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Some Spin Wave Properties of Ferrimagnetic and 

Antiferromagnetic Simple Cubic Crystals 

by 

J.   S.   Kouvel and Harvey Brooks 

Cruft Laboratory, Harvard University 

Cambridge, Massachusetts 

1.  Introductory Remarks 

Several theories on the electronic spin resonance    in ferrimagnetic 

and antiferromagnetic media have been recently developed to a point where 

their results may be readily compared with experiment.    These have all 

been based on simple semiclassical principles, and hence, must await con- 

firmation from more rigorous, quant 1m mechanical work, also now in 
2 

progress.       The main purpose of this paper is a semiclassical spin wave 

treatment of certain "bulk" properties (namely, the specific heat and satura- 

tion magnetization at low temperatures) of a simple cubic ferrimagnetic 

or antiferromagnetic crystal; the results, we hope, will also be amenable 

to at least qualitative comparison with experiment.    For the sake of sim- 

plicity, this study is confined to a simple cubic single crystal which we 

postulate to have a single axis of magnetic anisotropy (along a cube edge) 

instead of the cubic anisotropy generally associated with such a crystal. 

The effects of a uniform magnetic field applied along the anisotropy axis 

are studied lor both ferrimagnetic and antiferromagnetic cases, moreover, 

for the latter case, the situation in which the field is applied perpendicular 

to the anisotropy axis is also considered. 

Since our results can be readily made to apply to the ferromagnetic 

case of the simple cubic model, v/e are able to check them directly with 

the results of previous spin wave analyses of the ferromagnetic problem. 

Consequently, it becomes possible to trace the similarities and differences 

of the "bulk" spin wave properties of all three cases:   ferromagnetic, ferri- 

magnetic, and antiferromagnetic. 
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2.  The Fern magnetic Case 

The atomic arrangement in our simple cubic model is ordered with 

respect to the net electronic spin per atom in the manner shown in Figure 

1.    The ground state of this system is assumed to be such that the electronic 

spin of each atom of sublattice (1) is directed upwards (in the z direction) 

while the spin of each atom of sublattice (2) is directed downwards.    Though 

there is no rigorous theoretical justification for this assumption, it is hoped 

that the arguments of Anderson and others    for very nearly this type of 

long-range order in the ground state of a simple cubic antiferromagnetic 

may be also applicable in the ferrimagnetic case.    In fact, these arguments, 

being basically classical, should have increased validity for large atomic 

spins, which is usually the case for ferrimagnetics.    Furthermore, Neel's 
3 

phenomenological theory    of the saturation magnetization of ferrites,which 

has enjoyed remarkable agreement with experiment, is firmly baaed on an 

antiparallel alignment of unequal atomic spins. 

The energy of negative exchange interaction which is responsible for 

this antiparallel alignment may be expressed as 

ES. • S . 2J 

so that J, the negative of the exchange integral, is a positive quantity.   For 

the present, we shall consider only nearest neighbor exchange interactions; 

the additional effects of next-to-nearest neighbor interactions are discussed 

in Appendix A. 

An axial magnetic anisotropy which tends to direct the spins along the 

z-axis, is assumed to have an energy associated with it as follows: 

EK.S.sin28.        or     V^ J-ls . • (S  . +S   .) 
J  J J Z_aST-J    v-xj    -yj 

j J      J 

where K. is the anisotropy energy per unit spin of S., and 8. is the angle 
J j« J 

S. makes with the z-axis. 
-J 

Furthermore, the syst  -.* is subjected to a uniform magnetic field, 

H, in the z direction, which t,ives rise to the energy, 

> 

1 



I 

L 

TR198 •3- 

-H'EgjP^j 

where p" is the Bohr magneton and g. is the spectroscopic splitting factor 

for the electronic, rr.agr.etio moment of the jth atom. 

The sum of these three energy terms is taken to be the total HamiLtonian 

of the system.    Throughout this report, we have thus neglected the effects 

of magnetic dipole-dipole interactions between spins, except insofar as they 
4 

are included phenomenologically in the anisotropy energy;    for a structure 

having the simple cubic symmetry shown in Figure 1, they may be expected 

to be small. 

The equation of motion of the Cth spin vector may be written as 

Indicating the two sublattices by superscripts (1) and (2), we express the 

spin vectors in their rectangular components as follows: 

s(1)4 s(1)
+Js(1)+jSl — JX   x       Jy   y        Jz    1 

s(2)    A    (2)   A     (2)_A 
~i^V     +Jy

&y       -JZ*Z — "x   x 

(2.2a) 

(2.2b) 

The z corr-ponents of spin, to a first approximation, are considered to be 

invariant in time and space.    This is equivalent to neglecting terms quad- 

ratic in the S's and S 's.    Furthermore, we assume that all x and y upin x y '     r 

components are expressible in the form 

S^    (x,y,z,t) = Sx
n,(ax,a   ,Qz,t) exp j2iri (axx + ay + azz)/a \ (2.3) 

where a is the distance between nearest neighbor atoms and a +a  +a   - a 
° —x —y —z    — 

is a dimensionless phase vector (corresponding to Anderson's^ X./2ir and 
5 ~" 

to Herring and Kittel's    ka/2Ti).    The equations of motion for the x and y 

spin components are then found to be 
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where 

nS(1)=  12JS,y  S(2>+ (12JS, + 2K, + g.-PrDsi1* (2.4a) x                  1'ay                   2            l&ly 

!iS(2,= -12JS,v   S(1)+(-12JS, -2K,+ g,pH)sJP
2) (2.4b) 

x                    £*&   y                      i          £       **          ji 

hS(1)=-12JS1vaSx
2)+(-12JS2-2K1- gjPHjS^11 (2.4c) 

nS<2)= 12JS2YQS^
1)

+ (12JSj + 2K2 - g2pH)sJt
2) (2.4d) 

•y    = (cos 2ira    + cos 2iTa    + cos Z-na  )/3 "a x y z 

Wc new assume that the time dependence of the x and y spin components 

is of the form 

s(n)+.s(n) =s(n)   -i-t } 
x y + 

s(n)_ .s(n)= g(n)eiu)t (2.5b) 
x y 

By means of (2.5a), (2.4a) is combined with (2.4c), and (2.4b) with (2.4d) to 

yield 

hwSJ1^ 12JSrYas)2)+ (12JS2 + 2KX + g^Hjsj1* (2.6a) 

hws|2)= -12JS2yas|1)+(-i2JS1 - 2K2+ g2pH)sj2) (2.6b) 

[(2.5b) leads to the same equations with the subscripts + replaced by -] from 

which the following solutions for the frequencies are immediately obtained: 

hu> =  -6J(SrS2) + Kx  - K2 + (gl+g2)pH/2 

+ [{6J(SrS^)}2 

+ {K1+K2+(g1-g2)pH/2)   [l2J(S1+S2)+K1+K2-r(g1-g2)pH/2] 

2 21 V2 
+ (121)* S^l-f^) (2.7) 

At very low temperatures, where the spin wave theory is most likely 

to be valid, only the spin waves of very long wavelength compared to the 

- 
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lattica spacing may be expected to be excited appreciably.    Hence, a   /ill 

rai.ge over very small values and 

2 2 
Yac^i      -3-a or 1  - ya   -   3-a        . (2.8) 

Moreover, for a ferrimagnetic with a reasonably high Curie temperature, 

6J(S.-S_) is substantially larger than the terms in (2.7) that contain the 

anisotropy constants, the applied field, or a.    It follows that the frequencies 

of the two modes are very different from each other.    We can ignore the 

higher or "optical" mode since its contributions to the specific heat and tc 

the temperature change of magnetization are negligible at temperatures 

well below the Curie point, and consider only the lower or "acoustical" mode 

(corresponding to the choice of the positive sign in (2.7)).    It should be 

noted that a discrepancy between the g-factors of the two sublattices causes 

an apparent field-dependent increase of the anisotropy; this was recently 

discussed by Wangsness    in his analysis of ferrimagnetic resonance.   Con- 

versely, a difference between the two anisotropy constants shows up as an 

apparent increase of the g-factors (or of the external field).    Hence, keep- 

ing the possibility of these effects in mind, we proceed to simplify (2.7) by 

setting K.  = K? = K and g.  = g_ = g.    We then expand the square root in 

(2.7) and obtain for the "acoustical" mode 

fS1+S-+K/6Jl      12JS.S,  A   2 

ho^gpH+zK   1  *       +H57=5rr3-a/ ' (2,9) 

For comparison, the spin vibrational frequencies for a ferromagnetic 

simple cubic structure may be readily obtained from (2.7) by setting 

S,  = -S2 = S, K. =  -K? = K, g,  = g? = g, and -J = J', in which case it is 

founa that 

hu ^gpH + 2K + hJ'sf~-aZJ    . (2.10) 

Thus, except for the generally small effects of anisotropy ctnd applied 
2 

magnetic fields, w is proportional to a    in both the ferrimagnetic and 

ferromagnetic cases.    Such a relationship between u and a, as has been 

shown in previous discussions of the ferromagnetic case, leads directly 
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,3/2 
to a T       law of the specific heat and of the decrease of saturation magnetiza- 

tion.    We shall now make use of equation (2.9) to derive the actual expressions 

for these properties of a ferrimagnetic. 

Quantizing the normal modes of our classical spin wave problem, we are 
7 

led to the following expression for the specific heat per atom: 

C    = k 
a 

oo      2   t= 
I       5 e    (4TTQ 

00      2   S 2 

IT 
yo=0 

(2.11) 

where 5 = hw/kT.    By means of (2.9), (2. 11) is transformed to 

4TT 

(SrS2)kT . 3/2     Aco     S _ 2 

-4TS757 
5H' 

(eS-l,* 

1/2 

d^ (2.12) 

in which §„, = gpH'/kT where H', the total equivalent magnetic field exerted 

on the 3ystem, is defined a« 

H' a H + 2K (VS2+K/6J 

gp   \     S,-5 (2.13) 
1  "2 

In evaluating the integral in {'£.. 12), we first express e    (e    -1)      as   / »ne 

and then substitute u = (5-^j.,)      .   The integral thus becomes n-i 

oo t        00 
-nSjj 

]T2r.e J u2(u4+2^^2 + 5^) 

n=l o 

•nu du 

a 
From tables,    we find that 

00 

I 2a   -px    ,        1-3*5. . .(2a-l) .IT* 
x      e  r      dx = TT 2 - (—) -a+1    a vp 

2        P 
(2.14) 

and the integral is thus finally determined as 

00 

n=l L J 

•5/2    'n^H' e 

For the special case of 5H, = 0, this expression reduces to simply 
>H 

L 
• ^•to. 
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CO 

n---l 

-5/2 
or 

15^ C(5/2) 

where the Riemann zeta function, £(5/2) =  1. 341.    Consequently, the spin 

wave contribution to the specific heat of the ferrimagnetic system may be 

written as 

CO 1 
]-—: = TT34TiL,V    5n5H- +T5(n5H')   h 
SH»~° n=lL J 

-5/2 -nl H1 

(2. 15a) 

and 

' 

(Ca)5H, = 0 = °-113K (2. 15b) 

if the anisotropy and applied magnetic fields are negligibly small, the 
3/2 specific heat follows a T       law exactly.    However, should they be ap- 

preciable, (2. 15a) indicates that the temperature dependence of the spe- 

cific heat no longer follows such a simple relationship.    In fact, from 

Figure 2a, where the right hand side of (2. 15a) is shown as a function of 

kT/gpH' (or   1/§TT,), it is evident that at sufficiently low temperatures, any 

finite anisotropy or applied field will ultimately cause the temperature 

dependence of the specific heat to be exponential.    To illustrate the change 

of the temperature dependence of the specific heat with applied field, we 

have plotted in Figure 2b the specific heat against absolute temperature 

for gpH'/k=0, 1, and 2 (i.e., for H'= 0, 7430, and 14860 gauss, if it as- 

sumed that g = 2).    Finally, in Figure 3, we have plotted the right hand 

side of equation (2. 15a) against |u. tc show how the specific heat varies 

with applied field at constant temperature.    The monotonic decrease of 

the specific heat with increasing H may be understood qualitatively from 

the fact that the spin excitational energies, hut, increase with H (see equa- 

tion (2.9)), thus contributing less to the specific heat. 

If the zero-point energy is neglected for reasons analogous to those 
2 

given by Anderson    for an antiferromagnetic system of large atomic spin, 

the total energy of our ferrimagnetic system may be written as 

/ 
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W = -SNJSJSJ, - NgpH(S1-S2)/2 + V"7 n^t 

3 
where n   , a function of a, is the integral occupation number, and N = 1/a   , 

the number of atoms per unit volume of the system.    It follows that the 

partition function is 

Z = exp|(12NJS1S2 + NgpH(SrSz))/2kT]    ]~~f (1 e     ) 

Using this expression for Z together with (2.9), we determine the satura- 

tion magnetization as 

M kT g^(lnZ) = Ngp(SrS2)/2 - g^J^i^ '  D"1 

Thus, M   , the saturation magnetization at absolute zero, is Ng{3(S, -S2)/2, 

and the variation of the relative saturation magnetization is found to be 

o o    _ 2 \  ',  ^      ,v-l 2 f    4iro do ,,   ,,, 

a. a=o 

By means of (2. 9), we convert (2. 16) to 

3/2      oo   /t_-p     4V2. AoM i       [<srs
2
)kTl 

13! 7~277~7~;     4J3,S. S 
(?-gH,)1"dS 

3-1 
(2.17) 

o      2ir   (Sj-S2)  [ '""l^ 

t      -l        o°,    _n§ 
In determining the integral in (2. 17), we first express(e  - 1)    as  2_i e     "and 

use the substitution, u = (^-5TT()      •    Then, by the application 

of (2. 14), we get for this integral 

oo fc 
-n§„, 

W7/2)   ]T n 3/2    ~"3H n 

n=l 

which, for^5„, = 0, reduces to 

L 



"1 

kT/g/3H' 

FOR g£H>k=2 

NOTE: A, = (4JS, S^3>fe/0.ii3 k^.S,-^?2 

A2=(4JS, S2)V5-O.II7 k^S, -Sg)"2 

L 
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(</jf/2) £(3/2)        or        (tfr/2) (2.612)     . 

Hence, the relative saturation magnetization of the ferrimagnetic structure 

may be written as 

co t 

2T5TZ   2_^ n e (2.18a) 
n=l 

(2. 18b) 

and 

(Sj-S^kT-1 

3/2 
Similar to the specific heat, A M/M.    departs from a T"      law when the r o o       r 

anisotropy and/'or applied magnetic fields are sufficiently large.    The ap- 

proach to an essentially exponential temperature dependence of A M/M    at 

low temperatures is shown in Figure 2a where the right hand side of equa- 

tion (2. 18a) has been plotted against kT/gpH'.    In Figure 2b, A M/M    Has 

been plotted against absolute temperature for gflH'/k = 0,  1, and 2.    It is 

quite evident that A M/M    is much more strongly influenced than the 

specific heat by anisotropy and applied fields.    This is also obvious from 

Figure 3 where the right hand side of equation (2. 18a) has been plotted as 

a function of^Tii. 

We previously showed that the expressions for the spin excitational 

energies for both the ferrimagnetic and ferromagnetic cases of the simple 

cubic model have the same form (see equations (2.9) and (2. 30)).    If we 

now go through the same procedure for the ferromagnetic case by start- 

ing with (2. 10) instead of (2.9) and letting 

H' = H + 2K/gp-     , (2.19) 

we find that equations (2. 1 5a) and (2. 18a) apply exactly, while (2. 15b) and 

(2. 18b) should be replaced by 

V? 
(c  )* = 0.113k (kT/2J«Sr (2.20) 

a -5JJI = U 

and 
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3/2 
(AM/M)w = (0.0587/S) (kT/ZJ'Sp6 (2.21) 

0 O JJTTI ~ ^ 

9 
respectively.    Equation (2.21) is in perfect agreement with Miller's    ex- 

10 3/2 tension of Bloch's       original T       law, for the general case of S."> l/2;Mott 

and Jones       have obtained (2. 20) for the case of S = 1/2. 

12 Holstein and Primakoff      have investigated quantum mechanically 

the field dependence of the intrinsic magnetization of a ferromagnetic.    If 

their magnetic dipole-dipole interaction terms are neglected, their expres- 

sion that is analogous to equation (2. l3a) but is valid only for small values 

of 5TTI t may be written as 

= 1 - 1.208^H,1/2 (2.22) 

and is represented in Figure 3 by the dashed curve.    The agreement at 

low values of 5TII    with   the curve corresponding to equation (2. 18a) is 

very good.    More important, perhaps, is the qualitative fact that both equa- 

tions (2. 18a) and (2. 22) predict a sharp decrease of A M/M    as 5TTI is in- 

creased from zero.    It should be remembered, however, that^H, cannot 

be zero if the anisotropy of either the ferrimagnetic or ferromagnetic 

structure is not zero (see equations (2. 13) and (2. 19)). 

3.  The Antiferromagnetic Case 

When S. = S, = S in the spin structure shown in Figure  1 and the 

g-factore of the two sublattices are assumed equal, the net saturation 

magnetization of the system is zero.    Hence, the system is antiferro- 

magnetic.    If we assume further that the anisotropy constants associated 

with the two sublattices are equal, the spin vibrational frequencies for 

this antiterromagnetic case are found directly from (2.7) to be 

*iw = gPH + [4K(12JS + K) + (lZJ5)2(4Tr2a2/3)]1/2 (3. 1) 

when we also make use of (2.8).    Consequently, in the absence of anisot- 

ropy and applied magnetic fields, u> is directly proportional to a.    This 

particular dispersion law, as has already been pointed out by others, 
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3 3/2 
gives rise to a T    variation of the specific heat (as compared to the T 

variation in the ferrirnagnetic »nd ferromagnetic cases). 

The transition from (2.9) to (3. 1) for the frequencies of spin vibra- 

tion is a discontinuous one when 3.-S? is reduced from  1/2 to C, if, as may 

be expected, S. and S? must have half-integral values in order that a spin 

wave analysis be valid.    Hence, although the antiferromagnetic case rep- 

resents an extreme case (i.e., when S.=S?) for the ierrimagnetic spin 

.structure of Figure  1, far less similarity may be expected between the 

spin wavfi properties of an antiferromagnetic and a ierrimagnetic than be- 

tween those of a ferrirnagnetic and a ferromagnetic. 

The existence of the two "acoustical" modes, corresponding to + and 
13 — in (3. I), was first pointed out by Kittel      in connection with antiferro- 

magnetic resonance.    Equation (3. 1), itself, was derived more recently by 
14 Keffer et al. 

It will be shown later that there is a change of the spin state from 
1/2 

that pictured in Figure  1 when g{3H exceeds 2[K(12JS-K)]       , which is 
1/2 

smaller than 2[K(12JS + K)]       .    Thus, the square root in (3. 1), for the 

range of applied fields for which this equation is valid, will always be' 

larger than g(3H, and we should keep in mind that it is the absolute magni- 

tude of w which must be inserted in (2. 11) to determine the specific heat. 

Let us write in place of (3. 1), 

h|w|= [4K(12JS + K) + (12JS)2 (4-nZaZ/3)]l/Z + gPH (3.2) 

Inserting (3.2) in (2. 11), we obtain the following equation for the spinwave 

specific heat per atom: 

.,.3/2,        , T    3      r00 1/2 
ca = ~^ <TIJS>   J   ^>-<S±5H>[^±3H)

2
-S0

2
]    & 

co 

G($) = $2eV - I)'2 = [($/Z)/sinlUfyZ)]Z =Yln^ e~^ (3'3) 

n=l 

•s 1/2/ where B = h|w|/kT, BH= gpH/kT, and §Q = 2[K(12JS + K)]  ' /kT .    Fornegligibl 
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anisotropy and external fields (i.e. , for §     and "g     — 0), the integral in 

(3. 3) is readily evaluated by the use of the summation form of G(^) and 
15 the tabulated integral 

b     -ax ,        , . . b+ 1 
x    e       dx = b 3 /a 

and the final result for the specific heat is 

,r   s . (3)3/24! £(4)k   .    kT  . 3 .. , 
{ZJ* +V=o T^—( TZJS

]  times 2 
o   ^l Zir 

-  13.7k(kT/12JS)3     . (3.4) 

The multiplication by 2 is required to account for the two modes of spin 
3 

vibration, which in this special case are degenerate.    Thus, a simple T 

law is followed.    However, in the more general case of finite anisotropy 

(with or without an externally applied field), it is obvious that the specific 
3 

heat deviates from a T    law by an amount determined by the integral in 

(3. 3).    Since we have been unable to evaluate this integral in its general 

form analytically in any simple manner, we have resorted to graphical 

integration. 

Lei us first examine the situation when there is a finite anisotropy 

but no applied magnetic field.    In Figure 4a, the integrand of the integral 

in (3. 3) has been plotted against § for various values of ^   .    These curves 

were then integrated graphically; the results, multiplied by the coefficient 

•hown in (3. 3) (and by 2 to allow for the two degenerate modes of spin 

vibration), lead directly to the specific heat values shown plotted against 

^    in Figure 4b.    It is evident from this drawing that a finite magnetic 

anisotropy, especially since ^    depends roughly on the geometric mean 

of the anisotropy and exchange energies (the latter generally being by far 

the larger), would always cause a decrease of the specific heat.    The lower 

the temperature, the more pronounced will be this effect.    From Figure 5a 

where the specific heat normalized by its no-anisotropy value is shown as 

a function of 1/^   , we should note that at sufficiently low temperatures a 

finite anisotropy would result in an essentially exponential temperature 

L 
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dependence of the specific heat.    Figure 5b may serve to illustrate more 

directly the effects of a finite magnetic anisotropy on the specific heat 
3 

and its temperature dependence (i.e., the deviations from a pure T^law). 

With the application of a magnetic field on the antiferromagnetic 

system, the degeneracy in the  spin vibrational energies is removed (see 

equation (3.2)), and each of the two modes may be expected to contribute 

differently to the specific heat.    As an example, we have set 5     =   1 and 

have plotted in Figure 6a the integrand in equation (3. 3) against 5 for 

several values of ^    .    For §     ^ 0, the two parts of the integrand, corre- 

sponding to the lower energy (L.E.) mode and the higher energy(H.E-) 

mode, are both represented.    Integrating these curves graphically, we 

obtain values for the specific heat which, in Figure 6b, have been plotted 

against §„•    It is clear from this figure that for an increase of the applied 

magnetic field, the increase of the contribution of the  lower energy mode 

to the specific heat more than compensates for the decrease of the higher 

energy mode contribution.    The net result is an increase of the spin wave 

specific heat of the antiferromagnetic system.    This contrasts  strongly 

with the ferrimagnetic and ferromagnetic cases for which the spin wave 

specific heat decreases monotonically for an increasing applied field (see 

Figure 3). 

By a completely classical analysis of the ground state of the atomic 

spins of a simple cubic antiferromagnetic  structure (discussed more fully 

in Appendix B), we have found that when the magnetic field applied along 

the anisotropy axis is raised above a certain critical value, an abrupt 

transition of the ground state spin configuration may be expected to take 

place.    In Figure 7, we indicate schematically the arrangement of the 

atomic spin vectors of the two sublattices for State I, the original state of 

the system which we have been discussing, and for State It, the  state when 

the applied field is higher than the critical value.    It may be noted that in 

State II the spin vectors are not aligned antiparallel to each other, and 

hence give rise to a net magnetization.    In addition, at the point of transi- 

tion between states, there is a correspondingly abrupt change of themag- 

netic  susceptibility parallel to the applied field, as Neel   *  was t>>^ first 

to point out. 
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Our primary interest here, however, in this transition of the spin 

state, is in its effects on the specific heat of the system.    The spin wave 

problem for the spin configuration of State II must therefore be solved. 

As shown in Appendix B, the condition for which the transition between 

States I and II occurs, is 

gpH= 2[K(12JS - K)]1/2     , (3.5) 

and for State II, the angle 0, (see Figure 7) satisfies 

sin 0 = gpH/2(12JS - K)     . (3.6) 

Thus, if the field applied parallel to the anisotropy axis is increased 

beyond its value in (3. 5), 9 will increase monotonically until gf}H = 

2(12JS - K), when the spins of both sublattices will have been brought 

into parallel alignment with each other and with H.    However, since the 

magnitude of the exchange integral, J, of any antiferromagnetic crystal 

whose Curie point is above 4  K, is probably of the order of (10)        ergs 

or more (see next section), it would not be possible in this case to 

achieve an appreciably large value of 0 with any physically realizable 

magnetic field.    Nevertheless, since it is fairly reasonable to expect 

that K <iCl2JS for most antiferromagnetic crystals, it is still possible 

to achieve the applied fields required by (3.5) and even somewhat higher 

fields. 

For the spin configuration of State II as shr-'n in Figure 7, the 

equation of motion of a particular spin vector m       be expressed by 

equation '2. 1), but the rectangular components of the spin vectors must 

now be written as 

( I)      A 11\      A    / n     A (11 
S*   ' = j  (S cos 0 * SlM+ j  Sl   ' + j    (S sin 0 + Sl   ') (3.7a) — Jxv x  '     Jy  y Jz v z   ' v 

S(2) = ? (-Scos9 + S(2))+ J S(2) +?   (Ssin G + S(2))    ,     (3.7b) 
— Jx x   '    Jy  y Jz z    ' 

the dynamic components having their sublattice designated by super- 

scripts.    It is then assumed that the dynamic components have the spatial- 

wave form of (2.3).    The resulting equations of motion for these com- 

ponents are: 
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W1} =  12JSy    sin 8S<2) - [(12JS - 2K) sin G - gpH]S(1) (3.8a) 

W2)= 12JSy    sin 0S(l)   - [(12JS - 2K) sin 6 - gpH]S(2' (3.8b) 

"nS(1)=-12JSY   sin8S(2)   + [(12JS - 2K) sin 6 - gpHJS^ 

+ 12JSv cos 6S*2*  +  (12JS -   2K) cos 6 S*1* (3.8c) 'a z x ' z 

n3(2)= -12JSv  sin 8S(1)  + [(12JS - 2K) sin 0 - gBH]S(2) 

y "a x L or    J   x 

-lZJSv cosbS1,1'   -   (12JS -   2K)cos6s''2' (3.8d) 'a z z 

W1J= -12JSv  cos6S(2)   -  12JScos6S(1* (3.8e) 
z 'a y y 

W2)=  12JSv cos   8S*1*  +  12JS cos 6S(2' (3.8f) z 'a y y 

when terms higher than the first order in the dynamic components are 

discarded.    Since the spin vectors may be thought to oscillate about their 

static equilibrium positions defined by (3.6), no static (zero order) terms 

appear in +he above equations.    From a consideration of the time invariance 

of the spin vector magnitudes, it follows from (3.7) that the x and z dynamic 

spin components are interrelated by the equations, 

s(l) s(l) s(2)       s(2) 
x z      _ „(1) x z       _    (2) 

- —: a — JT— o d.nu —: Q—  a- B > sin 8     cos 8       u sin 8     cos 8       u 

which also serve to define a new, convenient set of spin components, S 
(2) u 

and S      .    Removing 8 from equations (3.8) by means of (3.6), we find that 

in terms of the u and y spin components, equations (3.8a) and (3.8b) are 

identical with (3.3e) and (3.8f), respectively.    The resultant four inde- 

pendent equations are 

hS(1)=  -12JSY  S<2) -  12JSS(1' <3'9a) 

u 'ay y 

W2-^  12JSY   S(1)   + 12JSS(2) (3.9b) 
u *a   y v 

L 
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nS(1) =  12JSv   (1  - R2/2)S(2) 

y 'a H u 

+ [12JS - 2K(1 - R2/4)] S(1) (3.9c) rl u 

WZ)=-12JSV (1 -R2/2)S(1J 

y *a H u 

- [12JS - 2K(1 - R^/4)] S(2' (3.9d) 
XT U. 

where R„ = gpH/(12JS - K}.    Assuming each dynamic spin component varies 

harmonically with time (i.e., as e~      ), we proceed to combine (3.9a) with 

(3.9b), and (3.9c) with (3.9d) to form two pairs of linear equations, one in 

S(1)-S(2) aaJ S(1)+ S(2), and the other in S(1)+S(2) and S(1,-S(2).    The solu- uuyy uuyy 
tions for the two modes of spin vibrational frequencies are then found from 

these equations to be 

h2
w
2 = (12JS)2 (1 -R2/2) (1 -v2) 

IT a 

+ (12JS)2 (R2/2) (1+ ya) 

- 24JSK(1 -R2/4) (1 + ^  )     . (3.10) 
n. —   a 

We now make use again of the low temperature approximation for y    (i.e. , 

equation (2. 8)); thus, we find for the choice of the negative sign and the 

positive sign in (3. 10) that the frequencies for the two modes of State II 

may be written as 

and 

*V-48JSK{(±2£+1)        <«PH)2 

L      R 4(12JS - K) 

-w{^-(3^)4Ti^i2](^; 
(3. 12) 
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respectively. It may be readily seen that the forms of these equations are 

special cases of the more general form of equation (3. 2). Hence, the con- 

tribution of the mode represented by (3.11) to the specific heat may be ex- 
3 

pressed as a T    relationship (similar to (3.4)), while the specific heat due 

to the mode represented by (3. 12) must be expressed in a more complicated 

form (similar to (3.3) with 5     = 0).    For a numerical example of the varia- 

tion of the specific heat with applied field at a constant temperature, we have 

chosen the conditions, 12JS/kT = 15 and K/12JS = 0.00111.    Thus.'E     =  l.for o 
which we already have computed the specific heat for State I (as indicated 

in Figure 6b); furthermore, the transition between States I and II will occur 

when the condition, §     = 2[K(12JS - K)] 1/2/kT - 0.999 is satisfied.    Cal- 

culating the specific heat contributions of the two modes of State II, repre- 

sented by equations (3. 11) and (3. 12), we find that with increasing applied 

field, the former rises very slowly while the latter decreases relatively 

quickly.    The net effect is a decrease of the total specific heat of the system. 

The calculated results are shown in Figure 8, and it is quite evident that 

there is a distinct difference between States I and II in the manner in which 

the spin wave specific heat varies with a magnetic field applied along the 

anisotropy axis.    We should also note that at the point of transition between 

States 1 and II, there is an abrupt discontinuity in the total specific heat of 

the antiferromagnetic system. 

Let us turn now to the situation in which a magnetic field is applied 

perpendicular to the anisotropy axis (and along one of the other cube edges) 

of the simple cubic antiferromagnetic system.    In this case, as shown in 

Appendix B, there is only one possible static equilibrium spin state within 

the applied field range of interest (as compared to the two for the case just 

previously discussed).    The corresponding spin configuration of the two 

sublattice system is represented schematically in Figure 7.    It is fairly 

obvious, incidentally, that this configuration also represents the only stable 

spin state of a simple cubic antiferromagnetic structure having cubic ani- 

sotropy, when a small field is applied along one of the three mutually- 

perpendicular anisotropy axes.    With reference to this figure, the angle, 

0, satisfies the condition 

L 



r 
TR198 -18- 

sin 8 = g(3H/2(12JS + K)     , (3.13) 

and, thus, as the applied field is increased from zero, 8 increases mono- 

tonically to TT/2.    However, for reasons previously mentioned, only small 

values of 0 may be expected to be physically attainable, and our subsequen 

calculations cf the spin wave specific heat will be restricted, therefore, to 

this region of applied fields. 

The starting print of the spin wave problem is once again the equa- 

tion of motion (2. 1).    The rectangular components of the spin vectors of 

the two sublattices may now be expressed as 

S{1'= j   (Ssin9+S(1)) +1 S(1) + j    (Scos6 + S(1)) (3.14a) 
— Jx x Jy   y Jz z    ' x 

S(2)= j  (Ssin9 + S(2)) + j S(2) + j    (-Scos 9+ S(2))     . (3.14b) 
— •'x x Jy  y z z 

The applied field is taken to be in the x direction.    Again assuming that 

the dynamic spin components have the spatial-wave form of (2.3), we 

find that the first order equations of motion of these components are 

hS(1>=  12JSv    cos 6 S(2) + (12JS+2K) cos 8 S(1) (3.15a) 
x Ta y y 

hS(2)=-12JSv   cos8S(1) - (12JS+2K) cos 6 S(2) (3.15b) 
x *a y y 

W^= - 12JSv   cos6S(2' - (12JS+2K) cos 6 S*1' y Ta x x 

+ 12JSy   sin 6S^.2) - [(12JS+2K) sin 9 - gpH] sj,1' (3.15c) 

W2'= 12JSv    cos BS(1) + (12JS+2K) cos 6 S(2) 

y 'a x x 

+ 12JSy   sin9S(1) - [(12JS+2K) sin 9 - gpH]  S(2) (3. 15d) 

W^-^JSv   sin 9S(2) + [12JS sin 0 - gpH] S(1) (3.15e) 

W2)=-12JSv   sin 0S(1) + [l2JSsin 9 - g(3H] S(2)     . (3. 15f) 

L 



1 

u 

TPa98 -19- 

Since the magnitudes of the spin vectors are time independent, it may be 

deduced from equations (3. 14) that 

s(l)       _sd) g(2)        g(2) 
x z g(l) and x z g(2) 

cos 6      sin 6        v cos 9    sin 6 v 

Making use of (3. 13) to remove 8 from equations (3. 15), we find that in 

terms of the y and the newly defined v components of spin, equations (3. 15) 

reduce to the four independent equations, 

tiS(1)= 12JSv S(2) + (12JS+2K) S(1) (3. 16a) v 'a y y 

W2)= -12JSv S(I)-(12JS+2K)S(2) (3.16b) v *a y y 

hS(1)--12JS>   (1 -Q„/2) S(2) 

y *a H v 

- [12JS + 2K(1-Q2/4)] S(1) (3.16c) 
i*l v 

nS{2) =  12JSy   (1-Q2/2)S(1) 

y 'a H v 

+ [12JS + 2K{1-Q2/4)]S(2) (3.16d) L H      J   v 

where QH = gpH/( 12JS+K).    The dynamic spin components are assumed to 

vary harmonically with time; thus, it becomes possible to combine (3. 16a) 

with (3. 16b), and (3. 16c) with (3. 16d) to form one pair of linear equations 

in S(1)-S(2) and S(1)+S(2) and an other in S(1)+S(2) and S(1)-S(2).    The 
vv yy vv yy 

two modes of spin variational frequencies, corresponding to the solutions 

of these two pairs of equations, are found to be 

"K2
W

2 = 4K(12JS + K) (l-Q^/4) 

+ (12JS)2(l-Q2/2) (1-Yf) 

+ 12JS(12JS + K) (Q2/?; (1+ y   ) (3.17) 
rl —    ct 

which, upon use of (2.8) as the low temperature approximation for Y   , is 

converted to 
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^2co2,4K(12JS + K)(l __lgPH)2       | 
L 4(12JS + K)    J 

+ <i2Js)2(i-(i      « ) _!Hffi!^ 
^Ji5     4(12JS + Kr 

(3.18) 

and 

h2co 2 = 4K(12JS + K)( (i^ .  1}  __(gPH)!_ + 1 
L 4(12JS + K)' 

2[l-<3+    *   )   —<^ 
2 

L ^JS     4(12JS + K)2  '  V   3 

corresponding respectively to - and + in (3. 17).    In the absence of an ap- 

plied field, both (3. 18) and (3. 19) reduce properly to (3. 2) in which H 

has been set to zero.    The two modes thus become degenerate.    From 

the forms of (3. 18) and (3. 19), it follows that the spin wave contribution 

of each mode to the specific heat may be represented by an expression 

that is  similar to (3. 3) with ^      = 0.    For comparison •with our previous 

calculations, we have chosen the conditions,  12JS/kT =  15 and K/12JS = 

0.00111, for which to work out a numerical example of the dependence 

of the specific heat (at a fixed temperature) on the magnetic field applied 

perpendicular to the anisotropy axis.    The calculated results are shown 

in Figure 9, from which it is evident that for an increase of the applied 

field, the rise of the specific heat contribution of the mode represented 

by (3. 18) is more than compensated by the decrease of that of the mode 

represented by (3. 19).    The net result is a decrease of the total specific 

heat. 

It would be interesting to examine together the effects on the total 

spin wave specific heat, of a magnetic field applied parallel to the ani- 

sotropy axis and of a field applied perpendicular to this axis.    Conse- 

quently, in Figure  10, we have superimposed the pertinent curves, which 

appear separately in Figures 8 and 9, for the conditions,  12JS/kT = 15 

and K/12JS = 0.00111.    Moreover, we have calculated the same types of 

curves for the same value of 12JS/kT but for K/12JS = 0.00444.    These 
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curves, also, are shown in Figure  10,    It becomes evident that the abrupt 

change of specific heat that accompanies the transition between States I 

and II (for H parallel to the K-axis) is greater, the larger the magnetic ani- 

sotropy.    Furthermore, beyond these transitions of spin state (i.e., for 

higher applied fields), a larger anisotropy causes a bigger difference be- 

tween the specific heat when the applied field is parallel to the anisotropy 

axis, and the specific heat when the field is perpendicular to this axis. 

If the magnetic anisotropy is considered to be negligibly small; both 

equations (3. 11) and (3. 18) reduce to 

"n2a>2 - [(12JS)2 - (gPH/2)2]  (4ir2a2/3)     , (3.20) 

and both (3. 12) and (3. 19) become equal to 

\ZuZ = (gpH)2 + [(12JS)2 - 3(g|3H/2)2]  (4TT
2

<X
2

/3)     . (3.21) 

Hence, these equations represent the two modes of spin vibration for a 

magnetically isotropic simple cubic antiferromagnetic system with a 

magnetic field applied along a cube edge.    It follows from previous dis- 

cussion that the specific heat due to the mode represented by (3.20) will 
3 

follow a simple T    law, while the temperature dependence of the specific 

heat due to the mode represented by (3.21) will have a more complicated 

behavior (described by an equation similar to (3. 3) with BTT 
= 0).   Although n 

this isotropic case may not have much physical significance, it does pro- 

vide an interesting extreme case for which the field dependence of the 

specific heat may be compared to that of the system with a finite magnetic 

anisotropy.    Therefore, once again for  12JS/kT =  15, we have calculated 

the specific heat contributions5 of the modes represented by (3. 20)and(3. 21), 

and we have found that for an increase of the applied field (at a fixed tem- 

perature), the decrease of the latter more than compensates for the in- 

crease of the former.    The resultant decrease of the total specific heat 

is quite clear from Figure  10, in which the total specific heat of this iso- 

tropic case has been plotted over the applied field range of interest. 

L 
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4.    Comparison with Experiment 

Since the preceding spin w?.ve analyses were developed semiclarsi- 

cally and the determinations of the ground state spin configurations were 

purely classical, we certainly cannot rely rigorously on our theoretical 

results for quantitative comparison with experiment.    Nevertheless, these 

results could be taken seriously, were it possible to examine them with 

reference to any thermal or magnetic measurements conducted at low 

temperatures (where, presumably, the spin wave theory is valid) on a 

ferrirmignetic or antiferromagnetic material having a simple cubic struc- 

'ure.    Unfortunately, while there have been numerous such measurements 

on ferromagnetic metals and alloys, only a few studies have been made of 

the low temperature spin wave properties of a ferrimagnetic or antiferro- 

magnttic structure of any type of crystalline symmetry.    This is particu- 

larly true if we disregard recent spin resonance experiments, which are 

not of direct interest in this report.    Hence, we are left with ouly the 

possibility of making some qualitative predictions about any experiments 

that are suggested by our simple theory, using any existing and pertinent 

experimental information for starting points of discussion. 

To date, the main experimental evidence for the existence of a 
3/2 T       law has been the temperature dependence of the saturation magnetiza- 

17 ticn of ferromagnetic metals at low temperatures. Tt is significant, 

perhaps, that the decrease of the magnetization of gadolinium was found 
3/2 to be proportional to T        all the way up to its Curie point, while the 

magnetizations of nickel and iron at intermediate temperatures follow 
2 18 a T    relationship (which is explained by Stoner       on a collective electron 

theory basis).    We shall refer to this later. 

Of several papers on measurements of the temperature dependence 
19 of the magnetization of various ferrites,      the most recent one by Pauthenet, 

containing considerable tabulated data, Is the most suitable for the present 

discussion.    Unfort"«?.+ely. except for a few low temperature points used 

to establish the magnetizations at absolute zero, all his measurements (on 

several simple ferrites and a family of mixed ferrites) were made above 

room temperature.    Nevertheless, we shall attempt here a crude comparison 

L 
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between these measurements and the predictions of our simple spin wave 

theory.    Equation (2. 18b) is the relevant expression, if the effects of 

magnetic anisotropy and large applied fields are to be neglected.    The 

octohedral (B) and the tetrahedral (A) sites in the actual ferrite struc- 

ture       will be considered roughly equivalent to the atom sites in sub- 

lattices (1) and (2), respectively, of our simple cubic system; thus, ef- 

fectively, the spins of the atoms of the two B sites of each unit cell will 

be coupled rigidly together.    Hence, for the simple ferrites, we setS? = 

2.5 (i.e., the spin of one ferric ion), and S.  = S     +2.5, where ST is the 

experimentally determined average magnetic moment per atom divided 

by 2p .    For the mixed nickel-zinc ferrites (i. e. , (NiO).     (ZnO)  Fe20  ), 

we shall allow for the apparent substitution of non-magnetic zinc ions 

for ferric ions in the A sites and the transfer of these ferric ions (with 

reversed spin) to the B sites, by setting S, = 2.5 (1 -x) and S.=ST + 2. 5( 1-x). 

This can be only even approximately valid for x< 0.5 since the magnetic 

moment per ferrite molecule actually decreases for larger values of x. 

Let us now find a relationship between the exchange integral in 

(2. 18b) and the Curie temperature, T   =    According to the modern version 
21 c 

of the Weiss field theory,       we may write for the z components (i.e., 

those in the direction of the applied field) of the magnetizations of the 

two sublattices: 

M(1)= NgpS(1)= NgPS,  •  Bc    (12JS,sl2)/kT) 
Z Z X O -I i    z 

M(2)= NgpS(2)= NgpS, •  BQ    (12JS,S(1)/kT)     . (4.1) 
Z Z L* O   .-y £t Z 

Remembering that the Brillouin function, Bg(u) — (S+l)u/3S foru<<l, 

we obtain from (4. 1) two linear equatic 

patibility condition fixes T    as follows: 

we obtain from (4. 1) two linear equations in S       and S      , whose com- z z 

kTc = 4J [S^^S^DtS^l)]172     . (4.2) 

Consequently, (2. 18b) may be rewritter * s 
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A M/M    = A.AT/T   )3/2 

o o M c 

AM = 0.1l7(S1-S2)1/2[(S1+i)(S2+l)/S1S2]3/4 (4.3) 

when anisotropy and applied field effects are neglected. 

Starting with Pauthenet's values for T    <md ST> we have calculated 

S., S-,, J, and A., for our simple cubic models for the simple ferrites of 

nickel, cobalt, iron, and manganese, and for various mixed nickel-zinc 

ferrites.    The results are listed in Table  1.    Furthermore, we have con- 

verted Pauthenet's data into equivalent A-, versus T/T    points, which are 
M c 

shown in Figure  11.    The solid curves through these points have been 

restricted to the temperature range over which we believe the experimental 

points are dependable.    The values of A., which we previously calculated 

and listed in Table 1, are represented in Figure  11 by the horizontal long- 

dashed lines. 

By a different manipulation of his data, Pauthenet was able to con- 

clude that A M/M    at low temperatures for nickel, cobalt, and iron ferrites 
°2       ° 3/2 

followed a T    law, while that of manganese fcrrite varied as T       .     The 

short dashed lines in Figure 11 correspond quantitatively to these tempera- 

ture variations.    However, from this figure, it appears to us that for all 

four simple ferrites, as well as for the mixed ferrites, it is quite likely 

that the limiting values of Aw, as T—»0, are other than zero.    If they 

should approach their limiting values along a horizontal tangent in Figure 
3/2 11, the T        law for low temperatures would be confirmed.    Moreover, as 

in the cases of metallic iron and nickel, the temperature dependence of 

A hA/bA    for nickel, cobalt and iron ferritee probably shifts gradually from 

T^/2 to •j<^) as j.jie temperature is increased from a very low value.    The 

relative magnetization of manganese ferrite, however, like that of metallic 
3/2 gadolinium, probably follows a T        law over the entire ferrimagnetic 

temperature range.    Our calculated low temperature values of Ay. are all 

undoubtedly too low.    However, particularly for the mixed ferrites, their 

relative magnitudes appear to be in the right sequence.    This is as much 

as could be expected in view of the drastic approximation made in fitting 

the actual ferrites into "equivalent" simple cubic models.    A spin wave 
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Table I 

YC • Fe2°3 

3                                          3 

Y ST Sl S? TC(°K) J/k AM 
c   T    2"   millijoules    .o.,.    2 

K - mole 

Ni 1.11 3.61 2.50 870 18.0 0.190 0132 

Co 1.97 4.47 2.50 769 13.1 0.245 0.366 

Fe 2.04 4.54 2.50 847 14.3 0.250 0.332 

Mn 2.20 4.70 2.50 576 9.4 0.258 0.660 

(Ni0)1 _x(ZnO)x- Fe203 

X ST Sl S2 
TC(°K) J/k AM 

3 
c. T    1  millijoules   . o 

K - mole 

3 

K)"2 

0.1 1.51 3.76 2.25 814 X 1 .O 0.226 0.250 
i 

0.2 1,89 3.89 2.00 755 17.7 0.259 0.378 

0.3 2.24 3.99 1.75 671 17.1 0.290 0.600 

0.4 2.48 3.98 1.50 618 17.9 0.320 0.830 

0.5 2.72 3.97 1.25 548 18.4 0.355 1.206 
i 



r 
iy 

O 
IX 

L 



r 

L 

TR198 -25- 

analysis more appropriate for the spinel structures of the ferrites, should 

make more dependable calculations possible; we propose to study this 

problem in the near future. 

Needless to say, accurate low temperature measurements of the 

saturation magnetizations of the various ferrites are badly needed.    The 

accuracy required to determine the temperature dependence of A M/M   un- 

ambiguously, however, is extremely difficult to attain at low temperatures 

where a very small change of a very large quantity must be measured. 

Here, we suspect, lies the main advantage of low temperature measure- 

ments of the spin wave contribution to the specific heat.    Another advantage 

of specific heat measurements over those of magnetization is the fact that 

any appreciable magnetic anisotropy of the ferrimagnetic structure maybe 

expectea to have a greater effect on the temperature variation of magnetiza- 

tion than on that of the specific heat (see Figure 3).    The large applied 

fields required for the magnetic measurements would tend to aggravate 

this situation.    Hence, the experimental results for the temperature de- 

pendence of the specific heat can probably be more easily interpreted in 
3/2 terms of the coefficient of a simple T        relationship (see equation (2. 15b)), 

than can the results for the temperature dependence of magnetization. 

In many ferromagnetic metals and alloys whose low temperature 

specific heats have been measured, the electronic specific heat due to 

the energy hand structure of the d electrons, has been large enough to 

mask any possible spin wave contribution;    We have found, however, that 

the spin wave specific heat of a ferrimagnetic simple cubic structure also 
3/2 follows a T       law (see equations (2. 15)) and is thus experimentally dis- 

tinguishable from that due to lattice vibrations (which, of course, iz pro- 
3 

portional to T    at low temperatures).    It seems reasonable to assume that 

this is true for ferrimagnetic materials of any crystalline structure. 

Hence, the ferrites, whose electronic specific heats are probably very 

small, appear to be the obvious materials for spin wave specific heat 

measurements. 

Using (2. 15b) and (4. 2), we have calculated the spin wave specific 

heats for the different ferrites discussed previously.    The resulting 

specific heat values, which have been listed in Table  1, are per mole, 
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where the molecule has been taken co consist of two adjacent lattice sites 

of the simple cubic model.    Note the comparatively high spin wave specific 

heats of the mixed ferrites that have relatively lew Curie temperatures 

(but whose exchange integrals, incidentally, are not very different from 

those of the simple ferrites).    However, it is the magnitude of the spin 

wave specific heat relative to that of the lattice specific heat; that is of 

prime experimental importance.    About the only specific heat measure- 
22 ments on any of the ferrites, to date, have been those of Millar       oniron 

ferrite (magnetite) down to liquid air temperatures. Assuming that at 

very low temperatures, the Debye temperature of iron ferrite i6 about 

the same (i.e., about 565  K) as at higher temperatures, we find that the 

spin wave and lattice vibration contributions to the specific heat are both 
o o equal at 2.7  K to about 1.5 millijoules/   K mol.    At temperatures higher 

than 2.7  K, the lattice specific heat will predominate.    Hence, the specific 

heat measurements should be carried out down to liquid helium tempera- 

tures.    The low specific heat will necessitate extreme care in the 

calorimetry.    An interesting supplementary experiment at these tempera- 

tures, preferably on a single crystal ferrite specimen, would be the 

measurement of the dependence of the spin wave specific heat on the 

strength of an applied magnetic field. 

If the effects of anisotropy and applied fields are ignored, the spin 

wave specific heat of a simple cubic antiferromagnetic structure has 
3 

been shown in Section 3 to be proportional to T   .    Thus, it would not be 

easily separable experimentally from the lattice specific heat at low 

temperatures, unless the spin wave contribution were very large due to 

the small magnitude of the exchange interaction integral (see equation 

(3.4)).    The Curie or Neel temperature for the antiferromagnetic struc- 

ture may be expressed by (4. 2) if we set S.  = S? = S; the equation then 

becomes simply 

kTc = 4JS(S+1) (4.4) 

Hence, it follows that spin w-;v<i specific heat measurements should be 

possible with artiferromagnetic materials having low Curie temperatures 

(and low electronic specific heats). 

U 
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23 Specific heat measurements were recently completed by Friedberg 

on cupric chloride.    Up to the Curie temperature (about 4. 3  K), the total 

specific heat of this antiferromagnetic compound was found to be over one 

hundred times as large as the estimated lattice specific heat and was 
3 

roughly proportional to T   .    However, since these measurements were 

made down to only  1.5   K, it is almost certain that the anomolously large 

specific heat, as well as its cubic temperature dependence, are associated 

primarily •with an order-disorder transformation of the spin state, rather 
fhan with small perturbations of an ordered spin state.    Hence, to deter- 

mine the normal spin wave specific heat of cupj.IC chloride, it would be 

necessary to extend these measurements down to temperatures in the 

region of T  /10 (i.e. , about 0.5  K) and study the variation of the specific 

heat over a very restricted temperature range. 

Although most other antiferromagnetic salts have higher Curie points, 

we find, when we substitute (4.4) in (3.4) and obtain 

C    = 0.507 k(S+l)3 (T/T   )3     , (4.5) a c 

that a larger electronic spin of the magnetic ions would tend to counter- 

balance the effect of a higher Curie point on the magnitude of the spin 

wave specific heat.    Let us, therefore, make a rough estimate of the spin 

wave specific heat of ferrous chloride, whose Curie point is about 24  K, 

by assuming that the spin associated with each lattice site of our simple 

cubic model is 2 (i.e. , the spin of one ferrous ion).    We substitute this 

value of S into equation (4.5) and obtain for the spin wave specific heat: 
3 o     4 8.2 T    millijoules/(   K)    mole, (a molecule is considered equivalent to 

one latt'.-c sit.f of th* simple cubic model).    Let us then suppose that the 

lattice specific heat of ferrous chloride is not very different from that 
3 o     4 of cupric chloride (i.e. , about 1. 1 T    rnillijoules/(   K)    mole).    Hence, 

the spin wave specific heat, due to its large relative magnitude, should 

be quite separable from the lattice specific heat.    Furthermore, we find 

from (4.4) that J = k, and if we assume that K—0. i k, it follows that 

2[K(12JS + K)]   '   Od 1. 1 k.    Thus, with reference to Figures 5a and 5b, 

it appears that for the temperatures at which the specific heat measure- 

ments on ferrous chloride should be carried out (i.e. , in the region of 

L 
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T   /10   or 2.4  K), the spin wave specific heat should be well out of the ex- 

ponential temperature dependence region. 

Magnetic measurements on single crystals of manganese flouride 
25 

24 

and cupric chloride      have confirmed Neel's prediction that a transition 

of spin state occurs when a magnetic field applied along the anisotropy axis 

of an antiferromagnetic crystal, attains  a certain critical value.    It would 

be most interesting, therefore, to make the accompanying specific heat 

measurements and learn if the magnetic field dependence of the spin wave 

contribution can be represented by a curve similar to that in Figure 8. 

For the sake of comparison, these specific heat measurements should 

also be made with the field applied perpendicular to the anisotropy axis 

(see Figure 10). 

i 
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Appendix A 

The Effects of Next-to-Nearest Neighbor Exchange Interactions 

In che simple cubic atomic spin structure shown in Figure 1, each atom 

has twelve next-to-nearest neighbors, all of which lie on the same spin sub- 
3 

lattice.    To be consistent with the current theory on the properties of ferrites, 

we assume that the next-to-nearest neighbor exchange interactions for both 

sublattices are negative, similar to but considerably weaker than the nearest 

neighbor interactions.   Hence, the net electronic spins of nearest neighbor 

atoms are still mutually antiparallel, although the  net exchange force on each 

spin is somewhat smaller than it would be in the absence of next-to-nearest 

neighbor interactions.   We may expect, therefore, that the introduction of nega- 

tive next-to-nearest neighbor interactions into our analysis will result in an 

increase of the spin wave specific heat of the system.    It may be of interest, 

however, to examine their effects more quantitatively. 

We let -J, and -J? be the exchange integrals for the next-to-nearest neighbor 

interactions between spins on sublattices (1) and (2), respectively.    As before, 

-J is the exchange integral for the nearest neighbor interactions.    Thus, J., J?, 

and J are all positive quantities.    Furthermore, J>>J, or J2.   If we now assume 

that the equation of motion of a particular spin vector has the form of (2.1), 

and then use (2.2) and (2.3), we find that the equations of motionforthe spin com- 

ponents are the same as (2.4) except that to (a), (b), (c), and (d) must be added: 

-241,3,(1- y ' )S(1), +24J  S,(l- v ' )S(2), +24J,S.(1-y ' )S(1), and -24J,S,(1-y ' )S(2), 11 ay 2 ay 11 ax 2  2 ax 

respectively, where y ' = (cos2iravcos 2ira    +cos2Ta  cos 2ira +cos2ira  cos 2wa. )/3. 

When (2.5a) is used, this is equivalent to adding   -24J,S,(1- Y' )S\      an- 

+24J,S2(l-y ' )S*   '  to (2. 6a) and (2. 6b), respectively.    Thus, again setting 

Si - g? = g an<* Ki = K, = K, we obtain for the spin wave frequencies: 

•29- 
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\u = gf3H - 6J(S.  - S2) -  12(J1S1 - J2S2)(1 -y'J 

+  ["{eKSj  - S,) + 12(J1S1  - J2S2)(1  -y'a)}     +(12J)2S1S2(1 -y2) 

+ 2K {l2J(S,  + S,) + 2K - 24(J.S,  + J,S,)(1 - y' )] 1       •   x        2 1   1        2  £ • a J 

24(J1S^ + J2S^)(12J)(1 -y^) 

+ (24J1S1)(24J2S2)(1 -Y^)2 
1/2 

(A. 1) 

For spin waves of very long wavelength, a is very small, and, therefore, 

2  2 2 1  - v •   c=t 4TT Q   /3, which is also the small-a value of 1  - v a 'a 

In the ferrimagnetic case, 6J(S.   - S~) may be expected to be by far the 

the dominant term in (A. 1);  hence, the plus sign must be chosen for the 

"acoustical" mode.    Furthermore, we can now expand the square root in 

(A. 1) binomially, and, neglecting higher order terms in a, we get 

f S.  + S, + K/6J 
hw Oi gBH + 2K< -i—«-=—•  

L 51  " °2 (A. 2) 

+ ^sj- [jsis2 - 2Jisi {si + or) - 2J2S
2(

52+ ir]j <4*2*2*>- 

A comparison of (A. 2) with (2. 9) reveals that the only effect of next-to- 

nearest neighbors interactions on the expression for w is a decrease of the 

coefficient of a   .    It can be easily shown that, correspondingly, both the 

specific heat and the temperature variation of the magnetization are increased 

by a factor equal to the 3/2 power of the ratio of the coefficient of a    in (2.9) 

to that in (A.2).    The dependences of C    and   A   M/M    on the applied magnetic 

field, however, are still described by (2.15a) and (2.18a), respectively. 

For the antiferrornagnetic case, we set S. = S_ = S and J. = J_; as a 

result, we find from (A.l) that the expression analogous to ('3.2) may be 

written as 
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1/2 

^•rf^Strr'M    ±gpH     (A3) 

It follows that the introduction of next-to-nearest neighbor exchange inter- 

actions causes an increase of the  specific heat of the antiferromagnetic 

system by the factor   j 1  - 4J,(1 + K/6JS)/Jf "       .      As in the ferrimagnetic 

case, the field dependence of the specif''" heat is not changed by these addi- 

tional interactions. 

Since all next-to-neare3t neighbor atoms in our simple cubic model lie 

in the same sublattice, their electronic spin vectors have parallel ground- 

state orientations whether the system is in State I or in State II (see Figure 7). 

Hence, the criterion for the transition of the aniiferromagnetic system from 

one spin state to the other is not affected by next-to-nearest neighbor inter- 

actions. 
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Appendix B 

The Static Equilibrium States of the Antiferromagnetic Spin System 

It will be assumed that the electronic spin vectors of the simple cubic 

atomic system are subjected only to forces arising from negative exchange 

interactions between nearest neighbor spins and from interactions with a 

magnetic arisotropy field and a uniform applied magnetic field.    The corre- 

sponding energies will be expressed as the purely classical equivalents of 

the energy terms in equation (2.1),    The g-factors as well as the anisotropy 

constants associated with the two sublattices will be considered equal. 

We are interested in determining the static equilibrium positions of the 

spin vectors, first, when the applied field is parallel to the anisotropy axis. 

It is fairly obvious in this case that the spin vectors must lie in planes that 

are parallel to each other and to the anisotropy axis.     The problem, there- 

fore, may be formulated with reference to the schematic two-dimensional 

vector diagram of Figure 12, in which the orientations of two nearest neighbor 

spin vectors are defined by the angles, X and 0.    The energy of the system 

of N atomi   may be written then  as 

E = - 6NJS2cos 20 - iNgpHS[cos(X   - 6) + COS(IT - X - 9)] 

+ ^NKS[sin2(X - 8) + sin2(-rr - X - 9)] 

or E/NS =      6JS(2sin20 -  1) - gpHsinOsinX 

+ K(sin20 + sin2X- 2 sin2Q sin2*). (B.l) 

It is easily established that as long as K<1 6JS (which is certain to be 

satisfied in practice), the value of 0 that minimizes (B.l) may be expressed by 

8in9 = (gPH/2) sin X (B 2) 

12.IS + K(l - 2 sin  X) 

for which (B,l) becomes 

E/NS = -6JS + K sin2X (gpH/2)2 sin2X (R3) 

12JS +K(1  -2 sin  X) 
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It is then found that with respect to "X , (B. 3) has stationary values for 

bin X = 0, sin 9 = 0; (B.4a) 

sin X = 1, sinO   = g£H/2( 12JS - K); (B.4b) 

.                    2A,       12JS + K 
and sm  X =  ^K  1 (gpH/2) 

[K(12JS + K)] 172 
12JS +K 2_ — sin  9, K 

for which the corresponding energies are respectively, 

E/NS = -6JS, 

E/NS = -6JS + K - (gpH/2)2/(12JS - K), 

r 
and  E/NS = - 6JS + 12JS + K (gpH/2) 

[K(12JS + K)] 1/2 

(B.4c) 

(B. 5a) 

(B. 5b) 

(B. 5c) 

Equation (B. 5c) clearly represents a maximum energy (which, in view of 

(B. 4c), can occur only within a restricted range of H).    Hence, to obtain 

the absolute minimum energy, we must compare (B. 5a) and (B. 5b).    It 

follows immediately that 

1/2 
g(3H = 2[K(12JS - K)] (B.6) 

defines a critical value of H, below which State I (defined by (B. 4a) and 

(B. 5a)) will be the lower energy state, and above which State II (defined 

by (B. 4b)  and (B. 5b)) will have the lower energy. 

In Figure 12, the energy (as expressed in (B.3)) has been plotted as 

a function of ~X for different values of H;  the unrealistically high value of 

0.25 was chosen for K/12JS in order that the characteristics of equation 

(B.3; that are dependent on K, be brought out more distinctly.    It is clear 

from this figure that for values of applied field other than those close to 

the condition for spin state transition, both States I and II may be expected 

to be reasonably stable.    However, when the field is very near the critical 

value defined by (B.6), States I and II are favored about equally and are 

separated by a low energy barrier (see Figure  3 2).    An expression for the 

height of this barrier is easily determined by the substitution of (B.6) into 

(B.5c); it is thus found that 

• 
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1 '2 
l££!barrier   =        12JS - [ (12JS)2   - K2] 

IN a 

at      K2/24JS for K<3<. 12JS. 
(B.7) 

In most physical cases of antiferromagnetic crystals: this energy barrier 

is so low that a small thermal energy is sufficient tc overcome it.    Conse- 

quently, transition between States I and II should take place very readily 

when the applied field is equal to the critical value defined by (B.6). 

Let us now find the  static equilibrium positions of the spin vectors when 

the field is applied perpendicular to the anisotropy axis.    In this case, al- 

though the spin vectors must again lie in parallel planes due to the exchange 

forces between them, it is not immediately obvious that these planes must 

be parallel to both the anisotropy axis and the axis of the applied field.    Hence, 

in a plane perpendicular to H, let us turn the K-axis through an arbitrary angle, 

o,  from its position shown in the spin vector diagram of Figure 13.    With 

reference to this schematic diagram, the positions of the spin vectors in the 

plane of the applied field, are defined by the angles, X and 0.    The energy of 

this system may then be written as 

E =   -6NJS2cos 29 -^NgpHS[cou(X - Q)+cos(ir-X-Q) 

+ -^NKS(sin2ili l + sin2ip2) 

where       cos i|>.   = cos 0 cosf-j-X- + G), and cosi^, = cos<lcos(y -X- 9)- 

or E/NS =  6JS(2sin 6 -  1) - gpHsinOsinX 

+ K[ 1  - cos2^(sin20 + sin2X - 2 sin29 sin2^). (B.8) 

It follows from this last expression, that the energy is minimized with respect 

to p when i> is set to zero.    Hence, the two-dimensional schematic diagram of 

Figure  13 describes the system adequately for the remaining discussion.    We 

proceed to find that (B.8) is minimized with iespect to 0 when 

sinQ Q (gPH/2)sinX f (B 9) 

12JS - K(l - 2 sin  X) 
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in whichcase, (B.8) becomes 

E/NS=   -6JS + Kcos2X (gpH/2)    sin   X  (B 1Q) 

12JS - K(l  - 2 sin "X) 

Finally, by differentiating (B.10) with respect to"X, we find that as long as 

K< 12JS, the energy is minimized by X = IT/2, for any value of applied field. 

Thus, (B.9) and (B.10) are reduced, respectively, to 

sinQ = g«H/2(12JS + K) (B.ll) 

and E/NS =  - 6JS - (gpH/2)2/( 12JS f K). (B.12) 

For comparison with Figure 12, the energy (as expressed in (B.10)) 

has been plotted in Figure 13 as a function of "X for K/12JS = 0.25 and 

various values of H. Clearly, when the applied field is perpendicular to 

the anisotropy axis, only one spin state of the system is possible, and it 

is a 3table static equilibrium state for any value of the applied magnetic 

field. 

Our determination of the spin equilibrium states for the two directions 

of the applied field relative to the anisotropy axis, is similar but more 

exact than Neel's original analysis. Recently, Gorter and Haantjes 

in their study of this problem, postulated an anisotropic exchange inter- 

action between adjacent spins and thus included the magnetic anisotropy energy 

implicitly in their expression for the exchange energy.      Tneir results, 

nevertheless, are qualitatively similar to ours. 

References 

1. F.   Keffer and C.   Kittel, Phys.  Rev.   85, 329 (1952); J.  Ubbink, Physica 
^9, 9 (19 53); JR.   K.   Wangsness, Phys.  Rev.   9_3, 68(1954); and 
references therein. 

2. P.   W    Anderson, Phys.  Rev.   86,  694(1952);  R.  Kubo, Phys.  E.ev. 
87,  568(1952); J. M.   Ziman, Proc.  Phys.   Soc.  A65, 54'J and 548 
(19 52);  and references therein. 

3. L.   Ne'el, Ann.   Physique 3,  137  (1948). 

4. J.  H.   VanVleck, Phys.   Rev    52, 1178(1937). 

U 



r 
TR198 -36- 

References 

5. C    HerHnc- and C.   Kittel, Phys.   Rev.   81_, 869(1951). 

6. R.   K.   Wangsness, Phys.  Rev.   91, 1085(1953). 

7. F.   Seitz, Modern Theory of Solids (McGraw Hill, New York.,  1940), 
chap.   3, sec. 18. 

8. H.   B.   Dwight, Tables of Integrals and Other Mathematical Data 
(Macmiilan, New York,  1957), p.   201. 

9. C.   Miller, Z.   Physik 82, 559 (1933). 

10. F.   Bloch, Z.   Physik 6J_, 206(1930). 

11. N.   F.   Mott and H.   Jones, Theory of the Properties of Metals and 
Alloys (Oxford University Press, 1936), pp.   236-239- 

12. T.  Hols;ein and H.   Primakoff, Phys.  Rev.   58,   1098(1940). 

13. C.  Kittel, Phys.  Rev.   82,565(1951). 

14. Keffer, Kaplan, and Yafet, Am.   J.  Pbys.   2^, 250(1953). 

15. H.   B.   Dwight, op.   cit. ,  p.   200. 

16. L.  Neel, Ann.  Physique  5, 232(1936). 

17. M. Fallot, Ann. Physique 6, 30 5(1936); Elliott, Leg void, and Spedding, 
Phys.   Rev.   91., 28(1953). 

18. E.   C.   Stone r, Proc.   Roy.   Soc.   A 165, 372(1938). 

19. C.  Guillaud and M.  Roux, C.  R.  Acad.   Sci.   229, 1133 (1949); 
C.  Guillaud and H.   Creveaux, C.  R.  Acad.   Sci.   230,  1256 and 
1458(1950);  R.   Pauthenet, Ann.   Physique 7, 71017352). 

20. E. J. W. Verwey and E. L. Heilmann, J. Chem. Phys. 15, 174(1947); 
Verwey, Haayman, and Romeijn, J. Chem. Phy.^. ±5, 1817/1947); Shull, 
Wollan, and Koehler, Phys.  Rev.   84, 912(1951). 

21. C. Kittel. Introduction to Solid State Physics (Wiley. New York. 19 53). 
chaps.  9 and 10. 

22. R.   Millar, J.  Am.   Chem.   Soc.   50,  1875(1928} and 51_, 215(1929). 

23. S.  A.   Friedberg, Physica 18, 714(1952). 

24 J.   W.   Stout and M.   Griffel, J.   Chem.   Ph>    .  _iri,  1455(1950). 

25. van den Handel, Gijsman, and Poulis, Physica 18,862(1952). 

26. C.   J.   Gorver and J.   Haantjes, Physica 18, 285(1952). 

L 



? 

DISTRIBUTION LIST 

Technical Reports 

2 Chief of Naval Research (427) 
Department of the Navy 
Washington 25,  D.   C. 

1 Chief of Naval Re sear ch( 460) 
Department of the Navy 
Washington 25, D.   C. 

1 Chief of Naval Research ^421) 
Department of the Navy 
Washington 25, D.   C. 

6 Director (Code  2000) 
Naval Research Laboratory 
Washington 25, D.   C. 

2 Commanding Officer 
Office of Naval Research Branch Office 
1 50 Causeway Street 
Boston. Massachusetts 

• 

1 Commanding Officer 
Office of Naval Research Branch Office 
1000 Geary Street 
San Francisco 9, California 

1 Commanding Officer 
Office of Naval Research Branch Office 
1030 E.  Green Street 
Pasadena, California 

1 Commanding Officer 
Office of Naval Research Branch Office 
The John Crerar Library Building 
86 East Randolph Street 
Chicago 1, Illinois 

1 Commanding Officer 
Office of Naval Research Branch Office 
346 Broadway 
New York 13, New York 

3 Officer-in-Charge 
Office of Naval Research 
Navy No.   100 
Fleet Post Office 
New York, N.   Y. 

-i- 



r 
1 O'ef, Bureau of Ordnance (Re4) 

Navy Department 
WashincrtcJn 25. D.   C. 

1 Chief, Bureau of Ordnance (AD-3) 
Navy Department 
Washington 25, D.   C. 

1 Chief, Bureau of Aeronautics (EL-i) 
Navy Department 
Washington 25, D.   C. 

2 Chief, Bureau of Ships (810) 
Navy Department 
Washington 25, D.   C. 

1 Chief of Naval Operations (Op-413) 
Navy Department 
Washington 25, D.   C. 

1 Chief of Naval Operations (Op-20) 
Navy Department 
Washington 25, D.   C. 

1 Chief of Naval Operations (Op-32) 
Navy Department 
Washington 25, D.   C. 

1 Director 
Naval Ordnance Laboratory 
White Oak, Maryland 

2 Commander 
U.   S.   Naval Electronics Laboratory 
San Diego, California 

1 Commander (AAEL) 
Naval Air ueveiopuient Center 
Jchnsville, Pennsylvania 

1 Librarian 
U.   S.   Naval Post Graduate School 
Monterey, California 

50 Director 
Signal Corps Engineering Laboratories 
Evans Signal Laboratory 
Supply Receiving Section 
Building No.   4 2 
Belmar, New Jersey 

u 



r 
Commanding General (RDRRP) 
Air Research and Development Command 
Post Office Box 139 5 
Baltimore 3, Maryland 

Commanding General (RDDDE) 
Air Research and Development Command 
Post Office Box 139 5 
Baltimore 3, Maryland 

Commanding General (WCRR) 
Wright Air Development Center 
Wright-Patterson Air Force Base, Ohio 

Commanding General (WCRRH) 
Wright Air Development Center 
Wright-Patterson Air Force Base, Ohio 

Commanding General (WCRE) 
Wright Air Development Center 
Wright-Patterson Air Force Base, Ohio 

Commanding General (WCRET) 
Wright Air Development Center 
Wright-Patterson Air Force Base, Ohio 

Commanding General (WCREO) 
Wright Air Development Center 
Wright-Patterson Air Force Base, Ohio 

Commanding General (WCL.R) 
Wright Air Development Center 
Wright-Patterson Air Force Base, Ohio 

Commanding General (WCLRR) 
Wright Air Development Center 
Wright-Patterson Air Force Base, Ohio 

Technical Library 
Commanding General 
Wright Air Development Center 
Wright-Patterson Air Force Base, Ohio 

Commanding General (S.CREC-4C) 
Rome Air Development Center 
Griffiss Air Force Base 
Rome, New York 

Commanding General (RCR) 
Rome Air De. Hopment Center 
Griffiss An  Force Base 
Rome, New York 

-iii- 

w 



r "i 

Commanding General (RCRW) 
Rome Air Development. Center 
Griffiss Air Force Base 
Rome. New York 

Commanding General (CRR) 
Air Force Cambridge Research Center 
230 Albany Street 
Cambridge 39, Massachusetts 

Commanding General 
Technical Library 
Air Force Cambridge Research Center 
230 Albany Street 
Cambridge 39, Massachusetts 

Director 
Air University Library 
Maxwell Air Force Base: Alabama 

Commander 
Patrick Air Force Base: 
Cocoa, Florida 

Chief, Western Division 
Air Research and Development Command 
P.   O.   Box 2035 
Pasadena, California 

Chief, European Office 
Air Research and Development Command 
Shell Building 
60 Rue Ravenstein 
Brussels, Belgium 

U.  S.   Coast Guard (EEE) 
1300 E Street, N.   W. 
Washington, D.   C. 

Assistant Secretary of Defe   se 
(Research and Development; 
Research and Development Board 
Department of Defense 
Washington 25, D.   C. 

Armed Services Technical Information Agency 
Document Service Center 
Knott Building 
Dayton 2, Ohio 

-IV- 

L 
• 

.    • 



r 
1 Director 

Division 14,   Librarian 
National Bureau of Standards 
Connecticut Avenue and Van Ness St. , N.   W. 

1 Director 
Division 14, Librarian 
National Bureau of Standards 
Connecticut Avenue and Van Ness St. , N.   W. 

Nutley, New Jersey 

Office of Technical Services 
Department of Commerce 
Washington 25, D.   C. 

Commanding Officer and Director 
U.   S.   Underwater Sound Laboratory 
New London, Connecticut 

Federal Telecommunications Laboratories, Inc 
Technical Library 
500 Washington Avenue 

Librarian 
Radio Corporation of America 
RCA Laboratories 
Princeton, New Jersey 

Sperry Gyroscope Company 
Engineering Librarian 
Great Neck, L.   I., New York 

Watson Laboratories 
Library 
Red Bank, New Jersey 

Professor E.   Weber 
Polytechnic Institute of Brooklyn 
99 Livingston Street 
Brooklyn 2, New York 

University of California 
Department of Electrical Engineering 
Berkeley, California 

Dr.   E.   T.   Booth 
Hudson Laboratories 
145 Palisade Street 
Dobbs Ferry, New York 

Cornell University 
Department of Electrical Engineering 
Ithaca, New York 

-v- 



r 

t 

1 University of Illinois 
Department of Electrical Engineering 
Urbana, Illinois 

1 Johns Hopkins University 
Applied Physics Laboratory 
Silver Spring, Maryland 

1 Professor A.   von Hippel 
Massachusetts Institute of Technology 
Research Laboratory for Insulation Research 
Cambridge, Massachusetts 

1 Director 
Lincoln Laboratory 
Massachusetts Institute of Technology 
Cambridge 39, Massachusetts 

1 Signal Corps Liaison Office 
Massachusetts Institute of Technology 
Cambridge 39, Massachusetts 

1 Mr.   Hewitt 
Massachusetts Institute of Technology 
Document Room- 
Research Laboratory of Electronics 
Cambridge, Massachusetts 

1 Stanford University 
Electronics Research Laboratory 
Stanford, California 

1 Professor A.   W.  Straiton 
University of Texas 
Department of Electrical Engineering 
Austin 12, Texas 

1 Yale .University 
Department of Electrical Engineering 
New Haven, Connecticut 

1 Mr.   jarnes F.   Tros^h, Administrative Aide 
Columbia Radiation Laboratory 
Columbia University 
53S West 120th Street 
New York. 27, N.  Y. 

1 Dr.   J.V.N.  Granger 
Stanford Research Institute 
Stanford, California 

-vi- 


	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061

