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FOREWORD

The science of underwater warfare has progressed rapidly in
recent years, particularly in the development of torpedoes of
greatly increased range and speed, and homing torpedoes which are
required to run complicated trajectory patterns. Thils advance has
been accompanied by the introduction of problems in the control of
these new weapons. Intultive, cut-and-try methods of design, which
formerly were adequate for the control of the torpedo, are now too
expensive and time-consuming. The test launching of a full-scale
torpedo 1s an operation in which there is risk of damage, or loss
of the missile. Since a torpedo is a costly weapon it is highly
desirable that the behavior of the weapon be accurately predicted
before it is ever launched. To this end it 1s necessary that the
equations of motion and the mathematical expression of the laws of
motion be well understood and be expressed in usable form.

The work on this report was carried on under Bureau of Ord-
nance Task Assignment NOTS-C-6-257-16-54. The report was reviewed
for technical adequacy by Milton Plesset of the California In-~
stitute of Technology and G. V. Schliestett of the Naval Ordnance
Test Station.

N. A. RENZETTI, Head
Underwat: » Ordnance Department

Released under
the authority of:
. IC¥ .. BROW
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ABSTRACT ¢

Motion equations are developed for a rigid torpedo of con-
stant mass wlth six degrees of freedom. It 1s assumed that the
medium 1s at rest execept for the motion caused by the torpedo.
The mathematical form of the "mass accession" forces 1s derived
from potential theory. The motlon equations are referred to body
coordinastes in thelr development, and transformations are made to
inertial coordinates. Some sources of hydrodynamic coefficients
are discussed, and an outline of the methods for obtaining them
from model tests 1s presented. Solutions of steady-state equa~
tlons are given, as well &s a brief explanation of the analog
computer method of solving the motion equations.
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INTRODUCTION

A great deal of research has been done in the past few years
in the analysis of the motion of a torpedo. The problem 6f un-
controlled ship and torpedo motions was investigated by Sehiff and
Davidson (Ref. 1) and by Minorsky (Ref. 2 and 3). More recently
Bednarz and Harger (Ref. 4) studled the problem with the purpose
of glving a physical insight into the effects of the coefficlents
of the simplified motion equations. Triaxial motion equations
were developed by Plerce and Sepmeyer (Ref. 5) for use in.the
Hydrodynamlc Simulator. The standardization of nomenclature by
the Committee on Nomenelature of the Amerlcan Towlng Tank Confer-
ence (1948) was an important step forward in the treatment of
motion of a submerged body.

In the past the most serious obstacle to the analysis of tor-
pedo motlon has been the absence of Information concerning the
hydrodynamic forces acting on a torpedo. To eliminate this defi-
clency towing tanks and water tunnels were constructed. Data
obtalned in model tests at these tunnels yleld the dimensionless
coefficlents that characterize the hydrodynamic behavior c¢f a
torpedo.

Techniques and facilitles for the solution of the motion
equations have been expanded, and 1t 1s now possible to solve com-
pPlex control problems with relatlive ease. An important facillity
used in the analysis of torpedo motion is the electronic analog
computer. With the ald of the computer linear or nonlinear equa-
tions are solved rapldly and accurately.

In this report the motion equations are deve.oped on as fimm
a theoretical basis as present knowledge prermits. An explanation
of the methods of analysis may be found in Ref. 6. A discussion
of the methods by whilch hydrodynamlc coefficients are measured in
model tests, and a very brief outline of the analog computer
method of solutlon of the motlon equatlions are included. Since
an understanding of the theory of torpedo motion must precede
applications to the design of new weapons, this report 1s presented
with the hope that investigators in the flelds of hydrodynamics and
torpedo control will be alded in understanding the present state of
the technique and be stimulated towards 1ts advancement.
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MOTION EQUATIONS

The reaction of a torpedo to external forces 1s expressed by
the fundamental laws of dynamics. In the development of the motion
equations in this report, it has been necessary to make assumptions
about the nature of the torpedo. One assumption has been that 1t
1s a rigid body. The torpedo 1s elastic to some degree, of course,
and has moving parts--properties which will probably be of interest
.n future studies. At present, however, it is felt that the
assumption of rigidity is valid for the applications that the equa-
tions of this report have in view. It is assumed, moreover, that
the torpedo 1is of constant mass. This is a better assumption for
electric torpedoes than for turbine or engine driven torpedoes,
since a considerable quantity of fuel is consumed in the latter.
Usually the rate of fuel consumption 1s so slow that it has little
effect on the trajectory. In a particular problem, however, an
investigation should be made as to the length of the trajectory
for which changes in the magnitude of the lnertia of the torpedo
may be neglected. In particular problems, moreover, it mey be
necessary to modify the equations as they are given here.:  For
example, it has been assumed that the thrust of the propulsion
system acts along the longitudinal axis of the torpedo without re-
sultant torque. In some cases it may be necessary to add addi-
tional terms to the equations if the thrust is misaligned or if an
unbalanced torque is present. It is assumed the torpedo is fully
wetted. If 1t 18 in a cavitating state the equations given here
remain applicable, but a modification of the hydrodynamic forces
is necessary because they are then functionally related to the
cavitation parameter.

BASIC VECTORIAL EQUATIONS OF MOTION

The laws of motion are applied to a torpedo under the assump-
tion that it is a rigld body. The basic equations are

(1) 2..:¥é1
, dat
dH
d¢

where F 1s the resultant external force applied to the torpedo
body, Gp 1s its linear momentwm, L 1s the resultant moment acting
on the torpedo, and Hy 1s its total angular momentum. The time
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rate of change of the torpedo momenta @, and Hy, must be with re-
spect to an inertial reference frame for the application of the
dynamic equations. A right-handed rectangular reference frame
(X0, Yo, Zo) fixed with respect to the earth will be used for this
purpose. The Xx,~yo Plane is tangent to the surface of the earth,
and the z5 axls is vertically downward. Use of this reference
frame as an inertial reference frame implies the assumption that
the motion of the earth has a negligible effect on the traJectory
of the torpedo.

An underwater milssile in accelerated motion produces accelera-
tions 1n the flow of the fluld in which it is moving. Consegquently
there is a transfer of kinetic energy to the fluid. The rate of
change of this kinetic energy, and therefore the force producing
i1t, 1s proportional to the acceleration of the missile. Since the
inertial reaction of the missile is also proportional to accelera-
tion, the missile behaves as if 1ts mass were increased. This
phenomenon is termed "mass accession". It will be assumed in this
report that the mathematical form of the "mass accession" forces
is given by the theory of ideal fluid flow.

- Let F; and L; be respectively the force and the moment (pre-
dicted by an 1de-i fluid) on the torpedo, and let

(3) Fo=F-F
(%) Ly=L-L

The force and moment on the torpedo predicted from potential flow

are equal, respectively, to the negative of the time rates of change

of the linear momentum and the angular momentum of the fluid (see
Appendix B). Thus

age
(5) _F_l = = —
dt
abe
(6) L -
it

By defining the system of body and 1ldeal fluid momenta as

(1) G =0+ 0y
(8) H = He + By

A—
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the basic motion equations may be written

ag

(9) 22 ='E;—
dH

(10) | Lo =_dT

It is advantageous to employ a frame of reference fixed with
respect to the torpedo body. The reference frame moves with the
velocity V of the torpedo and rotates with the angular velocity w.
In this reference system (see Appendix C)

(11) Fp=G +WXQ
(12) Lo=H+WXHE+VXG

where G and H represent the time rates of change of G and H as seen
from the moving system.

The momenta of the system may be evaluated from the total
kinetic energy T of the system. Let T be expressed as a function
of the components of the velocitles V and w in the Lody reference
frame. Then, letting

(13) V=1U+ jv + kw
and
(lh) @=ip+iq+£l‘

the momenta are gilven by

0T oT JT
=l—+J—+k—
oU  _ ov oW

(15)

IQ

oT oT aT
(16) H=i1i—+j—+k—
op oq or

(see Appendix D). The total kinetis energy T is the sum of the
kinetic energy Tp of the fluld and the kinetic energy Ty of the
torpedo body. These are derived in the following section.
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KINETIC ENERGY OF SYSTEM

Kinetic Energy of the Torpedo Body

The torpedo body will be considered a rigid aggregate of mass
particles. Let mj be a representative particle, and let ry be the
radius vector from the origin of body coordinates to my. The
velocity of my 1is

(17) Vi=V+wxry
The kinetlc energy of the body is equal to the sum of the

kinetlc energies of the individual particles of mass, and is given
by

2
(18) T = (1/2) Y me|y
Let ry have the body coordinates xy, yi, z4. The expansion of
Eq. Té yields:

(19) 21 =) m1~[ﬁ2 + 92 + w2 & (742 + 23202 + (%2 * 2,2)q?
- + (x42 + y12) r® + 2Uqz3 - 2Urys - 2qry1zi + 2vrxg
- 2vpzy - 2rpxizy + 2PYL - 2Waxy - 2paxyyi)
The following quantities are defined:

(20) 3Ymg = m, torpedo mass ﬁ LE é
Ymi(y1? + 242) = Ix g Ymiy1za = Iyz £ Imixg = mxg g
Ymi(xa® + 252) = Iy & Ymixgzg = Ixz © Ymiy1 =myg 9
dmi(x1® +31%) =1, £ Jmixsyi = Ixy B Imizg = myg o

Equation 19 then becomes 3 - °

(21) 2Ty = mU2 + mv2 + mu? + Ixp® + Iyq2 + Ipr2

+ 2mzg5Uq - 2mygUr - 2Iyzqr + 2mxgvr
- a2mzgvp - 2Iy,rp + 2mygwp - 2oXgWq - 2Ixypq

The origin of the body coordinate system is usually placed on the
longitudinal axis of the torpedo above the center of gravity. The
positive x~axis 1s in the forward direction of the longitudinal
axls, and the positive z-axis is vertically downward through the

4 edmeg i ae b et
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center of gravity. The cholce of this reference frame results in
the simplification of the expression for Ty, since in this case

Xg =Yg = Iyy = Iyz = O
Kinetic Energy of Ideal Fluid

Suppose the torpedo to be moving in the direction of 1its
longltudinal axis with the velocity U = U(t)o It will be assumed
that the flow produced is irrotational and that the fluid 1s non-
viscous and incompressible. Let the velocity field of the flow be

(x,y,2z,t). Because the flow is irrotational a potential function
%(x,y,z,t) exists such that

(22) q=-

Since the fiuid 1s incompressible, the divergence of the velocity
vanlishes; and consequently

(23) / div g = - V2 = 0

There can be no flow across the surface of the torpedo. Hence the
normal component of a point on the surface of the torpedo must
equal the normal component of the fluid velocity at that point.
Let the unit normal to the surface, drawn toward the fluld, be

(24) n=1x+ Ju+ kv
On the surface, then,

o@
(25) -—= AU

on

It i1s assumed that the flow is started from rest, and it is impos-
sible that finite forces acting for a finite time produce a flow
with infinite kinetic energy. Therefore, the velocity of the flow
must vanish at an infinite distance from the torpedo, since a
finlite velocity at an infinite distance would imply an infinite
kinetlec energy. Hence a potential function ¢ is required which
satisfies Eq. 25 on the surface of the torpedo and whose gradient
vanishes at infinity. A solution is sought having the form

(26) ¢ = U(t)d; (x,y,2)

Since V2@ = O with 0#1/0n = -X on the surface of the torpedo and
V@) = 0 at infinity, the function @) 1s uniquely determined. Hence
Eq. 26 is the solution to the flow problem, since an irrotaiional
flow with vanishing divergence 1s uniquely determined by 1its
boundary conditions.

s thoi
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Suppose now that the torpedo is rotating about its longitu-
dinal axis with an angular velocity p = p(t). As before, a
velocity potential exists satisfying Eq. 23. Moreover, at a point
(x, ¥, z) of the surface of the torpedo

]
(27) - o -u2)
’ on

A solution is sought of the form

(28) ¢ = p(t)py(x, v, z)
b¢h

Since V2¢u = 0, - ——="Vy -Uz on the surface of the torpedo, and
dn

V ) = 0 at infinity, @), 1s uniquely determined. Hence Eq. 28 is

the solution to this flow problem. Several velocity distributions
q1s 92 s .« + » May be added together to obtain another velocity
distribution. The velocity distribution

- Q=g + 3o+ 43 + .-~

is said to be the superposition, or rather the result of the super-
position, of the velocity distributions gy, Qo 93s -+ » - It is
evident that if the divergence or the rotation of each of the
velocity distributions vanishes, the divergence or rotation of
thelr superposition vanishes also.

Now consider the flows produced by motion of the torpedo in

each of its remaining degrees of freedom. For motion in the direc~

tion of the y-axis a potential'v¢', and for motion in the direction
of the z-axis a potential wg@z is obtained. Rotary motion about the
y-axis ylelds a potential 5, and motion about the z-axis yields
r¢3. The potential function for the flow produced by motion of the
torpedo in its six degrees of freedom is obtained, using the prin-
ciple of superposition, as

Let Tr be the kinetic energy of the fluid. Then
(30) Ty = (1/2)p) (W9)2 a7

where the integration 1s over the entire volume 7 of the fluid.
The integral may bg transformed by Green's theorem to
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(31) Ty = -(1/2),0fs¢r——1ds -(1/2),o[,¢v2¢ aT

= -(1/2),ofs¢’—a—‘1ds since v3f = 0
9n .

where the integration is over the torpedo surfaces. Substituting
Eq. 29 into Eq. 31 ylelds a quadratic form in the torpedo velocity
components,

(32) 2Ty = allua + a3oUv + 23300 + a3, Up + a35Uq + a;¢Ur
+ agvU + a22v2 + 8p3VW + 8o4VD + 855Vq + aggvr
+ a31wU + A3oWV + a33w2 + 83yWp + aggWq + agEur
+ ay1pU + ayopv + ay3pv + ahhpa + ayspq + ayepr
+ a57qU + 855QV + 853qQW + a5,qp + a55q2 + 854qr
+ ag1rU + agorv + agarw + agure + 8gsTq + a66r2
where

39,
(33) a1j = =P fgffy — 48
dn
It'will be noted that Green's theorem gives
(34) a1y = aj1
Suppose the surface of the torpedo to be symmetric with respect to
the x~z plane and wlth respect to the x-y plane. For translatory

motion in the x~y plane, -

(35) 2T = a1102 + 2a)oUv + agove

" Because of the symmetry of the torpedo the kinetic energy must be

unchanged if v is replaced by -v. Hence ajo = O. It may be
similarly shown that all the coefficlents of eross-product terms
vanish except asg, 8gp, 853, and a35. Equation 32 then reduces to

b el e a5 L e e oo
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(36) 2Tp = 83107 + apov? + a33w2 + ayp® + a55q2
+ 3661‘2 + 2335wq + 2apgvr

The linear momentum and the angular momentum of the fluid may be
obtained from Ty as is shown in Appendix D.

REACTION OF TORPEDO AND IDEAL FLUID SYSTEM

The total kinetic energy of the system composed of torpedo
and ideal fluid is T = T, + Ty

(37) 2T = (m + au)u2 + (m + 322)v2 + (m + a33)w2 + (I, + alm)p2
+ (Iy + a55)q2 + (Iz + 266)r° + 2mzglq - 2lxzPp - 2mzgVp
+ 2835Wq + 2ap4Vr
Define
(38) m + a3] = mp
R+ 85 =M+ 833 = My
I, + 8y = Jy
Iy + 855 = Jy
I, +agg = J,
Then Eq. 37 becomes
(39) 2T = mL02 + mTva +*mTw2 + prz + qua + er2 + 2mzgUq
- 2Ixzrp - 2mzgvp + 2a35Wq + 2a6vr
The components of momenta defined in Eq. 15 and Eq. 16 are
(40) Gx = myU + mzgq
Gy = mqv - m2ep + apgr

Gz = MW + a35q

At e i s s 7
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(ho) Continued Hy = J,p -~ I,,r - mzgv
Hy = J&q + mzgU + 835w
Hy = JoF - IxsP + 8pgv

Let F, have the components X5, Y5, Zy, and L, the components
K2, M2, No. The basic motion equations (Eq. 11 and 12) written in

terms of their components become

(k1) Xp = Gy +q@, - 70
Yo = éy + rGy ~ PG,
Z = G, + PGy - QOy

Kp = éx + qH, - rHy + VG, - wa

Mp = Hy + THy - pHy + Wiy - UG,
Ny = H, + Py - qHy + UGy - VGy
Substitution of Eq. 40 into Eq. 41 gives

(42) X = dLﬁ + sz& + mp(wq - vr) + a35q2 + mzgpr - a25r2

Yo = mT§ - mzcﬁ + 3265 + mpUr + mzgqr - mowp - 835Pq

Zp = mqW + a35é + mgvp - mzg(p2 + q2) + aggpr - mpUq

Ko = Jxﬁ - Ixzﬁ - szG + (3, - y)qr - I.,pq + (agg + 335)vq
- mzglr - (a35 + 86) wr o+ mzgwWp

M = Jy& + szﬁ + a35§ + (Jg - J)pr + Ixz(p2 - ra) - mzgvr

- 856vp + (mp - mp)U + m2gwq - a350q

By = J P - I, + aggv + (Jy - Jx)pq + aggup + I ar

+ (mp - mp)Ov + aggUr

10




A OO NN

[

Mecbose

NAVORD REPORT 2090

These, then, are the basic motlon equations for a torpedo referred
to a set of axes fixed with respect to the torpedo, the positive
x~-axis in the forward direction of the longitudinal axis, snd the
z-axis vertically downward through the center of gravity of the
torpedo. Assumptions under which they have been derived are

1. The torpedo is a rigid body of constant mass, symmetric
with respect to a plane through its longitudinal axis.

2. Motlon of the earth has negligible effect on the trajec-
tory of the torpedo.

3. The medium 1s infinite in extent and at rest except for
the flow produced by the motion of the torpedo.

4. The torpedo is fully wetted.

5. Mass accession forces are formally given by the theory of
i1deal fluid flow.

EXTERRAL FORCES AND MOMENTS ACTING ON THE TORPEDO

The external forces and moments acting on the torpedo are
those caused by gravity and the propulsion system, and those pro-
duced by hydrodynamic and hydrostatic pressures. The net force
produced by gravity is the weight of the torpedo acting vertically
downward at the center of gravity. The net force of the hydrostatic
pressures 1s a buoyant force acting at the center of buoyancy of
the torpedo. Resolution of these forces and the moments produced
by them onto body coordinates 1s given in Appendix E. The thrust
of the propulsion system will be assumed to act along the longltu-
dinal axls of the torpedo with no resultant torque.

Hydrodynamic forces predicted by the theory of 1ldeal fluid
were discussed above. This theory predicts no 1ift or drag on the
torpedo. Since a torpedo does, in fact, experience 1lift and drag
forces, they are ascribed to deviation of the fluid moticm from
potential flow because of the viscosity of the fluld. At very high
Reynolds nuinbers this deviation from potential flow will take place
in a thin layer in the negihborhood of the surface of the torpedo
(see Ref. 7). Particles of fluld at the surface of the torpedo
adhere firmly to it so that not only the normal component of the
fluld velocity at the surface but also the tangential velocity is
equal to that of the surface. Outside the boundary layer a poten~
tial flow will exist. ILet it be assumed that this potential 1s the
same as Eq. 29.

1l
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The Navier-Stokes equations for viscous fluid flow give the
force per unit volume acting on the fluid as

(43) £ = - VP +kveq

where P 1s the pressure, q is the velocity field, and k is the
coefficlent of viscosity of the fluld. Integrating over the entire
volume of the fluld gives the total force acting on the fluid as

(44) L__:; a7 = -f VP AT+ kj_rv2_q dT = [gPn dS - kfs,?:%-;ds
n

where the surface integrals are over the surface of the torpedo,
and n 1s the unit normal to the surface projecting “into the fluid.
It 1s assumed that at the upper limit of the boundary layer
= =y @. At a point of the surface whose radius vector from the
origin of body coordinates 1s r, the velocity i1s V +@W x r. Let
the thickness of the boundary layer be denoted by § . Then,
approximately,
0g
(45) Y ~(vg + ] +w x )5t
n

The difference 1n ‘pressure between the inner and outer surfaces of
the boundary layer is small (Ref. 7). Hence, the additional force
on the torpedo because of the viscosity of the fluid is approxi-
mately

(46) Js(v9+ v 2@ x p)ks™! as
Since
(V +& xp)en = -(V@)n at the surface,

-V@- (V +w xr) represents the relative velocity at which the
potential flow 1s sliding over the'surface. This is a linear
function of the torpedo velocity components. If J were independent
of the velocity components, then, the viscosity-induced force would
be also a iinear functicn of the torpedo-veloclity components. This,
however, is not the case. The boundary-layer thickness is a func-
tion of Reyholds number and the form of the surface-. Moreover,

the boundary layer may become quite thick and separate toward the
after end of the torpedo, and the analysls given above is then not
applicable. It is at least reasonable to assume, however, that
the viscosity forces and moments are functions only of the torpedo
velocity components.

The remaining hydrodynamic forces to be taken into considera-
tion are those produced by deflections of the control surfaces.

12
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These forces depend primarily on the magnitude of the deflection
of the control surface and not on the rate in control systems used
at present. It will be assumed, then, that the forces and moments
produced by control surface deflectlons are functions of the
magnitudes of the deflections, J,, and d..

The forces and moments of Eq. 11 and 12 may therefore be
written

(87) 22=-F-_2(U, V, W, P, Q) Py s d’r)"'E"'ﬂ"‘?_
7

Ly = (U:V:":P:Q)ryd‘e:d‘)+£3XB+_GXE
where B is the buoyant force, W is the welght of the torpedo, T is
the thrust, rg 1s the radius vector to the center of buoyancy, and
rg is the radius vector to the center of gravity.

Let the components of F, be Xp, Yo, Zp and the components of
L be K2, Mo, Np. These forces and moments are usually determined
1n model studies (see section entitled "Sources of Hydrodynamic
Coefficients"). Results obtained from these studies show that,
for most torpedoes, the hydrodynamic forces and moments are
approximately linear functions of angle of attack and turning rate
over the normal operating range. Forces and moments produced by
control-surface deflections are also linear over a wide range for
most torpedoes. There 1s some Justification, therefore, for
expanding the components of Fp and Lo in a Taylor series about
U=Uy, V=W=p=q="r=d, =d, =0, where U, is the operating
velocity of the torpedo, and neglecting all but first order terms.
Hence, letting Xog be Xp evaluated at the point about which the
serles expansion is made, and similarly with the other components,
and letting U = U, + u,

(48) Xo = Xog + Xouu + XpyV + Xou W + XopP + Xpqa
+ Xopr + xad- + xzd-
Yo = Yo0 + Yoyu + Yoyv + Youw + Yopp + Yoqq
+ Yo + Yadgdg + Yo op
Z2 = 220 + Z2un + 229V + 224W + Z2pD + Z2qQ

za‘r + Zad'ed\e + ZZJi‘d.r

13
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(48) Contd. K2 = Kpg + Kgyu + KoV + Kow '+ KogP + Kaqa

+ Kpor + Kaag°€ + K2&;4}
My = Moo + Moyu + Moy v + My W + Mopd + Mpgq
+ lgpr + Mpde + Map o,
Np = Npg + Npyu + Nogv + Npw + Nopp + Npqa
+ N + Nopd, + Nopd}
+ Nopt' + Nag % *+ N2d v
| where the partial derivatives are evaluated at
UsV=Wwapesq=r=dy=ady=0

Because of symmetry ﬁith respect to the x-z plane; and because of
the point about which the Taylor expansion is made, the following
partial derivatives and component values at the point of expansion
vanish:

B e

Koy = Xpp = Xop = Xpq = Xoy = Xode = Xofp = O
Yoy = Yoy = Ypq = Yode = Y0 = 0

Zoy = Zoy = Zop = Zgp = Zofp = Z0 = O

Kou = Kpy = Kpq = Kpfe = K0 = 0

! n2u=M2v=H2p=H2r=H2Jr=M20=O

N2u=N2"=N2q=N2d'e=Néo=O
Using the resolution of buoyancy and gravity foreces and mo-
ments as given in Appendix E and the linearized extermal forces
(Eq. 48) the equations of motion (Eq. 42) become
(49) Xo0 + Xoyu + T - (W - B) sin 8 = m;ﬁ + mzgq + mp(wq - vr)

2 - 2
+ 8359 + mzapr - 8T

1k
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(49) Youv + Ypup + Yopr + Yopudy, + (W - B) sin @ cos @
Contd.

= mTG - szf: + 3261.' + mpUr + mzgqr - mpwp - agsPq

Toww + Zpqa + Zofede + (W - B) cos # cos @
= mgw + a35c°1 + mqvp - mz(;'(‘p2 + q2) + aggpr - mplUq
Koyv + Koo + Kopr' + Kaorrd‘r - Wzg sin @ cos 6
= Iy = LB ~ mzg? + (J, - y) ar - I.,pq + (axg + a35)vq

- mzgUr - (335 + 8pg)Wr + mzgwp

Moyw + Mpqq + Mad-ed‘e + Bxg cos @ cos 6 - Wzg sin 6
= ch‘l + mzgh + a35v': + (Jx = 3;)pr + I, (p? - r2)
‘ . ' " - mzgvr - asgvp + (mp, - mp)Uw + mzguq - a35Uq
NoyV + Nopd + Nopr + Npygdy, - Bxg sin @ cos 6
= J,0 = 1,0 + aggv + (I - J)pq + 835Wp + Iy,qr
+ (mp - mp)Uv + axglr .

The motion equations (Eq. 49) will be rewritten in terms of
angle of attack o and angle of sideslip B. By definition

: W
0 i = —
(50) sin o -

. v
sinB=--€-

It will be assumed that o and B are small angles so that the
sine of the angle 1s approximated by the angle. Moreover, a‘change
of notation will be introduced at this point. Let

15
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Xy = Xng Yp = TV
%= Tou Yo = Yo
YI' = Y21'
Kde = Kody
YI"' = "826
Kd‘ = Kad‘
r r Y =Y
dp = 24,
KB = "szv
. 2
Kp = Kop Mg, = MoV + (mp ~ mg)V
K, = Koy, Mq = Maq * a35V
Mg = -a35v
NB = -NQVV + (mT = ML)VQ
, - Mp =M
‘ Np = Nap Tk
N =z N - a Vv
p = Nop = 85g Zy, = 2,V
Né = apgV Zq = qu
Ne = 1
| s, = Nod,, Zq = -335
i zdé - Zadé

With this change of notation the equations of motion (Eq. 49) become
| (51) Xo+X%Xu+T-(W-B)sin @
* = mpu + mzgq + mpV(ag + Br) + mzgpr -»Z\:lq2 + V;,rg
Y8 + YD + Ypr + Ypr +YJ~rJr+ (W-DBecos O singp
= - m:ﬂlé - szf: + mpUr + mzgqr + Z&pq ~ mpiap
Zau.+zqq+zaé+2¢e do + (W - B) cos § cos 6

= m.er;. - mqpVBp - mG(p‘? + q2) - Yo pr - mLUq

*haisy e, \’:

S sy e,
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(51) KB + K,p + + Ko d) ~ Wzg 8in & cos @
Gonta, PO TP H T Rl - Wi

= xf) - Ile; + szVé + (J, - y)qr - I,.,pq
+ V(¥ +Vzé) (8q + ar) + mzgUr + mzgVap
Moo + Mgq + Mo + Md‘edé + Bxg cos § cos € - Wzg sin @
° . 2 2
= Jyq + mzgu + (J‘x - Jz)pr + Ixz(P - r%)
+ mzgVpr + NBBp + mzgVaq
NgB + Npp + Nyr + NBB + chrd;, - Bxp sin @ cos 6

= 30 - Izp + (Jy - Jy)pg - Maap + Iyyar

TRANSFORMATIONS OF MOTION EQUATIONS
The motion equations may be written in terms of the inertlal

angular position of the torpedo,¥, 8, @, (Ref. 4). The com-
ponents of the rotational velocity of the torpedo, p, q, and r, in
body coordinates are related toy, 8, @ by
(52) p=@-VYsin 6

g=Ycos B sin P+ Hcos @

r=Ycos Ocos@ -6 sin ¢

(see Appendix F). Components of the angular-acceleration, p, q,
and r, are subsequently found to be

(53) B =@ -Psin 6-Gycos 6
G =Vcos Osing -}l.’ésin 6 sin @ +y./¢ cos @ cos O
+6 cos ¢-é¢§ sin @
r= {.V.cos 6 cos ¢-y'/6.sin @ cos ¢-7}¢ cos & sin @

-531n¢-6.¢. cos p

17
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In addition to the assumptions already msade 1t will he assumed

that the pitch angle @ is small so that approximately, sin 6 =6,
cos & = 1. Using Eq. 52 and 53 the motion equations (Eq. 51) are
expressed In terms of inertlal angles as

P

18

(54) X, +Xu+ 17 -(W-B)o

= mi + mz (¥ sin ¢ - Y66 sin P+ Yigcos p+ & cos @
- 6 3in @) + mgV [a.(;'V sin @ + 6 cos )
+ B(ycos ¢ - 9 sin gp):] - zq(g& 3in @ + & cos @)°
+ T,(V cos @ - 8 sin @9)2 + mug(@P - YO)W cos @ - 6 siv @)
g8 + Yo(Pp -¥0) + Tp(y cos @ - Ssin @) + Ln(foos ¢
- yécos @ -y siny - & sin @ - 6f cos-@)
+ g 0y + (W - B) sing = -ngVB - mag(§ - o - 6%)
+ mU(Y cos ¢ - & sin @)
+ mzg(y cos ¢ - 6sin @)Y sin @ + 6 cos @)
- mpVa(@p -¥8) + 25" -31'/6)(?" sin @ + @ ocs @)
Zot + Zo(¥ s1n @ + 6 cos @) + Z(f sin @ - YOS sin
+Ygeos @ + §cos @ - Gp sin ) + Zofe""e + (W~ B) cos @
= mpVd - myVp (¢ - J6) - mzg(@ - Y6)°
- mzg(¥ sin ¢ + 6 cos @)2 ~ Yp(@f - YINpoor g
- 6 51n P) - m U sin ¢ + 6 cos @)

KgB + Kp(gp - y8) + K (¥ cos ¢ - 6 sin @) + Kdnra"z, - Wzy 3in @

= T (¢ -p’r'e -6p) - 1,,(W coz ¢ - Yo sus @ - Yy nin @

e S Rt ¢
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(5k) -8 sin @ -6p cos @) + mzgVh
Contd. % g @

+ (J5 = 3g)(Yrcos @ -6 sin P(¥sin @+ 6 cos @)
- 1,@ -Y8)(Psin g+ 6 cos @) + V(¥ + Z4)P
(¥sin @ + 6 cos @) + mzglalp - Y6)
+ V(Y3 + Zgal} cos @ - 6 sin g)
- mzgV(Y¥ cos @ - 6 sin @)
My + Mg(¥'sin @+ 6 cos @) + Mg + My J, + Bxg cos @ - Wzgf
= Iy(# sin @ -JB6 sin P+ ¥p cos @ +8 cos @ - 6P sin @)
+ mzqi + (Iy - T)@ Y6 )(Yreos @ -6 sin @)
+ L, @ -0)? - 1,,(Yeos @ -6 sin @2 + Nzp(@ -P6)
+ mzgVa(P'sin @+ 6 cos @) + mzgVp(Y cos @ -6 sin @)
Ng8 + Ny@ -¥6) + Np(Jcos @ - 6 sin @) + Nzi
+ g dy - Bxg sin @
= I (Fcos @ -JB6 cos @ -Yip sin -4 sin @
-8 cos @) - 1,(# ¥ -6¥)
+ (3, . X))@ PB){(¥sin @ + 6 cos @)
- M;@ -Y8)o. + I (Y cos @ - 6 sin @) (¥ sin ¢p

+6 cos @)

These equations are greatly simplified if terms involving
products of velocities may be neglected. Dropping such terms,
Eq. 54 becomes

s Chs o st b B e f .
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(55) Xo + Xgu + Ty - (W - B)E = mpi + mzg(¥sin g+ & cos ¢
T8 + Yp(¢ - V'a) + YI.(;I} cos @ -6 sin @)

+ Y (Y cos @ - g sin @ + ch'rd‘r + (W -B) sin ¢

-mpVB - sz(ﬁ —3?9) + mLV(Z’ cos @ - & sin @
20 + Zq(;} sin @ + 6 cos P + Z&('{F sin @ + & cos 7)
+ Zd‘ea"e + (W - B) cos ¢

= mTVé. - mLV(';I/ sin ¢+é cos @)
KgB + Kp({b - ;jfa) + Kr(wcos @ - 6 sin @ + Kd‘ra';, - Wgg sin @

= I(@ -V6) - Ixz(;;f' cos @ -6 sin @) + mzgVg
“ + mzgV ()’ cos @ -6 sin 7))

Mo + Mq(}#. sin ¢ + 6 cos @ + M&&. + mored'e+BxB cos ¢ - Wzpd

= Jy(¥ sin P+ 6 cos @) + mzgh

NgB + Np(¢ -'Y8) + N (¥ cos ¢ -6 sin p)

+ NBB + Nd'r‘fr - Bxg sin ¢

= J“.!(;b= cos @ -6 sin @ - Ixz("ga'-;i/'e)

where it has been assumed that U, =< V.

It@ =1y, = 25 = Yp = Np = 0, and the forward veloclty is
constant, Eq. 55 may be reduced to two sets of equations, the yaw
equations and the pitch equations. The yaw equations are
(56) Ygh + Y¥ + L+ Y

-mTVé + mLV;&

NgB + NpJF + N3 + No o, I,V
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The pitch equations are
(57) Zoo + Zqé+ Zéé'+ Zd‘édé + (W -B) = mTVo.r, - m Ve

Moo + Mg6 + Mia + Mo o + Bxp = b

It 1s sometimes convenient to change the origin of the body-
fixed coordinate system. Suppose the center of gravity is to be
shifted, for example. It is then desirable to wrlte the equations
with the new center of gravity as the origin. Hydrodynamic forces,
which depend only on the exterlor shape of the body, are unchanged.
There will be a change in the hydrodynamic coefficlents, however,
because of the change In angle of attack at the new origin. Sup-
pose the origin to be shifted forward on the longitudinal axis a
distance A, and consider the hydrodynamic force and moment to be

(58) Y

Youv + Your + de}d;

=
!

= szv + Nerr + "2d;d;

the lateral velocity at the new origin is

(59) vF = v + Ap

The moment around the new origin 1is

(60) N* =N - YA

In terms of v¥, then, the force and moment at the new origin are

(61) ~ Y = Youv* + (Yop = A¥p )r + Y d;dg
W = (Npy - A¥py)ve + [Npp - A¥py - ANy - AYQ‘,)] r

+ (Nad;‘ - AYaJI“)J:E.

Hence

(62) You* = Yoy
Y2r* = Y2r - AXév
Yofr* = Yodp

21
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(62) Noy* = No, = AY
Contd. 2v av 2v
Nop¥ = Nop = A¥5, = A(Npy ~ A¥ny)
Nooe™ = Nodp - &odp
Substitution of Eq. 59 into the expression tor Ty {Eq. 36) gives

(63) agg*

agg - 2apg + agh®

Ao = 355 = 0

The yaw equations (Eq. 56) become

(64) To*p* + T * 7+ Yot + Yhp*dy = -mpVB* + mVy
Ng*B* + N %+ Né*é* + Nfptd), = T *P7
where
(65) EETPEA
Y% = Y, 4-%?!3
dp* = Yoy,

Yp* = -apg*

Ng* = Ng - &g

=
e |
*
]

A
Np = &Yy + 2(Ng - AYg) + a31av

a6V

=
w-
*

n

Nop* = Ny, - AV

Ip* = I * + aggh

Similar transformations may be carried out for the piteh equations
(Eq. 57). The new pitch equations are

22
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(66)  Zo*a* + Z,*6 + Zg*6 + Zg %9 + (W - B) = mqvax - mg V6

Mo*a* + M6 + Mg¥a¥* + M‘fe *of, + Bxg = Iy*é

where
(67), 2% = 2,
Zq* = z,:1 +%Za
2* = 2,
2q* = -ags*
Ma* = Ma + Aza
Mg* = My + 820 + LM, +42,) + ap;VA
Me* = -'a3'5*V

Mp* =M AZ
dy =Ny T,
Iy* = Iy* + ass*
- 2
855" = 855 + Nagg + Az A

835" = 35 + 438

SOURCES OF HYDRODYNAMIC COEFFICIENTS

MODEL TESTS AS SOURCES OF HYDRODYNAMIC COEFFICIENTS

Model tests may be classified into three types: static tests,
rotating-arm tests, and forced-oscillation tests.

Statiec 'fests

In static tests the model may be towed through a tank or
placed in a water tunnel at a fixed angle of attack. The resultant

23
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forces and moments are then measured. Suppose the model to be
towed through a tank at a fixed angle of sideslip B, and let the
measured force and moment be, respectively, Yy and Ny. From Eq.56

(68) YH + YBB + Yd'rfr 0

I
o

Ny + NgB + Nd}d} =

By repeating the experiment at different sideslip angles, rudder
settings, and veloeitles Y, Yy , Ny, and Nd} may be determined as
functions of B, d}, and veloeity. By rolling the model through

90 degrees, the coefflclents Zy, ng, My, and Md% may be deter-
mined in a similar manner.

The drag Xy may be determined by measuring the force component
along the longitudinal axis. It 1s found that for the range of
veloclties in which most torpedoes operate X, may be expressed in
terms of a dimensionless coefficient x; and the veloclty as

(69) ) Xo = 1/2PAX V2
where A 13 a characterlstic area.

The coefficient X, may be obtained from Eq. 2 by differen-
tiating 1t with respect to V. Thus

© (70) Xy = PAXGV

Rotating-Arm Tests

In rotating-arm tests the model 1s towed in a circular path
at fixed angular velocitles and at a fixed angle of attack. For
this condition the motion equations (Eq. 56) become

(T1) Ty + YgB + (Yp - mV)Y+ Yo op = ©
Ny + Ngp + Ny + R dp = O

From these equations the coefficients Y, and N, may be deter-
mined. The coefficlents Y; and M; cannot be measured with this
type of test since an accelerated motion is required. Measurement

of these coefficlents may be accomplished by forced oscillaticn
tests.

s
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The rotating-arm test has the advantage, however, of making
possible the determination of the nonlinearity of the hydrodynamic
coefficients. For example, M, may be determined as a nonlinear
function of « by measurement gf the moment M over a range of angle
of attack a. For a more complete discussion of the nonlinearities
of the coefficients see Ref. k.

Forced-0Oscillation Tests

In one such test the model is supported by means of a shaft
in a water tunnel. The shaft is made to oscillate through the
application of a sinusoidal torque applied through a spring.
Measurements of amplitude and phase then permit the computation
of the hydrodynamlc coefficients.

The model 1s placed in the water tunnel as shown in Fig. 1.

Water Tunnel

)~

Let

K; = spring constant of maln drive spring

K, = spring constant of shaft

Y, = input displacement angle

Yo = output displacement angle
Define 7; and 7 positive in the same sense as the yaw angley .
Two or tﬁree support positions may be used in the test. The hydro-
dynamic coefficients will be defined about one of these positions.
Suppose three positions to be used, and let the hydrodynamic

coefficients be defined about the center support position. The
motion equations of the model are

25
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(12) I, V= NgB + Npi+ NgB + Mo+ N
(13) mv(y - B) = Yp + Y+ Yaé + LY+ Y,

where N, 1s the moment about the central support position applled

to the model through the shaft, and Y, 1s the slde force applled
to the model by the shaft. When the rotation 1s about the center
axis,

(T4) By = -Ko(¥ -7 2)= K1(22 - 71)

When the rotation 1s about the forward axis, the applied moment 1s
given by

(75) Ny = KoY - %) + YA

where A is the distance between the c¢enter and forward support
positions.

The angle of sideslip at the center support position is equal
to i when the rotation 1s about the center support. When the model
1s rotated gbout the forward support, the angle of sidesllp is
given by

(76) By 4V
Hepce, when the forward support position is the center of rcoctation,
(T Yo = aaf- T+ gh - 5 - L300+ 5B -
and the applied moment 1s .
(78) No = -K(¥ - %) -4 [(mA + Yy +—$— Y3)¥
+ (Y +-$-Yé + Yé)v"+ YBV]

Equation 72 then becomes

14

a A
(79) [Iz - Bp - —Wj + AlmA+ Y +-;’-Yé)]ur
- [gr + Rj +-€-x3 - &Y, + 13 +-:-Y3)];}

- [Np - AYg]V = -Kx(¥ - %)

26
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. Let
A A
(80) P=1I, - N, -VNQ + Almd + Y; +;Yé)
-Q =N, + Né +—A—NB - A(Yr + Yé +—A—YB)
v v
R = NB - YBA
Then Eq. 79 becomes
(81) PP+ Q¥ - Ry= -Ky(¥ - %)

When the center support 1s the center of rotation A = 0. The
coefficients for thls case will be denoted by P,, Qp, and Ry. The

coefficients for the forward support position will be denoted by
PF’._QF’ and RF’

The equation relating v, 71, and 7 as obtalned from Eq. Th

1
) Ky K
(82) V=0Q+)p-—n
' Ko Ko

Let the input displacement angle 7’1 be
(83) 7 = A sin.wt
The measyred output 1is
(8) % = Ay 8in (Wt - €)
= Ay cos € sinWt - A, 3in € cos Wt

Hence, from Eq. 83,

(85) [( i 1 ] wt
v = l 4+ — cos € ~-— A sin
5 2 Kp
K
- (1 + —)A, sin € cos WX
Ko

b
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Let

(86) (1 +-El)A2 coss-ﬁA1=a,-(1 +El)A2 sin€="»
K> K> Ko

Solution of Eq. 81 then yilelds

(67) K1Aj85 sin €
=a)(a2 + b2)
K K
(88) R +W2P = Kp - KpAo (1+':'K2132"K—2A1 cos &
a2 + b2

Since the right-hand sides of Eq. 87 and 88 contain only meas-
urable quantities, 1t is possible to determine the combinations of
hydrodynamic coefficlents of Eq. 80. Thus

(89) | Po = Ize - ¥p
Q = Nl" + Né
Re = NB

where I;, 1s the moment of inertia about the center support when
the nodei is rotated about the center support position. Rotation
about the forward support position ylelds

. . A A
(90) Pp=T,p - Np - Ng+ A(mpA + Y, +-‘-7—YB)
. A » A
-QF = Nr + NB +-;HB - A(Yr + YB +';-YB)

RF:RB-AYB

where I,p 1s the moment of inertla about the center support posi-
tion when the center of rotation 1s the forward support. It may
differ from I,, because the mass of the model may be changed
slightly in changing the center of rotation. The mass of the
model when the forward support position 1s used 1is denoted by mgp.
With three support positions Eq. 89 and 90 yield all the hydro-
dynanic coefficients if it is assumed that

28
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Y. : N
r "j; B

If only two support positions are used 1t 1s necessary to estimate
one of them, and Yé 1s the most convenient %o estimate.

—

Another type of forced oscillation test may be used to deter-
mine the 1lift coefflclent. The model is made to oscillate
laterally in the water tunnel by means of a sinusoidal force
applied through a drive spring as shown in Fig. 2.

I

= D
FIG. 2 E%

Let displécement of the lower end of the spring be f and the dis-
placement of the upper end 7. The force on the model 1is

(91) Y, = K( - 7)

where K 1s the constant of the spring. The motion equation of the
model 1is

(92) (nV + Y3)B + Ygp + ¥, = O
The angle of sideslip 1is

(93) B = -k
v
Hence, using Eq. 93, Eq. 92 becomes
YC

B... g .
(sk) (m+—=)n+(—=)n+Kn=K§
v v

If the measured response to an input,

(95) £ = Ay sin @t
1s
(96) €= 8 sin (@t - €)
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Eq. 94t may be solved for Yy and Y3 as

(97) KV Ay
YB == — gin ¢

@w A

KV Ay
Yy = — (1 -——cos €) -~ mV
w? Ay

OTHER SOURCES OF HYDRODYNAMIC COEFFICIENTS

At the present time model tests carrled out in water tunnels
or towing tanks are the most dependable sources of hydrodynamic
coefficlents. For preliminary design purposes, however, the
estimation of the hydrodynamic characteristics of a torpedo yet to
be built is essential. This problem will become more acute when
torpedoes of higher speed and more complicated trajectories are
built. It will then be necessary to specify a body shape end a
tall configuration that will permit desired performance while the
torpedo 1s still in the drawing-board phase of development.
Attempts are being made to estimate coefficients on the basis of
empirical data and hydrodynamic theory. The aim of this work is
to determine the hydrodynamic coefficlents given a body shape and
taill configuration, or, specifying coefficients, to construct a
body and tall configuration having the desired hydrodynamic coeffi-
clents. Model tests would then be only a check on the preliminavy
values 1f these attempts are successful.

The mass accession terms of the motion equations are usually
estimated since they cannot be determined from static or rotating-
arm tests on models. It 1s customary to evaluate these terms by
assuming the torpedo to be an ellipsold of revolution. The coeffl-
cients a, 4 of Eq. 36 are then given by

811 = Ky®e

agy = a33 = komp
apy = 0

355 = 866 = k‘Ir

826 = 835 =0
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where me 1s the mass of the displaced fluid and Iy 1s the moment
of inertla of the displaced fluid about a minor axis of the
ellipsoid. The ky, ko, and k' are Lamb's coefficients (see Ref.8).
It has been assumed that the origin is at the center of the

: ellipsoid. If the origin 1s forward of the center a distance A

g the coefficients a1y are given by

B P MR I crirr i

331 = kymp

app = 333 = koup

ayy =0

a55 = ag6 = k'Ir + kompA2

d35 = -ap6 = komeA

A check on the estimated coefflclents may be obtained from
free-flight tests of instrumented torpedoes. When records of
pitch, yaw, roll, depth, and control-surface deflections are
obtained from full-scale torpedoes in free flight, a comparison of
the recorded response with the response computed from the equations
of motion may be made. This avenue of approach has not as yet been
fully exploited, and much work remains to be done before techniques
are developed for determining hydrodynamic coefficients from free-~
flight records.

FIELDS OF APPLICATION OF MOTION EQUATIONS

( The nonlinear motion equations (Eq. 54) are very complex. !

ﬁ Moreover, in order that they be exact, it i1s necessary that the
hydrodynamic coefficlents of the left-hand members of the equations
be considered as nonlinear functions of the velocity components.
It 1s improbable, therefore, that the compiete equations in this
form will ever be of great use to engineers. The partially
linearized equations (Eq. 55), on the other hand, may be solved
without great difficulty with the use of an analog computer. 1In
cases where they are valld, these simplified equations can provide
valuable information about the trajectory of a torpedo. In most
studles that have been made up to the present time the pltch and

" yaw equations (Eq. 56 and 57) have been deemed sufficient.

s
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SOLUTION OF STEADY-STATE EQUATIONS

The motion equations (Eq. 54) may be solved if a steady-state
motion exists, such as trimmed straight flight or a steady-state
turn. Solution of the equations in these cases 1s useful because,
in the one case, the trim pltch angle and elevator setting must be
known in order to set the control system for stralght flight; amd

in the other case, the change of depth In a steady-state turn may
be determined.

Trim Flight
If the torpedo is moving in stralght trimmed flight

W= =Y=¢0=20=0=6=p=f=a=0=0
and
@ =qa
The motion equations (Eq. 54) become

(98) Xo + Ty = (W - Bla + X,u=0

Zyo + I o + (W - B) = 0
Mo + Md;dg + Bxg - Wzga = 0
Solving for the trim values of u, a, and d, gives

~Z4Bx, . (W - B)(M, ~ Wzg)

J.e =
1
ZMyg, = Zd,(My - Vzg)
-Zd'eBxB + n,fe(w - B)
Q=
z,fe(uq_ - Wzg) - Mg Zq,
Xo + Tx (W -B)y
u = x“ + xu
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Steady-State Trim

If the rudder 1s given a steady deflectlon when the torpedo
is in straight trimmed flight, a rolling moment will be produced
because of the centrifugal force acting on the center of gravity
of the torpedo, which lles below the longitudinal axis. Because
of the resulting roll the rudders will cause the torpedo to spilral
downward. However, the change in depth will cause the control
system to function, giving an up elevator which will tend to re-
duce the depth error. When a steady state 1s attalned, the
torpedo will circle at a constant depth error with constant angles
of roll, pitch, sideslip and attack, and a constant elevator
deflection different from the trim value. Under these condltions

%} = constant
and
ﬁ=6=¢=§=3})=¢'=&=é=0
The motion equations (Eq. 54) become
(99) Xo + Xyu + Tx - (W - B)S = mV(a sin @ + B cos o)y

+2(-2q sin? @ + Yp cos? @)

- szy'aae cos @

Y8 - Ypy}m Y, pcosp + derd’r + (W -B) sin ¢
= mpU¥ cos @ + mzgh2 cos @ sin @ + nVa Yo
- Zq;}ze sin @
Zgn + Ly sin @ + Zp &, + (W - B) cos
= npVpep -~ mzgp262 - mzgyp2 sing + Yp§26 cos @

- mU¥ sin @
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(99) KgB - Kpp® + K cos @ + K dy - Wzg sin @
Contd. ~

= (I, - y)ﬁe cos@ sin @ + I1,,3°0 sin @
+ V(Y5 + 23)(B 8in @ + a cos @) - mzgUY cos g
- mzgVa )@

Mo + My 8in @ + Mp a'; + Bxg cos @ - Wzg6

= (I, - 3 W% cos p + Ixz?ﬂeez - I, 9° cos? @
- Néﬂffe + mzgVP(a sin @ + B cos @)
NgB - N + N, cos @ + Nd»rd;. - Bxg sin @

= (3, - y)yiae sin @ + Mzajpe + Ixz?ﬁe cos @ sin @
9._= acos @ - B sin g

These equations are to be solved for ¥/, @, B, a, 6, u, and 3. A

numerical method of successive approximation is probably most con-
venlent to use. A first approximation may be obtained by line-
arizing Eq. 99 in all variables except . A first approximation
to ¢ 1s given by

vy

(100) @ = tan™l —
. g

The following equations then yield first approximation to ;v and B.

(101) Ygs + Y, cos @ + Yfrfr + (W -B) sin@ = mVy cos p
NgB + Ny cos p + Nd;d;. - Bxg sing = 0

Using the first approximations to V and B obtained from Eq. 101
Eq. 102 may be used to yleld first approximations to a, o, and

ah
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(102) 240 + Zq¥ sin @ + Z4,dp + (W - B) cos ¢ = - mVy sin @
Moo + Mgy sin @ + MdLde + Bxp gos @ - Wzgd = O

6=acos@-8sing

If more accurate solutions are desired a numerical method of suc-
cessive approximations may be used starting with the first
approximations given by Eq. 100, 101, and 102 (see, for example,
Numerical Caleulus, W. E. Milne, Princeton University Press,1949).

Depth error in the turn may be calculated by consldering the
depth error necessary to yleld the elevator setting given by
Eq. 99.

STABILITY OF CONTROLLED TORPEDOES

The behavior of a torpedo in the water is a function not only
of 1ts hydrodynamic characteristics but also of its internal
control system. The complete system must be consldered before it
can be decided whether a torpedo is capable of the performance
that 1s required. Study of the complete system, comprised of
hydrodynamic characteristics and control system, is usually termed
"stability analysis". It is not the purpose of this report to
discuss all the methods by which stability analyses may be under-
taken, but it seems appropriate to describe the manner in which
the motion equations enter into the problem. A control system for
a torpedo contalns devices that can detect the position or attitude
of the torpedo or their rates of change. Signals from these de-
vices are used to control the action of elevators or rudders which
produce changes In the trajectory of the torpedo. Thus the con-
trolled torpedo constitutes a feed-back system, or servomechanism,
and standard analysis technlques from the theory of servomecha-
nisms are applicable (see Ref. 9).

A simple example will be used to show how a contrcl system
may be analyzed. Assume that the trajectory of a torpedo is in a
horizontal plane and that the torpedo does nct roll. The motion
equations are given (Eq. 56) as

(103) - mqVg = Ypp + (Yp - mpV)Y + Yol + Y 0p

(104) ¥ = Ngp + N + NgB + N db

DL T NI A 8 5 ol SRR N SR B
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The rudder is controlled by a signal obtained from a device sen-
sitive to direction, such as a gyroscope. It will be assumed that
the rudder deflection is proportional to the difference between
the torpedo direction y and a reference direction ¥s. A time lag
Ty is Introduced in the equation to represent the delay in the
actuator that operates the rudder.

Thus
a

(105) (14— = Yy - )

Equations 103, 104, and 105 may be solved for ¥ in terms of
Ys. Usually ys 1s a constant direction. Depending on Ky and the
hydrodynamics, the motion of the torpedo will be either stable or
ustable. It is sald te be stable 1f transient oscillatlons are
eventually damped out and the torpedo assumes the direction ¥5.
The motion is unstable 1f the oscillations continually increase in
amplitude. It is the aim of the designer to choose a Ky that will
result in a fast well-damped response to a disturbance.

Even a simple system such as that of the example clted above
requires long tedious computation if it 1s fo be solved without
recourse to mechanical or electrical computers. A great saving in
time and effort 1s achieved by the use of such aids to computation.
This type of problem is particularly amenable to solution with the
use of an analog computer such as the REAC (Ref. 10). Appendix G
shows how Eq. 103, 104, and 105 are solved on the REAC at the
U. S. Naval Ordnance Test Station. The REAC is capable of solving
much more complicated problems, but the principle of operation is
demonstrated rather well by this example.




B L TN

NAVORD REPORT 2090

aij

INEQIOE@N‘IHWEIWIW

Hx, Hy, Hz

1 S A
Iyz, Ixz, Ixy
Ixs Igs Iy

k

Ky, Mp, Np

Appendix A

NOMENCLATURE

Components of apparent mass tensor

Buoyancy of torpedo

Force acting on torpedo

Force on torpedo predicted from potential flow
F-K

Force per unit volume acting on fluid
Acceleration of gravity

Linear momentum of torpedo

Linear momentum of fluid

G + G

Angular momentum of torpedo

Angular momentum »f fluid

He + By

Components of H in body coordinates

Moments of inertia about x, ¥, z axes, respectively
Products of inertia

Apparent moments of inertla about x, y, z axes,
respectively

Viscosity coefficlent of fluid

Components of L, in body coordinates
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3

=

b, d, r

ra I

X, ¥, 2
Xo0s Yo Zo
Xgs YBs %B
X3, Ygo 2¢

XE, Y2, Za

38

Moment acting on torpedo

Moment on torpedo predicted from potentlal flow
L-I

Mass of torpedo

Apparent longitudinal mass of torpedo
Appafent transverse mass of torpedo
Unit normal to surface

Components of w in body coordinates
Pressure acting on fluid

Velocity field

Th?ust of torpedo

Magnitude of thrust of torpedo
Kinetic energy of torpedo body
Kinetic energy of fluid

Ty + Tp

Components of V 1n body coordinates
Velocity of torpedo

Welght of torpedo

Body-fixed coordinates

Space-fixed coordinates

Components of buoyancy moment arm
Body coordinates of torpedo c¢. g.

Components of F, in body coordinates

e i R i
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f

o> W

Angle of attack of torpedo

Angle of sideslip of torpedo
Elevator deflection

Rudder deflection

Direction cosines of n

Density of fluid

Velocity potential funetion
Inertial reference angles of torpedo

Angular veloclty of torpedo

-~
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Appendix B
FORCE AND MOMENT ON TORPEDO PREDICTED FROM IDEAL FLUID

Consider the torpedo to be immersed in an 1ldeal fluid of
_ infinite extent, the fluild being at rest at infinity. Let the
j velocity fleld be denoted by q. The total linear momentum of the
: fluid is given by

(106) g_f=_/_;_,ogd'7'

where the integral is over the entire volume of the fluid, The :
momentum of the fluid must have a finite value since otherwise 1t .
would be implied that an infinite momentum had been imparted to

the fluld by finlte forces exerted for a finite time by the tor-

pedo, and this 1s impossible. Now conslder an element of the

fluid occupying the volume d7. By Newton's second law the force

dF acting on the element is

PRRETmER Py CaRe- e NS SR

o e DT ke

1 d
< (107) 4 = — (og a7)

The total force acting on the fluid 1is obtained by integrating L
over the whole fluld. Then, i1f Fe denote the total force acting ;

on the fluid,

e Yapta e x

. d
(108) Fe =f7' " (pq dT)

The total force on the fluid is that exerted by the torpedo. Hence,
by Newton's third law the force F; on the torpedo 1is

ag
(109) Py = Ppm -t .‘
dt
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In a similar manner the net moment acting on the fluid about
a point in inertial space may be shown to be equal to the inertial

time rate of change of the total angular momentum of the fluld.
Then, also,

—

( He

(110) Iy = - E.t_.
where

(111) §f=/7_/)§_x_q a7

S being the radius vector of the fluid element L0d47.
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Appendix C
FORCE AND MOMENT REFERRED TO A MOVING COORDINATE SYSTEM

The laws of dynamlics state that the external force acting on
a system 1s equal to the time rate of change of linear momentum
of the system, and that the moment of thls force about a point
fixed in space 1s equal to the time rate of change of the angular
momentum about this point. "Let Oxyz be the body-fixed coordinate
system of the torpedo, and let the velocity V of O have the com-
ponents U, v, w on these axes. The angular velocity w about O
has the components p, q, r. Let G be the linear momentum of the
system and let H' be the angular momentum about a point O' fixed
in inertial space. Let H be the angular momentum about O. The
time rate of change of a quantity seen from O! will be denoted
by the operator d/dt. The time rate of change as seen from the
moving coordinate system Oxyz will be denoted by a dot placed over
a symbol.

The force acting on the system is given by (see Ref. 6)
i
(112) Pe—=G+WXGE&
dt

‘The angular momentum H! about O! and the angular momentum H
about O are related by

(113) H=H+5Xx@

where S 1s the radlus-vector from O' to O. Thus the moment L'
about O' 1s given by

di' dH )
(114) L'=—.=— +8XF+VXg
at dt

since ¥ = dS/dt. The moment L about O is given by

(115) L=L'-SXF
Hence,

(116) L=H+WXHE+VXG
h2
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Appendix D
DERIVATION OF MOMENTUM FROM KINETIC ENERGY

The kinetic energy of an 1deal fluid is given in Eq. 31 as
(117) 1 o9
117 T =-—pJ/@p— ds

2 ¢ on

where the integral 1s taken over the surface of the torpedo. The
potential function has the .orm

(118) P =Up + V@ + Vg3 + DYy + a5 + Y6

The velocity field q of the fluid is obtained from the veloclty
potential as

(119) ' = -vp

The total linear momentum of the fluld is obtalned by integrating
the momenta of the mass elements. Thus

(120) Gr = -pf7_v¢ ar

By means of the divergence theorem the volume integration may be
expressed as an Integratlion over the torpedo surface as

(121) 8 =P @n as

where n 1s defined as in the section "Kinetic Energy of Ideal
Fluid.T The component of G in the x direction (using Eq. 24) is

(122) ufx“ -_-/JA @N as

3,
- plp e
5" dn
in view of Eq. 25. Using Eq. 118, Eq. 122 becomes

(123) Gfx = 2170 + 235V + aj3w + ajup + 8359 + 367
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It is seen, then, that

0Tp
(124) Gp = —
- Y 0]
It may be shown in a similar manner that the other components
of gr are
3Tp
(125) Gr =
| Vo
; 3Tp
] Gp =—
2 dw
% The total angular momentum of the fluid is given by

(126) He = 70js 8xV@ a7
where S 1s the radius vector of the fluld element ©d7. Now
(127) VPXS =VXPS -guX§

=V X P8
since VXS =0

By the divergence theorem, then, the volume integral of
Eq. 126 may be transformed to an integral over the surface of the
; torpedo as

(128) Hp = -,o/s:gag X § as

The component of He in the x direction is therefore
(129) Hy = -/JA @z - V) das
- 02 s
S on

o with reference to Eq. 27. Using Eq. 118 and 32, Eq. 129 may be
i "

! written

(130)

er = a))U + ag)v + agyw + apup + aysq + ayer
T

op

A s -
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Similarly,
oTy
(131) Hp =—o
LAY |
T
He =~—£
Z r

The components of momentum of the forpedo body may be deter-
mined from the kinetic energy of the body. The linear momentud
is defined by
(132) Op =} my(¥+@xry)
and the angular momentum by

(133) Hy =) myrg X (T + @ X 1y)

where- the summation is over all particles my of the torpedo, and
ry 1s the radius vector from the origin to m,.

Since
1
(a34) To =3 Y mi(¥+@xpy)?
oT A 3
(135)  — = I mTrwxmH— + = xry +@x—)
U U 3
=) m(T+@xp)L
= Gp,
0Ty Ty
Similarly, — = and — =
¥ v Gby " v sz

Differentiating Ty, with respect to p yields
T oV dw r

(136) —> = FmEr@xE’= % = X Py WX —) »
P

op op op

45
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(136)

Contd. = 2 mi(!_ +Wx oy M1 x ry)
=)mr, x (V+wxrp )l
= Hpy

Similarly,

3Ty 3Ty,
[ ] — 0 gy — ==

Consequently, since T = T

, + Tpr &= G + G

(137) G=—l+—l+f'k

k6

g3

Rt T R P
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Appendix E

RESOLUTION OF BUOYANCY AND GRAVITY FORCES AND
MOMENTS ONTO BODY COORDINATES

The orientation of a torpedo with respect to a fixed inertial
frame of reference 1s specified by an angle of yaw ¥, an angle of
pitch &, and an angle of roll ¢. Let the inertilal axes be x,,

Yo: Zo, aud let the unit vectors in the direction of these axes be
1o, Jos» Ko, respectively. The body axes at the start coineide
wlth the inertlal axes and are then rotated about the z, axis
through an angle ¥ to coincide with axes xy, ¥y, z3. Let the unit
vectors in the directions of these axes be 1, Jy, kj. Then

(138) 1 =15cos Y+ J,sin ¥

d1 =L siny+ Jy cos Y

h=%

Now the body axes are rotated sbout the y; axis through an

angle 6 to coincide with axes x5, yo, zZp. Letting the unit
vectors in the directions of these axes be 1p, Jo, Ko,

-~

(139) ir=1jcos 6 - kg sin &6
.12=.11
ko =17 sin &+ k; cos @ -

Finally, the body axes are rotated around the xo axis through
an angle @. Letting the body axes be x, y, z and the unit vectors
in the directions of these axes be 1, J, k, respectively, yields

(1%0) L=1p
isjaeos @+ ko 8in @

k=-J8ln @+ ky cos ¥

b7
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Combining these transformations gives

(1%1) 1=1,cosY cos 6+ J,sinYeos © - k, sin ©
d = 1,(cos ysin & sin @ - 31n Y cos @)
+ _J_o(sinysin @sin @ + cos J cos @)

+ k, cos & sin @

I=
n

1,(sin ¥ sin @ + cos ¥ sin € cos ©)

+ Jo(sin ¥ sin & cos ¢ - cos ¥ sin ;a)

+ k

k, cos & cos @

~~
5
~
g—b
]
[N

1 cos' Y cos &+ J(cosY sin & sin @ - sin P cos @)

+

k(sin J/ sin ¢ + cos J sin & cos ¢)

do = 1 sin Y cos & + j(eos Y cos @ + sin ¥ sin & sin ¢)
+ k(sin )/ sin & cos ¢ - cos I/ sin ¢)

ko =-18In 6+ J cos & sinf+ k cos 6 cos ¢#

The welght and buoyancy forces act in the z, direction.
Hence the vector representing the gravity buoyancy force is

(143) (W - Bk, = (W - B)(-1 sin & + J sin (P cos G+ k cos @ cos 8)

The components of the gravity-buoyancy force may be read
from this expression.

If rp 1s the radius vector from the origin of the body coor-
dinates to the center of buoyancy, the moment about the origin
caused by the buoyancy force is ’

(1kk) rp ¥ (-Bgo)

Since r = ix, the moment due o buoyancy is

48
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(145) JBxp cos @ coa 6 - kBxp sin ¢ cos &

Letting rg be the radius vector from the origin to the center
of gravity of the torpedo, the moment about the origin caused by
gravity is :

(146) g x (Wky)
Since

rg = zgk
the gravity moment is

(147) - iWzg sin ¢ cos 6 - JWzg sin @

ko

F b e B AR S A
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Appendix F

RESOLUTION OF ANGULAR VELOCITY TO INERTIAL COORDINATES

The angular velocity of the torpede has the components p, q,
r in body coordinates. It is required that the angular velocity
be expressed in inertial coordinates (¥; &,

#). It is noted that
Vis the angular velocity about the z, axls, & 1s the angular

velocity about the y; axis, and giis the angular veloclty about the
x axls. Hence

(148)

Q=tprfatlr =10+ 36+kY
Using the relations between the unit vectors of Appendix E,
(149) P=¢-Fsin6

q= Q;cos§0+y:’singpcos é

r= -ésin ;0 +}icos ¢ cos &

e e R e BTN § € S
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Appendix G

REAC ANALOG OF TORPEDO SYSTEM

The system to be solved on the REAC 1s described by the sys-
tem of equations

(150) - mpVDB = Ygp + (¥p - mpV)Y + VDY + Vo &
3D = Ngp + N+ NiDB + N %

(1 + TyD)y = Ky(V—;/fa)

where D represents the operation of differentiation with respect

to time t. Equations 150 are more readily analoged 1f they are
transformed as follows:

.Ng Ng N oL
(151) -(mqV + ¥p — )DB = (Yg + Yo — )B + (¥p - mpV + Yo — )
JZ Zz JZ
N,
+ (Ydp + Yo— )y
JZ
Y . Y Y, - va .
(3, + n‘;—’f‘- iD= (Ng - Né'—a— )B + (N - Ny ——— )
mTV mTV mTV
I
+ (Ny - Ng—L ),
- "8 ey 'r
1 Ky' Ky-
Df = - Oy b Y =
I VR 4 Ty Vs
y=oy

@ b B shiabhe 2 vh ST AN W T iy S Y W s R
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The REAC analog of this system is shown In Fig. 3. The
symbols used have the following meaning:

IS
e

ETSUOUNTSSE V.

= Summing Amplifier

T PTIR C T LR U

|
/

Integrating Amplifier

AiJ = Gain of amplifier number 1
. with input number J

Voltage Divider
(Potentiometer)

Ky = Setting of potentiometer :
number 1 :

The amplifier inputs have avallable gains of 1, %, and 10. 3
The output is inverted in sign.

The equations of the analog are )

(152) e1 e ey
ep = Ay 3Ky — + A 08gKp — - A12K3 —
1.351 = * A1.2R62 = 35

e e e e s S

62 el e3
en = ~An 2K}y, — + Ap 7AcKz — - A —
2 2.3Ky 5 2.185%5 = 2,286 =
e3 e}l el "
e3 =

=Aq K7 — + Aq 1A Kg— -~ A -
3.357 5 + 23888 T A2
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i
¢
‘?
where D is the operator representing differentiation with respect !
to the computer time base t. Let £ = nt. Then D = nD. The . o
voltages ey, ey, e3 are the electrical analogs of the variables ¥, i
B, dps respectively, of the physical system. Let i
i
(153) aje; =y 2
agts = B %
age3 = o
ayey =¥
Equations 152 may then be written
. R | a3
(154) Y= -nA1_3K1V +—nhy ALK B -— nAl'lecg.
82 33
j a a
- DB = -nA, K 2 R, AR - — nb, Ko
. b= mhogfuP * etV - T M Rt |
83 2 8.3
Dy. = -nAg 3Kych +—= n"Ag j4Kgy - —ni3 o¥s
r a1 a :
i
By comparing Eq. 15% with Eq. 151 it is seen that the two 1
systems are equivalent if :
Y
a; RV ,
—nhy oAgkp = + !
8 R ;
myV ;
N H-EEL:_EEE. ! i
r - 1
B npV
nAy Ky = -
J, + Né-—-—— . v
z i
gV =
’ 5 :
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i
; Y4
] Ny - NB—E'-
‘a_"nAl.lK3 = - .
3 Jg + Né ——
mTV
N
LB
YB + Yr"—
Iz
nip, 3Ky, = v
mTV + Yri
Iz
1 Ny
; Y - mpV + Yo —
a I,
| . — nhp 145K5 = - -
L a) N
' npV + Y5 —
z
No,
Yo + Yf. —=
as z
;“n“—z.2K6 = o
3
mTV + YI'.-E—'
z
N 1
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Amplifier gains, potentiometer settings, time base change n, and
the ratios a,/ay, aj/a3, a1/a), are chosen in such a manner that
the above equations are satisfied. The response to an initial yaw
error, obtained by placing the appropriate initial condition on
amplifier Ay, may be found.
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