1 and are indicated by 0( W't). W4- also has the order of

Then, because

:/i I ' -

le t' is of the order 1. On the other hand, and

are of the order 1 (except at the bounding wall and

the blade tip surface). Based on these orders of magnitudes, we found

the order of magnitudes of all other terms in the quations and they arc

listed below:

? 2- W

, / I , ' a-/:

- ?.P', , r' V- ti., :,

and U

( (J') _.L? 7?Wr' , ;

."1," .. ,¢ : . , I'---.
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When theso orders of magnitudes are used, and a term of order

( ') is omitted, the continuity equation (9) becomes

The relative importance of the various terms in equations (19)

depend, however, on the order of magnitude of the Reynolds number.

For fluids of small viscosity, such as air and water at ordinary

temperature and pressure, the characteristic Reynolds number is usually

large and is in the order of (1/Z' ). For other fluids, such as

lubricating oil and some liquid chemicals, A> is a hundred times greater

and, especially with relatively small characteristic length L, the

Reynolds number is of the order of (k</i). The following simplified

equations are therefore given, for these two orders of magnitude of the

Reynolds number respectively.

Case I. Reynolds number of order of i/4 In this cases equations

(1o) reduce to

, ~~,Z ,V' , r

(13b)
/, ?'r'

(13c)

In equation (13a), we see that the viscous term is of the same

order of magnitude as the inertia term, Thcy both contribute to the

radial pressure gradient.

l {,
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In each of equations (13b) and (13c), only one viscous term

predominates and essentially ddtermines the circumferential and axial

pressure gradient respectively,

It is noted that the terms on the right-hand side of equation

(13a) are of the order of l wile those on the right-hand side of

equations (13b) and (13c) are of the order of 46'. Therefore, the

pressure gradient in the radial direction is much smaller than the

pressure gradients in the othor two directions. In other words, only

equations (13b) and (13c) have to be considered in this case.

Case II. Reynolds number of ozder of In this case equation

(10) reduces to
V (14a)

if ' ' " t4

_~ W _ w,-L+ N -.,.

The inertia term now predominates in the right-hand side of

equation (14a), which is recognized as the "simplified-radial-equili-

brium equation.

It is noted that in this case all terms that appear on the right-

hand side of the three equations are of the game order of magnitude of

1. Therefore, the pressuke gradients in the throe directions are in

general of the same order of 1'.
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CASE. WITi 0(e

Governing Equations and Bo.undary Conditions

With the pressure gradient in the radial direction negligible

compared to that in the circumferential and axial directions, we

have the equations of motion in the latter two directions in dimen-

sional forms

(15a)

~ (15b)

The simplified continuity equation in dimensional form is

/-F +  . "- = (16)

The boundary conditions are as follows:

(1) At the blade tip surface i.e. at / = , (see Figs. 8 to 10).

=w w. (17)

(2) At either'casing or hub,

(18)

(3) At the casing for rotor blades (Figs. 8 and 10)

w, = - t. A ,_ (1 9)

At the hub for stator blades (Fig. 9)

I, (19a)

• ' ' 'i al '" ", e " ,
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Variation of Velocities in the Clearance Spacing

Now, with pressure within the clearance space considered to be

constant in the radial direction, the pressure p is a function of only

Y, and z. So are 4 and zY .- When equation (15a) is
integrated twice with respect to I at a fixed set of values of

and z, we obtain.

The constants CI and C2 are dotermined by the use of boundary conditions

(17)s (19) and (19a). In order to obtain one equation for either rotor

blade or stator blade, we let,

__E for rotor (20a)

S- for stator (20b)

Then,

1 /V ( rP Jt, + t Cz t o

where the minus sign in the last term is used for the case of rotor

blades and the plus sign is used for the case of stator blades. We

solve the preceding equations for C, and C2 and obtain

)~4A /N
2 A

Hence,

(Z)

II

f' - .tq " '
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Similarly, integrating twice with respect to - , we

obtain, 

After the boundary conditions are Used to determine the constants C3

and C4, we have,

Where for rotor-blades and for

stator blades.

Equations (21) and (22) then give the complete radial variation

of the tangential and axial velocities over the clearance space.

We see that the tangential velocivy, is composed of two parts. The

first part is associated with the circumferential pressure gradient and

the second part is associated with the relative motion between the

blade and the wall. With the coordinate system chosen herein

(see Fig. 7 ), the circumferential pressure gradient is a positive

quantity either at the rotor blade tip (Fig. a ) of a compressor or

at the stator blade tip of the turbine, and is a negative quantity

either at the stator blade tip of a compressor (Fig. ) or at the
rotor blade tip of a turbine (Fig./O). The sign of the multiplier
of the pressure gradient can be seen by the use of series expansion

as follows:

(1) Variation of Tangential Velocity over the Rotor Blade Tip.

In this case,

(23)

Le

. Le - _! -



(i 4IV'J

'<~*1(2S)
.

Then 
(24)z"- 

.(27)

I and equation (21) becomes

Let- + (28)

NT en t~ 
h n

(29)

7 lR'e see that since and are numbers never greater than unity, thequantity insijde the bracket is always Positive. So the coefficient of
is awaysnegaive.The first term on the right-hand sideof the equation (s substantially proportional to the square of the

clearance s and to the circumferential pressure gradient. It is
antity iequal to zero at the blade tip and at the casing wall. On

the other handls the magnitude of the second term on the right-hand side

of the equation increases from zero at the blade tip to t04jl at the
casing wall.

4

,%1 , . I
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In the case of the rotor blades in a compressor, the pressure

gradient is positive and, consequently, both torie on the right-hand

side are negative and their magnitudes add together.

In the case of the rotor blades in a turbine, the pressure

gradient is negative, ands consequently, the two terms counteract each

other.

The variation of the coefficient in the first term on the right-

hand of equation (21) is plotted for several values of 6 in Fig. I

It is seen that its magnitude ircreases at first with radius, reaches

a maximum at equals to about ('.5 and then decreases to zero

at the casing.

(2) Variation of tagential velocity over the stator blade tip.

In this case,

It
........ .... = _ -

3(24a)

2= 3 .
"/" (25a)

- (26a)

- - 4-

It (27a)

and equation (21) becomes ...." "- " ' '-7-

't 7 i 2(04,

We see again that the quantity inside the bracket is always a

positive one and that it is always slightly greater than that in

~ii
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equation (29) for the same value of S! and 7 * In the case of

a compressor, the pressure gradient now is negative, both terms on the

right-hand side of equation (30) are positive. In the case of a

turbine, the pressure gradient is positive, and consequently the terms

counteract each other. The first term varies with y in a similar

manner as that in the rotor case. The second term varies linearly

from a value of zero at ri to a."value of oq at

The -variation of the axial velocity As given by equation (22) can

also be put in terms of the dimenionless variable , for either the

rotor or the stator blade as foll.ws:

(31)

We see that the axial velocity is proportional to 3z and the pressure

gradient and it has a parabolic variation with inside the clearance

space. Since the pressure gradient in the axial direction is always

Spositive for compressor, the axial velocity is always negative; in the

case of a turbine, the axial pressure gradient is negative and the axial

velocity is positive.

Variation of Pressure in the Clearance Space

In order to compute the velocity variation by equations (21) and

(22) throughout the clearance space, it is necessary to determine first

the pressure gradient throughout the space. This is done as followst

Multiplying the continuity equation by d/" and integrating

from the tip of a rotor blade to the casing gives,

d /t .-

-~ - - , _ _ ' -



-26-

But-f.. = V &/ o

~~~~..: r!r."

Also

Now, let

Then , .

,, e.fw,,d,*r-.. -

Since

Therefore lc .

Similarly,

Since

Hence " d

The integral form of the continuity equation is then
IC A. (32)

When the values of 4. and WI. as given by equations (21)

and (22) are substituted into equation (32), we haves

2- -/A/.,A+x - - ,
-/ ' ,

,i il
, " ..... .." -" " ; .t. <I



Carrying out integration and differentiation, and rearranging, we

finally obtain,

/")7 ' - . bF="7-= (33)

This is a linear second-order prtial differential equation and can

easily be transformed into a Laplace equation by Je tting

Thus,•2
.2. 0 o(35)

The relation between anCl can be more clearly seen by

substituting equations (23) to (27) into equation (34). This results

in
, : ... ): ;-, c Y .... j

1* or

~A
(34"ta)

Thus, y has the same sign as l and is approximately equal to the casing

radius times

If the Continuity equation is integrated from the stator blade

tip to the hub, we again obtain equations (33) to (35). But, when

the relations, (23a) to (27a) are used, we obtain.,
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171-

A general approximate form for equation (34) is

Ar (36)

and an approximate form of equation (33) is,

+ 0/ (37)

Equation (37) is a second-order partial differential equation

of the elliptic type. Hence, the proper boundary condition is the

pressure distribution around the blade surface at the blade tip.

Like other boundary-layer problemsp the potential flow outside

the boundary layer has to be known in order to solve the boundary-layer

flow*

The pressure distribution around the blade at the tip section

is mainly determined by the geometry of the blade (the shape, the

stagger angle, and the solidity), the angle of attack, the Mach numbers

and the Reynolds number. The influence of these factors on the tip-

clearance flow is therefore exerted through the boundary condition for

the solution of equation (33) or (35). As the first approximate

solution, the effect of these factors on the pressure distribution

around the blade tip soction can be obtained either by using the

theorectical calculation based on two-dimensional potential flow

around the blade tip section or by using cascade tests. In the actual

three-dimensional flow, the pressure distribution around the blade

44

tip section is further influenced by the ratio of clearance to blade 7 ..

fri



heights the relative speed between the blade and the wall, the secon-

dary boundary-layer flow. across the channel formed by the blades, and

the three-dimensional geometrical shape of the blade. These influences

can only be determined, at the present time,by experiments, some of

which are scheduled in the secdnd phase of this research project.

With a given geometry and the pressure distribution around the

blade at the tip section, equation (35) can be solved, and the circum-

ferential and aiLal derivatives used in the preceding equations for the

computation of the velocity components. The method of solution will

be discussed after similar equations like those contained in this

section are obtained for the second case.

'I



ULSE II WITH Re = Of )

In this case the inertia forces are in general of the same

order of magnitude as the viscous rprce, and the pressure gradients in

all three directions are of the saoe order of 1. In dimensional forms,

the three simplified equations of motion are:

" - r"- (38a)

The simplified continuity equation is the same as in the previous

case,

"I' ?j~(16)

Although the radial pressure gradient is now of the same order

of magnitude of the pressure gradient in the other two directions, the

total variation of pressure across the clearance space of ordinary size

is still relatively small (in the order of two to three percent). (in

reference 20, a measured difference of 3% across the boundary layer

along the wall of a compressor is reported). Therefore, for an approxi.

mate solution, we may still ignore the radial variation of pressure for

our problem, i.e. the pressure is considered to be a function of only

'P and .

Equations (38b) andJ(3:) each have three more inertia terms on

the right-hand side of the equation than the corresponding equations

of the previous case. At either thq blade tip or at the bounding walls,

r however, these inertia torms are equal to zero, because either the

.4 j_
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velocity component or its circumferential derivative is equal to zero

These terms exert their influence*at in-between radii. Because of

their presence) the equations becbme non-linear and it is found that

an exact solution of equations (38b), (38c), and (16) cannot be

obtained. In the following an approximate solution is obtained by

assuming polynomial variations for the velocity components and

determining the constants by the boundary conditions on the velocities

and their radial derivatives as~given by equations (38b) and (38c).

Thus we assume

A0 A,, + A z A (39)

and

W 21j.44 (hO)

The boundary conditions are as follows:

At 7 o r t ) " (Ll4Ja)

w = (lb)

at (r"rc for rotor blades or /j for

stator blades),
wt  o (l~d)

(Lje)

(where the minus and positive signs are used for rotor and stator

respectively)

0 G & Er )
at o0 Equation (38b) gives
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Then

1.

,Also, Equation (38c) gives

or W2 / k. (41h)

At J I, equations (38b) and (38c) give, respectively

, /

and W3 (41J)

From equations (41h) and (41J) we see that the second partial
derivative of Wz with respect to , at the blade tip ( ) = 0) is

*1
the same as that at the wall ( 1)o In other words, the second

partial derivative should not include * Thus, equation (40) takes

the form.

By the use of equations (41c), (lf), and (41h), we obtain

Bo  0

B2 - 4
Then

S- (42)

On the other hand, equations (41g) and (411) show that the

1~;



second partial derivative of W 4 wth respect to ' at the blade tip

0 0) is slightly different from that at the wall ( 1 - i):. Si~e

we have altogether four boundary cdnditions for Wt and its derivative

to satisfy at the two end points, we take,

'4 tA3 (43)

From equations (41b), (41e), ( Yg), and (41j), we find

AO A t
z - L 2k.--F'~~ ~ Az +A Az A

Solving for Ao, A1, A 2 , and A, and substituting them into (43)

gives,

When equations (42) and (44) obtained herein are compared to

respectively, equations (31) and (21) of the previous case, we see

immediately that the axial velocities as given by equations (42) and

(31) are exactly the same. To compare the tangential velocities, we

substitute equations (24) and (24a) into equation (44) resulting in

-2
l- 6- L .6 " %)

for rotor blades and

lo + + (46

for stator blades. In these forms, we see that equations (45) and (6)

are also equal to the corresponding equations (29) and (30) of the

previous case if terms involving 0; and higher orders are neglected,



-34-

This is usually permissible, since t is a very small quantity.

Hence we see that if the radial variations of the velocity

components in this case can be represented by polynomials, the

equations for the velocities are the same as those of the previous

case. The validity of the assumption of polynomial representation

in this case should be verified in the future experiments. It should

be noted that, although the equations are the same, the pressure dis-

tribution around the tip blade section and) consequently, the cirum.

ferential and axial gradients of pressure can be a function of Reynolds

number. Therefore, the actual velocities can still be a function of

Reynolds number. The values of in the two cases are also different&

Inasmuch as the velocities of this case are the same as those

in the previous cases equations (34), (35), (36), and (37) obtained in

the previous case can also be used for this case.

I;



SOLUTION OF PlESSURE DISTRIBUTION IN

CLUARANOE SPACE

From the precbding two sections we see that the pressure distri-

bution across the clearance spabd is to be determined by the equation

z (37)or

where

(36)

for rotor blades (34a)

for stator blade (34b)

Now, the difficulty in solving the pressure distribution lies in
the arbitrary boundary values of the pressure given around the blade

section of agiven arbitrary shape. In general, a sufficiently accurate

answer can be obtained by the use of relaxation or matrix method

(Reference 20, 21). The difficulty introduced by the non-uniform grid

spacings can be helped out by the use of differentiation formulas for

non-uniform spacings (Reference 20. See example on pp. 27-29 for the

use of these formulas in conjunction with either the relaxation or

matrix method).

A second method of solution is to replace the given blade section by

a Joukowsky airfoil section and to solve for the pressure variation over

the airfoil section after a conformal transformation which converts the

airfoil into a circle. This method of solution is given below*

Af.,
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Approximation ofthe Given Tip Section
by.n Joukowsk Airfoil

Figure 13 shows the blade tip section in the y - z plane. , is the

angle between z-axis and the chord line which connects the leading edge

and the trailing edge of the airfoil, Also shown is the Joukowsky

airfoil approximating this tip section. This Joukowsky airfoil is

obtained by matching the chord,,,,the thickness ratio and the camber

(maximum value of mean line ordinate).

Referring to Figure 13, we first make a transformation of coordin-

ates from y -z to yl . z by,

-< J-7

Then this Joukowsky airfoilwith its chord (C) lying on the 2' -axis

is obtained by transforming a circle of radius 'at with center at M in

the' plane by the Joukowsky transformation:

where

* I

C -4c( .rnz+  ) (51)

a U ) c(52.)

(m is a small quantity)

Ii
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The coordinates of the airfoil are given by

where

.r1 5) c.. 40%&

and is a small angle.

From eqs. (53), the maximum thickness is equal to 31 A c

which occurs at one-quarter of the chord from the leading edge and the

camber is equal to 1/2 F . In -the approximation of the given blade

tip section by the Joukowsky airfoil, the geometrical data of the tip

section is to be used to obtain . (or c), m, and S of the Joukowsky

*airfoil.

Velocity and Pressure Distributions Around the

Joukowsky Airfoil

In the . -plane, the velocity at the surface of the circle is

WIP V4 (o + ) +
But

Hence

The velocity around the airfoil in the Z_-plane and that around

the circle in the -plane are related by

t .!(56)

. /W'X

4,
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where

IV~b/

From Fig. 13, we see

, J . c'-,,. ,c . (58)

and

Hence
2 . .... ................. . ... (60)

Substituting equations (55), (57) and (60) into equation (56) gives

w - 2r --

Equation (61) now gives the velocity distribution around the airfoil

in terms of 1,10  , . and I' . For a

given airfoil and a given approach velocity at a given angle of attack.

r o v'o  and o( are fixed values.

The pressure distribution around the airfoil is obtained by the use

of Bernoulli equation and the velocity distribution given by Equation

(61)

, "  - - - . . .--. --- - - ---........ .

j - . ,-. '-- " 
-- 

" 
-. 

. "-'
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Solution of the Laplace Equation I Pressure

With the boundary values of the pressure around the airfoil section

given by equation (62), the variation of pressure across the blade tip

is obtainad by the solution of equation (35). Because of the complica-

ted boundary shape of the airfoil in the 0 -71 plane, we attempt to

solve the equation in conformll-transformed . -plane with the simple

circular boundary. To do this, the Laplace equation is expressed in

polar coordinates R and ; (Fig. 14).

R ) (63)

The solution of this equation can be expressed in a Fourier series

as follows (see reference 22):"

~y~'2) A n 2 0, ,?4 ) (64.)

In order to detcrmine the Fourier coefficients A's and B's, we first

write equation (64) at the boundary R a a:

7>l~-, A =A ,0o +7 Y ,1, ,._-, ,.8, ,,;) (65)

Then we express the knom boundary values, equation (62) in a Fourier

series:

~(aL A' jr 4, 45; ?
- (66)

Equating equations (65) and (66) gives

(67)

'

14.
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-In the case of cambered Joukowsky airfoil, it is quite a cbmplicated

process to express explicitly the A 's and B "S in terms of WC

Q( (3 and

In case it is desirable to solve the present problem with an

experimentally measured pressure distribution around the tip blade

section, one can obtain the coefficients A n 5. and Bg, by a

suitable numerical method and then obtain An .s and E.I4 s by

equations (67)o

In the case of a symmetrical Joukowsky section it M3 found

relatively simple to obtain a general expression for the coefficients

* (based on the theoretical pressure distribution. In this special case

Si and

C + ~ (/- o~s ~ t~j(68)

Based on this equation we found, by the method given in reference 23

and using 300 intervals,

WO - 3j/,S*) .; 741

r4 / s12 . .3
•~~~ 2. 2 : : 4/ L - ' ,



_- - t,1-v, ) ¢.,4S),<,,.,., ,>

431

-.~~~: (#&Woq v(.3 7
W, (667 w741)4',Z ;

7 1 L1,3)'67 + 8/ 4, 2-:

These expressions are general that it can be used for any values of

* and 0 '

Pressure Gradient

To obtain the pressure gradient, we differentiate equation (64) with

respect to R and , respectively

. _ ,p., ,, ,. , ,,,, , ).J (70)

To lead these derivatives to and we have to find the

relations among " ( z i _-_ "1.1'. From eqxm-
tions(53),(54),(5) and referringo Fi .re'13, we obtain,

ref ri t es to

(71
R (= 4 (-L4,,',-,- (72)
R 4' k21 / -.-- ,c.

Equations (71) and (72) give,

7-

ll. e, y(o ) + 21C J.. ...

""i, .
* &IlJzlec5?(i)l4 1 *SR

- - -e-

-,, .. *'



Differentiating the preceding equations with respect to zl gives,

P2, D

_2,,+ 'C,., , R2/C /C*

-/__-;+__+.' L++)<R< <+ ,,D#1):

0=:,9 . -'*+, -. ,,

-- D4

p2 ,+- + + +< Ptf - YA
"S ' * . -- ?j 1"

By sol "irg for -> imnd we obtain

(73

, + A , "

*m .7R*)
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Where 4 ;)C= [," 1 'A ,

M 2
-2e 44VY r -D -Z (D -C)C

Similarly, differentiating with respect to yl leads to

Ifuz ',,,,,! C-R ,,<t, cos Q (D -2,

- o- - (74)

=_ ~~CPct6 + QvZI ,.,/,,,,.
R"2.

In particular at R u a (-1) cdc/ , equations (73) and .(74)

reduce to,

+ + - -- A. .- - ,______

0 +,I),., + - -- -;p

. , #- * PeMa ,-3(,-<.qfgfr )

"- " c" "t I

I II

it iii ,p



Where,

Ma f - .. a)/.

2 A

' D. '

H fo unctosk

Having found these derivatived, we can compute.., 0-n

FaL) .<I~)(~~?4 *~(4) _(76)
Where and can be obtained from equation (70) by

putting R = as

) a (77)

From equations (47)p

_ _ V ,-,-

Therefore,

t ), -<-'5(~ g + ,;',(78)

1'.. '



From Equation (36)

Equations (70), (73), (74), (76)0" (77) and (78) altogether "give (?

and ( , which are req'irod to compute the velocity distri-

bution across the tip clearance space as given by equations (42) and

(45) or (46),"

Alternate 4pproximation

Instead of approximating the given tip blade section by a

Joukowsky section, as stated oi p. 36, one may transform the given

blade section by the Joukowsky. transformation into a near circle,'

which can then be approximate by a true circles thereby determining

the values of M and * The rest of the procedure remains the

SO"

.1

I



lIASS FLOW ACROSS TIP-CLLRANCE SPACE

After the velocity distribution across the tip-clearance

space is obtained, the mass flow.across it can be obtained by adding'

together the mass flow in the ta; gential and in the axdial directionse,

In the tangential direction, tha mass flow is (Figurei l5) i

I, r

In the axial direction* the ma:36 flow is,

Therefore, the resultant mass flow abross the tip-clearance space

will be, (Figure 15)

Cqim X W e
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• ' SUMMARY

A basic analysis is made on the flow phenomena across the

blade tip clearance space* The fluid is considered to be viscous

and incompressible and the basic equations of motion and continuity

are expressed with respect to a cylindrical cooidinate system rota-

ting with the blades at the same speed;

Simplified equations are then obtained by an order-of-magnitude

analysis.. Two cases are considered; one with low Reynolds number and

one with high Reynolds numbor's

In the first case the equations of motion can be solved to

give an analytical expression for the velocity distributions in the

clearance space in terms of the pressure gradient and the relative

speed between the blade and the bounding wall* The pressure distri-

bution is governed by a Laplace equation which is obtained from the

continuity equatio6.

In the second case, the equations of motion cannot be solved

analytically. An approximate solution ie obtained by assuming a third

order polynomial for the tangential velocity and a second order poly-

nomial for the axial velocity and using the proper boundary conditions.

m The form of the equations obtained is very similar to that of the first

cases

Three methods of solution are discussed for the solution of the

Laplace equation of pressure distribution. One is a direct numorical

solution by either the relaxation method or matrix method. The next

one involves an approximation of the tip section by a Joukowsky section.

The last one involves a transformation of the given blade section by

mm • i- , -,,. w,, - .
mnIlk

I • I <+IN
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the Joukowsky transformation into a near circle, which is then

approximated by a true circle. In either of the last two methods the

pressure distribution in the transformed plane is expressed in the form

of a Fourier series. Either the theoretical or experimentally obtained

pressure distribution along the blade surface can be used as the

boundary values. Expressions are obtained to convert the pressure

gradients obtained in the transformed plane to those in the actual blade

tip section.

Finally an expression for the mass flow across the. tip clearance

space is obtained.

The pressure gradient over the blade section at the blade tip is

found to be affected by factors such as blade loading (i.e. pressure

distribution over blade section) shape of blade airfoil sections

casing wall boundary layer, viscosity of the fluid, relative motion

between the casing wall and the blade tip., Velocities through the tip-

clearance is found to be primarily determined by the pressure gradient

and varies with the square of the tip-clearance, while mass flow across

the tip-clearance is found to be dotermined by the velocity distributions

hence by the pressure gradient and varies with the cube of the tip-

clearance.

N,4
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