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METRIC THEORY OF THE DIFFERENTIAL EQUATIONS OF EXTERIOR BALLISTICS
Prepared by:

D. C. Lewis, Jr.

ABSTRACT: This paper develops the fundamental equations of motion for an
axially symmetric shell using the so-called "spinless" reference frame,
suggested by A. W. Wundheiler. Approximate integration methods are also
considered, not so much for the purpose of solving the eyuations, as to
give the proper background for the application cf the author's "metric
theory" to this particular system. A particular Riemannian metric is
introduced and, to some extent, Justified as being particularly efficient
for this purpose. The theory requires the calculation of the coefficients
of a certain quadratic form in eight independent variables. Explicit
formulas are given for the most complicated of these coefficients. They
are indeed so complex that the author has not succeeded in drawing
interesting general cnnclusions from them. They are nevertheless availa-
ble for the numerical analysis of particular cases,

U. S. NAVAL ORDNANCE LABORATORY
White Oak, Maryland
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This report represents a new approach to the linearized equations of
exterior ballistiecs, The novel features include use of a "spinless"
reference frame and the application of the authors "metric theory" of
differential equations, The work was carried out under project
NOL-Re9a-108-1-53, entitled "Aerodynamics and Fluid Mechanics." The
results are of use for the solution of exterior ballisties problems.

EDWARD L. WOODYARD
Captain, USN
Commander

H., H. KURZWEG, Chief
Aeroballistic Research Department
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NAVORD Report 3651

. 1. Introduction. In two previous papers,l hereafter denoted by MPl t:j}':j'-
and MP5, the author has developed a "metric theory" of ordinary -_:_::::}_
differential eyuations with the view of studying the dependence of ’—“'“ :

v the solutions on the initial conditions. In Section 4 of MP, some AR
indications were given as to how the theory could be applied to the :::fg'-::j
eyuations of exterior bullistics. The purpose of this paper is to go ;.:::;:.,j
into more details with regurd to this application. The ultimate goul N
is to obtain results suitable for numerical analysis us well as for a L
clear ualitative picture of what can be expected in problems of this Ko
sort. e
2, The equations of motion of a spinning symmetric shell. We use a ;:f-;:'.:
moving cartesian reference frame F with origin O a2t the center of gravity RO
of the shell and with one of its axes (namely the x,-axis) coinciding
with the shell axis and directed from O to the shell vertex. The other o
two axes (namely the xj-axis and Xo-axis) are chosen in such a way that .r:::.i:j-i
O-xlxex(D form a right handed system. Tt is not necessary to ussume thut :::‘_::.:I
the shell is rigidly attached to this reference frame F. In fact we R
simplify our eguations slightly if we assume, as we do frem now on, that C;,‘?}.
the component of the angular velocity of F in the direction Oxg is zero,2 E”‘T
while that of the shell is wq, in general # 0. On the other hand the YR

L components of angular veiocity of both F and the shell in the direction o
of the other two axes are the same and will be denoted by w; and Wy A
respectively. Hence, if /1 is the vector angular velocity of F B

o (relative to some fixed frame Fo) and if _(2_8- is the vector angular !:.)..'.‘:

velocity of the shell, we have

Wi+ w X o
ns 0 M 13 *a)a -.':-'. T

Llp = 0L+ wyi+uwpk, "‘*‘
where 1, J, k are unit vectors directed along the XQs Xy, X, axes N ::j:lz
respectively. 2 L

Similarly we denote the vector velocity V of the point O(relative 7

to the fixed frame Fo) in the form S

V= ‘Joi + ulJ + uak,

vhile the vector G representing the acceleration of gravity and having :’.'.

constant components relative to the fixed frame Fo appears in the form i" -,

G=gi : B

i &y + 313 + sak o
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NAVORD Report 3651

Denoting the muss of the shell by m, its axi:l moment of inertis by 2,
und its transverse moment of inerti. by b, we czn write the moment of
momentum in the form,

W = ewgt + by + dbwgk

.

ard the momentum uppeurs in the form mV. We denote the vector aerodynumic
moment by
M = <Myl + DM J + DMK,

the foctors o and b being introduced for luter convenience; und we denote
vecsor werodynamic force by

m?: ndi+nd J+ n k.

We now zre in u position to write down three vector differenticl
e uztions. The first of these is

(2.1) m\'lfm% +m_QFxV‘-'-n1}+m§,

vhich ejuztes the rate of change of msmentum (relative to the fixed frame
Fo)to the resultunt of the applied forces. The second of our ejuations is

(2.2) W : s + L XW=M

which eyuxtes the rute of change of moment of momentum to ‘the applied
toriue. Finally, the third e,uution

o_dG =
(2.3) 6s% +0xc=o0

merely expresses the fact thut G 1s a constunt vector; thot is, it has
constunt cemponents relztive to the [ixed frame Fo.

Now ; and M are ussumed to be functions of ﬂs and V only. The
precise n.ture of this dependence will be specified in detail luter on.

,We only wish to remark now thut the asbove three vector eyuetions become

self contuined. They ure ejuivalent to nine scalar differential eyuations
for the determination of nine unknown functions, numely s Wy s Wy

Uy U5 Uy Bgs gy, 8p- Actuclly the or'der of the system cun be reduced

from nine to eight, becuuse of the obvieus first integral G « G = const.
When once these unknown functions have been determined by integration
of (2.1), (2.2) and (2.3), the trajectery miy be culculated as follows:

We introduce a moving freme F,' with the same origin us F (namely

the center of gravity of the shell) but with its axes invariably parallel
to the corresponding axes of the fixed frsume Fy+ Eulerian ungles 0, ¢ , ¥

are now introcuced to define the orientution of F relative to FO' and
hence ulso relutive to F,. We hereby assume thut the axes 0y, 0, 07
of FO' form o right handed system, thut © is the angle from Ofto Ox

2
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that @ is an angle frem OF to the intersectien ON of the 57 -plane

with the x,x,-plane (the so-called line of nodes), and that ¥ 4s an i
angle from this same line of nodes ON to the Ox; axis. Cf. the figure. "
We further assume thaot F < j:::‘;"

and hence Fo' i1s chosen in sugh N
a way that one of its axes, say ___
the ¥ -uxis, points vertically (.
upward. Then, since gravity f-:j;.-'
always acts verticully downward T
we see easily that, :j{:j-l
& ° - |Gl cos © .:;_

g, *-|6f sine siny

& - [6] sin® cos¥ "

. ) o
from which we find that tan y = gl/g2 and tan @ = 4 g + g:/g o "L"‘“‘“‘
When y and © are thus found es functiens of t (since g, g, &, are

known functions of t after the integration of (2.1), (2.2), and (2.3)),

we can find @ by the single juadrature involved in integrating the
evuation

dy + 4¢ cos ¢ = 0.

dat at
This equation expresses the fact that the frame F has zerov angular "
velocity about Oxg. Thus o

...
RPN WY
K K *
» 13 ! a i.Y’

Y Y.

H "
Leriitals,
- »

£
(2.4) ? =@, - f y sec @ at.
)

A"
Pl

PP
)
.l.

With the Eulerian angle all determined, we can now find the nine direction

co3ines between the frames F ungd Fo' and hence between F and Fo. They
are exhibited in the follewing table,
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v X Y 2 .
31/\1“3”?“57' sing siny cos © Aaqmycos’y-} cos@ 8iny/cos -] é:sinysin e )
o
.;?’J,ul:-cosgl siny - sin@cosy cos ﬁ ﬂa--smrsiny«f cos P cosy co8 ﬁ ,43-cos ysin @ ::f::zﬁ:
'-v'.t.
- = - . ,‘ 1
x|Vy7sin @ sing@ Vo=-sin 0 cosg@ V3=cos © N
vhere the axes of the fixed frume F, are dencted by X, ¥, Z. This table
may easily be obtained from the law of cosines in spherical trigenodetry o
or by the matrix multiplication corresponding to the fact that F may be !—‘-—'r
obtained from l‘e' by wotating the latter through ¢ about the I axis, —
then through © about the carried ¥ axis, and finally through y- about ::;5;:;71
the carried ¢ -axis. ..‘j'}
The cemponents %_X{ % and g% of the shell velocity relative to F, 5;;
are, of course, related to the components uy, up, Uy relative to F by ::.:22:3_
means of the following ejuatiens: - :'.:3:'.;3
ax R
dY - u ‘._. ‘.
(2.5) & ARt VY ]
_@. - u u :.;‘::":
T " A3yt Pgup + Vgug. o
b
Since the direction cosines demoted by the A's, 4's, and ¥ 's are known RN
functions of t as well as the u's (vhen once equatioms (2.1), (2.2), T
(2.3), and (2.4) have been integrated), the actual trajectory may be o
obtained by the three obvious juadratures presented in (2.5).
’ Thus the key to the emtire situstion is the integration of the self b
g contained system of ninth order represented by the three vector eyuations oy
g (2.1), (2.2), and (2.3). It is this system to which we shall apply the
: metric theory of our previous papers. Written out in full, these nine R
- e uations take the following form Ak
-
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> (2.6) du,y
— + wyu, - W, gt P,
dat
(2°7) dul wu =
wt%h atd,
(2.8) Wy _ oy ce,+ B
(2.9) dw,
?,}g‘ — 0
Al at
(220) 4 thw @w =M (where h « a/b)
at 1
(2.11) da,
—_— = hw =
7 04 = %
(2.12) dg, o o
. —_— W - =
t 1% "%
. (2.13) g
—+wg =0
at 2
(2.1%) dg
-—-g - w 8 = 00
at l0
If we introduce complex juantities defined as follows, the number
of our equations can be reduced from nine to six. Since three of these
six equations ure complex, this simplication is formal rather than actual.
Still 1t is well worth carrying out. We set
wawy +iw, (1= V1)
u = ul + iua
(2.15) $- él + i§2 (not to be confused with vector?)
I Me ks K
..::';z g ™8+t 182

5
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Then multiplying (2.8) by i 2nd adding to (2.7) we obtain, with the help
of (2.15), the following cemplex equation

(2.16) duzduw +g+3

dt Y

to be used as the equivalent of the two equutions (2.7) end (2.8). In
2 similur manner (2.10) and (2.11) are replzced by

(2.17) dw =z 1h W W+ M,
at

vhile (2.13) und (2.1i) are replaced by

dt
3. Expressions for the uerodynamic force and torgue. The use of complex
Juantities also simplifies the discussion of the effect of axial symetry3
on $ond M. Thus M = M(twy, W, ug, u). A rotation of the frame F through
an angle o zbout Oxy replaces M by Mel® vy wel® | and u by ue™. Hence ,
by axiul symmetry, we must hzave

(3.1) M( wO’ W, u,, u)ei“' = M(“’03 wei“: Yy uel™)

0

as a funciionul equation to ve sutisfied by M for all real values of .

If we <uasider only terms that are lineur in the relatively small quantities
Uy, 4z, wh, andW,, it is readily shown from (3.1) that the most general
forw for M would be

(3.2) M= AW+ Bu

whﬁre A and B are complex valued functions of the real juantities U and
o + A similar argument shows that

(3.3) $=Cw+u,

where C and D are also complex valued functions of uo and a)o, and that
(3.%) My = Mo (&, uy)

(3'5) @0 :éo (U-)o) uo)

where MO and -@O are real valned functions of uy and a)o.
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If we assume that A can be develeped in powers of Uy and and
if we then neglect all terms of higher degree than the first, we have

A= (ay +ayy0+ ayo¥g) + 1(apy + ay wo + 822u0)'

Thus there are six real "aerodynamic constants" associated with A,
namely 85 8py an, ajp, 8p1, 822° Similarly we write

B = (wy + by Wg + DyMy) + 1(by + by ¥ + Do)

Cs (c; +cpn«o+ cy0g) + 1(ep + c21 W + Spplp)

D = (d4) + dyy @o + dyu0) + 1(dy + dp Wo + dpup)

Wy = my+ mlwo + myu, + muw02 + m’l2w0 uy + m22“02
Bo= 20+ 230+ g + 13900 + L1090 * Toolg’

Thus we consider at the outset a total of 36 aerodynamic constants.
Howvever, it is physically clear that “0 =0 1ir wo = 0. Hence
2 = = 0. Also 204fu. =0. Bence £, =f, = .. = 0.
®o " M2 T My 0 0 o- %1 I
Also My is an odd function of ey vhile g 1s an even funetion of u,.
Hence m,, * 0 and 1’12 =z C. The number of constants is thus reduced at

oace to 28. Furthermere, it seems to be generally agreed that of these
28 comstants ay, 8y, by, ba, €3, ¢y &, 4y, my, and f, mey be neglected.
We are thus left with 18 constants and the above equations reduce to

Az (a)ph +a 35u) + 1(&211_00 + 85,5)

B= (buwo + blauo) + 1(b21w9 + bazuo)

C = (o3 @ + ¢q5Up) + ey o + €554,)

D = (&0, + & u ) + 1(dy “ + o)

¥y ¥ Byp%to

8 0° f2.’«.‘“02
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The elimination of eight more comstants can be accomplished as
follows: Ifw) = uy = O equations (3.2) and (3.3) become

N = Ay + By, P-c1d, + Du,; so that, uzon separating real and
pure imaginary parte, we have {with the help of the sbove expressions
for A, B, C, D) the following relations:

W o= - () Wy apau)0, o+ (Byy g F Dy U Juy
N : (.uwo + .12\;0)602 + (bala)Q + b22u0)u1
Py = - (exWo + cppug)Wa + (811 %0 + d1a80)y
$2 = (egy g + €150) ¢, + (4 W + dpgughyy

But, withwl =u, 3 0, the vector valocity of every point on the shell
axis must be orthegonal to the x,-axis. Hence the craponemt in the

direction of the xj-axis of any element of aerodynamic force acting on

the shell would not change sign if the direction of spin were reversed,
but the cemponent in the direction of the xa-axis would change its sign

under such circumstances. In reaching <this conelusion we use consider-
atiens of symsetry in the form semetimes called "the pwinciple of
sufficient reason" (cf. G. D. Birkhoff, Collected Mathematical Fapers,
volume 3, pp. T768-80L). We thus conclude that, witha)l .u, = 0,}1

and N, must be even functions of wy, while $, and M, must be odd
functions ofwo. We thus read off frem the above eyuations that
022=bm.ausb21=c21=dutc12-d22-0. Bence our final
formulas for A, B, C, D, N, and § , are as follows:

A= ayoug + 12y W,
B ¥ By W + Lbpoug

C = ey %0+ Lepaig
D = 83019 + 145 W,
My * =%

ég = t22u02
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The ten remeining constants are usually expressed in terms of
dimensionless quantities which are generally denoted by the capital
letter K with varicus subseripts. In accordance witii one well known
usage we write

_ -1 . iS¢ n-l
0 T - P B P Hy®

- -1 e - nddw -1
by, F - pdl’x,rb b, = - padKp

- L - - 3, -
ey T pd gt Cpp * PYKgm1

_ o -1 s e ol
dl2 S - Pd Kﬂm d?l ed KFm

2 -1

= -1 . -

Dy, * - (odhKAa 1’22 Fd KDAm
Here @= density of air (= .001188 gm/cnj for a typical value)

d = diameter of projectile (2 centimeters in a typical case)
m = mass of projectile (175 grams)
b = transverse moment of inertia (800 gm - cm?)
a = axial mement of imertia (76 gnm - cn?)

According to some experimental work of Turetsky, the dimensionless
aerodynamic coefficients may be expected to have values of about the

following magnitude: KH =6, KT = -0.1, KM =1, KS = - 10.

KN =1, KF = 0,2, KA = 0,005, IS)A = 0.1. I have no information about
KX'I‘ and KXF They ere prooably too small to be significant.

Needless to say, the aerodynumic force system described here does
not satisfy the Nielsen-Synge requirement of invariance with respect to
shift of mass center.

L. Digression on the approximate integration of linear differential

e aations, Tae approximate solution of the differential system
Tntroduced above hinges on the solution of a system of linear eyuations
of the following form:

g%f = x(t)w + g(t)u + H(t)

(k.1)

Q. y(t)w + St + L(t)

(SN
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vhere w, u, «, @8, ¥, §, H, and L are complex valued functiens of the e
real variable t. The solution of euch a system of non-homogeseous —
linear differential equations is well known to depend on the solution L
of the corresponding homogeneous system, in which H(t) and L(t) ace ]
both zero. But it i1s possible to write down immediately an approximate '-:-f:.
solution of the homogeneous system, at least 1f h2 = & [ (o - §)2 + ‘tf)]
and @ are not zero and the derivatives of x, 8, ¥, § are smll enough S
compared to h and g . In fact the functions )y
W= pﬁri exp f [ﬁ(w:) + h] dt 1_332'-':?
1 1 T
(h.2) U=[h-£(“-5)] g4 expj{i(“-l-é')-rhjdt s
ey be verified to satisfy exactly the equations o
g - “ 5 - 3 ":“..
Fo(x+iL -3 %)w AU e
ho o . ) B * :: :.:.:
(+-3) Wo(yedho-d -4 55 We(5+45-3L),
B7F 7 B °F b
vhich, in view of th: swallness of §, & and &- & , are only slight -2
wodifications of (4.1, vheu E(t) = L(t) = 0. Moreover frw the definition SIS
of h as a square root o7 a non-vanishing gmntity, it is clear that (4.2) A
ylelds two solutions, one for each determinatien of the sign of the square Y
root. The verification that (4.2) satistles (k.3) is laborious but . Vo
elementa~y and will be left to the reader. S
o
To obtain a solution of the non-homogemeois limear system (4.1) we ::::5‘3_5
need to know two particular solutions of the homogeneous system depending DRI
on a real parameter s, ramely wl(t,s), ul(t,s) and wa(t,s{j ua(t,l), R,
such that wl(s,s) =1, ul(s,s) = 0, wa(s,s) = 0, ua(u,s) z 1. Then, as '~
is well known and as is easily verified, it turns out that a particular PR
solution of (4.1) 1s given by AN
t \ ‘ T
vz ([ 8e) wee) + 16s) wtt,s)] s S
0 o
L.y e
(4.4) . o
wi ( [x(s)ul(t,s) + Lo)u(t,0) | as
0 IR
[ 2.
10 R

'''''''''''''''
..............

.......
.......
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But frem the approximate solution (4.2) of the homogeneous equations
it is easy approximately to set up these functions wi(t,s) and ui(t,s).

In fact, using the abbreviations

p(t) = g2
Qt) = (8 - 3 -5)) ot
Q) = (- b - Hax-5)) gt

we write

t t

w (t,8) = #P(t) [-al(s) exp S (3(x+§) - n)az - Q,(s) exp S (3(x+5) + h)dt] ‘

8 3

(4.5.1) . . 5

uy (t,8) = & [Qa(t)al(s) exp S (4(x+£) - h)ac - Ql(t.)Qz(l)exPS (3o -5 )&h)d'f-] T

s 8 :

t %

wa(ts) = %P(t)r(s)[exp S (3(x+8) + n)az - expS (Mass) - h)cﬁ] B

8 8
(4.5.2) & t __‘_, o
: u,(t,s) = 4p(s) [ol(t)exp S (#(= +8) +n)az - ¢ (t) mg (He+s) - h)"f]' T
) )

Both wl(t,s), ul(t,s) and Wé(t,s), ua(t,s), as given by (4.5), satisfy
(4.3) exactly, while (4.k), with these valce: fer the Wy and u, L
inserted, will satisfy exactly the following syscem: _‘-::f-'-j:_‘j

He Codfodpe v a0 o
(4.6) ey

Wa(ywdh o-f 1n8 ) +(F+Eh - 2E)ue it),

T ii SN L] ( 55 ip) {t) B
which, of course, is a close approximatien of (4.1). Thus the functions

given by (4.4) will approximate closely the solution of (l4.1) which L J

vanishes when t = O, and estimates of this approximatien can be carried
out by classical methods.

: n o
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9. The integration of the equations of motien. We begin by writing down
in a suitable form the eyuations developed in Sectien 2 and 3. Ramely
we have ecuatioms (2.6), (2.9), (2.18), (2.17), (2.16), vwhile (2.12) is
clininated by setting g * - (l? - 81,2 - 322)%. We also substitube
for_@o, f s uo, and M their values in terms of the aerodynamic constants

discussed in Section 3. The result is the following system of five
e.uations:

Mg

2
+f u

) 2 2
(5.1) duo/dt Twu -wu - (gt~ - 18 ) 2%

(5.2) dwo/dt = m W,

1
(5.3) dg/at - - 1W(|Glz - 1312)2

(5.4) aw/at = P i(aal + h) wo)w + (bnwo + ibaeuo)u

(5.5) du/at = (°n“’o + 1(022 + l)uO)W+ (dlzuo + idzl“’o)“ +g

We have set w =W in order to conform to the notatien of the previous
section. Since the last three ejuations are complex equations, they are
equivaleat to six real e.uations. Hence the order of our system (considered
as a real system) is eight, even though for some purposes it mey be treated

as of Order five. me \imtities ,Gl ’ f22’ m12’ 312’ ﬂal, h, bll’ b22,
€17 Coos 4;2, d21 are, of course, all constants, while Uy u)o g =8+ 142,

wzwy+ iwa, ) u1+ iuaare the unknown functions of t.

All five eyuations can be trivially satisfied by taking g, w , and
u identically zero and then by integrating the first twe equations by
simple quadratures. But this would carrespond to shots fired either
straight up or straight down and is of no wactical significauce.

Aside from this there 1s no known method of obtaining exact elenentary
solutions of these equationms, althougk the classical existence theorems
not only assexrt that solutions corresponding to arbitrary initial values
of the unknowns do exist but give implicitly a means for the numerical
calculation of these solutioms to any desired degree of accuracy. These

methods usually start with a crude approximation (vhich we call the zerold
approximation) and then rroceed by successive approximetions. The nib

approximation, namely, is obtained from the (n-1) approximation, vy
substituting the (n-1) approximation in the right hand members of (5.1) -
(5.5) and then integrating under the appropriate initial econditions. It

is known (‘mder suitable precautions) that the approximations converge
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uniformly to the exact solutien and, in fact, they converge quite
rapidly if the time interval is not unreasonably lirge, no ma.tter how
crude the zero'd approximition miy be. We shall, however, focus
attention on how to get a really refined zerold approxim:tion, which
is sufficiently accurzte so that the first approkimition mu.y be
considered (at least for some purposes) as the actual seolution.

We hereby limit ourselwes to initial conditions in which the ungle
between the shell axis and the tungent to the trajectory is smull. Whether
this so-called "yaw-ungle" remains small depends on the differential
equations. Fer constants carrespond%g t0 a preperly constructed shell
it should remain smull, and our zero™ approximation will in fact be
obtained by taking it actually eyual to zero. It is for such properly
vonstructed shells that our system of successive approximations is to
be expected to converge very rapidly. For improperly consi.ucted shells
the upproximutions theoreticully would still converge but in & much slower
and more unstable manner.

We dencte by 6 the ungle between the tungent to the trajectory and
the vertical direction (i.e. the ¥ -uxis). If the yaw angle is smll

then 8 -8 1s small (although the converse is not necessarily true).
In all cases & - & is to be takea as smill for t = O, and in the zero™d
approximatien 6 -6= 0 for all t.

A more complete statement of the initial conditions for both the

zerold approximation and the actual solution is indicated in the following
table:

Veriable For the zerold aprroximation For the actual solution

Y, > 0 (large) >0 (laxrge)
u =0 complex number with small modulus
¢ > 0 (large) >0 (large)
w =0 complex number with small modulus
é angle between O and 7* angle tetween O and m#*
& =z - |6l cos 9* approximitely the same
&> = - 6] sing” approximately the sume
& =0 small real nuaber
P =0 small
id = ¢ small

*i0lds also throughout the motion

13
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Taking 8y @, and y all ejqual to zero initially means that the ~
shell axis is initially in the YZ (er 7 3) plane. If, in addition, 1t
u = 0, the trajectory is also in this plane, at least, initially. )

To get the zerold approximetion we assume that the center of gravity
of the shell follows the trajectory of a particle in exterier ballistics,

in vhich the drag is propertional to the square of the velocity, and that
the yav 1s zero. This ameunts to replacing egnations (5.1) and (5.3) by

6 d 1
-6) 0. (6% -8 4r 0t
at 2 220
and
it a ' at

respectively. Here the drag coefficient is, of course, - 1'22. These

equations are obtained from Newton's second law of motion by taking
components in the tangential and normal direetions; and (5.7) when
expressed in terms of g takes the more familiar form

3 45 . _ |g| sind

a =
[} o
%

(with 6«6 , as previously explained, and 8 ® - lag] sine).

?:? As is well known, (5.6) and (5.7) can be integrated by quadratures
s in terms of elementery functions. This is effected by eliminating t
and using p = ugg, as a new variable. Thus we get

ap/dgy = ~£503/e,3( (62 - g,2)?

in which the variables are separsble. Of course, the actual integration
of (5.6) and (5.7) by quadratures in the indicated manner may present
practical difficulties. Approximate solutions ape for the present purposes
quite good enough.

Heving once obtained the zerobd approximation for uy as & function of

t, the zero'™® approximation for &, is obtaimed by integrating (5.2). Wb:n

this has been accomplished, so that both Uy and wo as well as g, or rather

their zero® approximetions, are known functiens of t, we £ind that equations
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ST (5.4) and (5.5) teke the form (k.1), with H(t) = O and L(t) = g. Good R
2 zeroxd approximations for wand u can therefore be obtained from formulas -
' . (b.k). In making this statement we use the intuitively obvious fact fix
o that both U, and Wy have comparatively small time rates of change. In 2
.-‘;1 other words our zero™ approximetion is best when duo/dt and dwo/ a Z;::
:4 are smallest. This will insure the smallness of the guantities «,§,Y, ¢ i:::;j::_
i of the preceding section. —
, 6. On the most favorable metric for the ballistic equations. The S
j.; sensitivity of the motion of the shell to slight variations in the init-al
";-:j‘ conditions was the original subject of this research project. This is v
:‘;l closely connected, if not identical, with the question of stability. jut N
80 far the studies of this question have been limited %o systems corrc- o
i sponding to equations (5.4) and (5.5) in their application to the finding .
'3_‘;“ of approximations. In such appliceotions, the ug, 600 and g are regarded
:{:} as known. In fact it is sometimes assumed in effect that they are even
< constant. The condition for stability, as given by Nielsen and Synge5
Z;E} for example, is then to the effect that the determinantal equation L
Y 'j;:;‘
A 'J' X - q- ﬂ .:3:‘:': J
o 6.1 =0 s
o (6-1) ¥ §-r ) ]
:::3z ) ';_:,':j}_Z
%:::f in U should be such that the real part of euch root should be negative AR
- (or possibly zero). Here, in conformity with our previous notation, we Fobe
.-] define o, ﬁ, Y, § as follows: .:..
o S
S Qw:-'.'._::
) %= ol + 1ay + h)w, e
- l:‘{;: -
Z“] (6.2) £= 11 Wo + 1bpoug =
n " W
]
7::{ ¥ = cllwo + i(c22 + l)uO :.:\..‘_:-
o e
5 § = djoug + idglwo.
e
5 80 that equations (5.4) and (5.5) appear as (4.1). Such a theory of
N stability does indeed take into account the part of the mathematical
b theory which one intuitively feels is the most crucial. Nevertheless et
e, | 1% focuses exclusive attention on (5.4) and (5.5) and ignores the fact
q %8, ¥, § , and g are also subject to disturbances, since the two L
i equations in question are really just a part of the larger system RN
AN consisting of equations (5.1) - (5.5). el
i
8"y ¢ oY
2 15 R
?:lj
.'“‘
A
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In order to handle the camplete system, the author devised a metric - :.:'_::,:.
theory (cf. MP; and MP,) vhich may be applied to any system of differential

equations of the form, ) L

ax, /at = xt[x, t] 1 =1, ***, n.

In this theery we introduce a Riemann metric (in general varying with the .
time t) for the n dimensional space of the x's. An inequality is then e
developed for the "distance between two solutions" at time t in terms of T
the cdistance at time O. From this inequality rigorous estimites can be
read off to answer at least some ;uestions about the way in which the
solution depends on initial conditions. Results are certainly obtained
no matter how the metric is chosen but, uniess the choice is a fortunate
one, the results may turn out to be too trivial to be of practical value.
A minimm desideratum would be to choose the metric in such a way that it
would be sensitive to situations causing stability or instability with

" regard to the simplified system coensisting of (5.4) and (5.5).

For this reason a preliminary investigation was carried out to choose

a favorable metric for the study of (4.1). It may be noted in this con-
5 nection that the choice is not influenced by the presence of the terms BOAOH
H(t) ond L(t) in (4.1). This is because the gifference between two e
solutions of the lineor non-homogeneous equations always satisfies the N
homogeneous equations. A theory of choosing a metric for a linear system e
is indicated in Section 5 of MP,. When this theory is applied to (4.1), we PR

are Jed to the following guadratic form for the Riemsnn metric of the - raddiee|

four real dimensional space of W= W, + 1 “, and u = uy + iu,. R

as,% o jaw® + (25)7XF -m)awai + (27)7Y(5 -« Jawau + R

(15 -si® & [(5-a)® +up¥]) J29[2 |af, b

where #, U, &, ¥, etc., are used to indicate the conjugate imaginaries of

W, U, »,Y,; etc. In enother paper this metric was actually used to
obtain inejyualities for the system (4.1) and these inequalities were
shown to be the best possible ones of their type. Hence we are confident
th.t in setting up a favorable metric for the entire system d w and du

e should enter as in d812 or (whai leads to the same result) ds;2 multiplied
o by an arbitrary positive functien.

N As alveady indicated, the rest of the system is not so sensitive to
" disturbing phenomens and hence there seems to be no particular reason
.:: for using anything other than the simplest choice of a Ruclidean metyric:
16 s

BE ¥,
o'
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2 2 2 2 2
d82 =duo «l-dgl +dg2 +dwo .

It may be neted in this connection that the non linear system of
Section 6 of NPl is concerned with the corresponding problem of particile

exterior ballistics, in which x and y denote two components of the velocity

of the particle. Here the use of a Euclidean metric is extremely satisfactory.

Thus, fer the complete system one would exps~t satisfactisn frem a
metric of the form,

2= |2y %as,? + gas 2.
Bere ds,? 1s multiplied by [2¥| in order to avoid fractions and J is a

positive constant to be chosen at pleasure. Coneiderable effort has been
spent to determine an efficient value for J. Since these efforts have

been wravailing, one may suppose that different values may be desired for
different apylications.

T. The fundamental quadratic form. We tuwrn now to the fundamental result
of WP, which implies that, if,0(t) demotes the distance between solutions

at time t of the system,

(7.1) /et « XMy, oy K ), 41, cee

vhere "distance" is taken in the Riemannian sense with respect to a
specified metric,

.2 as® =
(1.2) 1% g, ;2% 8%,)
then
(7.3) Be) St )e P10~ Yol
vhere & is an upper bound for a certain quadratic form
(7.%) -
Q] = 1,‘% Ly A A

under the conditien 1% gi,j >\ )‘ = 1. BHere the coefficients of the
"fundamental" uadratic form Q [ A] are given by the follewing formula"

(1.5) Gyt % (F dg /0% 4 5y, 3X/2x))

L7

<’ '.{’:. .j:‘-.
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In this section we wish to produce a table for the coefficients of
this guadratic form for the ballistic equations (5.1) - (5.5) with respect
to the metric introduced in the preceding section. First, however, we
indicate the change of notation to harmonize MP, with the notation of
the exterior ballistic problem, and then write %ut explicitly the differ-

ential ejuations and the coefficients of the chosen metric in the notation

of MP].' ":':'E::

& E&L S
R LY )
b WL W o e

o h
- r 4
RS

In our problem the n of M;Pl is egual to 8, and we choose X, = wl’ t B
x2 -6‘)2) X3 = u1) Xh = u2, X5 = uo, X6 e gl’ x7 = 82, X8 .wo. Then the '-.:

differential eyuations In the new rotation are as follows:

dx fevll
1=x'z 8%y X5 - (azl + h)x2x8 + by X3Xg = DooX)xs .
dt

2:}{2
at

(These two equations were obtained by equating real and pure imaginary s
Flrt of (5'1}))' :'.::_:.._3

8y Xp%s + (8'21 + h)x1x8 + Dy %g + b22x3x5

3

=X3n

w

°11 ¥1%8 - (cgp + L)xp%5 + dyp X3X5 - dyyXyxg + Xg

&l

ax, b T
af'li = X' 2 cpyXpXg + (c22 + l)xlx5 + dlexhx5 + d21x3x8 + % e

(These two ejuations were obtained by e uating real and pure imaginary .r_:‘:’;’"
parts of (5.5)). Bifliged

2 2

2= X = XpXg = X)X, -(lGl2 - X 22x5

5.1
-x )2+t
7

6 2 2 2.
'a'g-'x = xp (/6] - X xo )i‘

g
RN

1
2

- X =
dt7'x 2 - x (16]° - 56 - 2P
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. We similarly write down the explicit expressions for the g, 3 cg 31

2x2

. 2 2 2 2, . 2 2
€11 h(cn Wy + (c22+1) u, ) = h(c22+l) X + kcll 3

RS
o taliale

810 = 0

Tasea
ARSIV

P R ]
P A
sl e

g)3 = 2 [ cn(dl2'3'12) + (022+l)(d21-a21-h)] XsXg
g, = 20 22+l)(d12-a12)x52 -2cn(d21-321-h)x82
By = 0 B T Byys Bp3 T By By T 83
€31 ° 813 832 = -y
L (dlz-ala)axs2 + (dal-eg,)_l--h)exa2 +[ﬂl‘°‘x5h + (24, A4 d32)x5%c82+ aa%'eliz :
vhere ~

2
A, » (4m0,)° - oo 1), A

2
20\op 2 -h)

= 4p - -
nen - (48

&, = 2(a -015)(8y -85 -B) + Ubyy (ep1) + b0y

83“ =0, gul * Blu: gh2 = 813: 8h3 o, Byl ™ 833
Ss5 = €66 " Er7 " Bgg ©
g1j = O if a% least one of the subscripts is > U and if 1 § J.

On account of relations, bxa/ax2 = b)(l/axl, alta/bx2 =~0 x"/ axl,
2x3/ 2%y = axl'/axe, bxl/bx2 = - axa/axl, etc., which are readily

:}elziﬁed from the formulas for the X's, we f£ind with the help of (7.5)
t

01 9o Yp T Yyr U3 " Yy N3 T Yy

Qp = "9230 B T Yos 932 T "y 934 T "W3e

19
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These relations merely imply that the part of the quadratic form Q[A] L
iavolving only A, Jps Ays Agds & Hermitisn form tnAy + 14, and A
A3 +1Ay; and this 45 Just what we might have expected from the
pedigree of Q [ ,\J It is not necessary to compute either 9, OF 3y :."-::j
since it is only the symmetrical part of the matrix (qi J) vhich is 3'::32::
essential. Hence, for i,J = 4, there are only six quantities to be
computed, namely Pl
L 2 2 2 241 L
(7.5.1) qg9 = app = beyp +1) X5 [x2x3 - xx, - (Jo]” - xg" - X )3] :
2 3 2 2
+ 2(c22 +1) (a12 +d, +2f22)x5 + 2, (a12 +d,,+ 2::12)::,5x8 .
(7.5.2) q13 = apy = (e5(dy5 - 8y5) 4+ (cputl)(dy - ay - b))xg(xpxg - %% - R)) ’

+ [(r?_z +24, + mle)(cn(dla - a15) + (epp + 1)(.121 -8, - h)) +

hbn(caa +1)% 4 2d21(d12 - ala)(c22 +1) J x52x8

1
‘o4

3

+ [ 4b,.c 2 e (a h) 3 Ry
nu n%1ldy -8y - g -
vhere we have set R, = (|G]2 - x.2 - 215. :::E:
set Ry = (6] - xg *7 ) N
(1:5:3) a5% @p = (o3 (4, - 21p) + (eppr2)(8y) - 8y - B))(xx; - 33, - Ry )xg . !M“
+ [(f22 + ot 2ap)(en (4, - a)) # (oy, + 18, - 8y - b) e
_ _ 2 :“':"‘
‘ 2(c22 + l)(d__L2 12)(8.21 +h) ¢+ cn(d12 - 12)2] X5 xg p,-,;

+ eyy(dpy - g - h)(dy + 8y + h)xgS + ¢11R%gs

ilais’s
1atatate

r
.3
S

- 2, 2 2y, 2 2 2 2
where we have set R, (Ql X5 + (2&142 —43 )xs Xg +ﬁa Xg )
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(7-5.5) qyy * ~2pg = 2(cp, + 1N, - 215) (%3 - K=y - By g Lk
+ 2(cp, + 1) [ (47 - 839)(85 + 812) - Ppplepy + 1)_] x> R
-2 [(d21 -8y - h)(cnnl2 + (c22+]')d21 + cudm) + Zbaacn2+°lld21(‘12'312?]’5'82
(75:5) gy * =agp * 2e,, + 1Ay, - app)xx; - 1%, - RyJx, —
5 T ey oy
h *[2"1.1("21"“)(‘12’312) - (dpy-ay -h)(2e)ym, + ab‘J..?“J.r(‘21““2.1'*")("22“1))]"5"82
A
#
2 (7.5.6) TR - %%, - R)|[2( -a)%r-i--——anz
3 7.5.6) Qg3 * Gy = 2xpxy - %, - R)) [2(4, - &))" 5%
2R 332 k.‘,'.‘\' 'N
2 9% SN
* R axs 4 marmy g3+ i
cal) - 3 R
+ (8, - 8 (4, # 22)(85 - o1p) = 2, (e + 1))x; L
- . 2 oo,
*[(da“‘a'h)((da‘aal'h)(‘m*dla) + Zbu(cagﬂ)*z"éfu)*%‘u(‘m"m)stxe . e ‘
The cther qn 4 are relatively simple to calculste frem (7.5) and will L
be left to the r. The complexities of fermulas (7.5.1) to (7.5.6)
make it seem unlikely that any simple gemeral conclusions can de drawn.
The method gives prrimarily a procedure for the numerical study of individual AR
cases. DRI
8. A word of wvarning. After writing the above matcrial, it gradually 2
came to the author's attemtion that the elimination of g, by means of :.:‘_-.:j-':j
¢°2 + 312 + 312 + 322 = [of 2 jutroduces a difficulty in the study of a S
: b~
B trajectory near its vertex, that is, vhere the axis of the shell is kearly N
- horizontal. This is because the derivative of the function R, with respect
:':: to x,. e )% is very large when g, or Rh;s close to 0. Hence the method,
o a8 wirked dut sbove, is pertinen? larghly to antisireraf fire or other
o types of trajectories where the shell axis is never horizontal in tbe
e )
- 2l
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important part of the trajectory. I this 1s not the case, the theory
my be modified in one of two ways. BRither eliminate & instead of 8y

(this has the dicadvantage of making owr equations move unsymmetrical.)
or else refrain frem eliminating any of the g's and use a system of
ardar nine instead of one of order eight. In either event, the modi-

ficatiens pecessary for this purpose are only slight, but it is net
possible to work out the details hexe.
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FOOTNOTES
Cf. D. C. Lewils, "Metric properties of differential equatiens,” )(Pl )
American Journal of Mathematics, vol. 7L (1949), pp. 294-312, and R
"Differential equations referred to a variable metric )" MPa, ibid., Sl
vol. 73 (1951), Pp. ll'8-58- :‘:‘:-
The use of the so-called "spinless frame" was suggested by ...._.._
A. ¥W. Wundheller. b
Cf. Nielsen and Synge. "On the motion of a spinning shell,” Quarter
of applied Mathematics, vol. 4 (1946), pp.201-226. c
As is well known (3.2) can also be obtained from (3.1) even when the -
latter is known to hold for only a single value of ¢ 5 O mod 7. > ]
Hence symmetry under rotations through oc--'ﬁ’nl’- s 1> 2, also lead KRR
to the form (3.2). Complete axial symmetry is not necessary.
Cf. Nielsen and Synge, loc. cit.

Cf. D. C. Lewis, "Inequalities for complex linear differential systems
of the second order." Proceedings of the Nationdl Academy of Sciences,
VOl. 38 (1952)’ Ppo 63‘66-
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