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ENGINEERING RESEARCH INSTITUTE UNIVERSITY OF MICHIGAN 

THE COUETTE FLOW BETWEEN TWO PARALLEL PLATES 
AS A FUNCTION OF THE KNUDSEN NUMBER 

INTRODUCTION 

In a previous report1 a formal solution was obtained for the heat 

transport through a gas between two parallel plates as a function of the Knudsen 
number d/x (d is the distance between the plates, X. is the mean free path of the 
molecules). The starting point was the linearized Boltzmann equation, since it 
was assumed that the magnitude of the disturbance from equilibrium, measured ty 
the ratio AT/T (tAT * temperature difference between the plates, T = average tem- 

perature ), was small. 

In the following, the same method will be applied to the problem of the 
Couette flow of a gas between two parallel plates as a function of the Knudsen 
number d/x. We will again assume that the Mach number which in this case is the 
ratio of the average flow velocity to the mean molecular velocity, is small, so 
that the disturbance of the equilibrium due to the moving plate is also small in 

this case. 

Since the inethod and the general features of the solution are quite 
similar to those of the heat-transport problem, only an outline of the calcula- 
tions will be presented in sections II, III, and TV. In section V some diver- 
gence difficulties will be discussed which also occur in the heat-transport 
problem, and which are due to the parallel-plate geometry. 

1C. S. Wang Chang and G. E. Uhlenbeek, "The Keat Transport between Two Parallel 
Plates as Functions of the Knudsen Number", Univ. of Mich., Eng Res. Inot., 

Project MQ99, Sept., 19*33. 
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II. FORMULATION OF TEE PROBLEM 

We take the y-z plane halfway between the plates. The upper plate, 
situated at x - d/2, is stationary, while the lower plate at x » d/2 is moving 
in the z direction with a velocity w (measured in units of N/m/2kT). The velocity, 
v. is assumed to be much smaller than unity so that terms of the order w2 and 
higher will be neglected. The notation of the previous report will be used. 

The distribution function is written as 

{» j0[i+*(#,*,*oj 
It is convenient to take for the  zeroth approximation ditslribution function 

-v   -»   -k 
where C « c - w/2, n is the equilibrium-number density, and T the equilibrium 
temperature, which are all constants. The Boltzmann equation is again 

c,fj- -io-(fi) 

where J is the collisior operator. 

U) 

To formulate the "boundary conditions we introduce the distribution 
functions for the molecules going up and down, i.e., f and f", and the corre- 
sponding disturbances h+ and "n". In terms of the h's, the boundary conditions 

are 

and 

where a is the accommodation coefficient and the constants B+ and B" are to be 
determined by the conditions 

! 

. 

j, -Sftfci:-   «.»-. " ** • 
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expressing the conditions that the number of molecules per unit area between the 
plates is given (equal to nd) and that in the steady state there is no net flow 
in the x-direction. Up to terms linear in w we have the syajaetry condition 

Cx, - X ) } fl) 

and consequently 

With the symmetry condition (U), Eq. (3a) is automatically satisfied, and the 
boundary conditions (2a) and (2b) are equivalent with 

»+ - &T = -e> 6. 

Thus our problem reduces to the solution of the integral differential 
equation (1), subjected to the boundary condition (2a) and the auxiliary condi- 
tions (3b) and (k).    The physical quantities we are interested in are the drag 
on the upper plate, the velocity distribution as a function of x, and the 

velocity jumps at the plates. 

III.  GENERAL SOLUTION 

At first glance, this problem seems to be more complicated than the 
problem of the heat conduction because of the lack of axial symmetry around the 
x-axi.s in the present problem. It will be seen, however, that this is not a real 
difficulty. It is true, though, that in the development in eigenfunctions, we 

must now use the spherical harmonics instead of the Legendre polynomials used in 
Ref. (1). We write 

•XV 
5 Vr) 

C 5^ + 

. • .- 
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vhere 9  is the angle between the velocity C and the x-axis and <fi  is the azimuthal 
angle measured from the y-axis, and develop h according to 

f, CL vIL-W) <.*)fy X >M 1.5) 

Because of the reality of h one must have s^fa ~ ^txa'      From the symmetry of the 
problem with regard to the y direction, it follows that h must he an even function 
of cy, which has as a consequence that the a^m for odd m must be pure imaginary 
The first few of the development coefficients ar|m are related to quantities with 
physical interest. For instance, the density and temperature are found from 

->1 (x.) - »v» [ \ <+   ;| ex.; 
3/1 KC... ] 

TOO- T[»-j- y:£e i 
and the physical quantities (shearing stress, average velocity, and heat flux, 
all in the z-direetion) in which we are especially interested are given by 

f> xv ~ 3r 

C3      ^ -    )S- _ •*-o n 
X        lTT3/i^01l      . 

=•   'V. 
£     CLC, 

01 I      -I 

(Uv) 

ivv 
•j 

From the conservation laws it follows that c , Pxx> Pxy» Px?.; -n-  <IX 
BX'e  con- 

stantj. u*» will require that cx = 0 (see eq. (3b)); p.^ is zero by symmetry. 

This implies that 

a 

rxy 

CMC v 

CL0j_,  = Wn>iV. 

_^0l0_    _        QlQQ .    _3 0-600       __ 
xJcz.o 1 \oo M 

e-eruvr 
ooo 

OL 100 =   CeruiV. 

*There are some misprints in the corresponding formulas in the previous report, 

Ref. (1) 

' • *-, 5i%*ft«* 

., 
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Introducing the development of h into the Boltzmann equation, we find 
that our problem reduces to the solution of an infinite set of homogeneous linear 

differential equations: 

with the boundary conditions: 

W 

-C. 
<^ i- 4) - «\ ** G~   •#** C B+v,Ca) i±^jp 

x (i-°0 OLVO^. r-s.^ ( - ,„ _ frtM 
is; 

i 

Finally,  amn = 0,  and from the synrretry property eq.  (k) it follows that 

even .odd 

010 

f 
odd 

in x according as i - m isj 

even. 

'The square bracket in eq. (7) is different from zero only when m = m', and 
/ - I1 is odd. Thus coefficients with different values of m are not coupled. 

Since for|m]>l the integral in the boundary condition (8) is zero, it 
is clear that the equations for e^[m  with |m|>l are completely homogeneous^ so 
that the only solution will be zeror Thi* is Rlso the case for m = 0, because 
in eq. (8) the quantity B is also an unknown and the inhomogeneous part is only 

the term containing wCz. This term is also zero for m = 0. Hence one may 
conclude* 

arX-*n -o  >   for n / + 1  . 

We use the same procedure as was employed in Kef. (1). One must 
distinguish between even and odd values of £. Eliminating a_/<->»  i \-> one ob- 
tains an infinite set of serrmd-order homogeneous differential equations for 
ar(2/)l> which, with the use of the symmetry conditions, has as solutions: 

<Xr^, - bV3(U + 2. b^j., C*4t» ^i* , «) 

*This is in contrast to the case of heat conduction. It is also physically 
evident that a temperature .gradient will produce a change of the density n near 

| the pl&ve, while this is not the case for a velocity gradient. 
L._.  „._   s      

TSfta 
*-,.-^v"..rwe. && • 
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where L'r.e p^'s are the positive and nonzero solutions of the secular determinant 

A = pXr-s^-z Lt<*. , Wu]Lit**i,,Wi] = o 

and vhere in the sets of the ^-(p'li one set can be taken as arbitrary, for which 
we choose bo°\ and   t>]Mi  •    Furthermore, from the constancy of pxz it follows that 
t>02i - 0 for all i. 

The coefficients a  .^,      . »_  are now completely ('etermined and one finds 

a. 
Iff) 

lVv, , - nr.x2 tttr4w ., 'Wi ] W'*', 

The remaining unknown constants t>o2i and b*21 have to be determined 
from the boundary conditions. For this, one needs first the a£(2|)l> 

for which 

one obtains: 

where 

T^vu.'. , [^^yAlJap&.   ^J. 

Putting eq. (11) in the boundary conditions, one lb led to the set of inhomogene- 
ous linear equations 

Cii) 

where the known constant matrices b are defined by 

^s-iS.!  ~    Q*ifc t > *it ben 

-.«,, ,       K> 
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In the sane sense as la Ref. (l), eq. (12) is a set of inhomogeneous linear 
equations with the same number of equations as that of unknowns. Thus the prob- 
lem is formally solved. 

The complete solution involves infinite determinants. We are, as yet, 
unable to discuss the convergence of these determinants nor the convergence of 
the "breaking off" processes which we will use as in Ref. (1). 

IV.  THE MAXWELL MOLECULES 

We will use the same "successive approximation" method as in Ref. (1). 
Furthermore, ve will restrict ourselves to the Maxwell molecules so that 

10 Td\.*>0 - XVS.^YU'WV. , 

I.u -C 

and 

w    Ui»>,(tr^]- ^>vli^"   t^^j 

[5)     [^ i"^1 l > \ox\ J ~ °      unless both r and 1 are zero which has 
fo) 

r$zerc 

as a consequence that all br(>>;\i are zero except b<J2i 

Since we do not expect to get anything from the zeroth approximation, we start 
with the first approximation. 

A. First Approximation 

As in the heat-conduction and sound-propagation2 problems, we will use 
in the first approximation the eigenfunctions for which 2r + £ 4.  3, and !<3. 
since only the ty;s with m = 1 enter the problem, we therefore need in t.«v> ooly 
•on, tm, and +02i- We know that 

(o) 
ao?1 = const, = h021. 05a_) 

aC. S. Wang Chang and G. E. Uhleribeck, "On the Propagation of Sound in Monatcmic 
Gases", Univ. of Mich., Eng. Res. Inst., Proj. M999, Oct., 1952. 

•••• *' 
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The other two a's ere 

Since p » 0 in this case, the boundary condition (12) reduces to 

trt 

where 

Using the values of S and T*as given in tables in Appendix II, one finds 

(©) vr = - ^V1^ w -i !———- 

where V^ C"^A, A Vf J . Using eqs. (6) and (13), one obtains the following 

results: 

v) 
1PXV   -    ^T   4-^4" F-   v 

*A       3    "3C 

-*t»- 5/. 1 
3    ... Ei *^ x-] 

l^o.) 

(\4t; 
-<<      a    dL 

and 

%, * -f^T ^->pSi !   
try        a- -   • ^      ,, *-« ffi X     , 04c) 

8 

- 
| 
L.-Lfc. 

• -- 
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wbere w is still in unit?- */IiT/m. Therefore the velocity slip at the upper 

plate x = d/2 is 

For small x/d and o = 1, this is in agreement with the result of Maxwell. 

B. Second Approximation (2r + 1^ 4 k  *nd _! < k) 

The eigenfunctiona entering the problem are ton* ^fOzi,  tm> +031? and 
•xsi. The t's w1**1 odd values of i - m are V021 and Vi21. The only nonzero 

value of p is 

The constants to be determined by the boundary conditions are bjg'i and blgi. 

Eqiiations (12) become a set of two equations: 

W w- (^ -*£•<•>.») C - f-CpM ^^ b«* 
and 

Vr »,„• -^^.^cvn^^^-K,,,,,^^] ^, . 
Solving these equations, one then can calculate the quantities cf physical in- 
terest. It turns out that in all approximations the drag, the velocity distribu- 

tion, and the velocity jump have the form 

A  a*  3 B 

1"    M.    T 
i 2^ & 

A  1* s   & 

<L "E; Sutk- ̂KJt f Os) 

Z  ^   3 

'^>v-- 
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where the sum is over all the roots pA, and s^ = sinh (np^/2).    The functions 
A, B, and E.  are all functions of K = d/\. 

In this approximation, one finds 

where t = tanh (npd/2),  c = cosh (npd/2). 

C.    Third Approximation (2r + J. £ 5> and I < 5) 

The eigenfunctions to be taken in this case are +011* +021 J tm> +031* 

tiai, *o-.i> +2ii* a114 +i3i-    T1363"6 sr8 four *'s wlth odd value8 of ' " m*    Hence 

there are two pairs of p differing from zero.    They are 

Pl = 0.7151 A2    and p2 = 1.3^2 A2 , 

where AA> = A» s/n/kT.    We find, further, 

bjfi . -0.2U56 b& , b<& - 2,539 bxft. 

Solving the set of three equations for the boundary conditions, one finds then, 

A* (^l)i
+^_(o.t3\8T1-vo.S-3?^tl)^ 0.33^2. t.ta.  > 

Ex--£-f-^L< 0.3000+ 0.173+t,) 

10 

**? **$*•» 
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D. Fourth Approximation (2r + t_ 4 6,  and ^ < 6) 

We tn-oceed as "before, vith the four values of p's and the corresponding 
ratios of by/oi)! A^i given in the following table. 

,w 
vl£) A, (1) 

O.U6oHA£ 

b&/bft 

*&/*>& 

— v- 0.711) 
«SV 2 

1.065A4 

—=.(- 5.525) 

l,26lA£ 1.6lOA£ 

Jg  (" 1'218) 

d.562) 

Y2 (- 6-2oi+) 

—^(3.322) 
2V3 a/3 

(15.58) 

fj (1.213) 

uyn (0.320) l/n(-5-^) 

J2 (8.UU2) 

if*", 

•flaking a = 1 to slMplify the computation we arrived at the following results: 

k - a-3S + i.G3t(+ J."J3 tj_+  A-SO t3 + a.<N?t^ -1-  A-cjt-t,tJ.t 2.70t,tjt 

-v 3.03 t,+,tvi- i.8rot,t,^ 4 a.<j4 txtat4 + 3.',o t^t^ , 

fc = a.a*4 Mlt»+ a-*7t* + i^t^t i.33-U+ i-4i+l-tl_+ i.ss-+,^+ 

+ i-U^^  iVjt^t i.a»+vV^r a. 13+4+41-  i.^lt^t^ 

•* i.<Vot,t^ -v l.^^-t^n t A4i t4tat44 a.H tit^t^ J 

C4=-^|b^(c.s-6^ + 0.43-7 tu-v os-oj-t^t o-1-r?^ +o.i-s5t^+ 0.447t,t,+ 

-v 0.^*2. +^t4 *  o.43St1tiir+)j 

£^._JJ±r_(Szi-jV3l,4t. + 3,2,3^t 3,o»i-b+4- a.rjtt^-t a.oii+^r 

 ~ .—       11         . . ,  

I 
*.. 
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^ -  °-3M  (0.ooS- + 0.snt,+ o.USi^-v 0.353-K-t o.^-t.t + o.s^V.V 

•V O.700 tv% -V  O^V^ t,t^ ) t 

E^= 0(,s:g (*>sU* a.fco4-t, + i.'Vts'V a-7«t4t i^tfo* a.tWt.tj 

For the discussion of these resvilts we have plotted three Bets of 

curves. Figure 1 contains a set of four curves for Vxz/(vxz)  Knudsen against 
the Knudsen number, d/\. Curve I is for the Stokes-Navier approximation. Curves 
II, III, and IV are results from our first, second, and third approximations 
respectively. We have not plotted the curve for the fourth approximation because 
we do not expect anything new and the numerical computation is very laborious. 
The straight line on the left is the initial slope for the exact solution. All 
the curves from the different approximations have the same value (unity) for 
K = 0, and for K equal Us infinity they all approach the same limit, zero. The 
initial elope for the four approximations are listed below. 

Exact 
First approximation 
Second    " 
Third 

Initial elope 
-1.2U2 

-0.U23 
-O.U58 

-0.53U 
-0.598 

Figure 2 consists of a set of three curves for the first three approxi- 
mations for the velocity slip at the upper plate as s. function of K. The initial 
slo'ne is given by: 

First approximation 

Second 
Third 
Fourth 

Initial slope 

-0.U9H 
-0.6UU 

-0.755 

We have drawn Fig. 3 "to show the velocity distributions as functions 
of x for K » 10. Since the velocity distributions for the different approxi- 
mations deviate very slightly from the straight-line distribution of the first 

12 
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INITIAL SLOPE 

O.I J_ 

d/X 
so J2 

Fig. 1 The Drag as a Function of the Knudsen Number 

13 

_. - ! - 



I 

I 
. 0.4 

\\    ^1   FIRST APPROX. 
SECOND   APPROX 

ffi  THIRD  APPROX. 

03 

0.2 

O.! J_ _i_ 
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d/X 
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Fig. 2 Velocity Jump, "~ as a Function of the Khudsen Number 
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approximation we have drawn instead of c%  against x, the curves R± - R, where 
B * 1 - 2B" (x)/w and R is the value of R from the first approximation, namely, 

i 

\ 

_ ix •p „ ii.  : 

As in the case of heat conduction, the 'boundary effect is shown by the sharp rise 

of the curve near the wall. 

V, THE APmOACH TO TJE KNUDSEN LIMIT; A DIVERGENCE DIFFICULTY 

. 

In Ref. (1) we pointed out that the behavior of the exact solution for 
the heat-conduction problem is for large K quite deferent from the behavior at 
small Knudsen number. The approach to the Cxaucivc ^as limit (K»l) is compli- 
cated by the occurrence of the hyperbolic functions, so that a development in 
inverse powers of K is not possible. We see from section III that the same Is true 
for the Couette flow. On the other hand, it seems that the approach to the 
Knudsen gas regime (K«L) is quite regular so that a development o<* all relevant 
physical quantities in powers of K should be possible. 

In fact, in Ref. (1) we gave the first two terms in such a development 
for the heat flux. Analogous results can b« found for the drag*. In the zeroth 
approximation one finds 

with w still in units of^2kT/m. In the first approximation 

(\b) 

o?; 

For a = 1 this reduces to the expression given in Ref. (3).3 There the square 
"hvaotet which is always negative has been evaluated for elastic spheres and 
Maxwell molecules. The results are as follows, 

•These results can be found either by the method described in Chap. Ill of 
Ref = (1^ or from the gerifcral solution. 

3C. S. Wang and G. E. Uhleribecfc, "Transport Fneno.«eiia in Very Dilute Gases", 
CM 579, UMH-3-F, Univ. cf Mich., Eng. Res. Inst., Proj. M60U-6, NOV. 1>, 19-9- 

16 
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For elastic spheres of diameter o, 

«) 
>T£nfv|TCr ^»-2*2212: t* + z&n) 03"«L) 

For Maxwell molecules, 

fr 

v ' ** 2     [j      « i v y 2. ^   ./      /1 . j._.. A 1*.    I 

In this case the result obtained fr-esi the general solution is expressed in the 
eigenvalues K-* of the collision operator in the form 

T4 a-K    +T4
A< »  (i^v.X) 

3 M V 

i C'fl 
i 

The sujjsaation can be carried out (for details see Appendix I) and confirms eq. 
(16b). The integral vas evaluated numerically in Ref. (3). with the result 

where >,"'-- ^h-Sx/iX • Thus for a = 1, the exact value of the initial slope in 

Fig. 1 is -1.2U2. 

A difficulty appears when one wants to calculate the second approxi- 
mation of the drag, or when one wants to find analogous expansions for the 
average velocity distribution or for the velocity jump at the plates. Formally, 

one finds 

and in the firBt approximation, 

 U 

The bracket expressions are both divergent integrals because of the factor i/cx. 
The same difficulty occurs in the heat-conduction problem, although we did not 
notice it at that time. The second approximation to the heat flux given in 

17 
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Ref. (1), p. 8, eq. (19) is also divergent, and the temperature distribution in 
the first anpro*i!5ation for which one can derive the formal expression 

r OQ 

I1) 
is divergent just as ez 

•The divergence of all these integrals is of a logarithmic nature and 

is always due to the factor l/c^5 The origin of these divergence difficulties 
is therefore clearly the parallel-plate geometry. Molecule which are emitted 

nearly parallel to a plate will have to transverse a very long path before 
reaching the other plate, so that the Knudsen approximation will not be valid 
for these molecules- Or one can say, the average Knudsen number for molecule* 
emitted in all direction lz  logarithmically infinite even if d/\«L. We have 
found that by taking two concentric spheres (radii a an3 b) instead of two 

parallel plates all divergences disappear. For d = a - b«#./2) (a + b) = R, 
quantities such as the temperature distribution will in first approximation in 
K = d/\ contain terms proportional to In (R/'d), which blows up for the parallel 

plate geometry. 

One may conclude, therefore, that these divergence difficulties will 
not affect any real physical situation, and that the behavior of the solutions 

near the Knudsen limit can still be considered to be regular, so that a develop- 

ment in powers of K is possible. 

18 
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APPENDIX I 

DERIVATION OF ECJJATION (l8b) FROM EgJATION (1£) 

In terms of the eigenvalues \rl  of the collision operator, the first 

I 
I 
i 
4 m 

\ 

order correction to the pressure p      in the lihudsen limit is given by xz 

The expression for \r2i is 

Cxa; 

U4) 

In the braces, we see that the second, third, and fourth terms are obtainable 
from the first term by replacing 9 by * - 9 , 0, and «/2. Thus, substituting 

eq. (2k)  into eq. (23), we see that we need only to calculate the sum 

Pitting r + ' -  i, ve have 

Tne last sum can be done with the help of the relation 

i 
* 
B 
* 
... 
1l 

19 
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leering to 

5 = - 2.ku ̂ JLzJ^il^JL + ,c<f Z^gg^A 

. - aPft) 4c4F(lWX; ^|)^I^li) eu,4| T(is ti > *"1£) 
Mi) 

- Iff j CH C<*&) ^ ~L:t^^- - t   :  T 

and thus to eq.   (I8b). 

20 
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APPENDIX 71 

TABLE USED FOR NUMERICAL COMPUTATIONS 

1.    Table of Eigenvalues.     (A£ = A2| -— .-j^L » B. rr O.t?)o; 

0 

A4 
2 

3A£ 
k 

7A£ 

8 

R. 

tAa 

£ AA(1 2^ 

| Ai(l - J) 

7 AS(l - ^) 5R> 
16' 

2A£(1 H5Rj 
25S" 

2. Nornalization constants: 

iC *«/*I   -tr^+^X^ i i^-v,)] 

i- 
V.' 11 

_3 
it a 

2 -1 

£1 51 

2 -2 

9** U5 

23 -4 

5"7 
' « 

5*'7 

2'   3 

5 -5 

1+1 

a. 

3-52.7 

2      « 
3«5 -7*11 

51 

2*    -2 I 
• a  « *j 

3 *5 •? 
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\rlT 
r'fto'NJ 

'«• 

I      2. 
021      |   3«2NonNo2i 

121 

OUl 

221 

3*ZN011N121 

ill 

15 I 

031 211 

-lrwan w... 

3s2N011N?21 

. i. -. ,,_!, 

LOsC^SiuH-04 3 

lc   3 

,- i. 

105. ""031^04! 

1 ^S St -2QsTfc! !H141   -15«%i 11«i*i | -g-^MoaxMx*.  35*2N211N14i 

1 XT 

0 

051 

"s^ N£iiNa2i, if* 

^^isiNiJ    0 

0 

*' Lvyi,,v'vl.'(   ~  J a" *        cTrati.VHi J« 

\ r2lU v 
\ 

r-nia\ 

021 

021 

afc 
2 021 

t 
121 

OM 

9« 

121 

T* 021Nl?l 

9-13 

0U1 

15* 
0*1^021 

T^121 •-^0*1^121 

221 

27it 
^-Ng21Noai 

1U1 

j^rtNuiNos: 

15* 
2 *oai**o*i 

221 

ll»l 

16 "221 

^*-N Iff 

15* 
).    Sj 2X^*0*1 

35 

rg «Ni2iN2ai 

^srtNa2iNi2i 

££&*»? 

lo 

3^5-13 ifN12iNl4i 52-l9 

15 
77JtN22lJI0*l 

2T 
*N2: 21 

3-5-13 "•^Ni4iN12i 

lliSuNniNo^ 

3-52-7 
25 

*K1A1N; 

jtNo*iNl41 
3-5 •7,.^     «        3-5g-7-19.-.   * 

gS  'KNa81NlJt3l  ——-*Kj41 
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