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FOREWORD

This report is a new, completely rewritten and
in many respects simplified p sentation of the
theoryvy of functional spaces and functional com-
pletion. The main diiferences be thia pre-~
sentation and the one in Report 7 are described

in the footnote on page 3 of the Introduction.
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INTRODUCTION

The incentive for the devzloprment of a general theory of
functional completion has been the need for complete classes of
admissible functions in differential problems. Traditionally the
admissible functions were assumed to be sufficiently regular, but
during the evolution of existence proofs it kecame necessary to re-
consider the hypotheses of regularity. In the final analysis, exis-
tence proofs use the completeness of the class of admassible func-
tions with respect to a norm determined by the problem. On the
other hand, the usual classes of sufficiently regular admissible

functions were not complete.

In some instances it has proved feasible to adjoin to the
usual class of admissible functions suitable ideal objects tc ob-
tain a class with the required properties of completeness, the
"abstract completion®, to extend ihe differential cperator to such
ideal objects, to prove the existence in the enlarged class of a so-
lution to the problem in question, and finally to prove by using the
special character of the probiem that the solution is necessarily
one of the original admissible functions. % Often the last step is
unmanageable, however, and then the very questions of which the
differential problem is composed, quesiions of differentiability of
the solution, its boundary values, etc. are meaningless. Further-
more, comparison of the enlarged clasees arising from two dif-
ferent problems is not posaible in any direct way, and there are

questions in which such comparisons are necessary.

1. See for example, K. O, Friedrichs [17].
2. Comparison of the enlarged classes for two different problems

is an essential part of some recent approximaiion methods; see
N. Aronszajn [ 3].
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In some problems, especially those connected wi:h the La-
place operator, there have been scaitered attempts to complete
the usual class of admissible functions by the adjunction of con-
crete functions determined in a definite way by the original class
of functiens and its norm. L The success of these attempts was
notable for the reason that the problem of completion by functions
wabo not *hen well defined. They are the fore-runners of the gen-

eral theory of functional completion,

The basic difiiculty in the completion by functions of a func -
tional class lies in the imposs'ibility of using functions which have
significant values at each point. It is in the nature of the problem
that if there is a functional completion at all, then associated with
it are certain exceptional sets of points, Any two functions which
differ only on one of the exceptional sets must be considered equi-

valent.

Thus the problem <f functional completion divides into two
parts. The first of these is to find a suitable class of excepiicnal
sets. The second is to find the funci.ors, defined modulo these
exceptional sets, which must be adjoined in order to obtain a com-
plete functional class. It turns out that there may be an infinite
number of suitable exceptional classes (of exceptional sets) in a
given problem, but to any one of thein corresponds essentially one
functional completion. As to the infinite number of suitable excep-
ti onal classes, it is clear that the most svitable is the class whose
exceptional sets are the smallest, for tn it corresponds the com-
pletion whose functions are defined with the best possible precision,
Whenever such a minimal exceptional class exists the correspon-

ding completion is called the perfect completion. Use of the per-

fect completion is especially important in differential problems,
for if the exceptional sets are too iarge, then it 18 imposaible to

discuss derivatives, boundary values, etc. in the normal way.

1. e.g. O.Nikodym [21]; J. W. Calkin [i1]; C. B. Morrey [27 .
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In the first sections of Chapter I of this paper we give the
precise definitions and general theory of functional completion in

an abstract setting, ~

We define exactly the classes of sets which will Le called
exceptional classes, then the functional classes, normed function-
al classes and functional spaces relative to a given excepticnal
class ¢7. This leads finally to a precise definition of a functional
completion relative to 0+ or reiative to any larger exceptional
class @3 50 . We give a construction of the functional comple ~

tion rel ative to (', supposing that it exists.

The bulk of the chapter is devoted to the more difficult prob-
lem of determining the exceptional classes relative to which a func-

tional completion does exist. We introduce set functions 6(A),

<§(A), and cy(A). The last, constructed from & by means of func-

tions {(t) of a variable t > 0, arc called capacities. In certain

classical cases they coincide with classical capacities. The classes
~

of sets for which the funciions 6, 6, and Ce vanish give bounde for

the exceptional classes relative to wiiich a completion can exist.

1, A general theory of functional completion was announced by

N. Aronszajn in [ 2] and presented in [ 8§]. The new presentation
given in this paper differs from its predecessor in several respects.
The most important is the use of set functions to replace the classes
of sets C{Mr:& . The set functions are simpler conceptually and
easier to handle. Anoiher improvement is the introduction of the
majoration properiy and the solution for spaces having this proper-
ty of the problem of perfect compietion. By using the majoration
property it is possible to obtain the perfect completion in all the
examples in which formerly the theory of measurable spaces was
used. Consequently ii has been pessible to defer discussion of the
latter until the time when they will be used in the thcory of pseudo-
reproducirg kernels. KFinallv, the choice of examples is quite

different in the two papers,
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V& introduce the "majoration property", and under assumption
that it holds (which is always true in cases met in applications)
we prove that vne of the above bounds is ~xactly the exceptional
class for the perfect completion, if the perfect corpletion exists.
Under the same acsumption necessary and sufficient conditions
for the existence oi the perfect completion are obtained. We ob-
tain also some properties of the functions conztituting the com-

plete class. These are of importance in applications.

The chapter is concluded by a discuzsion of proper functiion-
al completion, tre case where it is actually possible to use func-

tions defined everywhere.

Chapter 1I is given tc examplies, We do not show any of the
applicaticne of the theory to differential problems, for these will
be treated fully in later papers. Rather, we have chosen the ex-
amples with the object of bringing out in concrete cases the sig-
nificance of the notions introduced in Chapter I. In some of the
examples, however, especially example 3, we are able to use the

genera! theory to give new proofs of known results,

The first example treats a wel! known space of analytic func-
tions.

The second example is the completion of a space of continu-
ous functions in which the norm is the IP norm with respect to a
Borel measure p in a locally compact topological space. The ex-
ample is one which is thoroughly discussed in measufe theory;
here it serves exclusively as illustration. One point which might
be unexpected is that the perfect completion is not always the
space 1P(u), though for the usual topological spaces - say metri-

zable spaces - it is,

The third example is the completion of classes oi functions
harmonic in a domain and continuous in the closed domain in which
the norm is the LP norm on the boundary. We obtain the extension

¢ n-dimensional spheres, and more generally to n-dimensional

T
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domains of bounded curvature, of theorems which are classical in
the case of the circle in the plane. In particular, by using the ca-
pacities as definasd in the general thoory we obtain the extension of

Fatou's theorem to these domains.

The last example is the completion of the class of potentials of
M. Riesz of ordezr o, U <a <n, of {iniie energy. 2s We obtlain the
perfect completion on the basis of the gene:ral theory of Chapter I,
and we prove that the exceptional sets for the perfect completion
are the sets of outer capacity 0. We establish the following connec-
tion hetween the set functionsﬁ and czpacities of the gener4i tienry
and the usual inner and outer capacities: .6(A)Z = ’g(A)Z = c,(A) =y, (A)
for any set A, where <, is our capacity formed with the f—unction—
q(t) = tZ and where Yo is the usual outer capacity of order a.
Furthermore, Yi(A) =yo(A) for any analytic set A, where Y is
the usual inner capacity of order a. £ These results justify our

terminology.

1. The theorem: in question is that concerning the convergence of a
harmonic function ic its boundary values. Its extensicn to domains
of bounded curvature was obtained by C. de ia Vallée Poussin [251.
A further extension to more general domains was obtained by I. I,‘
Privaloff and P. Kouznetzoff |:22]_ .
2. Thc perfect completion for the case a = 2 was conjectured by
N, Aronszajn [21 The perfect completion for arbitrary a was con-
structed first in J. Deny [15:[. An independent construction for

a =2 was announced in N. Arcnszajn [ 6].

3. We prove this result by applying the general theory of capaci-
ties of G. Choquet [14_] Tlic result is new for a > 2.
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CHAPTER 1I. GENERAL THEOPY

§l. Lincar functional classes. If f and g are real or complex-

valued functions defined on respective subsets A and B of an abstract
set & , then f+g and af, a real or complex, denote the following
functions: f+g is defined on the set AN B, and (f+g){x) = £(x) + g(x);
af is defined on the set A, and (af)(x) = af(x). A real linear func-
tional ciass is a class ’; of real valued functions, each defined on a
subset of a fixed abstract set &>, such that if f{ and g belong to 7=

and a is real, then f+g and af belong to . A complex linear func-

tional class is the obvious analogue. A linear functional class, or

I~

simply a functional class, is a real or a complex linear functional

class.

The abstract set & in which the functions of a lirear functional
class F are defined is called the basic set of 7. A given function f
in Y% is not necessarily defined on the whoie of the basic set Z; the
subset on which { is not defined is called the exceptional set of f.

Members f and g of F are equal only if they are identical.

ar, £ and g are different whenever their exception-
al sets are different. For this reason a linear functional class is not
necessarily a vector space in the ordinary sense. In fact, if f and

g are any two functions with different exceptional sets, then 0-f $0.g,
for the former has the exceptional set of f, and the latter has the ex-
ceptional set of g; 0-f # 0-g is impossible in a vector space. Simi-
larly, the identity (f+g) —g = fails in a general linear functional
class. These examples give already the main deviation from' vector
space behavior, however: addition is associative and commutative,

the usual distributive laws hold, and 1-f =f{.

Let & be the class of all exceptional sets of functions in “F.
it i s clear that the union of each pair of sets in & is again in &,
for the union of the exceptional sets of f and g is the exceptional set

of f+g. An equivalence relation is defined on “F as follows:
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f=f if f and {' are defined and equal save on some subset of
a set in & . It iz immediately verified that if =f" and g=y',
then af =af' and f+g=1i'+g'. The equivalence classes in ¥F ,
under the usual definitions of addition and scalar multiplication of

equivalence classes, form a vector space.

§2. Functional classes rel. ¢ and normed functional classes.

Let % be a linear function class on a basic set & , and let 3% be
the class of exceptional sets of functions in % . In practice it
often happens that more sets must be considered exceptional than
those already in & . In order to treat examples of this kind we

.re compelled to introduce a general notion of exceptional class.

™~

+
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efined in the
last section, an equivalence relation on the class F . In this de-
finiticn, eubsets of exceptional sets play the same role as the ex-
ceptional sets themselves, so it is justifiable to insist that each
subset of an exceptional set be exceptional. In order to ensure that
_ the equivalence be compztible with the linear operations in F, we
require that a finite union of exceptional sets be exceptional. In
order to ensure that it be compatible with limit processes, we re-
quire that even a countable union of exceptional sets be sxceptional.

The formal definition follows,

An exceptional class in the basic set &, is a class 01 of sub-

sets of & which is

(2.1) hereditary: if A€0r and BC A, then Be&0Or.
oo

(2.2) G -additive: if Aném, n=12,..., then L)AnEOL s 2.
n=l

1. This equivalence relation is not the only one which transforms
°F into a vecior space. The relation with the smallest equivalence

classes is given by: f==f' if f = £' wherever both are defined.

2, We use the following standard notation: if ¢ is a class of sub-

sets of a set &, then Ok, is the class of all subsets of sets in 0
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A linear functional class % is a linear functional class rela-

tive to 01 if @ is an exceptional class which contains the excep-
tional set of each f in ¥F. If & is a functional class relative to ot
(written rel. 2 ), then 0 is called an exceptional class for °F,

and the sets in 0! are called exceptional sets. In order to avoid

urnecessary repetition we make the foliowing conventions : the
letter %F, with or without indices, will denote a linear functional
class; %> will denote its basic set; 07, with or without indices.

will denote an exceptional class in &,

It is clear that for each linear function class % there ex-
ists an exceptional class, which in genzral is not uniqﬁe. The
largest exceptional class for F is the class o. ali subsets of & ;
the smallest exceptional class fcr * is the class ‘f"crh’ where #
is the class of all exceptional sets of functions in “¥; the intersec-
tion of any family of exceptional classes for ¥ is again an excep-

tional class for F .

Any exceptional class 0} for the functional class % defines
on “F a natural equivalence relsztion: f==f' if f and f' are de-
fined and equal save on a set in 0L . As before, the equivalence
clagac3 form a vector space, but usually it is more convenient to
work directly with the functional class and its functions than with
the vector space and its equivalence classes. Consequently, the
equivalence notation, f==f' will be used rarely. In its stead we
shall write f =f'exc. ¢t . In fact, we shall say that any proposi-
tion is true exc. oL if the set of points at which it is not true be-
longs to the exceptional class 0L . Alsc, for two sets A znd B we
shall say A CBexc.0t if A-B&Ot . Similarly, A =Bexc.a
means (A -B) +(B-A)eor .

Ot ig the class of all countable unions of sets in 01 ; 018 is the
class of all countable intersections of setg in ¢0¢. With this nota-

tion the fact that (¥ is an exceptional class can be written

01«=utd_h .
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j31 "5‘-/ is a functional class rel. X, then so i8 the class &'
of all functions defined exc.¢ and equal exc.¢ to some function

in ¥ . <9¢' is called the saturated extension of 3 rel.dt. K is

saturated rel. & if it coincides with its saturated extension. Let
F and ‘3-’1 be functional classes rel. (¢ and 01«1 respectively,
From the relation F < 371 one obtains no relation in yeneral be-
tween @ and @,. If ¥ is saturated, however, then gL cC 011.

A pseudo-norm on a functional class ¥ is a real valued func-

tion ||[f|| on “F with the properties:

(2.3) el > o,
(2.4) lafll =lallfll .
g0 ) Pinon
(2.5) e+ell < el + el -
a function
It can be proved by the homogeniety property {2.4) that if, {
in F is egual tc { wherever it is defined, then jif|| = 0. A normed

functional class rel. 00 is a functional class °F rel.Jl together

with a pseudo-norm on % which has the property:

(2.6) lf]l =0 if and only if f =0 exc. ot .

v

A pseudo-rorm with property (2.6) will be called a norm.

The following statements can be proved without difficulty.

- el L. - s. ry3 Y .
In each of them ‘# is a functional class with a fixed pseudo-norm.

1) If F is a normed functional class rel. 04, then so is its

saturated extension (with the natural extension of the norm),

2) If °F'«< “F, then ex' (with pseudo-norm of 7 ) is a

normed functional class rel.¢} whenever % is.

3) i 7 is a normed functional-class rel. ¢¢' and

rel. o' D g1, then it is also a normed functional class rel. O¢

whenever ' <« a. < g,

4) if ¥ is a normed functional class relative to‘each of a

family of excertional classes, then it is also a normed functional

claes relative to the intersection of the family.




Condition {(Z2.6) comprises two implications. Taken separ-
ately they provide bounds above and below for the exceptional classes
relative to which 7F¥ can be a normed functional class. Let &' be
the ciass of all subsets B of & such that for some f in F with

= G, < f(x) 1
el = 6. BeE [t s

class of all subsets B of & such that for every f in “F with ||[f]|>0,

B E [ 4 0],

The classes &' and ' are both hereditary but they are

not in general G"-additive o: even additive.

5) A necessary and sufficient condition that %~ be a normed

functional class rel 27 is that #'c g c 4" A necessary and

sufficieni condition that there be an exceptional class relative to

which %F i1s a normed functional class 1s that ,-Gc'_c: =

Remark 1. The inclusion &' < #£" does not hold for all'd.:;
even when it does, ,“,’—6_" < X&&" may not.

Example 1. Take ¥ to be the open interval 0<x <1, and
F to be the class of functions on & with continuous bounded de-

ivatives; define the norm by [|f|| —f |£' (x) |dx. In this case the
0

class &' consists of all subsets of & , the class &" of all
subsets with empty interior. There is no exceptional class relative

to which T is a normed functional class.

Example 2. Take & to be the closed interval 0g<x<1,
and ? to be the class of continuous functions on 2 ; define the
norm by |[f|| = sup |[£(x)]. In this case X&' is (0), and 4" is
again the class of subsets of T with empty interior. % is a
normed functional class relative to the class ¢¢' of sets of Le-
besgue measure 0, and also relative to the class m"s%tf;ﬁorfst ca-
tegory; but there is no 0! larger than ¢1' and ¢@¢" relative to

which % is a normed functional class.

Conclusion. If there is any exceptional class reiative to

which a given functional class with a pseudo-norm is & normed

o
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functicnal class, then there is a smallest such class, but there may

not. be a largest.

In any functional class % with a pseudo-norm convergence
(in norm) is defined as follows: a sequence {fn} of functions in F
converges to a function f in % (written f —f, or f=1lim{) if
l£,- £§— 0. The sequence{f }is Cauchy if |lf —-f |[|— 0. Fis
complete if each Cauchy sequence of functions in F converges to

some function-in % .

Remark 2. A sequence in ¥ may have several limits, If F

is a normed functional class rel. any two are equal exc. 07 .

...... k 3, Suppese that F is a nermed functicnal class rel.
0L, and let V k= the vector space associated with % by means of

the equivalence relation defined by 0t . It is clear that the pseudo-
nerm has a constant value on each equivalence class. If this con-
stant value ie taken as the norm of the class, then V becomes a
normed linear space in the usual sense. A convergent sequence in
F corresponds to a convergent sequence in V, a Cauchy sequence
in F to a Cauchy sequence in V. ¥ is complete if and only if V

is complete.

§3. Functional spaces. In a general normed functional class

norm convergence of a sequence of functions fn has no bearing upon
the convergence of the functions pointwise, The object of the rest
cf this paper is to study functional classer in which the two kinds of

convergence are linked.

A functional space rel. 02 is a normed functional class rel.(t

in which the following condition holds:

(3.1) If f —»f, then there is a subsequence {fnk} such that
: fnlﬁx) — f(x) exc. 2.

In the statements below, “F is a functional class with a

fixed pseudo-rorm.

4



1) If < is a functional space rel AL, then so ;s its saturated

extension.

2) If %¥'< ¥F, then “F'(with pseudo-norm of F) is a ’

. o .
functional space rel. &# whenever & is.

3) If ¥ is a functional space rel. gt' and rel, 2" D ot!',

then ¥ is a functional space rel. & whenever g'c 02 < 2"

4) If F is a functional space relative to each of a sequence

of exceptional classes, then “F is a functional space relative to

their intersection.,

Proofs. Statements 1), 2), and 3) can be obtained easily from

- Aleo o ey ionce Smm el e
i

(Y
P l.uecc:.uus S5€ 11011, e

tatemeni 4) is obtained
as follows. Lect & be the intersection of the sequence {an}, f %
is 2 functional space relative to each ot s then by 4), section 2,
° is a normed sunctional class rel. 0¢ . If fn—‘, f. then there is

a 5 By .
‘.a subsequence {fl,n} such that fl,n(x) —»> f(x) exc.()z.l, then a sub
sequence {fz,n} of {fl,n} such that fZ,n(x) —» {{x) exc.mz - kence
also exc. 011 N 012. The standard diagonal process yields a subse-
quence of the original '&fn}. which converges at cvery point exc. dJt;

thus F is a normed functional class rel. ¢ in which (3.1) holds.

Remark. Even if % is a functional space relative to some
exceptional class 0%, 4) cannot be used io cbtain the existence cf a
minimal exceptional class relative to which it is a functional space;
for 4) provides only for ccuntable intersection of exceptional classes.
As yet there is neither a general proof nor a counter example for
the existence of such a minimal class. It is certain that there need
not be a largest exceptional class relative to which °F is a funct -

ional space. This is shown by Example 2 of the last section.

Examples., Example 2 of the last section provides two func-
tional spaces. Other common functional spaces are the spaces P,
P 2 1. To be specific, let & be the interval o <x <1, andlet
. be the class of subsets of & of lL.ebesgue measure 0; then Lp,

ouw>
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P2 1, 18 the ciass of all functions f defined exc. ¢t which are

11

1 P
measurable and such that Hf”p = {f |£(x)‘pdx} / < oo, With the
0

indicated norm, 1P is a functional space.

Proper functional spaces. A proper functional class is a

functional class rel. Q1= (0), the class consisting of the empty set.,

A proper normed functional class is a normed functional class

rel, (0). A proper functional space is a functional space rel. (0).

5) Either of the following statements i8 a neccessary and

sufficient condition that a proper normed functional class °F be a

proper functional space,

a) If fn—af, then fn(x) —> f(x) for each x in &,

b) For each x in E,, the expreesion f{x) 1is a

o . . [ —arumd
continuous linear functional on #.

Proof. The sufficiency of a) and the equivalcnce of a; and

b) are evident., We prove the necessity of b). It is clear that the
exprezssion f(x) is a linear functional on ¢ . If it is not continuous,
then it is unbounded on each sphere |[lf}] < &, so for each n
there is an fn satisfying "fn I < l/n and lfn(x)| > n. Obvicva-
ly fn—e 0, but no subsequence of fn(x) does. This requires that
x belong to an exceptional set, and contradicts the fact that there

is no exceptional set but 0.

24. Functional completion. It is well known that the function-

al space 1P described in the example in the last section is obtained
by completing a simpler functional class. Let & be the interval
0<r<1, andlet Cp denote the functional class of all continuous

functions defined every/where on &, with the norim
1 1/p
el :.{f L (x) ]pdx} : Cp is a proper normed functional class.
o 0

It is not cémplete, nor is it a proper functional space. The excep-
tional claz& ceonsisting of sets of L.ebesgue measure 0 and the func-

tional spnace 1F provide the solution to the following probiecm: to
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find an exceptional class ¢! relative to which C_ is a functional
space, and to find a complete functional space %F rel.d which

contains Cp as a dense subset.

A normed functional class “F rel.gt is embedded in a
normed functional class “F' rel. ot if F< ¥/, gco’s and the
norm of each function in F is the same as its norm as a function
in F'. A subset L of a normed functional class F (or of any
functional class with a pseudo-norm) is dense in °F if each f in F

is a limit of a sequence {fn} in 5 . A functional completion of a

normed functional class °F rel.0} is a functional space “F'rel. 03'

such that F is embedded in °F' and is a dense eu

functional classes rel. 8¢ and @', respectively.

1) %F is embedded and dense in its saturated extension.

2) 9 is complete if and only if its saturated extension is

complete.

3) If F' is a functional completion of %, then the satura-

ted extenaion of ' is also a functional completion of 7, and it

is the only saturated functional completion rel. 6¢°.

Proofs., 1), 2), and the first part of 3) are obvious. Suppose
that “F ' and F " are two saturated functional completions rel. o
of % . We shall ahow that' °%F'< %", from which it will follow by
symmetry that ' and °F " are identical. Let f belong to F'.
Then there is a sequence {fr} of functions in “F such that 28 elements
of ¥F, lfn‘% f, and such that fn(x) —> f(x) exc. 0L'. The se -
quence {fr;(‘ is necesearily Cauchy in °F', and since ||gii'= ligll=llgl"
for ali g in “F, it is Cauchy in “F" too. As 9F" is complete,
there is an " in “F " such that fn—> f" in TF". For a suitable
subsequence, therefore, {"(x) =lim fnlgx) = f(x)exc. &3'. Since
“F" is saturated, f belongs to F". Thus “F' and €“F" are iden-
tical functional classes; their norms agree as they agree on the

dense subclass F .

el
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In view oi the first part of 3) there is never a loss of gen-
erality in restricting a discussion to saturated completions. This
is sometimes convenient because of the uniqueness property des-

cribed in the second part of 3).

4) If %F has a functional completion rel. Of', then the satur-

ated completion %x':" rel. o¢' is described as follows:

(4.1) A function f defined in & belongs to %' if and only if

there is A Cauchy sequence {fn} in F such that
~J

fn(x) —> f(x) exc. at'. 1f {f belongs to %', then

ilf] = lim ||f“ | for any such Cauchy sequence.

Proof. ¥rom the definition of functional completion it is
clear that for each f in the completion there is a sequence with
the properties listed., On the other hand, suppose that f is a func-
tion for which there exists such a sequence {fn} . As {fn} is
Cauchy, it has a limit {' in '3;', and for a suitable subseqguence

{fnk] , (%) = 1lim f_(x) = f(x) exc. ¢t'. Since X ia saturated,
llk

it must contain f.

5) If % has a functional completion rel. ¢' and rel. o+ Do#',

then it also has a functional completion rel, ;" whenever

otl c 01_"' c mll.

Proof. Under these circumstances a functional completion
“F+ rel, 0t is in fact also one rel. ot". It is sufficient to show
that % ' is a functional space rel. #¢"'; for this it is sufficient
(see 3), section 32) toc show thai “F ' is a functional space rel. OL".
The only point which requires verification is that if f = 0 exc. ot",
then ||f|| = 0. It is easy to see, however, from the description
(4.1) that %' is embedded in the saturated compietion rel. g.",

ar. that f - Gexc. 01" and |f|| $ 0 are incompatible.

6) If F has a functional completion relative to each of a se-

guence {mr} of exceptional classes, then it has a functional com-

pletion relative to their interscection.
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Proof. Let &' be the intersection, and let %' be the class
of functions described in (4.1). Define ||f]] for these functicna as
it i8 defined there. It i8 evident that ";' is a functional class rel.'.
Let aFn be the s?jurated completion rel.Ozn. Fronm: 4) it follows
that for each n % is embedded in ‘?—’n. From this it~follows di-
rectly that the norm on 7' is well defined, and that °#' is a func-

tional space rel. az,n.

-

Consider a function { in ”fn. There is a Cauchy sequence

{fkﬁj in ¥ converging exc. a, to f. Now, {fl} is Cauchy in every
?j' thereior= convergent in every '5‘j. Hence for-each j it contaips
a subsequence which converges pointwise exc. 01,j. By the diagonal
process it is possible to obtain a subsequence which converges exc.a',
converges thereiore exc. g to a function t' in ";“. We have proved
t}ft ';' c ’fn, and that each f in 'fn is equal exc.dt to| an f' in
& 3 Thij means that TFn is the saturated extension of ‘;';." rel.mn,
so that “F', like <F is complete and is a functional space rel. gt .
By 4), =zection 3, %' is a complete functional space rel, at'. That
‘¥ is embedded and dense in %' does not require proof.

This proof shows the possibility of using (4.1) not only in des-
cribing a functional completion krnown a priori to exist, but also in
making an existence proof. Whenever “F is:a normed functional
class rel. 0+ < 01', (4.1) defincs a class of functions ";' which is a
functional class rel.g1'. It also gives a procedure to define a norm
in %'; this norm is well defined if and only if it does not depend
cn the choice oi the Cauchy sequence {fnj] converging to { point-

wise exc. 0.

7) (a) '5" 18 a normed functional class rel, &' if and only if

for each Cauchy sequence {fn} in % which converges pointwise

exc. O} the conditions fn(x) —>» 0 exc.0t' and “fn | = 0 are
If "';':‘ 18 a normed functicnal class rel. 24!, then °F

eqguivalent,

is embedded and dense in '?'.

(b) _If_'?' i8 a normed functional ciass, and if each

Cauchy sequence in “F contzins a subsequence>which converges




T

~ ~
exc. ¢t', then °“F!' is complete. “F ' is a functional completion of F

if and only if it satisfies this condition on Cauchy sequences and is

a functional space rel. G‘V .

Proof. {a) If “* 'i5 a normed functional class rel. ot!' (which
implies in particular that the norm in "%' is well defined), then a
. sequence {fn} of the type indi;ated has a limit f in ;.Fv' to which it
converges pointwise exc. 9¥. Each dondition which follows is ob-
viously equivalent to the conditions adjacent to it: (i) || £ I —0;
(1)  JIf]] = 0; (iii) f(x) = O exc.o0t'; (iv) 1 LX) —> Oexc.a'.

Suppose that % has the property described in (a). If for an

f in o‘-' there are Cauchy seguences {fn} and {n} in ¥ which

i Ile ' .
converge exc.ot' to f, then Hlfn!! - Lbn!H 2 i~ 8, | == 0, for
{ f -g } is8 a Cauchy sequence which ce rges to 0 exc. o',

Therefnrﬁ the procedure of (4.1} for norming 7' is well defined;
the norm of an f does not depend on the particular approxxmatmg
sequerice. The proof that ?’ is a normed functional clase rel. ot
in which % is embedded offers no difficulty. In order to show thit
“F is dense in %' we verify the fact that if f is a pointwise limit
exc.0L' of a Cauchy sequence {fn-& in F, ihen "fn— f“ -— 0.
For each n, fn — f is a pointwise limit exc. 0t' of the Cauchy se-
quence {fn- fm.& in F , so that by definition Ilf ~-f]| = 11m ||f - Im Il
and this can be made arbitrarily small by proper choxce of n be-
aude the sequence {fn} is Cauchy.

(b) If “F' is a functional completion, then by definition it is
a complete class and a functional space rel. &@'; hence each Cauchy

sequence has a subsequence which converges exc. 01'.

To prove completeness under the hypothesis in (b) it is suf-
ficient, since we have already cstablished that F is embedded and
dense in '?', to prove that each Cauchy sequence in F has a limit
in % '. By hypothesis each Cauchy sequénce irn ¥ has a subse-
quence which converges exc.0%'. The pointwise limit of this sub-
sequence belongs neceegsarily to "?', and it is the hmit in norm of

the subsequence, therefore also of the sequence.
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Remark 1. It 1s particularly important in applications to make
use of completions for which the exceptional sets are as small as
possible, for in these the functions are determined most accurately.
if there is a smallest exceptional class 1 relative to which a given
°F has a functional completion, then the saturated completiun rel.ot
is called the perfect completion of %. Proposition 4) is relevanc
here, but it cannot be used, even with the hypothesis that there ex-
ists some completion, to deduce that there exists a perfect com-
pletion. It provides only for countable intersection of exceptional
classes. This general existence question is open, though we have
obtained theorems of an abstract character with a wide range of ap-

plication. These will be discussged in the section io follow.

§5. The functions & and 3 and the classes which they define.

In this section and the next we introduce certain funciions and
classes of sets which lead toward solutions, partial or complete,

to the following problems: (i) to decide when a given normed func-
tional class admits a functional completion; (ii) to decide when it
admits a perfect completion; (iii) to descrihe the exceptional sets
for a perfect completion. The classes introduced will provide ex-
plicit bounds for the exceptional class of a perfect completion; in
all examples where a periect completion has been found, its excep -
tional class coincides with the bounds given. Throughout the two
sections ¢ is a fixed exceptional class, % is a fixed normed

functional class rel. 0 . The initial definitions follow.

Definition =2). & is the class of all sets B< & {for which

there is an f in F satisfying |f(x)| 1 on Bexc.ft; for each B

nv

in &, 68(B) is the infimum, over all f in ¥ satisfying If(x)l 21

on B exc. 0, of the numbers ||f]|.

Definition b). ;Z is the class of all sets B& & for which
there is a Cauchy sequence {fn} in 7 satisfying lim inf |fn(x)!z 1
on B exc.ft ; for each B in ;Z';. 'g(B) is the infimum, over all
Cauchy sequences {fn‘ﬁ in ¥ satisfying 1iminf|fn(x) | >1onB exc.0r,

of the nuwunbers lim ||f1||
&

=3
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Definition c¢). &° is tone class of all sets B in & with

5(B} = 0; & is the class of all sets B in & with 5(Bj =0 .

The first two statements below follow directly from these

definitions.

1) If A€0l, then A<€5 and §(8) = 0; if BEX and
=B exc.(f, then B'€XL , and §(B) = &B'); if BESL and
Bro B, then B é-x a.nd &5{B") < B(B) ‘I‘he same statements

| gy, 4

ot
toid for 35 and o In particular, 27, A’—» and ;@o are ali

heredntary and contain .

-~ Lrgd = -
2) FC RN if B €5 , then &B) > &{B). Hence
%° Cgo 1. -

3) (a) E F is a functional space rel. % then ¢} = FAS

{b} i{ ¥ is complete and a functional space rei. &, then
#=&, o(B)=5(B} and o= &° = &H°.

4} (a) For each B € %® there is a sequence {f& in ¥ such

that Hgfnﬂﬁ —> 0 and |f (x}| —> o on Bexc.or.

() lf_ B< & is such that for some sequence {fn} E_ =,
lﬂfnﬂﬁ —> 0 and lim Efn(x)l >0 on B exc.®, then Be 55';)..

5) if B< % is such that for some Cauchy sequence {f} an
= Z°

L~ Ilf (V\E —_— o on R s~ M',’ U“:n

LA n SR e

Ul

-

Proofs. 3)}{a). By 1) ¢t=X% . On the other hand if B € &°
there exists {fn." such that E}]fm |l = 0 and ufn(xﬂ 21 for x€ B

exc.%t. Byv definition of functional spaces it follows thar B € &%,

3¥b}. In vnew of statements 1} and 2) and 3)(3), we have only
to prove that & ST s 8(B) < B(B). Lei BEZ and let LE T be
a Cauchy sequence such that Iim lnflfn(x)l > 1 for x < Bexc. Ot

Since ¥ is a complete functional space we can find a subsequence

~b Ll
1. In general the equality &% = &° and even -.rﬂ- = of?? is

not true, as will be shown at the end of exampie in secticn 9.

L PR
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{f‘n} and a function f€F such that: {f'n} - f and f;l(x) —> f(x)
exc. 0. It follows, !f(x)\g 1 for x€ B exc.0t and lim Hf;1 i = litd

and thus both our assertions are proved.

4) {(a) If &(B) =0, then for each n there is a function g, in
¥ such that ||gn|| < 1/2 and |gr(_x)| >1 onBexc.dl. Take

n
—_ 1 :
(b} ¥ By = t—;[lfn(;.gﬂ > 'E'] . then 8(B, ) <k, || and

® -© ®
BclJ U NB exc.Ob. Onthe other hand, {7 B, €X2,

- = = k!n k,n

k=1 £=1 n={ .

m .

for S(QIBk'n) < rirzﬁl G(Bk'n) < ri,{fflk i£ Il = 0. Hence the resuilt.

5) Let M = 1lim llfn I For each & > 0, the seaquence {gfn}
is a Cauchy sequence in F satisfying lim inf|£1n(x)| >lonBexc. .

Therefore ‘K(B) < EM,

The rest of the section is given to the statement and proof of
ite main theorem. The theorem displays necessary and sufficient
conditions that °F be a functional space, or that it admit a function-
al completion, relative to a given exceptional class ¢t'> ¢t . The
conditions for the existence of a functional completion rel. &t', un-
like those given in section 4, are expresasible within F and o,
without recoures 1 vhe auxiliary class '?' (which is always the
ﬁ_'_xlnctional class defined by (4.1) ). However, new information about
F' is required for the proof of the theorem. Since this has inde-
pendent interest, we state it as a lemma distinct from the main
line of argument. When "5" iz a normed functional class rel. &',
the classes é—ind &° and functions & formed for %' are de-
noted by &, &°, and 6.

THEOREM. Let ".7- be a normec fanctional class rel, ¢t, and
let a'D0a.

(a) In order that % be a functional space rel, 01' it is neces-

sary and sufficient that conditions la and Za be satisfied.
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1 i f(x) = 0 exc.0t', then |f]| =

2_ Each cequence of sets Bn’ such that 6(Bn) —> 0, con-

a
: _ . 1.
tains 2 subsequence whose limit superior helongs to o',

(b) In order that °%F have a functional completion rel. ¢¢' it

is necessary and sufficient that conditions lb’ Zb, and 3b be satis-
fied.

lb For each Cauchy sequence {fn} in F which converges
pointwise exc. o' the conditions fn(x) —> 0 exc. 0t' and ||fn | — 9

are equivalent

Zb Each Cauchy sequence {fn} in “F contains a subse-

quence which converges pointwise exc. 4.

—
3b Each sequence of sets Bn such that 6(Bn) —> 0 con-

tains a subsequence whose limit superior belongs to o7'.

Lemma, Let “F be a normed functional class rel.o0t, let
e —— N —

o; > oL , and suppose that conditions l.b and 2 are satisfied. Then

?“ is a complete normed functional class rel a'. 1f B' =Bexc.
for some s:t BEL , then B'€ & and §(B') < 8(B). If B'e &,
then there is a set B€ & such that B' = B exc.0t' and

8(B') =38(B).

Proof. of the Lemma. The truth of the first part of the lemma,

~
which states that “F ' i8 a complete normed functional class rel.Of!'

can be seen from proposition 7) section 4.

Suppose that B'C & is equal exc. & to some BE€& . For
each € > 0 there is a Cauchy sequence {f }in "3‘ satisfying
lim inf |f (x)| 21 on B exc. ¢ and lim ||f I < 3(B) +£ . Because

1. The standard definitions of the limits superior and inferior of a
sequence {Bn} of sets are as follows: lim sup B {'\ U B
k=1"n=k

lim inf B_ = \J (1 B_. The limit superior consists of those
=l n=k

points which belong to infinitely many Bn’ the 1imit inferior of

those points which belong to all but finitely many B

-
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of Zb it can be assumed that{‘} converges p01ntw1se exc.dt'. Then
its pointwise limit f belongs to ”f" and sat18f1e° |f(x)| 1 on B'

exc.d'. Therefore B'€ % , and B(B') < ||fl| = lim || Il < ¥(B)+E,
so that 6(B') < olB)

Suppose that B' belongs to —G-: For each £€> 0 there 18 a

~ ~
function { in "S;f' satisfying |f(x) | > lon Bfexc.at' and ||fi§ <

6(B') + £ . There is also a Cauchy sequence {fn} in ¥ which
converges pointwise to fexc.0t'. Let B¢, be the set of points x in
B! such that 1lim 1nf|f (x)| >1. Then Be_écfw, 0B05= B' exc.4 ',

and a(Bé) 11m||f | = iif|| <&BY+E. U B= N Bg ., where
- rd n= 1
5'1—) 0, then B€ , B =DB'exc.%', and &(B) <6(B'). The in-

4

equaliiy §(D)

nv

B'"} was estahliahed in the last paragraph.

Proof. of the theorem. First we shall use the lemma and

results from section 4 to show that (b) is implied by (a). Then we
shall prove (a).

Because of 4), section 4, °F has a functional completion rel.
ot if and only if "%' itself is a functional completion rel. #'. Be-
cause of 7), section 4, 5“ is a functional completion rel.gt' if
and only if lb and 2 hold, and in addition ‘:f' is a functional
apace. If 1b and Zb are assumed, then, by virtue :f the lemma,
3b (as it stands) is equivalent to Za {as applied to *¥'). There-
fore (b) is implied by (a).

Suppose that “F is a functional space rel.¢1'. Obviously 1
holds, If {Bn} is a sequence of sets in & , then for each n there
is a function fn in ¥ satisfying lfn(x)| 2lonB exc. & and
£ Il < &B ) + I/n. If 8B ) —> 0, then, as °F is a functional
space rel. 01', there ie a subsequence {f 1 of { } which con-
verges pointwise to 0 exc.d'., Since lim G"p |f (x)l >1 on

lim sup B exc. (t, lim sup Brk must belcng to 01.', and 2 holds.
k 4

Suppose that la and 2_ hold. It is clear (from la alone) that

°F is a normed functional class rel. G'. Given a sequence {1 }

in F with |[f_|| =0, set EUf (x)| > I/Mn-] where {M 1
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is any sequence of positive numbers converging t6 infinity and suchk
that M if i — 0. Then B E-G* » and §(B ) — 0. By hypothesis,
there is a subsequence {B } of {B } with lim sup B €0t'. On the
complement of lim sup B f (x) = 0 exc. d'. Therefore

fn(x) —> 0 exc. 0';: hence the deiining property of a functional

k
space is true.

Corollary, If F is a functional space rel. 0#', t"xen oo aﬁ—;.

This follows from the fact that for B € &° (or Bcaﬂo) we

can put Bn =B in condition 2 (or 3b)'

Remark]l. The second part of the theorem and the lemma
show that & and & play the same role for completion of ¥ as &

o
and § for F. A

imple consequence of the lemma is that % is the
class of all sets equal to some set in & exc.gt', and that -6(B') =
min 6(B) for all R € -'G such that B = B' exc. V.

§6. Capacities. In section 5 a lower bound for the exceptional

class of a perfect functional completion was given. In this Bection
an upper bound is given, and additional conditions for the existence
of functional completions are obtained. The description of the up-
per bound resembles that of the lower bound: certain set functions
on the basic set are introduced, and the upper bound is determined
as the class of null sets for these functions. In some of the differ-
ential problems which have had decisive effect on the development
of functional spaces the set functions in question prove to include

among them the classical capacities. For this reason they will be
called capacities in the generul case also. Throughout the section,
OV i8 an exceptional class; % is a normed functional class rel. (1;

and &6, &, etc. are the functions and classes defined in section 5.

If q(t) is a non-negative real-valued function satisfying (1}
p(t) is defined for all non-negative real t; (ii) ¢(t) is ncn-decreas-

ing; (iii) & (0) = limoq(t) = 0; then § determines a set function
t —»
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cg on iro., as follows:

.5 { ot
(6.1) For cach BE XL, cy(B) = inf éiqLa(Bn)], where the

oo
infimum is taken over all sequences Bn€§€— such that BCU B_.
n=1l =

The set function g is called the {-capacity. Only routine
calculation with the definition is needed to establish the following

properties of ¢ = Cy -

{a} For each B&JC%; , ¢(B) is a non-negative real number

or + co.
(b) If BC B' then c(B) ¢ ¢(B'); c(0) = 0.
(6.2) ® o o
(c) If B= UBn. then c¢(B) < Z,C(Bn) :
- =1 ~ n=l
(1) For each B €%, c(B) is finite,

(e) To each & > 0 corresponds a & > 0 such that if
68(B) < §, then c(B) < E .

In order to shorten notations and make proofs easier to read
we will operate directly with the propentieé (6.2), rather than with
the functions @ explicitly. Accordingly we make two definitions:
a capacity is a set function ¢ on 3 with the properties (a)-(c) in

6.2); a capacity is admissible if it has also properties (d} and (e).

The class of admissible capacities will be called 2 . The
class of sets which are of capacity 0 for a given admissible capa-
city c will be called ozc; the class of sets which are of capacity

0 for all admissible capacities will be cailed a:Q.

Remark 1. One of the chief.objects of the section is to show
that an is an upper bound foy the excepfiona.l class of a pexfect
completion, if a perfect completion exists. It might seem that ac-
ceptance of abstract capacities makes the bound better than it would

be if only ¢ -capacities were accepted. This is not true. Given
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any admissible capacity c, it i8 easy to construct a C/—capacity Co
such that if c(B) # ¢ then c({(B) 4 0. A similar comment is to the
point with regard to weakening () and (e) by deleting (d) and re-
placing (e) by a condition of the following nature: (e') there is a
nummber & > ¢ auch that whenever BO is fixed and satisfies 6(B°) <

T —— — (o]

6, then (e) holds with respect to the subsets of B..

It will be cbserved that the conditions (a)-(c) are exactly the
defining conditions for an outer measure on -'Gfo_ . Thue every capa-
city is an cuter measure on the hereditary & -ring a’gc, In spite of
this, it would be deceptive to use the term outer measure instead
of the term capacity.. The problems with which we are concerned
are of an entirely different kind from thnae in measure theory,
Measurability, for inctance, is irrelevant; and in fact it may hap-

pen that the only measurable sets in JGG., are the sets of measure 0.

1) A capacity c on X is admissible if and only if c(B) is

finite for each B in &, c{A) = 0 for each A in o, and either of

the two equivalent conditions (a) or (b) below holds.

(a) To each pair of numbers £>0 and ¥> 0 corres-
ponds a & > 0 such that if |[f]| < 6, then
c( % [lf(x)l > a])< 0.

(v) If !lfn | = 0, then {fn} converges to 0 in capacity

(with respect to c); that is, for each &> 0,
e) = 0. where B = [ [|f,(x) >e].

~—

lim c(B
n,

Proof. It is obvious that conditions (a) and (b) are equivalent,
Let c be admissible; choose 60 > 0 such that 6(B) < 60 implies
¢(B) <N and put & =88 . Then lf]] <& gives

[3 o

implies admissibility of ¢ follows by a similar argument in re-

[¢]
: 5 _ .
5( ;ﬂf(x)l 2€) s izl <g =8 . hence condition (a). That (a)

verse,

2) Let c be an admissible capacity on % . To each B'ei

et -
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and & > 0 correspond sets B and D such that B'C B UD, Be X%,
8(B) < 3(B'), and c(D) < E .

Proof. Choose, as l)-{a} permits, a sequence of numbers

a
6 suchthat if ||f]| <&, then co(E [lf(x)] » 1/2%)) < 1/2®. Then
= | 2 =
choose Cauchy sequences {f(k)} such that: 1lim inf |f(k)(x)| >1 on B!
n n—»co N =

)y 1 K)ok
exc.0t. sup 199 < 3By + % and €9 — 90 <5, for

kK=12,... . Let B(k) = £ [lf(k)(x)l >1 - L} and let A.(k) =
n = n = 20 n

Eﬁfilk)(x) - fflk)l (x)ﬂz e . For all n and k, we have clearly,
= = =

Zn

B'C Br(lk) + U A( k) exc. . Hence for every i=1,2,...
£4=n+l1

~ g0 (n) (n) (n)
B'c N{B "+ L_J A< mB + LJ U A" exc. . Since
n=i =n+l n=i n=i £=n+l
sB{™) < 2 M)« = o (BB + L) we get for B= (B,
(1-27 2" n=i
~ oo o (n) o = (n)
G(Bi) < §(B'). For Di= U u AI we have c{(D, ) < Z R "(A )
n=i £=n+l n=1 £=n+l
2 i 1 1
< )0 - = . For i large enough c/L.} < € and the in-
= aml gemn 2t A !

c¢lusion B'C Bi + Di exc. 0! proves our statement,

3} If ¢ is an admissible capacity on ., then to each &> 0

correspbnde 2 § > 0, namely, the & of (6.2)(e), such that if Béz

and 6(B) <& then <(B) <& . In particular, if g(B) = 0, then
T ~o
- i h At
c(B) = 0, sothat £ 01 K

Proof. For each £€> 0 1let & > 0 be determincd in accord-
aiice with (6.2)(e). From 2) it follows that if 8(B) < &, then c(B) <E€.

4) To each admissible capacity ¢ on 560" corresponds a se-
quence of numbers Sn such that if {fn} is any scgquence of functions

in “F satisfying ||fn- fn-l" <8, then f (x) converges pointwise
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L

exc. 0t s and for each € > 0, the convergence is uniform outside

some set of capacity legs than &.

Proof. For a given sequence of functions fn’ let An =

E [If,60 -1 (=)l 2 12“] If int x bel t A_ with
x l- n n-l = / Q a point X belongs to no e W1

n > 1 then for every n with n > n, and every p,

|fn+p -f (x)| < Zflfk(x)-fk 1(x)| < )“ 1/2¥ <1/z exc. 0L .

k=n+l ~ k=n+tl

Therefore f (x) converges uniformly on the complement of
oo

U A,, exc. 04, for every choice of n_. By 1) it is possible to
K k = b P
=n_

choca 5 sothatif [if]l <&, then c{EUf(xH > 1/2%)) <127

hence so that c( U A < ZC(A )S,ka 1/2'“0'1
k=n
o

k=n

Remark 2. The last statement is analogous and its proof is
identical to the classical theorem ox pointwise convergence of
Cauchy sequences in a space LP relative to a measure i (more
generally to convergence in measure). As a matter of fact, in the
functional space LP, the measure i is equal to its capacity ¢ for

glp) = PP.

We shall consider now the conditions lb’ Zb’ and 3b of the
theorem in the last section with respect to the class a’c of null
sets of an admissible capacity c; Zb’ 3b’ and half of 1b are auto-
matically satisfied.

L, If [f || =0, then {f (x) &0 in capacity (by 1)-(b), so
that if fn converges pointwige exc. OLC, it must converge point-

wige to 0 exc. OLC.

Zb Given a Cauchy sequence {gn} , pick a subsequence {fn}
so that "fn— £ | < 6 , where {Sn} is the sequence of numbers

provided by 4). By 4) the subsequence {fn} converges exc. O'LC.
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3b First use 3) to find a sequence of numbers 6n such that
if 3(B) < 5. then ¢(B) 12" 1 {B] is a sequence of sets suck

that 6(Bn) —>- 0, then {Bn} contains a subsequence iBh} such that

. G co
§¢B') <6 . Let B =1lim sup B! =/ L) BY, Thén for every k
A ! = Ly | (- . 2 BN L NEASTLY, ’
n n n k=1 n=k n
Qo (o 8] (0] n 1
¢{B) g el UB!) g S e(Bl) € > 1/2" < ——1+ Therefore c(B) = 0.
n=k n=k n=k T2

The following theorems are now immediate consequences of

the theorem of section 5.

THEOREM I. Let ¢ be an admissible capacity on 566_

(a) ¥ is a functional space rel. o5, if and only if el = o

whenever i{x) = 0 exc. o,

(b) % has 2 functional completion rel. o if and only if

||.t’n | = 0 whenever {fn} is a Cauchy sequence which converges

pointwise to 0 exc. of_ -

THEOREM II. Let ot' be an exceptional class centaining ot.

{a) If “F is a functional space rel. o.', then for each ad-

missible capacity c, 7 is a functional space rel. gi { | O -

(b) If “F has a functional completion rel.o0t, then for

each admissible capacity c, 7 has a functional completion rel.
ovNoc
Corollarz. _Ii?-' has a perfect functional completion, then its

exceptional class Ot' satisfies %ﬁc o-[,'cmh-

Remark 3. It is possible to form (g-capacities with the aid
of the function & as easily as with the aid of the function §. How-
ever, proposition 2) implies that for any ¢ the ¢-capacity formed

~
with & is identical with the go-capa.city formed with &, Siimilarly,
if % has a functional completion, it is possible to form capacities
with the aid of the §-function for the complete class (a function

which we have called §). Suppose that there is a completion rel.
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o D0k, and let ¢ be given. Iia view of Theorem II and in view of
the fact that our interest centers on small exceptional classes ra-
ther than on large ones, we can suppose that Ot'C 0t . Under
these corditions it follows from the lemma of the last ;%ction that
the (#-capacity formed with § is identical with the ¢ -capacity

~)
formed with & and therefore also with the ¢ -capacity formed with 6.

These observations have a bearing on the existence of func-
tional completions, or more accurately, they make clear what par
of the existence problem remains open. According to Theorem I
the existence of a completion rel. 7' for any ¢t' implies the exis-

tence of a completion rel. mcﬂ o for every ¢ -capacity, but it iz

not clear whether the existerf‘ce of a completion rel. some Mt it-
self is implied. Therefore, the problem is this: ig the existence
cf a completion equivalent to the existence oi a completion rel.
some (j_ ? By the observations of the present remark the problem
is reduceg to the following: does there exist a complete functional
space for which the whole basic set belongs to 01 ? (A negative
response to the second question is equivalent to an affirmative re-

sponse to the first.)

Remark 4. Sometimes, when the basic set G s topological,
it is important to know that there is a functional completion whose
exceptional class has some topological property, that of being gen-
erated by its Borel sets, for example. Let "L denote the class of
sets B of the following type: ior some f in “f and some real a >0
and B >0, B =F [a<Ref(x) <p] exc.0t. By the classical meth-
ods of the theor;{ of Baire functions, one proves easily that the set
where a sequence {fn} does not converge pointwise belongs to the
class 7’(;636_, . It follows that if F has a functional completion rel,
01, it has also a functional compietion rel.(ovﬂ?ﬁc_,&_)h. A bound
slightly better thanthe one inthe corollary is therefore (mhﬂ ?z’c&é)h'

Theorems I and II together with the corollary of section 5

lead immediately tc the following:
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Corollary 2. If for some admissible capacity c, ,z-};= Olc,

then a functional completion of 7€ exists if and only if the condition

of Theorem I relative to OLC is satisfied. If the last condition 1s

~
satisfied, then the completion relative o ozc = oG-c_? is a perfect one.

by H Ty

The interest ofhtlhis corollary lies in the fact that we can
prove the equality ;Gg= o1, for a large category of functional
ciasses, described by property (6.3) below and for a wide class of
¢ -capacities Cq - In a later paper it will be shown that all usuai
functional classes arising in application to differential probiemns

satisfy property (6.3).

(6.3) Positive majoration property. The basic set

can be written as & = UCn and constants Mn

can be chosen so that for every f€ F and

every n there exists a function f! € F such
that "fh" sM_ if]l and Re f (x) 2 | £¢x)|
for xé&n exc. 0t .

THEOREM III, H satiafies (6.3) and the capacity c = c?,
1s formed with a function @ satisfying lim sup %P) < o then
L= 01 r=

Proof. We have to prove that if BEOL  then Béo%; . Put

B(n) = Bﬂa , hence B = UlB(n) Take positive constants a and
n=

C such that P/‘f y< C for ¢(p) <a. For every positive £<a
we can find a covering of B(n) B(n)Clﬁj B(n) » such that

24(6(3(“’)) <& ; hence = a(B‘“’) < Cg& . Take then functicns
f:ke?—" such that ||f k|| < a(B(n)) +fk. and |fn'k(x)i >1 for

xéB%{n) exc.0t. By property {6.3) we have a function f! i gl such

that ‘Hf;x,k" SM_ "fn,k" and Re f{! k(x) k(x)| rx,Eor

x € B&n)can exc.0t. It iollows that the partial sums Z, !

=
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form a Cauchy sequence {gm} with the properties

[0 0]
(x) >1  for xeB™c ™ exc.a,

lirn inf Re ¢
“m

m Q Q
gl < kZ_.l 16l sM 2 llE (s M, él[s(sg") +EH < M_(CHDE .

o ainj (e A
Herce &8'™) <M {C+)E forall €<a and thus Be &
o - = n,
and B = UB(n)€£§9 .
n=1

Remark 5. For particular classes F with property (€. 3)

Theorem IIl may be true for larger classes of §-capacities. In
all investigated cases where the norm in ¥ was quadratic (i.c.

% an incomplete Hilbert space) it turned out that .,%23 = G-i,c with.
c = Cq » Q(f) = ﬁz. It would be interesting to know if this is true

for all functional classes with quadratic norm.

Remark 6. Often a strengthened versionof(6.3) holds,

namely:

(6.4) Global Majgration Property. There is a constant M 8o that

for every function f in % there ecxists a function f' in ¥

such that Re f'(x) > |f(x}} exc.cx2  and ||£ < M||f].

~
It is easy to see that if (6.4) does hold, then B & & when-
ever cl(B) < o, and for such B, cl(B) > ﬁ'g(B). The spaces
1P and the spaces cf M. Riesz potentials form important examples

in which M =1 is a satisfactory constant. For M =1, in which

case we shall call (6.4) the strong.majoration proper.y, cl(B) =%J(B).
(provided cl(B) < o), as it is always true that cl(B) < ’g‘(B).

7. Proper functional completion. The complete functicnal

spaces occuring in analysis arise most often as functional comple-
tions of more elementary functional classes which consist of func-
tions defined everywhere and which are in fact proper normed

functional clzsses. This is not to say, however, that the complete

space is proper, for in the process of completion it usually happens
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that some sets become exceptional. We show in this section that
sets cannot become exceptional if the initial proper functional class
is a proper funcrional space. In diszcuaeing proper functional com-
pletion we will use the notations: for each x in % 3 Mx is the
bound of the continuous linear functional f(x), and €y is the set
furiction which takes the value 1 on any set containing x and 0 on

any other set.

) If 7 is a proper functionai space, then for each x in &
and each‘ get B in q,. ¢, (B) £ M, c/(B) (where, as always, c;
the @-capacity defined by ¢@(t) =t). In particular, ot = (0).
T 1 :

is

Proof. Since the left side of the inegquality ie 0 whenever B
does not contain x, it is possible to assume that { x} belengs to :@_
and therefore to & , and that x€ B, Given €> 0, let f&€ F be
such that [f(x}{ > 1 and [f|f <8({x})+€. Then ¢ (B) =1 g |f(x)]
M el M [stixh+e] = M [c(fxD+E] <M [c(B) +£] .

A

THEOREM 1. If a proper functional space % has any func-

tional completion, .then it has a proper functional completion. A

necessarv and sufficient condition that a proper functional space %

have a functional completion is that an = 0 whencver {f } ia_

a Cauchy sequence in % converging to 0 at every point.

Proclg. Theorems I and 1I, Section 6.

Remark. There are simple examples of proper funciional
spaces which do nct have functional completion, but they are somc-
what artificial. Indeed, non-existence of a functional completion
of a proper functional space can be ascribed to an awkward choice
either of the basic set or of the norm in the functional class. It is
always possible to redetermine either of the iws iz such a way as

to obtain a proper functional space with a completion,

In order to modify the basic set &> we consider the a2bstract

L

completion V of the normed vector space ¥ . Each point xe &

corresponds to a unique continuous linear functional X on V; X is
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defined by the equation X(f) = fl{x) for all f£ ¥ . We will think
of & as a subset of the set v of all continuous linear functionals
on V, and in order to use notation in harmony with the notation
for %F we will write v(X) for X{v) whenever v € V and X€ '{f‘*
Then each v in \; is a function defined not only on & but on aii
of "\\;* In this notation the condition stated in the theorem is that

v = 0 whenever v(X) =0 for all x€& . When the original hasic
set & does not have this property, additional X from V*can b2
added to it so as to'obtain a new basic set %', which does. The
function: v(X) for ve v restricted to the new basic set &'
form a complete proper functional space which can be called a

"quasi-completion" of F.

A similar process can be carried through when & is a
functional space rel. 0¢ _ for some g-capacity’ ¢ = cg with g(t) >
t. In this case % is not a normed vector space in the proper
sense of the term, but V can be taken as the abstract completion
of the normed vector space V which corresponds to % through the
equivalence relation f= g ’15 f =g exc. ot - There is no way
to think of & as a subset of V™ nevertheless a suitable new basic
set %' can be obtained in the form &' =28 U E.*, where &% is
any total subset of V*. The manner of defining the f& F as func-
tions on &' is obvious. Let c' be the ¢-capacity in &' corres-
ponding to the same function ¢ . It is not difficult to provide an
argument similar to the argument following proposition 1 to show
that 0;'«(: = 0;6,. Nor is it difficult to use Thecrem I, section 6,
to show that % as a fun~tional space on the basic set ®' has a
functional completion rel. O Such a completion can be called
a "quasi-comptletion" rel. otfc. It would seem 'Fhat there is consi-
derable arbitrariness involved in the selection of &%. Oftentimes
natural choices preseni themselves, however, and the idea is im-
portant in connection with measurable spaces and pseudo-reprc-
ducing kernels, subjects which will be discussed in a paper to

follow.
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The procedure for modifying the norm in the functional class,
on the cther hand, is unique. We will suppose that % is a proper
functional space, and we will use the same notations as before for
the abstract comp}j.tion, tne iinear functionals, etc. Let A\;o be
the set of all v&€ V such that v(x) = 0 for every x & &. Being
the intersection of closed subspaces of ":; ;:;o ig iteelf a closed
subspace. Therefore the quotient space V/Vo is a complete
normed vector space when the norm of a quotient class C is de-
fined by the usual formula ||C|| = inf]lv]] taken over all v e& C.
For.every xe & , v(x) is constant over each quotient class C in
;\}’ \70, so that every such x det(iJrrrLines a unique linear [{unctional,
which we continue to call x on V/Vo. Each x €& is continuous
on \7/\70, for if M is the bound of x as a linear functional on A\?,
and if C and & > 0 are given, then there is a v&€ C such that
IxC)l = vz} < Mllvll ¢ M{licll+€]); andalso |C|l=0 if
x(C) = 0 for every x &€ & . If we write, as before, C(x) instead
of x(C), then ?r'/\'f'o appears plainly as a complete proper function-
al space over the basic set ¥ ; and it contains %* . Therefore,
if % is re-normed with the norm of 7//\70 , then, as a subspace
of a complete proper functional space, it has a proper functional
completion. It is clear from the definition of the norm in %‘/Go
that the new norm of a function f€ °F is less than or equal to its

original norm.

By a somewhat more complicated argument it is possible to
prove a similar result for functional spaces rel. Oirc. We state the

result but omit the proof.

2) Let ¥ be a normed functional class rel.¢t, and let ¢

be an admissible capacity on -Ea_ . If F is a functional space rel.

&_, then it is possible to define another norm, lfll', on F so
that: (i) |Ifj]' < lIf§: (ii) % with ||f]|' isa functicnal space rel.

0%, and has a fun-tional completion rel. oz .
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CHAPTER II. EXAMPLES.

€8. Example 1. Analytic functions. We take as basic set &

the closed unit circle in the complex plane, and we consider the

W POy -l W = e s e b3 3 3
class o of complex-valued functions continuous in the whele of

o
a da vy

b4

and analytic in its interio We define the norm in F by the for-

r.
. 1
mula ||f|j = { r |£(x)|2 dx}"/z. F is a proper normed functional
class. e e

Let 9% denote the boundary of & . Each of the functions

fn(x) = x" is 1 in absolute value everywhere on 8% . Therefore
= 7‘: axXy = . € 2 =
as fIf || =T —+ 0, §(3Z) =0, and 3&LEL". By the corol

lary at the end of section 5, any exceptional class relative to which
°%F is a functional space must contain 8 & . In particular, “F is

not a proper functional space.

With respect to the points in the interior of & , though, %
acts as a proper functional space. Each of these points determines
a continuous linear functional. Consider the ¢ -capacity ¢y
(determined by ¢ (t) =t). Proposition i, section 7, shows that if

x 18 not a boundary poiat, then cl({x]') 2 K}I— , where Mx is the
X
bound of the linear functional determined by x. 2 From this and

o~
the last paragraph we deduce that O}C = B0 = °'G’°..° = the class of
1
all subsets of 8& . There is no difficulty in seeing from Theorem

I, section 6, that there is a completion, necessarily perfect, rela-

tive to this class.

1. This space is the simplcst case of spaces considered extensive-

ly by S. Bergman (see [ 9]). It has the reproducing kernel, Berg-

Tr(l ly;z (see Elj, L4]).

man's kernel function, K(x,y) =

2. The cxact value of Mx is given by the reproducing kernel:

M = YK(x,x) = N S 2
= N (1 =x %)

:?"



-36-

§9. Example 2. 1P spaces. The Lebesgue spaces 1P are so

thoroughly familiar now that the theory of functional completion
cannot be expected to provide essentially new information about
them. By reason of their familiarity, however, they provide an
example which illustrates well the concepts which have been intro-
duced here, especially' the capacities. “Reciprocaliy, by focusing
attention at an unusual point, the theory of functional completion

underscores an interesting peculiarity of P,

We are concerned here with obtaining 1P as a functional
completion of a subspace composed of elementary functions. In
the case of a measure on an abstract set there are no new prob-
lems coming spe<ilically from the functional completion point of
view. The natural chnice for the space of elementary functions is
the space of linear combinations of characteristic functions of
measurable sets of finite measure. The passage from this space
to its completion with respect to the I? norm is completely stan-
dard. The proof that the perfect completion is the usual IP re-
quires nothing (beyond the definition of "perfect") from the theory

of functional completion.

The situation is different in the case of a measure on a topo-
logical space. Herc the natural choice for the space of elementary
functions 18 usually a space of continuous functions. Since the con-
ti nuous functions are defined everywhere (not alrnost everywhere),
it is not at all evident that the sets of measurc 0 form the excep -
tional class for the perfect completion. Indeed this is not true in

general, as we shall show in the succeeding paragraphs.

We take a=z the basic set & an arbitrary locally compact
Hausdorff space. The two G -rings used in topological -measure
theoretic investigations in locally compact spaces are the Borel
¢ -ring, which is generated by the compaci sets, znd the Baire G-

ring, which i8 generated by the compact GS'S' = In all ordinary

1. We use the terminology of Halmos. [18].

Yoo



topological spaces, for example separable =paces or metric
spaces, these two g -rings are identical, but in general they are
distinct. The measures usually considered are regular Borel
measuree, those deiined on the Borel sets and having the additional
properties: (i) the measure of each compact set is finite; (ii)(re-
gularity) the measure of each Borel 2zt is the infimum of the mea-
sures of the open Borel sets containing it, I We suppose given
such a measure on & , and we call it p. We denote by C the class
of continuous real valued functions on & which vanish outside a
compact'set, For each real number p >1 we deiine

"fllp = { r |f(x)|pdp}1/p. and we denote by Cp the class C with

this function as pseudo-norm. It is well known that relative to the
exceptional class (4 of subsets of Borel sets of p-measure 0,

C_ is a functional space, and that it posesses’a functional comple-
tion, I.P(p). relative to 0. . We shall illustrate some of the gen-
eral theorems of this pa.pe.‘:' by re-proving the existence of 1P, by
finding the perfect completion, and by computing some of the
capacities,

Because the capacities themselves are outer measures, and
becauge the classes with which they are associated, the apc.é-: .
etc. are all hereditary classes, there is some advantage in exten-
ding the measure p so that it i::outer measure too, defined on the

hereditary ¢ -ring &G on which all capacities are defined.

Cp i8 a proper normed functional class if and only if there
is no open Baire set in & of measure 0. In general the smallest
exceptional class relative to which Cp is a normed functional
class is the class of subsets of open Baire sets oi measure 0. We
call this exceptional clase 0t, and we consider C_ as a normed

functional class rel. 9. In this case o& is the class of s2ts which

l. For example, Bourbaki ccnsiders only measures of thiz iype in

its presentation of integration theory ]:10].
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are contained exc. 0/ in a compact set, (or, e_quivalgn‘cly. in a com-
pact Baire set) and :6'0" is the hereditary &-ring generated by the
compact sets, (or, compact Baire sets). We effect the extension
of p to & by the standard device of setting w(B') equal to the in-
fimum of the numbers p(B) taken over all Borel sets B contain-

ing B'.

If i £ !!p -—3 0, then fn —5 0 in measure, and each sequence
which converges to 0 in measure contains a subsequence which cén-
verges to 0 almost everywhére Therefore C is a fu.ncti'onal
space rel. 00 , and we, can apply the corollary at the end of sec-

t 5t lude th c .
ion o conclude that -ﬂ—c__ 01“

Let K be any compact set in & . ‘Then K&J5 , as we have
mentioned above. We prove now that 5(K)p= uw{K). First let i Dbe
any function in Cp which is >1 on K exc. o+ . Then flf(x)lpdp, >
w(K). As 5(K)P is the infimum of the numbers on the left side,
G(K)p 2 p(K). On the other hand, it is possible to find a function
fe C which is >1 on K and which is such that u{K) >f|f(x)|pdp,-£,
for arb1trar1ly small €> Q0. Therefore G(K\p < #{Kj, and so
8(K)P = u(X).

Suppose that B is any set in 2. 1Ii is easy to see that there
ie a decreasing sequence of non-negative functions an C_ such
that £ >1 on B exc. 0t and such that "f Ay — 6§(B). Let

ELf (x) >1] and let K = mK . Then K2 B exc.#, and
n=l &
we can write 6(B)p= 1im "fnllI; 2 lim p,(Kn) = p(K)

5(K)P > 5(B)P,

so equality holds throughout, We have proved the iollowing state-

ment.

1) For each set BEX there is a compact G5. K, such
that K D Bexc. 0+ and such that §(B)F = 8(K)P = w(K) > u(B).

From this it follows that {1 is an admissiblé dapacity on &
We can use Thecrem I section 6, to prove that there is a functivn-

al completion rel. 01«“. Suppose that f_fn} is a Cauchy sequence

s
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which converges pointwise to 0 exc.pt . By Fatou's lemma,

r ‘0

f P dy < 1lim i - P izt side
J [£ ()" dp < lim inf f |£ (x) — f_(x)|" dp, and the right side can
be made arbitrarily small by a suitable choice of n, Therefore

||frl ”P ~>» 0 and this is the condition of the theorem.

Now we can empioy Theorem III cf section 6 to obtain the ex-
istence of a perfect completion, for CD has the strong majoration
property: a majiorant for an arbitrary function f(x) is the function
[f(x) | ‘We obtain also from Theorem III the exceptional class for
the perfect complction, the class ,g: As we have mentioned, the
completion rel. mp. is not nscessarily perfect; that is, it is not ne- -
cessarily true that a;p = .6’68 . According to Remark 4, section 6,
the existence of a completion rel. oz.p. implies the existence of a
completion rel.(OLu('\ sz)h. The latter class does give the per-
fect completion and may be smaller than oz,u itself, as we shall
se2, In this example the class TC, which is composed in general
of all sets of the type g_[u < Re f(x) < B exc. 01'] for a >0,

B > 0, is the class of sets equal exc. ¥ to a bounded open Baire

set. 1.

It is possible to identify the perfect completion itself, as
well as its exceptional sets. TlL= <tandard device which we used to
extend the original Borel measu..: ;. to an outer measure serves to
extend any measure defined on a §-ring to an outer measure defined
on the class of all subsets of sets in the g-ring. Let (O denote
first the restriction of p to the G-ring of Baire sets, then its own
extension Ly this scheme to an outer measure on SGG,. In general

the outer measures p and p  are different.

1. A set is bounded if it is contained in some compact set. Ience
every bounded set is in 3. J

2. It is obvious from the construction that u(B) = p.o(B) for all
Baire sets and for all compact sets, that w(B) g p.o(B) for all sets,
and that the class 01,}1.0 is exactly the class of subsets of Baire sets
of p-measure 0. All compact sets are measurable with respect to

the Buter measure p, but this is not necessarily true of He (see
Halmos PSJ)



bl | e

-40-

By the general theory of Baire measures it can be proved
without any difficulty that = (01, ﬂﬁ i and nost of the
rest of this section will be gwen to provmg that .&s_, that
the perfect completion of Cp is. Lp(p. ), and that fcr any set BE.-G;_

(B) =c (B), where c, is the q-copacny defined by the functicn

q(t)

Let B be an arbitrary set in %, , and let {Bn} be a sequence

of sets in & such that BC U B_exc.0t and such that
n=1

o

c.p'\B) 2 Z:' S(Bn)p—c . By 1) there is a sequence {Kn.& of compact

Gg's such that for each n, K _DB_exc.o and 6(Bn)p = 6(Kn)p=
g = \ 1t £ 3

p.(Y.n) p.o(Kn,. It follows easily that cp(B) 2 }LO(B).

Next we establish the opposite inequality, and in addition we
~
prove that po(B) > 5(B)p for bounded sets B. From the latter
will follow the relation 0O C 3..0
Fo [\

Liet G be an arbitrary bounded open Baire set and let

8

G=J Kn be a representation of G as a union of increasing com-

n=1
pact sets, 1. For each n choose a function f in G, with the
properties: )

(1) fn(x)=1 if xeK .

(i) { (x) =0 if x¢EG;

(iiiy 0 < fn(x) <l
The sequence {fr;i is a Cauchy sequence since it converges point-
wide and is dominated by the characteristic function of G whickh is

integrable. As lim{ (x) =1 for every x&€ G, §(G) < lim H‘ |'p <
< p.(G)]'/p. Thus u (G) > w(G) 2 3(G)P 2 ¢,(G). 2. By a passage

i. It is known that every open Baire set is a countable union of
compact sets, and that conversely every apen set which is a coun-
table union of compact sets is a Baire set.. See Halmos |

2. For any set Be'ofr IS(B)p > c_(B). This general property of
capacities i 2 simple orﬂseqt.mxcéD of Remark 3, section 6.



!

-41-

to the limit in which the regularity of ko 18 used we get y.o(B) >
élB)p 2 c (B) for every bounded set B. In the light of this fact
the re\atmn oL C 56' is obvious. Furthermore, an arbitrary
Baire set B can be wrxtten as a disjoinit union of bounded Baire
o}
\ = S R = (R
£ o{ n’ g ’

c B :
: ' “n’ n‘~\1 PRER R

V8

sets B . Therefore ¢ {B) <
2} P v
"=
Combining this with the inequality c (B) b (B) already proved,
and with the regularity of B, we obtam finally c¢ (B) Ko (B) for
any set B €o6°'_. The one remaining assertion, that I.P(p. ) is the

perfect conipletion of Cp’ is now cleear.

It can be proved that the capacity Cp is identical with (cl)p
In fact, we know from the strong majoration property that BEL if
and only if c|(B) < co; and if BEZL , then c (B) = 5(B). Using the
lemma in section 5 1t is easy to show that because the strong ma-
joration property 18 present 3 is identical with 6, the &-function

~o

for the complete space; and & is identical with % . In this ex-
ample the composition of & is evident. It is the class of all scts
of finite B -measure. The function & is easy to calculate too: if
BE€S , then 8(B)P = bo(B). Thus, if c (B) is finite, then
BEDZ =& and c (B)P = 3(B)P = 5(B)P = p (B); while if c{B) =

+ @, then BEL = £ and b (B) = + .

The following theorem gives a summaxry of the main points

of interest in this example.

THEOREM I. The space IP(p ) is the perfect functional

completion of the space Cp' The exceptional sets are the sets of

p_-measure 0; equivalently they are the subsets of Baire sets of
L5

p-measure 0. The class Z_ is the hereditary G -ring generated

by the compact sets. (cl)y cpr and and u are identical outer mea-

sures on X . ,2;- & is the class of sets of finite p-measure.
On this class P P= Fo

Remark 1. We have stated in an earlier part of the paper that

~
the classes dﬁ—; and o‘f-; are different in general. For an example

s,
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take the space Cp with & the interval 0 < x <1 and p Lebesgue

measure, '%%_o is the class of all sets of LLebesgue measure 0;
;(,;:_), is the class of all subsets of sets F. of Lebesguc measure 0.
As each subset of an F_ of measure 0 is first category, and as
there are sets of measure 0 which are not of firat category, the

example is established.

§10. Example 3. Some spaces of harmaonic functions and

Fatou's theorem. In the first part of this section the basic set &

is the closed sphere with center 0 and radius R in n-dimensional
space E_; d&  is its boundary; 6, ¢ etc. refer to points on the
boundary; d8, d? , etc, to the n-l-dimensional measure on the
boundary. © is the area cf the surface of the unit sphere in E -
h(8, x) is the Poisson kernel for &

RZ- | x

w R|8-x|"
n

2
h(®, x) =

The functional class which is to be considered is the class “F of
all complex-valued functions continuous in & and harmonic in the
interior of & . The norm in % is defined by iifiix):{ (’ If(6)|pd%1/p.
where p is fixed and satisfies 1 <p <oo. ™ b ROk

The object of the section is to show how the well known
theorem of Fatou on the boundary values of harmonic functions can
be proved by means of czpacities. In the course of the develop-
ment of capacitiee it was shown that each convergent sequence in
a functional space contains a subsequence which converges point-
wise uniformly outside a set of arbitrarily small capacity. Thus
each function in the completion of a space composed of continuous

functione is continuous outzide a set of arbitrarily small capacity.

l. The case p = oo has no interest here, for ||f||m= esggejf(e)l =

supélf(x)l. and F is alrecady a complete proper functicnal space.
Xe&



TP X P Ve

ENIY RIS T R I (PLerny e

- .

-43.

Once the sets of small capacity are identified in the example at
hand, it becomes clear that ezch function in the ccmpletion has

non-tangential boundary values almost everywhere.

if £(8) is a continuous function defined on 3&. , then the

______ ] s LIN

Poisson formula .f\x) —f x'x\o.x)
9%

£l .‘l

8) d
in the interior of & . {(x) is harmonic there, and if it is extended
to the boundary by assigning f(8) as hcundary values, the result-
ing function f is continuous throughovt & . Thus the class °F is
exactiy the class of functions f(x) obtained as follows: f is deter-
mined by a unique (f:,ontinuous function f(8) defined on 8& by the
equations f(x) = J‘ h{0,x)i{8)dé if x € interior of & ; f(x) =
f(6) if x = 8. AL

Consider the class F of functions determined in the same

way by functions f(8) defined almost everywhere and in 1P on 3% .

1 -

With the norm "f"P -’-‘{flf(e):pde} /P ¥ i3 a complete func-
8¢

ace relative to the exceptional class Ji of subsets oi 9&

(54

;mna’ anr
AViiGha S

l-dimensional micasure 0. It is clear that ¥ is contained in

of n e
F and that F is dense in ¥ . Thus ;’ is a functional completion

of F

We can use Theorem II1 of section 6 on positive majorants
to prove the exisience of a periect completion. For each function
f€F the function f+(x) =f n(6,x) |f(8)] d@ belongs to ¥ and

1

is a positive majorant for f, In addition, "fll = Hf+ H There-

fore, by the theorem quoted, OL aéo » and smce it 1s estab-

lished that there is some functional completion, there is a com-

pletion, necessarily perfect, relative to o, = 9’6:_ . It is easy to
o~ 1
show that .‘G-o =0: if AC3E is a set of n-1-dimensional

measure 0, then there is a sequence {f (0)} of continuous functions

on 8& such that r If (6)|pd0—> 0 and fn(G) —» o for each
J &

6 € A; the sequence f_(x) = ( h(0,x)f(8)d® is such that
n J o9& n
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“fn” — 0 while £ L(8) —> for each 8€A, so Ae}f? and
t’y 301, The opposite inclugsion is trivial. We can conclude that
”{ is the perfect completion of % .

The connections between the values on 8% of a function
f&% and the values in the interior of & form the subject of
Fatou's theorem. Actually the 2g8sertion of Fatou is that f(x) —
f(8) pcintwise a.e. under suitable conditions. For the sake of
completeness, we proceed to show first the well known fact that a
cAertam convergence in mean takes place, Define fr(q) = Trf(q) =
4=, P(8:¢) £(8)d6 = f(rg) for each function f(6) belonging to P
on 3% , and each r <1. The mean ccnvergence which takes place

is that lim |lf-f | = 0.
ral P

. The proof is a classical one which we will reproduce.only in
a&h(ﬁ,‘x)de =1,
Since h(6,x) is a harmonic function of x, the mean value theorem

gives f h(8,rg)d¢ = 1. These two facts in conjunction with Hol-

der's inequality give f I£ ((f)lpd{f f 'f h(e, r@)f(e) d6| d¢ < .
5
f f he,rg) |i(0)|P dedg = f |£(8)]> d6, from which it
o9&

brief. Since 1 is harmonic, the Poisson formuia gives

HA

follows that the transformations Tr are a unifermly bounded fami-
ly of linear transformations from 1P on 8% to 1Pond. iIn
order to show that Trf —f in IP for each feIP itis enougk to
show that this happens on a dense set of f. For the dense set take

the continuous functions.

The functions ir thc coruplete class % can be characterized
in another way. Suppose that f is 2 function defined only in the in-
terior of & . According to the preceding paragraph there is at
most one function in % which coincides with f in the interior of S
(at rnost one function up to equivalence in %. that is). It is there-
fore clear how the phrase "{ belongs to “F " should be interpre-

ted when f is defined only in the interior of & .

T
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1) If p>1, then ’-3? consists of all harmonic functione f

deiined in the interior of & and having the property that

sup f |£(r 9)|Pd3 <
0<r<l J 32

2) If p>1, then F consisis »f all harmonic functions £

defined in the interior of & and having the property ihat tnere

exists a sequence rn/ 1 such that the functions fr (@) = f(rne)
n

converge weakly in 1P on 8%

Proof. If an f satisfies the condition in 1), then it satisfies

the condition in 2), for boundcd sets are weakly compact in P,
p>1l

Suppose that the condition in 2) is satisfied for a certain
function f{ and some sequence T & and let g be the weak
limit °f>frn' Since ge IF on 8% , ‘when we have shown that
f{x) = f&h( 0,x) g(8)d8 it will fcllow that f é;v%. Let x be a

J :
fixed point in the interior of & . Then h(8,x) is a function of 8

]
which is continuous and hence belongs to 1P on 8% . Thus
- n
f h(s,x) gio)de = 1im h(8,x) f(rne) d9 . On the other hand,
YA r.=>1 Joe
f(rnx), T fixed, is a function harmonic ir the interior of & and
continuous in & ; that is, f(r_x) is a function in . Therefore

f(rnx) =f h{&,x) f(r_0)de. Finally, as f is continuous at x,
8\8 . ey

- 3 £1 -
f(x) = rhff , nx) .

In the statement and rrocf ¢f the fundamental proposition
which comes next; and in the rest of the section, we shall use the
following terminology. The set C of points @ in 3& satisfying
|8~@| <p is the circle with center ¢ and radius g ; |C| and
f(C) denote the n-l-dimensional measure of C and the radius of
C. For each x $ 0, ex is the point T§rx. If C is a circle on
3% and x is a point interior to & and on the normal to 95 through
the center of C, then the cone with vertex x and base C is the set

generated by joining x to each point of C, The axis of the cone is
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the normal to 8& through the center of C. The angle of the cone
is the maximum angle between the 2xis and any line joining x to a

point of C.

3) To each angle a, 0<a <§‘-'. corresponda a constant k > 0

such that for every £ > 0 ﬂé}: and every x in the interior of &,

there 18 a cone with vertex x and angle » a with the property that

the average of f(8) over the base of the cone is > kfix).

Proof. For each P> 0, write Cf’ for the circle with center
Ox and radius p , and put I(fJ) =fcf(9)d9. Let Po be such that
Cf is the base oif the cone with vertex x and angle e, and set
o

m(x) = sup I(P)/n«l- Since the ratio |C| n-1 is bounded
Pz o /S (A

above and bounded away from 0 by constants depending only on the

dimension, the inequality to be proved takes the form m(x) > k).

If .Pl is an arbitrary number 2 \Po’ then

st} = —‘XL_‘L‘ f ‘(9) de+—1l\-l—f f(e) dae

’S_

= 1.+1

1° 2
Using the majoration |8-x]| >R~ |x|, we obtain
Y e Bl gy ¢ 2l
n o (K=|x) £1
Using the majoration |8-x| 2 1/2 |9-—9x|. we cbtain

1. The calculation of the best possible ‘constant will be given
elsewhere. The constant which appears beiow in formula (10.2)

has the correct order of magnitude fcr a —» 7t/Z .
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. < -ln+l(R_-x|) r 2R a1(p)
Now,
2R 2R
2R 2R 2R
[ 1) nf Tetop ¢ 2] oo
f f 51 A £ Polp a f
Thus
Lo 2R (2R M) amx) | oamix
B R (2R)™ Pt A 2R
LD
n '
L+1, < - 2m-DR-{x])m(x)
(10.1) D W
2 Pi n-l _ ,n Ra-jxl ‘l Ipy 2°H, R [x].
+ o l}m) 2™ ( 2 )l ﬁn-l o ( 2 ) m(x)

To complete the evaluation we use the simple geometric in-
equality sin a < R—'_Pi%—l- < tan a. Putting P1= Lo in (10.1),

and dropping the obviously negative terms, we obtzin

2 n-1 2"n
(10.2) f£(x) < Il+ I2 < Z): tan a + sina] m(x)

A different evaluation of (0.1) is better when a is not too large.

Lo

I a <arctg(2), then R« < 2, and it is possible to choose
i : . A
P2z P, 8° that e 3 = 2. Using this Py we obtain from
(10.1)
110, 2) f(+) < I+ 1 2"n \ h . - 2
(10, 2) (=} = Ltl, ¢ = m(x) whenever n <arctgl.
n

In the course of the next proposition we shall use a general
covering theorem not unlike a part of the Vitali theorem. It has
some intrinsic interest, so we shall prescnt it as a lemima sepa-

rate from the present line of discussion.

Yar
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Lemma 1. Let TI be a family of spheres in a metric space.

For each sphere S&TI let S' denote the sphere whose cenier is

th~ center of S and vhose radius is four times the radius of S. If

II has the two properties listed below, then there is a disjoint se-

®
quence, perhaps finite, {Sn‘Z[C IT such that U S U S;x .

[

SEII n=1

The progertics are the following:

(i) The radii of the spheres in TI are bounded, and all are

$ 0.

(ii) If a sequence of spheres in TI is disjoint, then the se-

quence of radii converges to 0.

Proof. The sequence{Sn\ is defined inductively. Let Mo be
the least upper bound of the radii of the spheres in TI, and let S1
be a sphere in TI whose radius is larger than (2/3)Mo. If
Sl""’ Sk have already been defined, let Mk be the least upper
bound of the radii of the spberes in IT which do not meet any of
Sl""' Sk and let Sk¢1 be a sphere in TI which does not meet any

of Sl"' ’Sk and whose radius is larger than (2/3)Mk'

Suppose that the point x lies in a sphere S €IT which meets

the sphere Sk but no sphere Si with i <k. If r is the radius of
< 3. . Thus
k-1 2 'k’ ’

if y is a peint common to S and Sk' and if X is the center of Sk'

S, and if T, is the radius of Sk' “then r <M

then d(x,xk) < dx,y) + d(y,xk) < 2r + ry < 4,-.-k and so xéSi{.

On the other hand, every point x & \US liesina sphere which
SETIT
meets some Sk' In fact, two cases arise., If the inductive pro-

cedure for defining Sk cannot be continued beyond some finite ko'

then all spheres in II must meet one of Sl""'sk . If the inductive

o
procedure can be continued, then there are infintely many Sk and

their radii T —y 0. But we have seen above that if S does not

then

3
meet one of Sl""'sk-l' r < 3 Ty

Turning once again to the harmoric functions we provide a
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notation for use in the next proposition. Given a sét BC & and
an angle a we write B_ for the set of points © €38& which lie

either in B itself or in the base of some cone of angle a with ver-
tex.in B.

4) To each angle a, 0 <ac<- ZZ‘" , corresponds a constant k
such that for eveyy set B< &%, - IBul < kcl(B)p, where IBQ.I de-

notes the n-l-dimensional measure of Bu'

Proof. For sets in 8% the present capacities are the same
as the capacities determined by the functicnal space 1P an 8 &
By virtue of the di&cuﬁsion we have made of tke latter spaces we
casu write for any set B 3%, B = cl(B)p. It follows easily
that for the remainder of the proof we can assume that B lies en-

tirely in the interior of & .

Froia the fact that the strong majoration property holds it
follows that the set functions 4 and 'g are equal. L In addition,
we have seen earlier that 'g is essentially the 6-function for 7 . =
Hence, if m is an arbitrary number larger than cl(B), then there
is a function f > 0 in % suchthat m > |[f|| and such that f£(x) >
1 for svery x€ B. Let kl be the constant of proposition 3); and
for each x€ B let B(x} be the base of a cone with vertex x, with
angle > a, and with thermean~value property of propositicn 3).

Let k' be a constant such that |S'| < k! |IS| whenever S and S' are
circles in 3¢ withthe same center and. with f(S') = 40(S). Let
B'(x}) be the circle with the sarne center as B(x) and with

[ [_B'(x)l =40 [_B(x)]. By virtue of the covering theorem there is
loe}
a disjoint sequence B(x_) suchthat B C U B'(x ). Therefore
. n=1

[0 2] a Qo
IB | < Z'i IB'(x )| g k' Zi |B(x )| = k'|A], where A= UB(x).
n= n= o

n=1

1. Remark 5 at the end of section 6.

2. The lemma in section 5.

PSS 4

P
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Furthermore, the mean value of f over A is 2 kl’ since the mean
value is > k1 over each B(xn). and these are disjoint. From this
it follows by Holder's inequality tkat |A] < (l/kl)pllf"p. and
hence that lBal < (kl/ki))mp. As m is any number > cl(B), 4)
results,

It is simple now to derive Fatou's theorem. Let a' be a
given angle, 0 <a'< ?2‘: For dach point 8€ 8% let KQ,a' be
a closed donenextending into & from the vertex @ and touching
9% only at &; let KQ.u‘ have angle a' and axis the normal to 8%
through 8. Fatou's theorem asserts that if f is a function in %F,

then for almost every 6, f is continuous in K0 al’ It is proved

as follows.

Let A be the set of points 8 for which { is not continuous in
K'Q.u" For each &> 0 let B® be a set such that c](Ba) < & and
such that £ is continuous outside B® . Then for each ¥ > 0, and
each 8 €A, B contains points of Ke,u' arbitrarily close to 8.
This implies that AC(BE')(1 for svery a satisfying a' <a <

Therefore |A| ¢ |(BE) | ¢ kcy(BE)P ¢ k€P, oo finally |A|

A
“Z .
= 0.

The results which we have descirbed are not restricted io the
sphere. They are valid, and large parts of their proofs as well,
for all clused domains with suificienily smooth boundaries. A

brief discussion of the situation follows.

We shall suppose that the basic set &, is a closed bounded
domain in Euclidean space En' and we shall suppose that the boun-
dary 8% is a C1 surface. ~* This ensures that at each point of

e Ao an

€, there is a tangeni plane to 3% , and that the tangent plane turmns
. g P g p

1. To say that 3% is a C1 surface is to say that eack point of A&
has an xn-dimensional neighberhood V which can be mapped in 1-1
fachion on an n-dimensional cube by a transformation T such that:
a) T and ! are both C1 transformations with non-vanishing Ja-
cobains; b) T(8E M V) is the intersection of the cabe with one of

the coordinate hyperplanes.

)
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continuously. Also there is a norrnal to 9& at each point g of
B} e nq deniotes the unii vector in the direction of the exteriox
normal at ¢. If x is any point of En' there is at least one point
8 on 8% which minimizes the distance g -x|, ge 9& . The
line determined by x and any minimizing point {3 x) is norm
8& . lu case there is only one minimizing point we shall call it
P/x. Gx is a continuous function of x on the set where it is defined.
In general 9,? etc. refer to peints on 6% ; 486, dq , etc, refer
to the n-l-dimensinal measure which is definabie on 8& in the
classical manner; |E| where E is a set < 3% refers also to this
measure. If C is any circle on 0% , and circles are defined as

they were before. p(C) denotes its radius.

In addition to suppesing that 9% is C1 we shall suppose
that it has bounded curvature, by which we mean that
: AN
1
|81n(./2 nen?)|

— Vg T eiy 1216 -g| -

A . - o i |
where ngng denotes ine angle beiween ng amd ng . We list
here the essential properties of such boundaries. Proofs will be

given in a separate note.

a) The number T and the two numbers rc: and r(;' defined

below are all equal.

r(; = sup ¢ taken over the numbers P such that there
(1.5) exist no two distinct line segments, each of lenﬂh less

than P and each intersecting 3& and normal to 9% ,

which intersect one another.

rc')‘ = sup p taken over the numbers p such that for

(0.6} each point & € 3% the exierior tangent sphere of

A

1. The usual defivition is that sup To=ql = M < oo; this is obvious-

ly equivalent to (10.4) and the constant r as defined in the text is

more convenient.

-
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radius f at © contains no interior points of &

and such that for each point & the interior tan-

gent sphere of radius p at 6 contains no iuterior

points of the complement of & .

1t is the exter ior tangent sphere of radius T which inter-
venes in most subsequent calculations. When we speak simply of
the tangent sphere at 8 we mean this one. We write Yo for its

center.

b) If a(?, 0) denotes the angle between ne and the directicn

fc: t i % i 311
g6 t}emen cr any two points ¢ and © on 0% , |sm[§ - a(q,ﬂ_jlg
gr
o

c) For every point xE€¥®, within distance r_ of 9% and

o — —

every point 6 on 9% the following inequality is satisfied:

e -8y |
r

[o]

110.7) 0 < Ix-—yel -r - |x= 8

HA

)

The significance of the inequality will appear upon examina-
tion of g} below and the proof which is given after this list of pro-

perties.

For each numbker r, 0 sr< T and each point € on Ty
we define z(r, 9) to be the point ai distance r from & on the in-
terior normal passing through 6. For each number r, 0g< r < r,
we define the parallel surface to 9% at distance r, for which we
write (az‘:)r. to be the set of 2ll points x €%, at distance exact-
ly r from 8% .

d) Each surface (8%)_ is both C' and of bounded cur-

vature. The curvature constant of {1{.4} can be taken as r =~ r.

For fixed r the transformation & —» =(r,0) is a l-1 continugus

transformation of 8% onto (8%8), . It possesaes a Jacobian which

" is bounded and bounded from 0, and these bounds are uniform with

respect to r for r <r'< i the Jagobians converge uniformly to
1 as r = 0.
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€; There are coustants Kl and ¥, such that for every circle

2

- n-=1 n-l . .
C on K, p(C) < lc| <K,p(C) 7" If r'<r  is fixed, the con-

stants can be chosen so that the same inequaliiy is valid on each
@&),, rgr.

f) The Grezn's function G(y,x) for the domain # exists.

For each fixed x in the intericr of % ‘the function G(y,x) as a_

function of y has a normal derivative h(8,x) at every point 6 of

9% . 1if @ is fixed, h is harmonic in x, ix is fixed, h i8 con-
tinnuous in 8., The Poisgon formula holde with respect to the ker-

nel h: f(x) = f&h(e'X) f(6) 48 for every iunction { continuous
9

in ¥ and harmonic in the interior.

fry If ‘nr(y, x) denotes the kernel for the domain Er
bounded by (8'8)r. then for fixed x the functions h_ [(z(8,r), x]
1.

converge uniformly as r —= 0 to hi(®

)
ponf e

g) h(8,x) satisfies the following inequality, obtained by the

method of comparison domains

- x|2 2
\ Ye"' o
: o
0 < h{6,x) < =
rw |6-x]
o
The runction on thke right is the Poisson x=rnel {or the exterior ot

the tangent sphere at 0. (Note the ineaquality in c).)

We consider the functional space %F of all complex valued
functions continuouas in Z and harmonic in the isierior of & ; we
define the norm by |f}} = {( |f(e)|Pde§VP, where p is fixed

P lse
and satisfies 1 < p < oo.
It i8 cbvious that there is no difficulty in showing that the

perfect completion of *F is the spaca F of Poisscn integruls of

1. Both properties f) and {') are cbtained by ccnstiructing h and

hr by the classical method of integral equations. See for example
Kellogg [19].
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functions IF on 8% . This goes as it did before.

The various assertions about the manner in which the func-

ticns in ¥ assume boundary values require some comment.

The {irst step is to define ths inalogues of the transforma-
tions Tr‘ For each r, 0<r <r, and each function (%) in LP

on 8% we put Trf(?) = fr((f) = (“‘E,h [9, z(r,so):l f(8) d8. It rnust

v
be established that there is a constant K' such that for every
fe LP, f If_(¢)|Pag < kP f |£(8)|P d8. Once this is done
Jo& " 3

~

a
it follows by the argument we have used before that rl_i;r% ||f—fr "p =
0. In other words, the values of f on the parallel surface to 9%
at distance r converge in mean of order p to the values of f on
a% . It is true, and for the same reason a3 before, that

z 2
j h{8, x)d8 = 1. It is no longer true that Jp h[Q,z(r,(f)] dg) =il
a8 9z
but the integral is < K" for some K" independent of r and 8,
and this is just as good; however, proof is required.

We will continue to use the notations we have used through
the section. For example, if we are considering a given point 6
on the boundary, then for any nuinber r we write Cr for the circle

with center 6 and radius r; etc.

Let r and 8 be fixed. Then by property g) ,

Iye—z(r,q)lz—rj
hle, z(r.g]dg < do  +
uf;t, [6. =tr.q [ dg “,];% J

< |8-z(r, g)|"

2
% °. a4y = I+ I,
68,-C_ o 1 |6-2(t.g)

Now, if i9-9| <r, then iye-z(r,q’)l-:’o < 2r, and in any case

Iye—z(r,go)l + T < D+ Zro where D is the diameter of &.

Therefore,

—y
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2(D+2r ) 2(D+2r )
o 1 o
Il = W r n-1 Icrl = w r KZ
no r no

The evaluation of I2 ie essentially the same as the evaluation of

the I2 which appears in the proof of nroposition 3). We have

g D+2r°f l}’g-z(l'.(f)!-rod?f<D+2ro f |z(r,£&—£l d? N
25 9% Jat-C_ |o-z(r,q)|® ° “nlo JoE-C_ |6-z(r,g)|"

D+2r 2
N i N LAY
o BE-Cr

“n’ IO—Z(I‘.q”n

i1f we make use of c).

The first of the two integrals is just like 12 in propositioa 2}

(with £=1, hence m(x) < sup Jng[ <K, ).
= -l =

If we note that |0-z(r,q)| 2 1/2|6-¢!, and if we set
|Cj,| & J d¢ , the second of the two integrals is majorated by
C

P
on f I].) dPI Cne.l =0 JPE{&I'Z

expression ie obviously bounded by a bound independent of r and 8.

B D .
+2“(n-z)f J-C-ﬁ-% dp . The last
r r fn-

The proof of proposition 2) was entirely special to the sphere.
A proof which will yield the statement of 2) in this more general
case can be based upon f') in the fellowing way. Let f be a har-

monic function for which the functions fr (¢) = ¢ [z(r_l,?) converge
4

weakly for some sequence r, —> 0. If g(?) is the weak limit, and

if x is fixed in the interior of &, then h(8,x)g(8) d6 =

9
= limJv h(8,x)f_(8) dé. On the o:her hand, if 'Yf denotes the
r r
o8 n n
variable on (65)r , then

n

r)

fix) = ( h (y_.x) f(y_)d = h_[z(r_,8),x1f (6)J de,

v (BB)r rnV ™ yrn ~l'Urn J 9%, rn[ e ™n ™n
n

T o
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where J is the Jacobian of the transformation 6 —» z(rn, 0j.
n

Now because of the weak convergence of the fr and the uniform
n

convergence of the Jacobians to 1, and of the hr to h, we deduce
n

that £(x) =j8&h(9,x) g(6)d8, and hence fE€F .

There is nothing at all to impede the extension of the key
proposition 3). We shall not repeat the proof, for with the origi-
nal proof and the calculations used to show ||Trf | bounded as a
model, the reader will not find it difficult. One remark will suf-
fice: 3) should be proved only for x within distance T, of 3% ,
but as each set of small capacity is included within this strip, the
restriction is harm!less. Proposition 4) is valid as it stands, as

is Fatou's theorem.

§ll. Example 4. Potentialsof order a of M. Riesz. In this

last example we shall discuss the paeritials of order a of Marcel

Riesz. Among the many papers on the subject especially relevant
to our needs are those of O. Frostman [17_-]. M. Riesz [23], H. Car-
tan 'E%lﬂand J. Deny [15] The paper of Deny even gives explicitly
several of the functional space properties of the spaces of poten-
tials. but through most of the paper the prevailing interest lies in
measures or in distributions, and not in their potentials.

In the course of the discussion we shall prove that our ¢~
capacity Cys formed with the function q’(t) = tz, is exactly the
classical outer capacity. This can bc taken as justification of our

use of the term capacity.

The basic set ‘¥ is Euclidean n-dimensional space, n > 2.

We designate by Ku the kernel of order a of M. Riesz:

T = . i ja=-n
(11.1) K (x) = Kn’u(x) = T-T;(EY | x| for 0<a<n,
722G
(11.1") H {a) =
n M n=a,
H \““2‘—1



Fundamental in the theory of potentials with respect to these ker-
nels i1e the conipesition formula established by Riesz:

Vad
(11.2) Ka+ﬁ(x-Y) =j Ka(x-z)Kp(z-y)dz if a4 <n.,

Let us write Q.: for the class of all positive Borel mea-

sures p on (5 with the property:

(11.3) el = y{,(Kn(x-y)du(y)du(x) <o ,
J

and let us write Qa for the class of differences of measures in
Q: By means of the composition formula {11.2) it can be shown
that the integral (11,3), which is called the energy integral, is fi-
nite and non-zerc for every non-zero measure p & QQ. The value
of the intzgral is called the energy of p. A measure in ‘Q'o. is
said to be vz {inite energy. With the usual definitions of addition
of measures and of multiplication of a measure by a real number
the class i is a (real) vector space. On it the function el
defined by the integral {11.3) is a quadratic norm. The space .Q.a
i8 not complete in this norm. However, an important-theorem of
H. Cartan (for 0 <a < 2} and of J. Deny (for the remaining a) as-
serts that t1he subset Q:. which is a convex cone in Qa, is
complete, °

Now we define the co
actual functional space in which we are interested, First, the ex-
ceptional class OLQ is to consist of all sets A for which there is

a measure p 69.: such that the integral {x-y)duly) is infinite

for every x€ A. Given a measure p& .Qa we define its potential

of order 2 2as fcllows.

(11.4) K n(x) = fKu(x-y)du(y) ,

1. Deny's proof is based vpon the theory of the Fourier transform
in the space of distributions of L. Schwartz [24]. It is poseible to
obtain through direct analysis of the energy integral (1l. 3) a proof
~vhich does not make use of disiributions.
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for every x for which the integrand is integrable, It is obvious
irom the definition of Otzu that Kup.(x) is detined exc. (}La. We
write ’r”o‘ for the functional class rel. CLu consisting of all func-
tions Kup.(x) for pe Q'a' An important theorem asserts that
every function which is infinitely differentiable and which vanishes
outside a compact set 18 equal everywhere to the potential of order

a of some measure p E.-Qu From this it can be proved that

Kcu(x) = 0 exc. OLu if and only if - 0. Therefore if we define
L
"Kup. = lell, “}"u becomes a normed functional class with quad-

ratic norm. We shall see presently that ‘,f—u is a functional space

rel. Oi,u and that it has a functional completion rel. Oz,u.

We shall make use of an exceptional class, to be called Jgh
G
and to consist of all subsets of the sets Ga which have measure
0 for every measure Y€ Qu' Although this class seems to be dif-
ferent from the class (@3, we shall finish by showing that the two
are identical. The proofuis difficult, however, and for the moment
we are content to observe that OLQCOLQ . The argument for the
latter proceeds as follows. If p and v belong to ’Q..:, then the

potential Kup.(x) is lower semi-continuous and the integral
(1, ¥) '—‘fKap(x) d¥ is finite. Therefore the set of points at which
K p(x) is infinite is a set G; of y-measuve 0.

For an arbitrary closed set ACS let T'A denoie the con-
vex cone of measures in Q.: which are supported by A. PA is
cioged in _Q.: and hence complete, By arguments standard in the
theory of Hilbert space it can be shown that corrzszponding to any

u € ie aunique p'E l"'A which rninimizes the distance from p

1. A similar important result is that each function which is in-

finitely differentizble and which vanishes outside a compact set is
equal everywhere to the potential of order a/2 of some measure
" e.Q.u. In both cases the measure p.éQu is the indefinite inte-

gral (with respect to Lebesgue measure) of a square integrable

density.
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to elements of [-"‘.&_: i.e. |p-p'] = min||p-v | over all VQFA. !
is called the result of sweeping the measure p onto A. It can te
shown that K P "(x) = K p(x) a.e. (p'), and that Kap'(x) > Kup.(x)
for »€ A exc. u;ha. Sl..cc Q contains each restriction of Le-
besgue measure to a compact set, a particular cons equen:e ;8
that K G "(x) > K p.(x) a.e. in the Liebesgue sense., It canbe shown
further that "p. | < ilull; in addition, if p** is the result of
sweeping —j onto A, then ||p'+p" i < el ke Consider the spe-
cial case A = & . We have ilKa(p' +1" < llKup. |, and also
Ku(p.' +p)x) > lKup(x)Iexc.obu" In the next paragraph we shall
see that the inequality holds exc. 0 and this will yield ihe strong

majcration property.

From a lernma of Frostman ensues the fact, observed by
Deny, that if u belongs to Q.:, then at every point x the mean
value of Kap. over the sphere with center x and radius r converges
as r—y 0 to Kup(x) (whether the latter is finite or infinite).
Frem thie it is clear that if pe Qo. then at every point x exc. gy
the mean value of Kap. over the sphere with center x and radius r
converges as r —> 0 to K u(x). Hence, if p and ¥ belong to Qa'
and if KaV(x) > Kap.(x) almost everywhere with respect to L.ebesgue

measure, then Kav(x) > Kup.(x) exc.oz,u. The sirong majoration

1. We make use of the following result which is valid in abstract
Hilbert space.

If " is a closed convex cone with vertcx at the origin, and if

p' and p" are respectively the points of I at minimurn distance

from p and -y, thea ot + |l < e ]l, whatever be the vector .

Proof. Since p-p' is orthogonal to p', and since —p —p" is
orthogonal to p", the inequality to be proved takes the form

!!p!!z(cosze+coszq-‘-2 cos 8 cos Ycosy) < "p.ilz, where 6,Vy, @,

are the angles betwzen u and u', p' and p", pu" and —p respective-
ly. Because of the 1nequa11ty WO +y+@ , itis sufﬁment to

prove that cosze + cos {-2 cos & cos 9‘cos(€:+q) < 1. Itis not

difficult to see that this last holdx identically in 8 and @ .

e
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property in "S‘Q results.

With the aid of the sirong majoration property it is easy to
o e} 14 ‘l-’ 3 3 . >
show that *y 182 functional space rel. o, - Liet {p.n} be a se-
quence of measures converging to 0 in norm. For each n let :n
be such that Ka;n i8 a ponsitive majorant for K p_ with the same

norm, and from the sequence Wn‘ﬁ pick a subsequence {F }
" k

o)
such that 2, Ilin | <oo. As Q i8 complete there is a Feﬂ:
k=1 k

such that W = Zﬁn . It can ke shown that if «»; belongs to Q:

and if the sequence {w } converges to w, then for every x,

Kuw(x) < lim inf K W (x) 1 If the sequence {("'\n.} is increasing,

then for everyv x, Kaw (x) > sup Kawi_(x), 30 that in fact Kgm(x) =
= 1

= lim K w_(x). Applied to the partial sums of the series

@ o)

Z'"En , this gives K p.(k) 22K p. (x) for every x (where the
k=1 "k k=1 % "k

value + oo must be admitted, of course). Finally, therefore, exc.

04, we have IK Pnk M o< Ka;nl((x) —> 0.

~/
We are prepared to show that the functions 6 and & are
~
ide'ri.tica.l. One consequence of this will be that L= and 56-: =
= «ﬁ'g, Let {p.n}N be a Cauchy sequence of measures such that for

a given set beo(;—, iim ini |K TR (3] >3 on B exc. o and

“ra =

lim “pn I < 6(B) + &£ . Let “’r and T denote the results of

sweeping By and =M, respcciively, on &% . Then each of the

H\/

Beguences p. and 'L;r iz Cauchy, so the sequence p. = "";1+ p.;"
i8 Cauchy, and tecause of the completencss of ot gt has a limit
p. As ?(". is a functional space rel. d'L {p. ‘? contains a sub-
sequence {'-}Ink} such that K p.(x) = hm 14 p. (y) exc.op,. There-

fore we have exc.0t, K p.(x) lim K g (x) > lim mflK T {x)]

and at the same time ||| = lim|[i_|| < 11m e Il g 6(B) +&.

1. Sce H. Cartan [13_] The simple proof is based upon the fact
that K(1 is lower semi-continuous.
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if A is any set in €:, then the measures pe Q: such that
Kup(x) 21 on A exc. o, form a closed convex set, Cr:ll it PZ
A closed convex set in a Hilbert space necessarily contains a point
at minirnum distance from the origin (or irom any other point).
Thus the infimum, inf||jx]| taken over pe FA’ is a minimum. ie.
is assumed; for each A& there is a measure p.éQ_ such
that K ui{x) > lon A exc. oL and such that hull = 5(A). An im-
mediate consequence is that ¢ = ofyo‘z (=;G—: ). \-';:' will be uscd

again later,

The nexi step i# 10 oblain the relation between cur capac
and the claseical capacity (of order a). OUne of the many common

definitions of the classical capacity is as follows.

C is & co ..pact let, then y(C), the capacity of C,

o 13

the number || , where p. minimizes the ex-

pression Ilp," -Zp(c\ among all measures p.é.ﬁ'r

supvort ed by C. Re is called the capacitary distri-

3
(e) bution of C. If A is an arbitrary set, then yi(A) .

the inner capacity of A, is the supremum of the num-

bers y(C) over all compact sets CC A. If A is an

arbitrary set, then YO(A), the outer capacity of A,

is the infimum of the numbers Yi(G) ovar all open
sets GO A,

It is well known that the cupacitary distribation exists for
any compact set C and is uniquely determined by C. Re is the
result of sweeping onto C an arbitrary measure ¥ whose poten-
tial is equal to 1 everywhere on C. Consequently, the potentiai
of p~ is 21 on C exc. o, and is equal to 1l a.e. (p(‘;. it VY is

any measure in Q+ nuch thot Ka\,’(x) > leon C exc.0, , then

a
- T s
lecll IVl 2 o) = JPKQY(X) dpe ngu.uC(X) dpe = lugii™s =0

IVl 2 legll, and we have the following formula.
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Y(C) = inf ||V!|2 taken over all VGQ: such that

(11.6) K-v(x} > 1on C exc.0df, . The minimizing
a = — 24

measure is Beso

it is convenient to express the capacity also as the sguare of
the distance from a certain convex set to the origin. The measures
LE .Q: such that Kup.(x) > 1on C exc. 0 form 2 closed convex
set simiiar to l"g. Call this new set" 0["'*6. By virtue of (11.6)
it is plain that y(C) is the square of the distance from F’g to the

origin, and that u. is the point in I""g' closest to the origin.

Suppose thai an open set G is written as the union of an in-
creasing sequence {Cn} of compact sets, and suppose that the se-

guence {."C } of capacitary distributions is bounded (as they must
n

be if G has finite inner capacity). Then there existe a subsequence

{p.c -i converging weakly to a measure p.é.Q:. For each k, all
n
k

Fe with i > k belong to r‘*c”’f , 80, as ["*&' is closed and con-
n; - ‘n, n,
2w
he e :
vex, i belongs to | c - Hence Kup(x) >1on Cnexc.mb_ .
n, k a

~1d so

K,lp(x) >lon G exc.oLp . By taking mean-values it follows that
X = 2,
Kap.(x) >1on G everywhere. Now, |||.'.||2 < Jim inf"p._l ”25 Y;,(G) 5
£ = n =

and |ip.||2 2 v,{G) is obvious from (11.6). We have proved:

1) If y.(GQ) < for an.open set G, then therec :2 a ue Q:

sucI:h Ithat Kap(x) >lon G everywhere and &u-h that yé(G) = Yi(G) =
= [l

The same argument (up to the point where the mean-values
are taken) applied te & and 01.‘1 gives a similar rzsult which will

be important.

2) If A is the union of an increasing sequence of seis An
then &(A) = lim 6(An) whenever A€Xy; AE€5 whenever each
A‘_‘eﬁ~ and lim &(A ) < oco.
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It is plain from (11.6) that v(QC) < 6(C)2' for any compact set
C. It foliows immediately from 2) that YO(G) = Yi(G) < fi(G)2 and
from 1) that Yo {G) = v. (G) > 6((})2 whenever G is an open set in
and it fcllows aiso fha.t GE€X whencver Y; {(G) « ». An immediate
consequence is that if A is any set with vy (A) < w, thesa A€
and 6(11 N {A). To cbiain the converse, let A E€.%, and let
TRy =, Q. be auch thai K -,1( <) >1on A exc. o, and such that
el = 6(A). For each ¥<1, let G = [Kup.(x) >72] Then for

o

each <l GC is an open set, G DA exc. , and  8(G <
. » P n %% { "l) =

< U‘l i A is any set in OL then there ir 2 m=asure y“Qu,

H\iil =1, such that K‘}(A. = 4+ oo at every pomnt x of Ao. Setting

= Ex_ K yix) » é] we have GLDA_, and 5(G}) < E. Now,

taking Ao = A —GQ we obtain ar: open set G, lLJ'%(-'v'e’ containing A
and such that &{G,UGL) < 6(G,) + 5(Gg ) g ¥ + £, a number
as close as we ple;se 1:) StAy), T It follows that if A€X, then
6(A) = inf ¥(G), the infimum being taken over all open seic in 34
containing A. And from this and the previous discussion follows

immediately the next statement.

3) A€ & ifrand only if Yo(&) <. If A€%, then
5(A)% = y_(A).

4) YO(A) = cZ(A) for every set A (where ¢
¢-capacity formed with the function ¢(t) = tz.

5 i8 the

Proof. Suppose that AC LJ A vith A €%. Then

n:=l
oo

YO(A) < 7-‘ 2oV {A. ) 6(A ‘2, and be-ause {An‘} is any se-

n= n‘—'l

quence covering A, \'O(A) < CZ(A). Now, if \'o(A) is finite, then

B

1. The sub-additivity of 6 results from the fact that &(A) ='§(A) =
= cl(A) whenever cl(.e’s) < w. The second equality comes from the

strong majoration pioperty.
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AeXs and YO(A) = G(A)2 2 CZ(A).

The natural question to approach next is that of the relation-
ship between the inner and outer capacities. A necessary prelimi-

nary result is the foliowing, obtained directly from 2) and 3).

5) If A is the union of an increasing sequence of sets An,

then \(O(A) = lim yo(An).

With the aid of 5) and a theorem of G. Choquet we are able

Lo staic:

6, If A is any analytic set, then Y (A) = y_(A). In particu-
=5 al’na - Gl'a )

It has not bteen proved explicitly yet that the space ‘27—';1 has
a functional completion. We bring the example to an end by doiny
that and by exhibiting a2 representation of the functions in the per-
fect compleiion.

With the aid of the Riesz composition formula, (11.2), it is
easy to see that if |.‘-eQ:, then for every x, .T.(ap.(x) = Ka/zf(x).
where f = Ko./z""’ and where KBg for any funciion g signifies the

potential of order £ of the measure whose density with respect to

Lebesgue measur: is g. Furthermore, |||.n.|lZ '-:fif('x.)lz dx. It

follows that for any pe , and for f = Ku/z}l.. we have

“

i. G. Choquet has developed an abstract and very genesral theory
of capacity in topological spaces. Tne crucial properties of the
present set fucut.ce vy, Y and Yis by virtue of which Choquet's
theorem is applicable are the following: {see Choqguet [if])

a) y is an increasing non-negative set functicn defined on
all ccmpact sets.

»} Given a coimpact set T and an £ > 0 there is an open
set G 2 C such that y(C') < ¥(C) +& whenever CCC' CG.
c) Yy and Y, are co.structed from y as in (11.5).

d) Y, satisfies 5),
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(11.7) K nix) = K {(x) exc.&_, aad "|J.||2 =f|f(x)|2 dx.

2

Let A be the set of points where KG/Z
non-pegative square integrable function f, Because of the lower

f{x) = + oo for some

semi-zontinuity of Ku/zf(x)' A is a set Gﬁ' It is a well known

fact that if a measure p & Q; has compact support, then the in-
)
tegral fKﬂ/Zf(x) dp(x) is finite. It follows that ui{s) = 0. Thus

for arbitrary p € Q.:, and for every compact set C<C A, pn(C) = 0,
and hence p(A) = 0. In other words, A€l = 01'0.' The class of
subsets of sets whe.e the potentials Ku fix), £ 2> 0 and square
integrable, become infinite is 2xzctly the class apa. It can be
proved easily by methods we have already used that the class 7,2’&
of functions K 2f(x). f square integrabie, is a functio{lz.l space

rel. 0y when given the norm ||K_.,)f I :{ |_f(x)|2dx‘( Ve, 1tis
WL o 4

evident that this class is complete, and by (11.7) it contains &
— a

as a subclass. Indeed, ’j—:l is the perfect completion of "Fu; the

only remaining peint, that nf the density of % _ in ‘?—’a, is easy to
infinite ) .
settle with the aid of the fa~t that svery, differentiable function

which is 0 otride a compact set is thc potentizl of order a/2 of
a measure € ’:)'a' This is a fact we have mentioned in footnote 1,
2, page 58.
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