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IME IC THEORY OF THE DIFFERENTIAL EqJATIONS OF EXTEIOR BALLISTICS

Prepared by:

D. C. Lewis, Jr.

ABSTRACT: This paper develops the fundamental equations of motion for an
axially symnetric shell using the so-called "spinless" reference frame,
suggested by A. W. Wundheiler. Approximate integration methods are also
considered, not so much for the purpose of solving the equations, as to
give the proper background for the application of the author's "metric
theory" to this particular system. A particular Riemannian metric is
introduced and, to some extent, justified as being particularly efficient
for this purpose. The theory requires the calculation of the coefficients
of a certain quadratic form in eight independent variables. Explicit
formulas are given for the most complicated of these coefficients. They -"

are indeed so complex that the author has not succeeded in drawing
interesting general conclusions from them. They are nevertheless availa- -'
ble for the numerical analysis of particular cases.
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This report represents a new approach to the linearized equations of ..--.
exterior ballistics. The novel features include use of a "spinless"
reference fre me and the application of the authors "metric theory* of
differential equations. The work was carried out under project -

NOL-Rea-1O8-1-53, entitled "Aerodynamics and Fluid Mechanics." The
results are" of use for the solution of exterior ballistics problems.
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1. Introduction. In two previous papers, I hereafter denoted by MPI
and MP2, the author has developed a "metric theory" of ordinary
differential equations with the view of studying the dependence of
the solutions on the initial conditions. In Section 4 of MP2 some

indications were given as to how the theory could be applied to the
equations of exterior ballistics. The purpose of this paper is to go
into more details with regard to this application. The ultimate goal
is to obtain results suitable for numerical analysis as well as for a
clear ,ualitative picture of what can be expected in problems of this
sort.

2. The equations of motion of a spinning synetric shel. We use a

moving cartesian reference frame F with origin 0 at the center of gravity
of the shell and with one of its axes (namely the x -axis) coinciding
with the shell axis and directed from 0 to the shell vertex. The other
two axes (namely the xl-axis and x2-axis) are chosen in such a way that
O-xlX2X, form a right handed system. Yt is not necessary to, assume that
the .shell is rigidly attached to this reference frame F. In fact we
simplify our equations slightly if we assume, as we do from now on, that
the component of the angular velocity of F in the direction Ox0 is zero, 2

*1- while that of the shell is o0 , in general j 0. On the other hand the
components of angular velocity of both F and the shell in the direction
of the other two axes are the same and will be denoted by , and W2
respectively. Hence, if J2 is the vector angular velocity of FF
(relative to some fixed frame F0 ) and if .f2'5 is the vector angular

velocity of the shell, we have

*.0 1 2

.'- 0i + £d)J +"'k" "

where i, J, k are unit vectors directed along the xo, x, 2 axes -
respectively. .axes

Similarly we denote the vector velocity V of the point O(relative '

V=-Ii +uj+u k,

Vhile the vector G representing the acceleration of gravity and having
constant components relative to the fixed fram F0 appears in the form

a0 1 2

1 .4

~ij

V Ui tUE YAuk, .'."'
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Denoting the mass of the shell by m, its axiaJl moment of inertia by a,
and its transverse moment of inerti" by b, we can write the moment of
momentum in the form, ab j Wa aWOi + b &Jlj t b W2k :-.

and the momentum appears in the form mV. We denote the vector aerodyntmic
moment by -b +."M = i + b j + bk., :-:..

the factors a and b being introduced for later convenience; and we denote
vec-. or .erodynamic force by

m m.i + m + mj 2 k.

We now a-re in a position to write down three vector differential
euutions. The first of these is

dV(2.1) +m +m xV:mG+m ,
- dt

which euates the rate of change of m'mentum (relative to the fixed frame
Fo)to the resultant of the applied forces. The second of our equations is

(2.2) . d4 + xJ M,
dt F

which equates the rate of change of moment of momentum to the applied
torque. Finally, the third e.uation

(2.3) iK + F9 G =0

merely expresses the fact that G i a constant vector; that is, it has
censtant components relative to the fixed frame F0.

Now and M are assumed to be functions of 12 and V only. The

S
precise niture of this dependence will be specified in detail lAter on.
We only wish to remark now that the above three vector equations become
self contained. They are ejuivalent to nine scalar differential equations ."
for the determination of nine unknown functions, namely o,)l,2

u0U U 2 , g0 g1 ) g2 " Actually the order of the system can be reduced

from nine to eight, because of the obvious first integral G * G - const.
When once these unknown functions have been determined by integration
of (2.1), (2.2) and (2.3), the trajectory may be calculated as follows:

We introduce a moving frame FO' with the same origin as F (nmely

the center of gravity of the shell) but with its axes invariably parullel "," "
to the corresponding axes of the fixed frame Fo . Eulerian angles 0, (p ,

are now introduced to define the orientation of F relative to F0 ' and
hence also relative to Fo. We hereby assume that the axes 0, 0.t, 0"

of FO ' form a right handed system, that 0 is the angle from OSto Ox0 ,

2

-%

*"~*j "UIW W U 1, 3 :



AVORD Report 3651

that p is an angle from OS to the intersectien ON of the . -plane

with the xix2 -plane (the so-called line of nodes), and that 3k is an

angle from this same line of nodes ON to the OxI axis. Cf. the figure.

We further assume that F
and hence Fo' is chqsen in such
a way that one of its axes, say X. .9
the S: -axis, points vertically
upward. Then, since gravity
always acts vertically downward
we see easily that,

g0 :- IGI cos e

g, L IG sin e sin""

92 "GI sin e cos- N

2 2/gfrom which we find that tan -: and tan e - g1 + g2 /g '

When 7r and e are thus found as functions of t (since go, g V g2 are
known functions of t after the integration of (2.1), (2.2), and (2.3)),
we can find . by the single iuadrature involved in integratirg the
eouation

'__ t + dq cos e * 0.
dt dt

This equation expresses the fact that the frame F has zero angular
velocity about OxO. Thus

t(2.4) 9) = ro" sec 0 dr...."',...,

4>:.:
.7, With the Bulerian angle all determined, we can now find the nine direction

Cosines between the frames F and PO ' and hence between F and FO. They

ar exhibited in the following table,

LI

3

I'.9

,;j.. . .
= . . .... ..... ..... .
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x Y z

x, 1 lcoscos 
r - sip sin7cos e 2 -sinqcos+ coslosinycos e 3 sinsin e

1, =o sinr- sincosycos 14 =-sin9Psinpr cos cosIcoa t43 ucoysin e

x0 V1:ain e sin? V2--sin e cosq7 ) 3:cos 0

where the axes of the fixed frwo 1o are denoted by X, T, Z. Wiis table
my easily be obtained from the law of cosines in spherical trigeneetry
or by the matrix multiplication corresponding to the fact that F my be

obtained fraa F.' by 7 vontin h latter tr ughf bu the -- axis,

then through 0 about the carried . axis, and finall through ir about

the carried I -axis.

Te celpnts M, q and o9 of the shell velocity relative to F0
dt &t dt

&e, of course, related to the components ul, u2 , u0 relative to F by

means of the folleving equatiens:

Z ... 3
dX

(2.5) ZE - 2 1 +~U.~U

dz u +

Since the direction cosines denoted by the A 's,/4's, and V's are known
functions of t as well as the u's (when once equations (2.1), (2.2),"
(2.3), and (2.4) have been integrated), the actual trajectory may be
obtained by the three obvious quadratures presented in (2.5).

Thus the key to the entire situation is the integration of the self L
contained system of ninth order represented by the three vector equations
(2.1), (2.2), and (2.3). It is this system to vhich we shall apply the
metric theory of our previous papers. Written out in full, these nineeq uations take the followjm farm. ",

-4.

.5.



k.

NAVORD Report 3651

(2.6) duo-- + u2 -Wau - goz'- o
t 44-,..1.J

(2.7) du i.,-.ar_- 0 2 gl + -,-.

(2.8) du2 2L;_

: (2.9) dwo M"."- 0

dt" ~2.0 dt 0:-".°j

(2.10) da w+ h ,M (where h. a/b)
0 2 1

(2 .n ) . ..

4..'. 2

(2.12) a wg::::-0'4 
-

4(41(2.13) dg,
CJg 0

dt 2 0
(2.14) dg2 - g 0LdT "?% :o."--0-,

If we introduce complex I uantities defined as follows, the number
of our equations can be reduced from nine to six. Since three of these
six equations are complex, this simplication is formal rather than actual.
Still tt ise l worth carrying out. We set

•+ 

i
'W2

u + iu

(2.15) = + if 2  (not to be confused with vector) -
,.-:.! x . _I + ' ., ,:2.

g gl + I92

"-A

-,v" -" 'kiw i ",A.

-W

% J 
,~ 4 4% "

" " '=o ' %°%." % %° .- ".%o%.".. %."j".•."==j .•= " • =- -. . .. o . . .o , .-. - - .. " -• ,"444 ..
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Then multiplying (2.8) by i and adding to (2.7) we obtain, with the help
of (2.15), the following cemplex equation

(2.16) du iu W + g+
0

to be used as the equivalent of the two equations (2.7) and (2.8). In
a similar manner (2.10) and (2.11) are repla-ced by

(2.17) d0 - oW + M,

while (2.13) and (2.14) are replaced by

(2.18) :igo W..-:
dt

3. Expressions for the aerodynamic force and torque. The use of complex

4uantities also simplifies the discussion of the effect of axial syetry
3

on land M. Thus M - M(W0 ,, uO , u). A rotation of the frame F through

an angle . about O replaces M by Mei ' , by Weic , and u by ue i . Hence,
by axial symmetry, we must have

(3.1) M( WO, WP, uo, u)eiO" -( o , M Weio , uo , ueioc)

as a functional equation to be satisfied by M for all real values ofoc.
If we c-.nsider only terms that are linear in the relatively small quantities
ul, cdjep and 602' it is readily shown from (3.1) that the most general
foiow for M would be

(3.2) M Aud+ Bu

where A and B are complex valued functions of the real quantities u0 and
40No . A similar argument shows that

(3.3) :C ) Du,-

where C and D are also complex valued functions of u0 and %00, and that

(3.4) M M WO, uo )
(3.5) (0)01o Uo'o) :::::

where MO and_& are real valed functions of uO and do.

W, .le

. . * .
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If we assume that A can be developed in powers of u0 andI 0 and

if we then neglect all terms of higher degree than the first, we have

A : (a, + allw0 + alu O) + i(a 2 + a21 0 + a2 2 u0).

Thus there are six real "aerodynam~ic constants"t associated with A.,
namly alp a2) all, a12, a2l, a22. Similarly we write

B: (bi + b.WO + b2190 ) + i(b 2  bal 0  b2 2Uo)

C (cl + cO + cuO) i(c 2 + c2 O 0 C2 2 U0)

D :(d 1 + dfl O dluo) i(d 2  + l 0o uo) d2U--

S02 2 ',

No " o + '# 0 2 uo+ 'u W+ m1 2  u0 '" m22 u-
1o fo + f, &1o + f. N + W + :-:

~ f+ f~~)f fU 0 #f3.11 0
2  f12 WOUO + f2 2 u0

2

hus we consider at the outset a total of 36 aerodynami6 constants.
Uovever, it is physically clear that No - 0 ifW - 0. Hence

x2 = 2 : O, Also0 = 0 if u0 o = . Bence fo :fl f!: 0.

Also N0 is an odd function of o while §0ois an even funetion of WO.

Bence a 0 and f, '0. Te number of aostant3 is thus reduced at

once to 28. Fthermape, it seems to be gazerally agreed that of these
28 constants a, a2 , bl, b2 , c l , c2  d1, d,, l,, and f 2 may be neglected.

We are thus left with 18 constants and the above equations reduce to

A: (al%.eo  a 12u0 ) + i (ac&wO - a22uo)

B (b , Wo + b 2 uO) + i (b &j - bUo)

C (c (c A) + C1 2.) + i(c o + "2 Uo)

D (4,1 0 + dl 2u) + i(d A% + d2 u)

No "l2 ::.:

2

7

ILI '
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The elimination of eight more constants can be accomplished as

follows: IfO 1 - U2 - 0 equations (3.2) and (3.3) become

Aidit -m separating real and

pure imaginary parte, ve have (with the help of the above expressions
for A, B, C, D) tho folleving relations:

M . (,2 0 o2u0 ) U' 2 + b + o ...

: (a .%O + a- 2 ur0 )t4 2 
+ (bldo + b u"o)u:

. - (c2lWo + c22uo)W 2 + (dl . 0  dl 2 uo)u-
(c +, (".A

2" (11 0 + u)")2 + 2l'0o d u,)ul' F:

U i O0 the vector velocity of every point on the shell

axis muat be orthogonal to the x2 -ais. Nonce the crqponest in the .--

direction of the x1 -auis of any element of aerodynamic force acting on

the shell vould not change sign if the direction of spin vere reversed,
but the capoment in tke direction of the x2 -axis vould change its sign

ations of symetry in the fern sometimes called "the Winoiple of
sufficient reason" (cf. G. D. Birkhoff, Collected Mthemtical Papers,
vou.m 3, pp. 778-804). we thus conclude that, with W " u"2 a" °.- 1

and ) 2 must be even funtions of W01 whilef and X1 mest be odd
functions oftuO . We thus read off from the above equations that

a22 = b 1 2 a all a b2 1 : c2 1 ' du a c12 d2 a O. Hence our final

foraUlas fov' A.4 B, C, D, NOp dl i are as follows:

A al-.o + :L WO

D x b l%6 0+ Lb22uO

xC :h l O4 + ic o::0

D d1 0 0+id. 4A0

2
-o 

:22u-

NN-
4 ... .- , +*. -. :
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The ten remaining constants are usually expressed in terms of
dimensionless quantities which are generally denoted by the capital
letter K with various subscripts. In accordance wito' one well known
usage we write

a = - a :KXb
12 pd' -I b1 .21 .X.

b 3-1 = - pd bl b22 " pd 3Klb

cll = e d4KXFm l  c22 pd 3 dSsm -I

• "c 22  .d1.m-
-dK?~ da Or -d1K 1

ud Kl2 -1
AlCA a-l fd K m

m12 A 22DA
Here e: density of air (: .001188 gm/c for a typical value)'

d = diameter of projectile (2 centimeters in a typical case)

m = mass of projectile (175 grams)
b = transverse moment of inertia (800 gm - cm2) 1.

a = axial moment of inertia (76 gm - cm2)

According to some experimental work of Turetsky, the dimensionless
aerodynamic coefficients may be expected to have valueb of about the
folloing magnitude: K- 6 , .1ol, Ka 11 Ks a -lO.

1) IF z 0.2. K = 0.005, KDA = 0.1. I have no information about

KX and K. They are probably too small to be significant.

Needless to say, the aerodynamic force system described here does
not satisfy the Nielsen-Synge requirement of invariance with respect to
shift of mass center. .

4. Digression on the approximate integration of linear differential
e,.atons.. The approximate solution of We differential system
introduced above hinges on the solution of a systex of linear e4uations
of the following form:

dt, x(t)w + P(t)u + H(t)

(4.1)

Yu (t)w + S(t), L(t)
dt

9

*_0 . '.9 :_ ... .. • ' 9 • - 9 .o 9 0 ,o 9 '_ ,o 9.
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- ~ where w. u. ee ( ~ S, H, and L are complex valued functions of the
real variable t. The solution of euch a system of non-hmogeneou-
linear differential equations is well known to depend on the solution .
of the corresponding homogeneous system, in which H(t) and L(t) awe
both zero. But it is possible to write down iately an approximte

2 solution of the homogeneous system, at least !Me hw S"(oc- )2 + 4pq
and e are not zero and the derivatives of o, d, Y, S Are small enough
compared to h and u. In fact the functions

W :Pd" exp IJ C41. + dt-,i( .2 7 [ h exp Ih d
may be verified to satisfy exactly the equations

(4-3) + - )w+(&+ -- )u,
E P7

which, in view of th-. smalIness of and - are o slight"
modifications of (4.1) wh H(t) • L(t) z (). Moreover frma the definition
of h as a square root o: a non-vanishitg ;ryntity, it is clear that (14.2)
yields two solutions, one for each determination of the sign of the square
root. W verification that (4.2) satisf:.es ( .3) is laborious but
elementa *y and will bet left to the reader.

To obtain a solution of the non-homogeaeois linear system (4.1) we
need to know two particular solutions of the homogeneous system depending
on a real parameter s, naely w (t,s), u (t,s) and w(t,s),u 2 (t,.),

1 1 w('),u(l)
such that W1 (s,s) - , u(s,s) 0, W2 (ss) 0, u2 (Os) z 1. Then, as

is well known and as is easily verified, it turns out that a particular
solution of (4.1) is given by

t 4

H [(s) w ( t.s+ L(S) W 2tsj ds 2
0

(4.4~)
u H(5)pts) 4 s]

S)u2(t.

0

4.°4

* 10

.... ..... . -- .
' ..- '." :',', --. '-. :. . ... " -. "" . : . -" """
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But frm the appoiute solution (4.2) of the hogeneous equations ..

it is easy aptqMiMtely to set up these fUnctio wt,s) ad uts).

In factv usin the abbeviatlons

- p(t) •

%(t) x (h - ( - '.

* aI 1* . ..1* ~t,s) e) (( ) h --t t

W (t~s) u ~ f (t),(s) an (J(oL +)- h)dr + Q.(,~sep~((~4h)d]

W2 t1 PtPsfx ~~)+hd x (2(*() -"dj

(4.5.2) .. ''15 5

u 1 (t, = Ms) S((ts)ex a w(t( (+), t),- Q(t,,n (I(Xby ) -i )dsfy

* iserted, wil satisfy exactl~y the foll..n sys=in: .''

IQ,

t

(4.6) t

diiii!

widch*, of course, is a close ap tte of (4.1). u the fti~on."" '£

vanitshes whe t - O, and estites of thils approxititn can be carried ..
out by classical mehosi.
(4.6

*" a' . * -.. . * .-..

d (,'Y a. +
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. 5.-. The integration of the equations of motien. We begin by writing down
in a suitable form the equations dev[eloped in Section 2 and 3. Namely
we have enuations (2.6), (2.9), (2.18), (2.17), (2.16), while (2.12) is
eiminated by setting g " ( g g )2. We also substit0 01 2for 0 , , No, and X tkeir values in terms of the aerodynamic constants

discussed in Section 3. The resjt~t is the following system of five
e.,uations: = 2 2 2 2 "
(5.1) du/d c I GI (g2 -+8 2

o u2) +f-"-:O/d o 1u wu - 0,-Il z .

(5.2) dw,, /dt z m2 woo
0

2 2)-1
(5.3) dg/dt - - iw(GI - 1)

12 0 21 0U 0 220O
(5 .5) du/dt (ell4o + i(c22 + 1)uo)W+ (d12u° + idAo)U g '1-.-

We have set Wz w in order to conform to the notation of the previoussection. Since the last three equations are complex equations, they are : -"equivaleat to six real euations. Hence the order of our system (consideredas a real system) is eight, even though for some purposes it may be treatedas of order five. The 4uantitles IGI . f 2 ' 1 2a "a1  h, bl, b22 , - -
CU, c22, d1 2, d21 are, of course, all constants, while u0, o g gl + IS.
w- IA i I2 , + u1  iu2 are the unknown functions of t.

All1 five equations can be trivially satisfied by taking g, w, w ad
u identically zero and then by integrating the first two equations bysimple quadratures. But this vOuld correspond to shots fired eitherstraight up or straight down and is of no practical significance.

Aside from this there is no known method of obtaining exact ele.ntary•." solutions of these equations, althougb the classical existence theorems
not only assert that solutions corresponding to arbitrary initial valuesof the unknowns do exist but give implicitly a means for the numerical
calculation of these solutiLons to any desired degree of accuracy. Thesemethods usually start with &a crude approxiMtieL (which ve call the zeso-approximtion) and then proceed by successive ap.ximations. Th nteapproximation, namey, is obtained from the (n-lS)I approximation, bysubstituting the (n-l) apprOm tion in te right hand miemers of (5-1)( (5.5) juAd then integrating under the appropriate initial cad:.tions. It
. ' known (,uider suitable precautions) that the approximtion converge

12

-0 A 16

..O .'I • • " • " ! u -. -.- w - _
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uniformly to the exact solution and, in fact, they converge quite
rapidly if the time interval is not unreasonably l.arge, no mAtter how
crude the zerot approximtion mAy be. We shall, however, focus
attention on how to get a really refined zerotb approximation, which
is sufficiently accurate so that the first approlinition may be
considered (at least for some purposes) as the actual solution.

We hereby limit ourselves to initial conditions in which the wigle
between the shell axis and the tangent to the trajectory is small. Whether

, this so-called "yaw-agle" remains small depends on the differential
equations. For constants correspond to a properly constructed shell
it should remain small, and our zero appnvximation will in fact be
obtained by taking it actually eqal to zero. It is for such properly
constructe,4 shells that our system of successive approximations is to
be expected to converge very rapidly. For improper1, const ucted shells
the approximations theoretically would still converge but in & much slower
and more unstable manner.

We denote by 09 the angle between the tangent to the trajectory and
the vertical direction (i.e. the 9 -axis). If the yaw angle is small

then i -0 is small (although the converse is not necessarily true).

In all cases 6 - is to be taken as smAll for t = 0, and in the zerosh

approximation 6-m 0 for all t.

A more complete statement of the initial conditions for both the
zero'b approximation and the actual solution is indicated in the followi ng
table:

Variable For the zerotb approximation For the actual solution

uo  > 0olre (lare)

u =0 complex number with small modulus

" 0 0 0 (large) '0 (large)

. 0 complex number with small modulus

0 angle between 0 and 7r* angle between 0 and y*

0 IGI coo 0 approximately the same

.2 IG/ sin S approxlmately the sam-
:0 small real number

6

S0 Small
C small

*holds also throughout the motion

13

-7: "o- "°,

. . .



NAVtD Report 3651

Taking g1 , 2' and 1v all equal to zero initially means that the

shell axis is initially in the YZ (or ) plane. If, in addition,

u : 0, the trajectory is also in this plane, at least, initially.

To get the zeroZ approximation we assume that the center of gravity
of the shell follows the trajectory of a particle in exterior ballistics,
in which the drag is propertional to the square of the velocity, and that
the yaw is zero. This amounts to replacing eqations (5.1) and (5.3) by

(5-6) du22(5.6)au°-0 (IGI g 2) +r U ...-"

dt 222 0

and

(5.7) 92 dg, " z .--
~2 2 f Ig 2i

dt dt

respectively. Here the drag coefficient is, of course. - f22" These

equations are obtained from Newton's second law of =otion by taking
components in the tangential and norl dimetions; and (5.7) 'm.hn
expressed in term of takes the more familiar form

d6 x 1 sin 

"
t

0

(with O-6 , as previously explained, and g 101 sin 0).

As is well known, (5.6) and (5.7) can be integrated by quadratures
in terms of elementary functions. This is effected by eliminating t
and using p uog2 as a new variable. Thus we get . 7?

dP/dg 2  -f 22 p3'/ 2
3  -9g2 ).

in which the variables are separable. Of course, the actual integration
of (5.6) and (5.7) by uadratures in the indicated manner my present 6-.. -4

practical difficulties. Approx:izte solutions are for the present purposes

quite good enough.

H.ving once obtained the zerotb approximation for u0 as a function of

t, the zeroAh approximation for W) is obtained by integrating (5.2). Wbtxn

this has been accomplished, so that both u0 and W as well as g, or rather

their zeroU approximations, are known functions of t, we find that equations

14 -

* ~ ~* ~ ,Zf. . -L! ,--

. . . .. . "R T IN . .

. . . . . .. . . . . . . . . . . . . .
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(5.4). and (5.5) take the form (4.1), with H(t) 0 0 and L(t) - g. Good
zerol approximations for w and u can therefore be obtained from formulas
(4.4). In making this statement we use the intuitively obvious fact
that both uO and w 0 have comparatively small time rates of change. In

other words our zerot approximation is best when duo/dt and dw /dt
0are smallest. This will insure the smallness of the quantities CJ, , P '-

of the preceding section.

6. On the most favorable metric for the ballistic equations. The
sensitivity of the motion of the shell to slight variations in the initial
conditions was the original subject of this research project. This is
closely connected, if not identical, with the question of stability. Mtso far the studies of this question have been limited to systems corrc- ..
sponding to equations (5.4) and (5.5) in their application to the finding
of approximations. In such applications, the Uo, O0 and g are regarded
as known. In fact it is sometimes assumed in effect that they are even
constant. The condition for stability, as given by Nielsen and Synge5
for example, is then to the effect that the determinantal equation

(6.1) -r-

in 0 should be such that the real part of each root should be negative
(or possibly zero). Here, in conformity with our previous notation, we
define O., Yo as follows:

04 : a + i(a21  h)

(6.2) 9" bltO + ib2 2u0

c W0 + i(c 2 2 + l)u 0

:l 2 uo + id2 l 0o.

so that equations (5.4) and (5.5) appear as (4.1). Such a theory of
stability does indeed take into accoumt the part of the mathematical
theory which one intuitively feels is the most crucidl. Nevertheless
it focuses exclusive attention on (5.4) and (5.5) and ignores the fact0, , ,, and g are also subject to disturbances, since the two
equations in question are really just a part of the larger system
consisting of equations (5.1) - (5.5).

15

41I



NAVORD Report 3651

In order to handle the complete system, the author devised a metric
theory (cf. MPI and MP2) which may be applied to any system of differential

equations of the form,

dx /dt = x, i u I, , n.

In this theory we introduce a Riemann metric (in general varying with the
time t) for the n dimensional space of the x's. An inequality is then 77
developed for the "tistance betwv-en two solutiens" at time t in terms of
the distance at time 0. From this inequality rigorous estim.ites can be
read off to answer at least some luestions about the way in which the
solution depends on initial conditions. Results are certainly obtained
no matter how the metric is chosen but, unless the choice is a fortunate
one, the results may turn out to be too trivial to be of practical value.
A minimum desideratum would be to choose the metric in such a way that it
would be sensitive to situations causing stability or instability with
regard to the simplified system consisting of (5.4) and (5-5).

For this reason a preliminary investigation was carried out to choose
a favorable metric for the study of (4.1). It my be noted in this con- k_ -=1

nection that the choice is not influenced by the presence of the terms
H(t) and L(t) in (4.1). This is because the difference between two
solutions of the linear non-homogeneous equations always satisfies the
homogeneous equations. A theory of choosing a metric for a linear system
is indicated in Section 5 of MP2. When this theory is applied to (4.1), we
are led to the following quadratic form for the Riemann metric of the
four real dimensional space of = U) i W and u.u 1 + i. .2i: ul +:.-2

2 2
4ds; Id dWi (2R)+d + (2) (5o)d~du +~

2 -f 0 2  -4 ) 12 -r 2  ldue,

where W, U, x, , etc., are used to indicate the conjugate imaginaries of
6 I. -"w, u, c4, Y etc. In another paper this metric was actually used to

obtain inequalities for the system (4.1) and these inequalities were
shown to be the best possible ones of their type. Hence we are confident
tk.t in setting up a favorable metric for the entire system d w and du
should enter as in ds, or (what leads to the same result) dSl2

s ener a in 2 th reult)ds1 multiplied
by an arbitrary positive function.

As alheady indicated, the rest of the system is not so sensitive to
disturbing phenomena and hence there seems to be no particular reasonfor using anything other than the simplest choice of a Euclidean metric:

16
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d20
2 4 2 2 dc3 2 .ds xdu d + ,d.g +-.

It may be neted in this connection that the non linear system of
Section 6 of XP, is concerned with the corresponding problem of particle 6
exterior ballistics, in which x and y denote two components of the velocity
of the particle. Here the use of a Euclidean metric is extremely satisfactory.

-~ . -.t. one a",n.*.-.o+,,.'-,~Thus, for the complete system one would exnt satisfaction from a "":' ' .

ltric of the form,

2 
-. 2 + ,d.s 2.dl 12 .. 2

Bore is multiplied by 12Y12 in order to avoid fractions and J is a

positive constant to be chosen at pleasure. Considerable effort has been . "
spent to determine an efficient value for J. Since these efforts have
been urvailin,-, one may suppose that different values may be desired for
differeet applications.

7. The fundamental quadratic form. We turn now to the fundamental result
° P1 wich ipes that, if7Ft) deaotes the distance between solutions p-' --.-

at time t of the system,

(7.1) dx/dt , "'' ac), i z, ", n,

where "distance" is taken in the Riemannian sense with respect to a .
specified metric,

.,..(7.2) ds g dx dix,.,""":

then

(7.3) (t) =< (to)e t - to 01

where is an upper bound for a certain quadratic form

'S (7J.4) Qf[A 4Za A
ij ii i Jl

ider the condition 9 \1 Here the coefficients of the
ijj ij i I,

"fundamental" ijuadratic form e~[A) are given by the following formula"

17
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In this section we wish to produce a table for the coefficients of
this quadratic form for the ballistic equations (5.1) - (5.5) with respect
to the metric introduced in the preceding section. First, however, we
indicate the change of notation to harmonize MP with the notation of P.
the exterior ballistic problem, and then write ut explicitly the differ-
ential eq.jutions and the coefficients of the chosen metric in the notation
of M:

In our problem the n of MP is equal to 8, and we choose x
1 1 1

x ""2) '3 " ul, x4  u2 , x5 a U0, x6 x gl' x7 2 g2, x8 -dWO" Then the
-. 4 differential equations in the new notation are as follows:

dx 1 af2XlX5 - (a21+ h)x2x8 + b X3x 8 - b22 x4x5

2" dt

dx 2/
2 x X 2  a, 2 xex5 + a h)Xlx8 + bllx4x8 + b2 2x3 x5

(These two equations were obtained by equating real and pure imaginary
Part of (5.4)).

x 3
dt X e X1X8 - (c2 2 + l)x2x5 + d1 2 x3x5  x6d2 4x8 +'

X4 x + + d..

'l-X c 2 x 8 4 (c2 2 +)Y5 1Y5xx +d x x -

(These two e.tuations were obtained by euating real and pure imaginary
Parts-.of (5.5)).

5~~ -,, 2•5 -x x ) 2 x "
dt x3 xxx6 7 2"" "5

d6 6 2 2 2.

dt X x2 (IGl - x6 -x7

dt

dx8  ..X8

18
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We similarly write down the explicit expressions for the giJ g

g 4(c 2 2 + (c 2 2+l) 2 u0 2) 4(c22+1 ) 2  2c 2x8 2gll" (czz 0( +  =+i) 2 x 2 +4c. 8

g13 2 f c3(d 2 -a-2 ) + (c 22,l)(dm.-am,-h)] x5x8

'I2 2
g (c 2 l(d 1 2 -a1 )x~ -2c (d21 -a21 hx

, g2 2  11 g2 3  -gl4, g2 4  -13

g31  g13  g32  -14.

)2x 2 t d h)2x 2  L xa 4  a 2)x5
2x8 a2x 2 e 24

9: (d -a (d -a -h -t, (2 al a a+ ""
33 121 5 2 1 8  1 .-::5.

where - .**

(d 2 -a )2 - :b (c a2), 2 =4b cn - (d -a

2 ( -a2)(d21-h ) + 4bl1'22l + 4b,2C1 1,*3 (d2 c21

- g34 " 0, g41  g14' g42  g13' g43  0, g44 g33

" 55  g66  977 g88

91j = 0 if at least one of the subscripts is > 4 and if i J j. t -6

On account of relations, 1X2/ x2  X3-/a xl, 3 X/ x2  Z X4/ xl,

)X3/)x, = )X 4/2x 2 , x - ,X2/axl, etc., which are readily

verified from the formulas for the X's, we find with the help of (7,5)
that

L1 q22, q12  -q2l, q33  q q44, q13  q24

q14 -q23, q31  421 q32 "-4l' q34 =  43"

19
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These relations mere.y imply that the part of the quadratic form QN1

ivolvng on.v All,\ 2 , ,13 A 4 is a Hermitian form inl iA 2 and

A3+ ' AV and this is just what we might have expected from thtb
pedigree of Q [A. It is not necessary to compute either q12 or q34,

since it is only the symvetrical part of the matrix (qij) which is

essential. Hence, for i,j = 4, there are only six quantities to be
computed, namely

(7.5.1) q * -22 (c2 2 + )5 fx2x3 - xx- (G42 - x6
2  x2) ]

+ 2(c 1)2(a12 + d2 +2f2)x 5
3 + 2c 2(a + x + i) 2.

(7.5.2) q13  q24 = (cl(d 2 - a12) + (c22+)(d21 - a2l - h))x8 (x~x3 - x.x4 - R1 )

+ [(f t 2d + 2)(cll(d - a2) + - a2  - h)) +

4b(c24 1)2 + 2d21(d1 2 - a12 )(c22 + 1)] x 5 8

58

where we have set R1 z (IG1
2 - 2 - .-

x7
a12)-* q~ + (d -~ - -((7.5.3) q3l- q2 (c3(d 1 2 -a) (c22*1)(d 21  a h))(x2x3 - x 1x4  x8

+3 ( 22 m1 2 + 2al2 )(c,(d12 - 12) + (c2 + ()(d - a - h)
22 21 2

2(c22 + 1)(dl2 - a 2)(a ( + ) .) x5x 8

*1-(d2 l - a., h)(d~l + a 1 + h)x8
3 + Rx 8

where we have set R2  2x2+ (22a a 2)x x2 2 2 2

20 -'-
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.2( 1 )(d3 - a,2)(xA3 XI= -. )-"

+75~ 2(2 1)3 [(d,, a.)(f. + d12 ) 2 2 (c2 2 4 1)] X5

.1 +- l::-::::.

(74 - 2 (c~ ~)

(7.5.) q4l • 32 " 2(c2 + l)(%* - a" )(x2x 3 " -xe4  R )x5
+ (c )(2f. + a 3 -.

+h)( 1 - (d1-a 2-h)(2c -

2R2

515X

+ (,. )-

22 2 5

ete r relt'rl simle to calculate fr (7.5) an viii.''-

eletto the tder. '  complxites of feriila (7.5.1) to (7.5.6) ,- ,,
nk~ it oeem ialik.1 that any si~le gleeral conclusions can be dLraw. . .
e method gives pri1~tj a pocedure for the ninrical stu* f 1t Ltvidual I "''

*cases. .j '

came ~ to e a tho 'atteation that the elim ination of g0 m of ..-.."."2 2 dS+g + "1 2" X2 a x + i tr uees a dificulty in thety-ofa

-. h~isasta. 23iis is because the derivative of the function B1 with respect

to x € x is very large when gn or B, is close to 0. Hence the method,
as w1 rkedbut above, is prt inen largS1lto antiaitu~ra: fire or other " '
types of trajectories where the shell axis is never horizontal in the

54
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ixportant part of the trajectory. Vf this is not the case, the theory
my be modified in mne oa tv ways. Bither elmnt g 2 instead of g.
(this has the die-advantage of wkin our equations sare unoyiintical)
or else refrain f eliminating any of the g' s and use a system of
order nine instead~ of one of order eight. In either event, the modi-
fications necessary for this purpose are only slight, but it is not
possible to york out the details here.

-'Al
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1. Cf. D. C. Lewis, "Metric Properties of differential equations," mP
Amrcan Journal of Vzthematics, vol. 71 (1949), pp. 294-312, and -

"Differential equations referred to a variable metric," UP2 , ibid.,
vol. 73 (1951), pp. 48-58. 21

2. The use of the so-called "spinless frame" was suggested by -L

A. W. Wundheiler. I

3. Cf. Nielsen and Synge. "On the motion of a spinning shell," Quarterly
of applied Mathematics, vol. 4 (1946), pp.201-226.

4. As is well known (3.2) can also be obtained from (3.1) even when the
latter is Imown to hold for only a single value of c; 0 mod 7r. P
Hence symmetry under rotations through cC n -2 also lead
to the form (3.2). Complete axial symmetry is not necessary.

5. Cf. Nielsen and Synge, loc. cit.

6. Cf. D. C. Lewis, "Inequalities for complex linear differential systems -.
of the second order." Proceedings of the Nationil Academy of Sciences,
vol. 38 (1952), pp. 63-66.
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