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FOREWORD 

This   report   is   a   new,    completely   rewritten   and 

in   many   respects    simplified   presentation   of   the 

thpnry   of   functional   spaces   and   functional   com- 

pletion.    The   main   differences   between   this    pre- 

sentation   and   the   one   in   Report   7   are   described 

in   the   footnote   on   page   3   of   the    Introduction. 
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INTRODUCTION 

The   incentive for the development of a general theory of 

functional completion has been the need for complete classes of 

admissible functions in differential problems.     Traditionally the 

admissible functions were assumed to be sufficiently regular,   but 

during the evolution of existence proofs it tecame necessary to re- 

consider the hypotheses of regularity.    In the final analysis,   exis- 

tence proofs use the completeness of the class of admissible func- 

tions with respect to a norm determined by the problem.    On the 

other hand,  the usual classes of sufficiently regular admissible 

functions were not complete. 

In some instances it has proved feasible to adjoin to the 

usual class of admissible functions suitable ideal object? to ob- 

tain a class with the required properties of completeness ,   the 

"abstract completion",   to extend the differential operator to such 

ideal objects,   to prove the existence in the enlarged class of a so- 

lution to the problem in question,   and finally to prove by using the 

special character of the problem that the solution is necessarily 

one of the original admissible functions.    '    Often the last step is 

unmanageable,   however,   and then the very questions of which the 

differential problem is composed,   questions of differentiability of 

the solution,   its boundary values,   etc.  are meaningless.    Further- 

more,   comparison of the enlarged classes arising from two dif- 

ferent problems is not possible in any direct way,   and there are 
2. questions in which such comparisons are necessary. 

1. See for example,  K. O. Friedrichs   [17 ]. 

2. Comparison of the enlarged classes for two different problems 

is an essential part of some recent approximation methods;   see 

N.  Aronszajn [ 3 J. 

..   -._ 
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In some problems,   especialJy those connected w>';h the La- 

place operator,   there have been scattered attempts to complete 

the usual class of admissible functions by the adjunction of con- 

crete functions determined in a definite way by the original class 
1 

of functions and  its norm.    '    The success of these attempts was 

notable for the reason that the problem of completion by functions 

was not 'hen well defined. They are the fore-runners of the gen- 

eral theory of functional completion. 

The basic difficulty in the completion by functions of a func - 

tional class lies in the impossibility of using functions which have 

significant values at each point. It is in the nature of the problem 

that if there is a functional completion at all, then associated with 

it are certain exceptional sets of points. Any two functions which 

differ only on one of the exceptional sets must be considered equi- 

valent. 

Thus the problem of functional completion divides into two 

parts,    The first of these is to find a suitable class of exceptional 

sets.    The second is to find the functions,  defined modulo these 

exceptional sets,   which must be adjoined in order to obtain a com- 

plete functional class.    It turns out that there may be an infinite 

number of suitable exceptional classes (of exceptional sets) in a 

given problem,  but to any one of them corresponds essentially one 

functional completion.    As to the infinite number of suitable excep- 

tional classes,   it is clear that the most suitable is the class whose 

exceptional sets are the smallest,  for to it correoponds the com- 

pletion whose functions are defined with the best possible precision. 

Whenever such a minimal exceptional class exists the correspon- 

ding completion is called the perfect completion.   Use of the per- 

fect completion is especially important in differential problems, 

for if the exceptional sets are too large,   then it is impossible to 

discuss derivatives, boundary values,  etc.  in the normal way. 

1.    e.g.    O. Nikodym  £l];   J. W. Calkin  $."];   C. B. Morrey  [2*j   . 
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In the first sections of Chapter I of this paper we give the 

precise definitions and general theory of functional completion in 

an abstract settine. 

We define   exactly the classes of sets which will be called 

exceptional classes,   then the functional classes,   aormtd function- 

al classes and functional spaces relative to a given exceptional 

class   OP .    This leads finally to a precise definition of a functional 

completion relative to  0J-  or relative to any larger exceptional 

class      ffl> 3 &    .    We give a construction of the functional comple- 

tion relative to   (P,   supposing that it exists. 

The  bulk of the chapter is devoted to the more difficult prob- 

lem of determining the exceptional classes relative to which a func- 

tional completion does exist.    We introduce set functions   6(A), 

6(A),   and  c-(A).    The last,   constructed from  6  by means of func- 

tions    (f(t)   of a variable   t > 0,   art called capacities.    In certain 

classical cases they coincide with classical capacities.    The classes 

of sets  for which the functions   6,   6,   and  c*   vanish give bounds for 

the exceptional classes relative to which a completion can exist. 

1.    A general theory of functional completion was announced by 

N.  Aronszajn in [2] and presented in £8j.    The new presentation 

given in this paper differs from its predecessor in several respects. 

The most important is the use of set functions to replace the classes 

of Bets   £ ]M le .    The set functions are simpler conceptually and 

easier to handle.    Another improvement is the introduction of the 

majoration property and the solution for spaces having this proper- 

ty of the problem of perfect completion.    By using the majoration 

property it is possible to obtain the perfect completion in all the 

examples in which formerly the theory of measurable spaces was 

used.    Consequently it has been possible to defer discussion of the 

latter until the time when they will be used in the theory of pseudo- 

reproducing kernels.    Finally,   the choice of examples is quite 

different in the two papers. 

. 



-4- 

1 

W2 introduce the  "majoration property",   and under assumption 

that it holds   (which is always true in cases met in applications) 

we prove that one of the above bounds is exactly the exceptional 

class for the perfect completion,   if the perfect completion exists. 

Under the same assumption necessary and sufficient conditions 

for the existence of the perfect completion are obtained.    We ob- 

tain also some properties of the functions constituting the com- 

plete class.    These are of importance in applications. 

The   chapter is concluded by a discussion of proper function- 

al completion,   the case where it is actually possible to use func- 

tions defined everywhere. 

Chapter II is given to examples,    We do not show any of the 

applications of the theory to differential problems,  for these will 

be treated fully in later papers.    Rather,   we have chosen the ex- 

amples with the object of bringing out in concrete cases the sig- 

nificance of the notioas introduced in Chapter I.    In some of the 

examples,   however,   especially example 3,   we are able to use the 

genera- theory to     give   new  proofs of known   results. 

The first example treats a well known space of analytic func- 

tions . 

The   second example is the completion of a space of continu- 

ous functions in which the norm is the   Lr   norm with respect to a 

Borel measure   u  in a locally compact topological space.    The ex- 

ample is one which is thoroughly discussed in measure theory; 

here it  serves exclusively as illustration.    One point which might 

be unexpected is that the perfect completion is not always the 

space   Lr (n),   though for the usual topological spaces - say metri- 

zable spaces - it is. 

The  third  example is the completion of classes of functions 

harmonic in a domain and continuous in the closed domain in which 

the norm is the   I.<     norm on the boundary.    We obtain the extension 

to n-dimensional spheres,   and more generally to n-dimensional 

-----...     •„ ••*_ 

I 
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domains  of bounded curvature,   of theorems which are classical in 

the case   of the circle in the plane.    In particular,   by using the ca- 
pacities as defined m the general theory we obtain the extension of 
Fatou's theorem to these domains. 

2.     , , 
The last example is the completion of the class of potentials of 

Ivl. Riea£  of oi'dcif   a,     0 < a < ii,    of finite energy. We obtain the 
perfect completion on the basis of the general theory of Chapter  I, 
and we prove that the exceptional sets for the perfect completion 
are the sets of outer capacity 0.    We establish the following connec- 
tion between the  set functions and  rapacities of the  oenerMi ti:eory 

2^2 and the usual inner and outer capacities:    6(A)   = 6(A)   = C-(A)= "^(A) 
for any set  A,   where   c7   is our capacity formed with the function 

2 Q (t) = t     and where  y     is the usual outer capacity of order  a. 
Furthermore,     \-(A) = y  (A)   for any analytic set  A,   where  y.   is 
the usual inner capacity of order  a. These results justify our 
terminology. 

1. The theorem in question is that concerning the convergence of a 
harmonic function to its boundary values.    Its extension to domains 
of bounded curvature was obtained by C. de la Vallee Poussin   £25j. 
A further extension to more general domains was obtained by  I. I. 
Privaloff and P. Kouznetzoff  f22J. 
2. The perfect completion for the case  o = 2  was conjectured by 

N. Aronszajn \_2-\_.   The perfect completion for arbitrary a  was con- 
structed first in  J. Deny £l5_|.    An independent construction for 
a = 2   was announced in N.  Aircnszajn £6Q. 
3. We prove this result by applying the general theory of capaci- 
ties of  G. Choquet   Q4J.      Th«; result is new for   a >   2. 

-n 
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CHAPTER I.  GENERAL THEOPY 

f§l.    Linear functional classes.    If f  and  g  are real or complex- 

valued functions defined on respective subsets  A  and B   of an abstract, 

set   cS «   then  f + g  and  a f,    a real or complex,  denote the following 

functions:  f + g  is defined on the set Afl B,   and   (f+g){x) = f(x) +g(x); 

a f is defined on the set A,  and   (af)(x) = af(x).    A real linear func- 

tionai class is a class   J- of real valued functions,   each defined on a 

subset of a fixed abstract set  £»,   such that if f and  g  belong to   *3e- 

and a  is real,  then  f + g  and af belong to ^'.    A complex linear func- 

tional class is the obvious analogue.    A linear functional class,  or 

simply a functional clans;   is a real or a complex linear functional 

class. 

The abstract set <^  in which the functions of a linear functional 

class ? are defined is called the basic set of   J~.    A given function  f 

in *P is not necessarily defined on the whole of the basic set   "2? ; the 

subset on which f  is not defined is called the'exceptional set of f. 

Members  f  and  g of ^ are equal only if they are identical. 

In particular,   f  and  g  are different whenever their exception- 

al sets are different.    For this reason a linear functional class is not 

necessarily a vector space in the ordinary sense.    In fact,   if  f and 

g are any two functions with different exceptional sets,  then   0-f $0- g, 

for the former has the exceptional set of f,  and the latter has the ex- 

ceptional set of  g;   0-f ^ 0' g is impossible in a vector space.    Simi- 

larly,  the identity (f+g) - g = f   fails in a general linear functional 

class.    These examples give already the main deviation from vector 

space behavior,   however: addition is associative and commutative, 

the usual distributive laws hold,   and   1 • f = f. 

Let 3(r be the class of all exceptional sets of functions in *9Br. 

It i s clear that the union of each pair of sets in X- is again in <&-, 

for the union of the exceptional sets of f  and  g  is the exceptional set 

of f + g.     .An equivalence relation is defined on  V- as follows: 
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f S£ f'     if   f   and   £'    are defined and equal save on some  subset of 

a set in <£y .    It is immediately verified that if      f ^£'      and   g^g', 

then   ql — af    and     f + g^f +g'.    The equivalence classes in  5^ , 

under the usual definitions of addition and scalar multiplication of 

equivalence classes,  form a vector space. 

§2.    Functional classes rel. ot and normed functional classes. 

Let & be a linear function class on a basic set   £> ,    and let   sb be 

the class of exceptional  sets of functions   in   ^.    In practice   it 

often happens that more sets must be considered exceptional  than 

those already in 53r .    In order to treat examples of fr.his kind we 

&?» compelled to introduce a general notion of exceptional class. 

The exceptional class will serve to define,   as 3^ defined in the 

last section,   an equivalence relation on the class   °!f- .    In this de- 

finition,   subsets of exceptional sets play the same role as the ex- 

ceptional sets themselves,   so it is justifiable to insist that each 

subset of an exceptional set be exceptional.    In order to ensure that 

the equivalence be compatible with the linear operations in  V~ ,   we 

require that a finite union of exceptional sets be exceptional.    In 

order to ensure that it be compatible with limit processes,   we re- 

quire that even a countable union of exceptional sets be exceptional. 

The formal definition follows. 

An exceptional class in the basic set   £, is a class   OX of sub- 

sets of   "&> which is 

(2.1) hereditarv: if   A601-     and     B C A,    then      B£0(-. 
oo 

(2.2) cr-additive:    if   A  e£ Ot ,   n = 1,2,...,    then    U A €. Ot-  . 
n=l 
  

1. This equivalence relation is not the only one which transforms 

r  into a vector space.    The relation with the smallest equivalence 

classes is given bv:     ISr     if     f = £'   wherever both are defined. 

2. We use the following standard notation:    if   Ot is a class of sub- 

sets of a set   £>,  then    Ok    is the class of all subsets of sets in OU 

. 
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A linear functional class ^ is a linear functional class rela- 

tive to Oi    if   01 is an exceptional class which  contains  the   excep- 

tional set of each  f  in   <3^.    If   7 is a functional class relative to OU- 

(written  rel. GU ),   then   OU   is called an exceptional class for   f~ , 

and the sets in   01 are called exceptional sets.    In order to avoid 

unnecessary repetition we make the following conventions :   the 

letter    °~f- ,  with or without indices,  will denote a  linear functional 

class;      ?~, will denote its basic set;      OU,   with or without indices. 

will denote an exceptional class in   £>. 

It  is clear that for each linear function class    "9^   there ex- 

ists an exceptional class,   which in general is not unique.      The 

largest exceptional class for   <r   is the class o. ail subsets of    5> ; 

the smallest exceptional class for  °4-  is the class   J&g-i »    where  xr 

is the class of all exceptional sets of functions in ^\   the intersec- 

tion of any family of exceptional classes for   7s i8 again an excep- 

tional class for    "&- . 

Any exceptional class   0V- for the functional class   & defines 

on *J^  a natural  equivalence relation?     f ~f!     if  f  and  V   are de- 

fined and equal save on a set in  Oi- .    As before,   the equivalence 

C1A«*>«8 form a vector space,  but usually it is more convenient to 

work directly with the functional class and its functions than with 

the vector space and its equivalence classes.    Consequently,   the 

equivalence notation,      fassf    will be used rarely.    In its stead we 

shall write     f = f exc. OU .      In fact,   we shall say that any proposi- 

tion is true   exc. OU   if the set of points at which it is not true be- 

longs to the exceptional class   01? .    Also,   for two sets  A  Lnd B we 

shall say     AC B exc. OU     if    A-B£(^ .    Similarly,    A = Bexc.0t. 

means      (A - B) + (B - A)C Oi    . 

Or .   is the class of all countable unions of sets in Oi ;    01*. is the 

class of all countable intersections of sets in  OU .    With this nota- 

tion the fact that  Oi   is an exceptional class can be written 

OU = 01 
CTh    * 

, 

• 
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If °jf   is a functional class  rel. OC,   then no is the class   °3^ ' 

of all functions defined  exc.flt  and equal exc.0J   to some function 

in ^F .     °g-x   is called the saturated extension of   5~  rel. Ot- .    ^ is 

saturated  rel. 01  if it coincides with its saturated extension.      Let 

<h and    'JF.  be functional classes   rel. OU   and    0t>,   respectively. 

From the relation   *& CT J- ,   one obtains no relation in general be- 

tween   dt and     #,.    If   3^ is saturated,  however,  then     Q^Oty 

A pseudo-norm on a functional class  7 is a real valued func- 

tion   ||f||   on   *£• with the properties: 

(2.3) IIf ||   >  0 , 

(2.4) llafll   =lalllfll  . 
i   HI   ii 

(2.5) ||f + g||   <   ||f||  +  ||g||  . 
a function 

It can be proved by the homogeniety property (2.4)   that if. f 

in ^  is equal tc   0  wherever it is defined,   then    jjf ||  = 0.  A normed 

functional class rel. Ot   is a functional class  "if rel. OV    together 

with a   pseudo-norm on ^f  which has the property: 

(2.6) ||f || = 0     if and only if      f = 0  exc.  OL . 

A pseudo-norm with property (2.6) will be called a norm. 

The following statements can be proved without difficulty. 

In each of them   &-   is a functional class with a fixed pseudo-norm. 

1) If   f-  is a normed functional class rel.  Ot ,  then so is its 

saturated extension (with the natural extension of the norm). 

2) If    "f' c *jt,  then   *p (with pseudo-norm of  ft )   is  a 

normed functional class   rel. g%>    whenever  ^ is. 

3) If  y is a normed functional clasB rel.    Qi>   and 

rel.   <#." o OU\  then it is also a normed   functional class   rel. Ot- 

whenever  ci a OL- C Ot", 

4) ii <f- is a normed functional class relative to'each of a 

family of exceptional classes, then it is also a normed functional 

class relative to the intersection of the family. 
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i Condition (£.0)   uomprises    twn implications.     Taken separ- 

ately they provide bounds above and below for the exceptional classes 

relative to which 'jP  can be a normed functional  class.    Let   ^-' be 

the class of all subsets   B   of   6  such that for some  f  in    ^   with 

||f |j  = G,        BcE [f(x)   is undefined,   or   f(x) =f o].    Let    sty    be the 

class of all subsets   6   of   G   such that for every  f  in 7 with  ||f ||>0, 

B^E [f(*> 4 0]. 
The classes      <£•'   and      £!'   are both hereditary but they are 

not in general   G"-additive ox  even additive. 

5)    A necessary and sufficient condition that  "5^ be a normed 

functional class rel. 01    is that      o<j-'c_ (&• C £&"•    A iiece»»ary and 

sufficient condition that there be an exceptional class relative to 

which y   is a normed functional class is that     ^   ez <&" -          (j- 

Remark 1.     The inclusion     ^' c 5y"    does not hold for all J-, 

even when it does,      ^' c ,&•"   may not. 

Example 1.    Take   ^>   to be the open interval     0 < x < 1,     and 

°3h    to be the class of functions on   <S   with continuous bounded de- 

rivatives;    define the norm by      ||f ||   -       [£' (x) |dx.    In this case the 
J 0 

class     3^-y   consists of all subsets of   £> ,  the class    <^r"   of all 

subsets with empty interior.    There is no exceptional class relative 

to which   ^- is a normed functional class. 

Example 2.    Take   2S to be the closed interval 0 < x < 1, 

and  '$-   to be the class of continuous functions on   ^  ; define the 

norm by      ||f||   = 3up |f(x)|.      In this case    J&-'   is (0), and    o&" is 

again the class of subsets of   c^>  with empty interior. ^ is a 

normed functional class relative to the class     d' of sets of Le- 
sets of 

besgue   measure 0,   and also relative to the class    01" of-first ca- 

tegory;   but there is no   01  larger than     0VX   and     0J,"   relative to 

which   r is a normed functional, class. 
» 

Conclusion.    If there is any exceptional class re iative to 

which a given functional class with a pseudo-norm is £•. normed 



-11- 

functicnal class,   then there is a smallest such class,   but there may 

not. be a largest. 

In any functional class ^ with a pseudo-norm convergence 

(in norm) is defined as follows:    a sequence {f ^ of functions in    "S^ 

converges to a function f  in   *?• (written   f   —> f,    or   f = lim f )  if 6 % n n' 
|jf   - f |—> 0.    The sequence (f "^ is Cauchy if     ||f  -f     || —•> 0.    ^"is 

complete if each Cauchy sequence of functions in   ^ converges to 

some function in     f , 

Remark 2.    A sequence in   ^f may have several limits.    If  "3* 

is a normed functional class rei. OP,   any two are equal exc.  01   . 

-rr> 

"1 

01,   and let Y  be the vector space associated with f-  by means of 

the equivalence relation defined by   OU .    It is clear that the pseudo- 

norin has a constant value on each equivalence class.    If this con- 

stant value is taken as the norm of the class,   then V  becomes a 

normed linear space in the usual sense.    A convergent sequence in 

"&   corresponds to a convergent sequence in V,   a Cauchy sequence 

in > to a Cauchy sequence in V.     £" is complete if and only if V 

is complete. 

§3.  Functional spaces.    In a general normed functional class 

norm convergence of a sequence of functions  f     has no bearing upon 

the convergence of the functions pointwise.    The object of the rest 

cf this paper is to study functional classes in which the two kinds of 

convergence are linked. 

A functional space rel. OP   is a normed functional class rel.<#- 

in which the following condition holds: 

(3.1) If     f   —>• f,    then there is a subsequence   /f    \ such that 
n • —   i nj^J ———-^—— 

f   (x) —>• f(x)   exc.   01 . 
nk 

In the statements below,     *7-  is a functional class with a 

fixed pseudo-norm. 

P 
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1) If *?-   is a functional apace  rel. <5t ,   then so is its saturated 

extension. 

2) If     cyi c "T^,   then    *y (with pseudo-norm of   ^) is a 

functional space rel. Ol-    whenever   <t   is. 

3) If "&   is a functional space rel,    01-'  and rel.   ffj." 3> ^', 

then 7   is a functional space rel. Of-    whenever     #-'c: 0t c: ot".      _ 

4) If ^   is a functional space relative to each of a sequence 

of exceptional classes,   then   7 is a functional space relative to 

their intersection. 

Proofs.    Statements   1),   2),   and 3) can be obtained easily from 

as follows.    Let 0%   be the intersection of the sequence    ipt \,  If    ^~ 

is a. functional space relative to each      Ot   ,   then by   4),   section   2, 

4-    is a normed xunctional class rel. Oi-  .    If     f   —^ f,   then there is 
r n 

a subsequence   (f.     }   such that     f. (x) —> f(x)exc.0Z-. ;   then a  sub- 

sequence   jf,     T   of   ff,     I   such that f.,     (x) —=s» f{x) exc.0?-,    - hence ^               <- 2,n'          l l,nJ 2,n*   '           v   '                2 
also exc. Ot, n #!•„. The standard diagonal process yields a subse- 

quence of the original^ }, which converges at every point exc. Oi-; 

thus   r   is a normed functional class rel. Or    in which (3.1) holds. 

Remark.   Even if ^  is a functional space relative to some 

exceptional class OP ,   4) cannot be used to obtain the existence of a 

minimal exceptional class relative to which it is a functional space; 

for 4) provides only for countable intersection of exceptional classes. 

As yet there is neither a general proof nor a counter example for 

the existence of such a minimal class.    It is certain that there need 

not be a largest  exceptional class relative to which 7  is a funct - 

ional space.     This is shown by Example   2   of the last section. 

Examples.    Example   2   of the last section provides two func- 

tional spaces.    Other common functional spaces are the spaces Lr , 

p > 1.     To be specific,   let  ^>    be the interval     0 < x <  1,     and let 

Ct, be the class of subsets of   O   of L.ebesgue measure  0;    then   L.   , 

^receding section,    otaiement  4) is oDiainea 

• • . 
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p >  1,   is the class of all functions   f  defined   exc. Oi-   which are 

f C1 i l/p 
measurable and each that       j|f||      = j I    |f(x)fdxf        < oo.    With 

indicated norm,   Is   is a functional space. 

Proper functional spaces.    A proper functional class is a 

functional class   rel. 01 - (0),   the class consisting of the empty set.. 

A proper normed functional class is a normed functional class 

rel.  (0).    A proper functional space is a functional space rel.   (0). 

5)   Either   of the following statements is a neccessary and 

sufficient condition that a proper normed functional class  °f- be a 

proper functional space. 

a) If     f    —^ f,    then     f  (x) —> f(x)   for each  x  in   &. 

b) For each  x in   o,   the expression f(x)    is a 

continuous linear functional on   J~ . 

Proof.    The sufficiency of   a)   and the equivalence of  a)   and 

b)  are evident.    We prove the necessity of b).    It is clear that the 

expression f(x)   is a linear functional on   4~ .    If it is not continuous, 

then it is unbounded on each sphere      |jf ||   < €. ,   so for each n 

there is an f     satisfying      ||f   jj   <  l/n     and    |f  (x) |   > n.    Obvious- 

ly    f   —>•  0,   but no subsequence of  f  (x)  does.    This requires that 

x belong to an exceptional set,   and contradicts the fact that there 

is no exceptional set but   0. 

%4.    Functional completion,     It is well known that the function- 

al space   L?  described in the example in the last section is obtained 

by completing a simpler functional class.    Let   ^S  be the interval 

0 g y < 1,    and let  C     denote the functional class of all continuous 

functions defined everywhere on   c^»  with the norm 

i/p 
C     is a proper normed functional class. \\%  ^{jjf(x)jPdx]lP. 

It is- not complete, nor is it a proper functional space. The excep- 

tional clait consisting of sets of Lebesgue measure 0 and the func> 

tional space   Is   provide the solution to the following problem;    to 

-1 

.. ._ . 
- 
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find an exceptional class Ot   relative to which  C    is a functional 

space,    and to find a complete functional space   °cp- rel.ctf-   which 

contains   C    as a dense  subset. 
P 

A normed  functional class "^- rel.fr   is embedded in  a 

normed functional class    °^'  rel. OU   if    f^   3^',    (JVcol't    anc* tne 

norm of each function in  f is the same as its norm as a function 

in y1,    A subset »£5  of a normed functional class   ^r (or of any 

functional class with a pseudo-norm)   is dense in *if- if each f  in °^ 

is a limit of a sequence {f ^in £> .    A functional completion of  a 

normed functional class   *3r rei.OV is a functional space   ^r'rel. 0%' 

such that *r  is embedded in    *f*   and is a dense subset of     ^P',- 

In the statements which follow   c^  and    •*'   denote normed 

functional classes rel. Ot and    Ot',   respectively. 

1 ) "&• is embedded and dense in its saturated extension. 

2) ^ is complete if and only if its saturated extension  is 

complete. 

3) If  *$ '   is a functional completion of   '&• ,   then the satura- —    
ted extension of   ^ '   is also a functional completion of   y ,   and it 

is the only saturated functional completion rel. 6t'. 

Proofs.   1),   2),   and the first part of  3)   are obvious.    Suppose 

that  *sF '   and   f "   are two saturated functional completions rel. OS. 

of  °t -    We shall show that    If* <Z. ^p1,   from which it will follow by 

symmetry that   C^L'   and   "^"   are identical.    Let  f belong to  °$r '. 

Then there is a sequence {f \ of functions in *$•  such that a« elements 

of   *y ',     ,f .—* f,    and such that     f  (x) —» f (x) exc. Ot'.    The se  - 1 n n 
quence{f ^ is necessarily Cauchy in "7"',   and since    ||g||' = ||g|| = ||g|!" 

for all  g  in IF ,   it is Cauchy in   <rf-n   too.    As    "£•"   is complete, 

there is an f"   in   *& "   such that   f   —> f"   in &n.    For a suitable n 
subsequence,  therefore,      f"(x) = lim f   (x)   = f (x) exc. OV .     Since nk 
*^'«   is saturated,   f belongs to T".    Thus    <^c'   and    ^P"   are iden- 

tical functional classes;    their norms agree as they agree on the 

dense subclass    "$r . 

-~3 

_ 
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In view of  the first part of   3) there is never a loss of gen- 

erality in restricting a discussion to saturated completions.    This 

is sometimes convenient because of the uniqueness property des- 

cribed in the second part of  3). 

4)   If °P   has a functional completion rel. Ot-',   then the satur- 

ated completion    <g" rel. fff.'   is described as follows; 

(4.1)   A function f defined in    £> belongs to    ^'   if and only if 

there is a   Cauchy sequence  |f   ]   in  "f   such that 

f  (x) —> f(x) exc. 01'.      If f  belongs to    ^',    then 

jjf||  = lim  ||f^ !|    for any such Cauchy sequence. 

Proof.    From the definition of functional completion it is 

clear that for each  f in the completion there is a sequence with 

the properties listed.    On the other hand,   suppose that  f  is a func- 

tion for which there exists such a seauence  {f 1 .    As   \l   ]    is 
^ l l n1 «• n1 

Cauchy,   it has a limit  f   in    f',   and for a suitable subsequence 

(f    }  ,    f'(x) = lim f_(x) = f(x) exc. OV,    Since    ^' i* saturated, 
nk "k 

it must contain f. 

5) _If_ "f-  has a functional completion rel. 0l>   and rel. W "Z>OV, 

then it also has a functional  completion  rel.   0L'"     whenever 

Proof.    Under these circumstances a functional completion 

f rel,  CP   is in fact also one rel. 01-'" •    It is sufficient to  show 

that    T '   is a functional space rel. Olm\   for this it is sufficient 

(see 3),   section  3) to show that  °3^ '   is a functional space rel. 0\,". 

The only point which requires verification is that if     f = 0 exc.  Ot", 

then    ||f ||  = 0.    It is easy to see,   however,  from the description 

(4.1)   that   *f- '   is embedded in the saturated completion rel. CU"» 

«•-:. thi-t     f - 0 exc. OV"     and    ||f ||  4 0   a-re incompatible. 

6) If  ^ has a functional completion relative to each of a se- 

quence   \pl\ of exceptional classes,   then it has a functional com- 

pletion relative to their intersection. 

•n 

J 
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Proof,     Let    <#-'   be the intersection,   and let    °$f'   be the class 

of functions described in  (4.1).    Hefine    ||fl|   for these functions as 

it is defined there.    It is evident that    egc|   is a functional class rel. 01'. 

Let    *9~    be the saturated completion rel.02   .    From  4)   it follows 

that for each n     ^ ;  is embedded in   ^  .    From, this it follows di- n 

| 

rectly that the norm on    &• '   is well defined,   and that    "3P-'   is a func- 

tional space rel.  Gi, . r n 

Consider a function i  in   °&  .    There is a Cauchy sequence 

[f, \   in   r converging    exc. (X .   to  f.    Now, {f.\  is Cauchy in every 

*£.,  therefore convergent in every  *xr..    Hence for each j   it contains 
J J 

a subsequence which converges pointwise exc. <}%...    By the diagonal 

process it is possible to obtain a subsequence which converges exc.#', 

converges therefore exc. Cfr'   to a function  1'   in   "/• '.     We nave proved 

that     *3^' C ^  ,    and that each f in   T     is equal exc.^t     to an f in _j v n n n 
tr~f'.    This means that     *jf      is the saturated extension of    °X ' rel. 01 , ^> n * n 
so that    *y',   like    ^     is complete and is a functional space rel. OU . 

By  4),   section 3,    «y'   is a complete functional space rel. 0V.    That 

^  is embedded and dense in   *£'   does not require proof. 

This proof shows the possibility of using   (4.1) not only in des- 

cribing a functional completion known a priori to exist,  but also in 

making an existence proof.    Whenever f is a normed functional 

class rel. QVCOV,   (4.1)  defines a class of functions   °? '   which is a 

functional class rel.flt1.    It also gives a procedure to define a norm 

in   °lr ';   this norm is well defined if and only if it does not depend 

on the choice of the Cauchy sequence {f   j     converging to   f point- 

wise exc. 6L-'. 

7)    (a)   7'   is a normed functional class rel. OV   if and Only if 

for each Cauchy sequence  [f }   in   *£ which converges pointwise 

exc. OV   the conditions     f (x) —>• 0 exc.W     and      ||f   || —^ 0     are 

equivalent.    If   °7ri   is a normed functional class rel. 0U\   then   "^ 
' m  ——— 

is embedded and dense in   7'. 

(b)   If   ^r '   is a normed functional class,   and if each 

Cauchy sequence in  '&• contains a subsequence^which converges 

•   • 
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exc. £#.',  then   *3^'   is complete.   "J^ '   is a functional completion of  r 

if and only if it satisfies this condition on Cauchy sequences and is 

a functional space rel. GV • 

Proof.      (a)   II *r ' tfe'a normed functional class rel. 0t' (which 

implies in particular that the norm in   f'   is well defined),   then a 

sequence  If   ] of the type indicated has a limit f in   ^ '   to which it 

converges pointwise exc. OV.    Each dondition    which follows i« ob- 

viously equivalent to the conditions adjacent to it:    (i)      ||f   jj —> 0; n' 
(ii)      ||£ ||  = 0;     (iii)   f(x) = 0 exc. 01';     (iv)   f  (x) —> 0 exc. at'. 

Suppose that  </-   has the property described in (a).    If for an 
-V 

St \    = T.„. f  in    V-'   there are Cauchy sequences   {f  J   and  {g   {  in   f-   which 

converge exc.flt' to  f,   then    j ijfjj - |!gJ| | ^  ||fn - gn jj _-*  0.     for 

{ f   — g  ]>   is a Cauchy sequence which converges to  0  exc. Olx. 

Therefore the procedure of (4.1)  for norming   "r '   is well defined; 

the norm of an f does not depend on the particular approximating 

sequence.    The proof that   <9r ''   is a normed functional class rel. OV 

in which *& is embedded offers no difficulty.    In order to show that 

*5*   is dense in    <9r'   we verify the fact that if   f is a pointwise limit 

exc.flt'   of a Cauchy sequence   [f "^    in   *&,   then     ||f   - f j| —>- 0. 

For each n,    f    — f   is a pointwise limit exc. 0UX   of the Cauchy se- 

quence  (f   - f   \   in  "t ,   so that by definition    ||f   - f ||  = limllf   -f 
*• n       mi "n"   m->oo     n     m 

and this can be made arbitrarily small by proper choice of n be- 

cause the sequence \i \   is Cauchy. n* 
A/ 

(b) If 'IF ' is a functional completion, then by definition it is 

a complete class and a functional space rel. &'; hence each Cauchy 

sequence ha-J a subsequence which converges exc. OV • 

To prove completeness under the hypothesis in (b)   it is suf- 

ficient,   since we have already established that °¥- is embedded and 
fir *s? dense in    T',  to prove that each Cauchy sequence in >r has a limit 

in   T '.    By hypothesis each Cauchy sequence ixi "f-   has a subse- 

quence  which converges exc.flt1.    The pointwise limit of this sub- 

sequence belongs necessarily to    *if-\   and it is the limit in norm of 

the subsequence,  therefore also of the sequence. 

J 
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Remark 1.    It is particularly important in applications to make 

use of completions for which the exceptional sets are as small   as 

possible,   for in these the functions are determined most accurately. 

If there is a smallest exceptional class   01  relative to which a given 

?~  has a functional completion,   then the saturated completion sel.Ot- 

is called the perfect completion of   V-.    Proposition 4)   is relevant 

here,   but it cannot be used,   even with the hypothesis that there ex- 

ists   some completion,   to deduce that there exists a perfect com- 

pletion.    It provides only for countable intersection of exceptional 

classes.     This general existence question is open,   though we have 

obtained theorems of an abstract character with a wide range of ap- 

plication.    These will be discussed in the section to follow. 

^5.    The functions   6   and  6   and the classes which they define. 

In this section and the next we introduce certain functions and 

classes of sets which lead toward solutions,   partial or complete, 

to the following problems:   (i)   to decide when a given normed func- 

tional class admits a functional completion;   (ii)   to decide when it 

admits a perfect completion;    (iii)    to describe the exceptional sets 

for a perfect completion.     The classes introduced will provide ex- 

plicit bounds for the exceptional class of a perfect completion;    in 

all examples where a perfect completion has been found,   its excep 

tional class coincides with the bounds given.    Throughout the two 

sections   0   is a fixed exceptional class,    ^ is a fixed normed 

functional class rel. 01 .    The initial definitions follow. 

I 
I 

Definition    a).    &r is the class of all sets   Be o      for which 

there is an f   in   *<f   satisfying    |f(x) | > 1  on  B exc.^JJ ;    for each B 

in & ,   6(B)   is the infimum,   over all f  in ^   satisfying    |f(x) | > 1 

on  B exc.dt,   of the numbers    ||f ||. 

Definition    b),   sCr   is the class of all sets   BC Cs     for which 

there is a Cauchy sequence   [f   ]   in "t   satisfying     lim inf |f  (x)j> 1 

on B exc.Ot- ;   for each B in  & ,    6(B)  is the infimum,   over all 

Cauchy sequences { f \ in V  satisfying   lim inf |f  (x) | > 1 onB exc.Ot, 

of the numbers    Jim ||f   ||. 
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Definition    c).    KX     ^
S
 t-11^ class of all seta  B   in^  with 

5(B) = 0;      #$    is the class of all sets  B  in J&> with   5(B) = 0 . 

The  first two statements below follow directly from these 

definitions. 

1) U_ A« Ct ,  then   A€^  and   6(A) = 0;    Jf   B€T^  and 

B' = B exc. C*.  then   E'CiS- ,  and   6(B) = 6(B");   jf   B6^    and 

B'd B, then   B"«£J&*,  and   6(B») < 6(B).    The same statements 

hold for 3g-  and  6.    In particular, j£ » dG- » JS*.  and j(£»    are all 

hereditary and contain &. 

2) <^C^rC 4-^ ; £ B££-,  then   6(B) > li(BS).      Hence 

3) (a)  Jf_ V"   is a functional space rel. <Jt then     0t = JS- . 

(b) _!£_ ^   is complete and a functional space rel. sJS-,   then 

•& = <&.      6(B) = 6(B)     and      0*=  J5-° =  <&°. 

4) (a)   For each   B€*G-     there is a sequence \iJi in  y such 

that      |f   | —*•  0   and      Jf (x) | —» oo     on B exc. tU- . 

(b)   If   Bc£,   is such that for some sequence  H   j in_ ^ - 

p   | —» 0   and    linn  jf (x) | > 0   on B exc. fit. then   B€ <aS-°_ . 

5) BE   B C <&   is such that for some Gaucky sequence ff i in 

*y,     !-_lx)S -> co   on B execs', then    B€ »5r    . 

Proofs.   3)(a).    By 1)   foci* .    On the other hand if   BE if0, 

there exists {f }  such that    jff   | —> 0   and    |f (x) j > 1   for   x£ B 

exc. 4ft.    By definition of functional spaces it follows that   B C dt. 

3)(b).    In view of statements 1) and 2) and 3)(a),  we have only 

to prove that J&=>& and   6(B) ^ 6(B).    Let   B6*    and let  |f "J  be 

a Cauchy sequence such that    lim inf jf (x) {   > 1    for   x £ B exc. OU 

Since   ^   is a complete functional space we can find a subsequence 

1.    In general the equality     *&-   = *&      and even    ^_ = «5aL,     is 

not true,  as will be shown   at the end of example in section 9- 
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{{'  } and a function   fe*?'   such that:   {f }   —» f   and   £' (x) —» f(x) 

exc. 0U.    It follows, |f(x)|^ 1   for   x6 B exc.(W- and   lim \\V \\ =  ||f j| 

and thus both our assertions are proved. 

Therefore   £(B)  <  £ M. 
n 

The  rest of the section is given to the statement and proof of 

its main theorem.    The theorem displays necessary and sufficient 

conditions that 7 be a functional space,  or that it admit a function- 

al completion,  relative to a given exceptional class    Ot1 => Ct- .    The 

conditions for the existence of a functional completion rel. &',  un- 

like those given in section 4,  are expressible within f and   0I>', 

•without recourse ta tH« auxiliary class   ^' (which is always the 

functional class defined by (4.1) ).    However,  new information about 

r*   is required for the proof of the theorem.    Since this has inde- 

pendent interest,  we state it as a lemma distinct from the main 

line of argument.    When  ^F' ia a normed functional class rel. (X\ 

the classes  3y and   <2r    and functions  6  formed for    °3r '   are de- 

noted by   e& ,   j& ,   and  6. 

THEOREM. Let °f be a normed functional class rel. 0%, and 

let    &' -D01. 

(a) In order that ^ be a functional space rel. #.' it is neces- 

sary and sufficient that conditions   1     and 2     be satisfied. 

4) (a)   If   6(B) = 0,     then for each n there is a function g     in 

*&•   such that      ||g   ||   |  l/n2     and      |g  (x) |   > 1   onBexc.cS .      Take 

\ fn = n«n 

<b>   U   Bk,n = E[ly*)l I I] '  then   5<Bk,n> i k»fn»     and 

00      GO       GO OD 

BC=U    U    OB,       exc. 0t.      On the other hand,     f) B,     €^, 
k=l i=l n=i    K,n n=i    k,n 

CO 

for     6( n B,     )  <  inf  6(B,     )  < irl k ||f   ||   = 0.    Hence the result, 
j^-^    kin    ~ n>i k«n    •- n>l        n 

5)   Let   M = lim  IIf   II.    For each   £. > 0.   the semiwnr*   ?ef } •• n •• * n' 
is a Cauchy sequence in  f satisfying   lim inf | £ i  (x) J > 1 on Bexc.Cg-. 

vw 



•21- 

1       If   f(x) = Oexc.Ot',   then    ||f|j ^ 0. 
3r ^" i^—— ' 

2      Each sequence of sets   B   ,   such that   6(B  ) —> 0,   con- a     -1 n           x    n'      .     '   
tains a  subsequence whose limit superior belongs to OU '. 

(b)    In order that *$*   have a functional completion rel. CV  it 

is necessary and sufficient that conditions 1, , 2, , and 3,   be satis- 

fied. 
1,      For each Cauchy sequence   [f   j  in_ °£ which converges 

pointwise exc. OV the conditions   f  (x) —> 0 exc. 01' and    ||f   || —^- 0 
ZIT&   **nvt iva l^r-tt- ..x _    _-1 . 

1 

2, Each Cauchy sequence   \i \   in_ ^r contains a tmbse- 

quence  which converges pointwise exc. &•'. 

3, Each sequence of sets  B     such that   6(B  ) —>• 0   con- b • n —————  n   
tains a subsequence whose limit superior belongs to OU'. 

Lemma,   Let  "7- be a normed functional class rel. &U,    let 

5J,' o OU ,   and suppose that conditions L   and 2,    are satisfied.   Then 

°fy   is a complete normed functional class rel. ^t'.    If   B' =Bexc. JJ1 

for some gat   B£^ ,   then   B'<£ &   and   MB') <f 6(B).   _If_ B'e dfr, 

then there is a set   B ^ <*r   such that   B• = B exc, OV    and 

6(B')  «T(B). 

Proof,  of the Lemma.   The truth of the first part of the lemma, 
 jg 

which states that  *5^ ' is a complete normed functional class rel. W 

can be seen from proposition 7) section 4. 

Suppose that   B'C «»   is equal exc. OV   to some   B€J5' .  For 

each    £  > 0 there is a Cauchy sequence  {f   r   in T satisfying 

lim inf  |f (x) |   ^ 1  on B exc. OU    and   lim  ||f   || < b(B) + £ .   Because 

1.    The standard definitions of the limits superior and inferior of a 
CO       GO 

sequence JB   \  of sets are as follows:   lim sup B    = O . (J   B    ; 
L   ni n     k=l n=k   n 

CO       CO 

lim inf B    -   U    Pi B   .      The limit superior consists of those 
n      k=l n=k   n 

points which belong to infinitely many   B   ,   the limit inferior of 

those points which belong to all but finitely many  B   . 
: 

J 
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of  2,    it can be assumed thatjf j converges pointwise exc.ctt1.    Then 

its pointwise limit  f belongs to    *V  '  and satisfies     jf(x)|  > 1  on B1 

exc.Ut',    Therefore   B'<£<&  ,   and    o~(B'.) <  ||T||  = lim||f   || <6(3)+£, 

so that     "6(B') < "6(B). 

Suppose that  B*  belongs to &.    For each   £> 0 there is a 

function f  in    ^ •  satisfying    |f(x) j >  1 on  B! exert'      and    |jf j|   < 

6(B') +  £ ,    There is also a C auchy sequence   {f   J   in    o^   which 

converges pointwise to  f exc, Of',    Let  B^ be the set of points  x in 

B'   such that     liminflf  (x)i  > 1.     Then     Bc € <& ,     Bg. = B' exc.a ', 
^ n ~     - _ fc CO 

and     6(B£) < lim||f   || =  ||f || < 6(B') + £.    If    B =  H Bfc  ,    where 
~ ,v    n=l_ 

0,    then   B£*  ,    B = B1 exc.W',   and    6(B) <6(B'.).   The in- 
n 

equality     5(B) > 5(B')   was established in the last paragraph. 

Proof., of the theorem.    First we shall use the lemma and 

results from section 4 to show that (b) is implied by (a).    Then we 

shall prove (a). 

Because of  4),   section 4,  °& has a functional completion rel. 

CV   if and only if   "1£'   itself is a functional completion rel. 0P\    Be- 

cause of 7),   section 4,     y   is a functional completion rel.{ft-1 if 

and only if  1,    and   2,    hold,   and in addition   ^"'   is a functional 

snace.     If 1,    and  2,    are assumed,   then,  by virtue of the lemma, b b „ 
3,    (as it stands) is equivalent to  2     (as applied to   *¥x).    There- D a 
fore  (b) is implied by  (a). 

Suppose that   If- is a functional space rel. Of1.    Obviously 1 

holds.    If  IB   I   is a sequence of sets in 35- ,   then for each n there 

is a ^unction f     in *$*   satisfying    |f (x)| > 1 on B    exc.flt    and n n 
||f   || ^  6(B  ) + l/n .    If     6(B  ) —» 0,    then,   as -^ is a functional 

space rel. Of,   there is a subsequence  |j     J   of {f  }   which con- 

verges pointwise to 0 exc.tff',    Since     lim sup |f   (x)| > 1     on nk 
lim sup B      exc. 01,    lim sup B        must belong to oV;   and 2   holds. nk nk B a 

Suppose that  1    and  2    hold.    It is clear (from  1    alone) that a a a 
j" is a normed functional class rel. OP.    Given a sequence   {f   } 

in T with    ||fn|j -^> 0,    set     Bn = £[|fn(x)| £ 1/Wj.    where {Mn} 

**wf 
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is any sequence of positive numbers converging to infinity and such 

that    M   ||f  j) —> 0.    Then   B € & ,   and   6(B   ) —» 0.    By hypothesis, 

there is a subsequence   {B     J   of  [B  j   with     lim sup B €L0V.    On the 

complement of   lim sup B f   (x) —> 0 exc. 01'.    Therefore 

Sf (x) —>• 0 exc.  0V:   hence the defining property of a functional 
nk 
space is true. 

Corollary.    If    r is a functional space rel. Ot-',   then   OV ^> &~• 

If   T   has a functional completion rel. {%•',   then    0t' 3 <^$-    . ^_—_  JJ- 

This follows from the fact that for   B € &      (or   B£^ )   we 

can put   B   = B    in condition  2     (or   3, ). 

Remarkl. The second part of the theorem and  the lemma 

•how that  A-  and   6   play the same role for completion of   /   as   ^ 

and  5   for   "5e<.    A simple consequence of the lemma is that Jtr   is the 

class of all sets equal to some set    in &• exc.tfj.1,   and that     o(B') = 

min 6(B)   for all   F € 3y   such that   B = B' exc.tft-'. 

§6.    Capacities.   In section 5 a lower bound for the exceptional 

ciaso of a perfect functional completion was given.    In this section 

an upper bound is given,   and additional conditions for the existence 

of functional completions are obtained.    The description of the up- 

per bound resembles that of the lower bound:    certain set functions 

on the basic set are introduced,   and the upper bound is determined 

as the class of null sets for these functions.    In some of the differ- 

ential problems   which have had decisive effect on the development 

of functional spaces the set functions in question prove to include 

among them the classical capacities.    For this reason they will be 

called capacities in the general case also.    Throughout the section, 

OV is an exceptional class;     T is a normed functional class rel. 0U\ 

and   6, iGr,  etc.    are the functions and classes defined in section 5. 

If    (f)(t)   is a non-negative real-valued function satisfying  (i) 

Cf(t)   is defined for all non-negative real t;    (ii)    (f(t) is non-decreas- 

ing;    (iii)     &(0) = lim (0(t) = 0;     then  C!  determines a set function 
t -*-(T 
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I 
•r 

: 
I 
I 

oo 

CM   on  J^^ as follows: 

(6.1) For each   B £ ^ ,      c~(B) = inf JPy[6{Bn)] ,    where the 
' n=l 

CO 

infimum ia taken over all sequences  B €.&   such that   BC(_JB . 
n=l 

The set function  c^    is called the   tf>-capacity.    Only routine 

calculation with the definition ia needed to establish the following 

properties of   c = ca  . 
T 

(a) For each   B«=*Gr  ,   c(B) is a non-negative real number 

or   + ao. 

(b) If   BC B'    then   c(B) < c(B') ;   c(0) • 0. 

(6.2) oo oo 
(c) If   B =   (jBn,    then     c(B) £ Z>(B

n) • 
n=l n=l 

(d) For each   B € & ,    c(B)   is finite. 

(e) To each    £ > 0 corresponds a  6 > 0   such that if 

6(B) < 6,    then   c(B) < £ . 

In order to shorten notations and make proofs easier to read 
. 

we will operate directly with the properties- (6.2),   rather than with 
i 

the functions   (f  explicitly.    Accordingly we make two definitions : 

a capacity ia a set function  c  on •&_. with the properties  (a)-(c) in 

(6.2);   a capacity is admissible if it has also properties (d) and (e). 

The   class of admissible capacities will be called   Q.  .    The 
I 

class of sets which are of capacity 0 for a given admissible capa- 

city  c  will be called    flt ;    the class of sets which are of capacity 

0 for all admissible capacities will be called   &   . 

Remark 1.     One of the chief objects of the section is to show 

that   CO-     is an upper bound fait the exceptional class of a perfect 

completion,   if a perfect completion exists.    It might seem that ac- 

ceptance of abstract capacities makes the bound better than it would 

be if only    #-capacities were accepted.    This is not true.    Given 

. 
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any admissible capacity c, it is easy to construct a   (^-capacity  c~ 

such that if   c(B) 4 0   then   c,j,(B) 4 0.    A similar comment is to the 

point with regard to weakening  (C)   and  (e)  by deleting  (d)   and re- 

placing (e)  by a condition of the following nature:    (e')   'there is a 

number   6   > 0   such that whenever  B    is fixed and satisfies   6(B ) <  o       o ————————————        o' 
6 i    then (e)   holds with respect to the subsets of B c 

It will be observed that the conditions  (a)-(c)   are exactly the 

defining conditions for an outer measure on &   .    Thus every capa- 

city is an cuter measure on the hereditary   c~-ring   £c_..    In spite of 

this,   it would be deceptive to use the term outer measure instead 

of the term capacity. The problems with which we are concerned 

are of an entirely different kind ixorz   thr.Te in measure theory. 

Measurability,  for instance,   is irrelevant; and in fact it may hap- 

pen that the only measurable sets in ;&_, are the sets of measure 0. 

1)   A capacity  c  on ^- is admissible if and only if  c(B) _is 

finite for each B _in a>,    c(A) = 0 for each A in_Ot,  and either of 

the two equivalent conditions   (a)   or  (b)  below holds. 

(a)   To each pair of numbers    £ > 0   and    V} > 0   corres- 

! ponds a  6 > 0  such that if   ||f || < 6,    then 

C(   E. [|f(x)|   >   £~|)<   Y>. 
X    - -       J < 

(b)  _If_    l|f   || —y 0,    then {f ~i converges to 0 in capacity 

(with respect to  c);   that is,  for each   £ > 0, 

limc(Bn£) = 0,    where   B^ =  E[|fn(x)| £ e] . 

Proof.   It is obvious that conditions (a) and (b) are equivalent. 

Let  c  be admissible}    choose   6   > 0   such that   6(B) < 6    implies 

c(B) <ri    and put   6 = £6 .    Then    l|f || < 6   gives 

6( E[ff(x)| >eh  < ||4-1| < i   = 6   ,    hence condition (a).    That (a) 

implies admissibiiity of c follows by a similar argument in re- 

verse. 

2)   Let c be an admissible capacity on   jS-,.   To each B'<£<$- 

J 
• 
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and     £.> 0  correspond sets   B  and D   such that   B'CLBUD,    B€.&, 

5(B) g 6(B'),    and  c(D) < £ . 

Proof.   Choose,   as   l)-(a)   permits,   a sequence of numbers 

6n  such that if    ||f|| ^ 6„,   then     c( E [!*(*)! > l/2n]) ^ l/2n.      Then 

choose  Cauchy sequences \ f *    f   such that:     lim inf If*    (x)| >1  on B1 

exc*.     sup||f(k)|| <6(B') + -i- and ||f(k) - f(H||   <  6   ,    for n" n    " '     '       ,k " n n-1"   =    n 

k = 1, 2     Let   B(k) =  E- (V**(x)| >  1 - —I and let     AW = n x  L1 n       "  - _nj n 2 

El[jfn
k)(x) - f^wjU -L .    For all n and k,   we have clearly, 

oo 
B1 C B(k) +    U    A(k)   exc. Of, .       Hence for every     i = 1, 2, . . . 

n i=n+l   * 

00..00        .. oo/v       aooo t   •. 
B-cn(Bt;

n)+   U    A^)^  f|Bn
n)+   U    U     A<n)     exc. 0.     Since 

n=i    "      i=n+l n=i n=i i=n+l 

6(B0», j J^_ ,£l, «       1     (?(B,)+   1 ,   we get £or   B.= fiB(»> , 
i-2 (1-2    ) 2 n=i 

. oo       OO *    i OO        OO /    % 
6(B.) ^ 6(B').    For   D. = 1J     U    ^j       we have   c(D.) ^   ZL    ZH ctA#   ' 

n=i i=n+l "  n=i i=n+l 

op        oo * . 
<    22\     Z2>     —2   = "T"l  •    For  i  large enough   c'I>.) < £    and the in- 
~   n=i  i=n+l   Zl        21 l 

elusion     B'CB. + D.  exc. OL    proves our statement. 

2)   If  c  is an admissible capacity on  Sic.* then to each   £> 0 

corresponds a  5 > 0,  namely,  the   5  of (6.2)(e), such that if   Be2&- 

and   5(B) < 6   then   c(B) <6  .    In particular,   if 6(B) = 0,      then 

c(B) = 0,     BO that     J-°C 01   . 
—••""•*—'——"~ © c 

Proof.   For each   6> 0   let   6 > 0   be determined in accord- 

ance with (6.2)(e).    From  2)  it follows that if   6(B) < 6,   then c(B) <£. 

4)   To each admissible capacity  c  on &    corresponds a se- 

quence of numbers   6     such that if  {f  \  is any sequence of functions 

in *9"  satisfying    ||f  — f     , |j < 6 ,    then   f (x)   converges pointwise 

"     •     -• 
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exc.   Gi   ,   and for each   £~ > 0,   the convergence is uniform outside 

some set of capacity less than  &, 

Proof.   For a given sequence of  functions  f  ,    let     A    =   a n n n 

E£ I jfn(x) -fn-1(x)|  >  1/2" j.    If a point x belongs to no  A      with 

n > 11  ,      then for every  n   with     n > n       and every  p, 
=     0 ' =0 ' 

n+p n-t-p        , 
Un+p(x) -fn(x)| <     Zl jfk(x) -«k i(x)| <   £\   l/2K < l/2n     exc. 0* . 

F k=n+l k=n+i 

"therefore   f  (x)   converges uniformly on the complement of 
00 

(J   A, ,   exc. 0t 1    for every choice of n  .    By  1) it is possible to 
=n c 

choose   5n   so that if    jjf|| ^ 6n«  then    c{£[|f(x)| > l/2n])  < l/2n; 
x 

00 00 00 k   . ,/jn„-l hence so that     c(  U Afc)   ^ Zl^A^) < 2H V^     <  l/^0' 
k=n ~  k=n k=n 
000 

Remark 2.    The last statement is analogous and its proof is 

identical to the classical theorem ou pointwise convergence of 

Cauchy sequences in a space   L.     relative to a measure  u  (more 

generally to convergence in measure).    As a matter of fact,   in the 

functional space   L  ,  the measure  u  is equal to its capacity  c^ for 

We shall consider now the conditions  L ,   2, ,   and 3,    of the 

theorem in the last section with respect to the class    CV   of null c 
sets of an admissible capacity  c;   2, ,   3, ,   and half of 1,    are auto- 

matically satisfied. 

L      If    llf   || ->-0,    then   f  (x) -*• 0   incapacity (by 1)-(b),   so b n •• n 
that if f     converges pointwise exc.  01   ,   it must converge point- 

wise to   0  exc.  01   . c 

2, Given a Cauchy sequence {g "] , pick a subsequence {f J 

so that ||f — f , II < 6 , where \S ^ is the sequence of numbers 

provided by 4).    By 4)  the subsequence  {f \ converges   exc. 0i-   . 



-28- 

3,     First use   3)   to find a sequence of numbers   6    such that 

if   6(B) ^ 5  ,     then   <-(B) < l/2n.      If {B j   is a sequence of sets such 

that   6(B ) —> 0,    then  |B }   contains a subsequence   |B' V   such that 

~j OO        CO 

5(B') < 5   .    Let   B = Urn sup B'   = (~)    \J B' .    Then for every   k, 
k=l  n=k 

oo oo co . 
c(B)   <   c(  U B')   < 2Z> C(B;>   < 22 1/2n  * "T-T-     Therefore    c(B) = 0. 

n=k n=k n=k 2 

The   following theorems are now immediate consequences of 

the theorem of section   5. 

THEOREM I.    Let  c  be an admissible capacity on   <afe_, 

(a)   j- is a functional space rel. Or    if and only if    l|f l| - 0 

t 
i 

•n 

whenever   f{x) = C  exc. Oi, . 

(b) j- has ? functional completion rel. #. if and only if 

||f I —a»- 0 whenever jf X is a Caachy sequence which converges 

pointwise to   0 exc. 0% . 

THEOREM II.    Let   tf*1 be an exceptional class containing OU 

(a) If   ^f i« a functional space rel. Ot-',   then for each ad- 

missible capacity  cf   "§- is a functional space rel. Ov  I i Ot  . 

(b) If   y-   has a functional completion rel. OW,   then for 

each admissible capacity  c, y has a functional completion     rel. 

o^o oj.c- 

Corollary.    If ^ has a perfect functional completion,   then its 
'     — ^rz  

exceptional class  OU'   satisfies      ^ c Q^ cz 0%>   • 

Remark 3.   It is possible to form   Cf -capacities with the aid 

of the function  6   as easily as with the aid of the function  6.    How- 

ever,   proposition 2)   implies that for any  CP  the    ^-capacity formed 

with  6   is identical with the   ^-capacity formed with  6.    Similarly, 

if ^h has a functional completion,   it is possible to form capacities 

with the aid of the   6-function for the complete class   (a function 

which we have called T>).    Suppose that there is a completion  rel. 

vi* 
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0\) T) 01 , and let (f be given. In vitw of Theorem II and in vi^w of 

the fact that our interest centers on small exceptional classes ra- 

ther than on large ones,  we can suppose that     0^' C Oi-      •    Under 
Cj, 

these conditions it follows from the lemma of ihe last section that 

*•*>« rp -capacity formed with   o^  is identical with the    (Jf -capacity 

formed with 6 and therefore also with the ^-capacity formed with 6. 

These observations have a bearing on the existence of func- 

tional completions,   or more accurately,   they make clear what part 

of the existence problem remains open.    According to Theorem II 

the existence of a completion rel. 0t'   for any   01-' implies the exis- 

tence of a completion rel. fft- M oi*    for every   {/-capacity,  but it is 

not clear whether the existence of a comoletion rel.   some    QT,     it- 

self is implied.    Therefore,   the problem is this:    is the existence 

of a completion equivalent to the existence of a completion rel. 

some   (ft,    ?    By the observations of the present remark the problem 

is reduced to the following:    does there exist a complete functional 

space for which the whole basic set belongs to OJ^ ?    (A negative 

response to the second question is equivalent to an affirmative re- 

sponse to the first.) 

Remark 4.  Sometimes, when the basic set   *£>   is topological, 

it is important to know that there is a functional completion whose 

exceptional class has some topological property,   that of being gen- 

erated by its Borel sets,   for example.    Let *TL denote the class of 

sets   B  of the following type:   for some  f  in Y   and some real a > 0 

and  P > 0,   B = E. [a < Re f(x) < pi exc. Oi.    By the classical meth- 
x 

ods of the theory of Baire functions,   one proves easily that the set 

where a sequence {f \ does not converge pointwise belongs to the 

class   *${*-*— •    It follows that if   J-   has a functional completion rel. 

OV,   it has also a functional completion rel. (0Pfl%   «-). .    A bound 

slightly better than the one in the corollary is therefore ((ft D 1(t>—g-)^" 

Theorems I and II together with the corollary  of section  5 

lead immediately to the following: 
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Corollary   2.    If for some admissible capacity  c,      $&   -  0i-c, 

then a functional  completion of °^C exists if and only if the condition 

of Theorem I relative to    (X     is satisfied.    If the last condition is 

satisfied,  then the completion relative to     Ol   "• ^&     is a perfect one 

The interest of this corollary lies in the fact that we can 

prove the equality     <£&   =  0%      for a large category of functional 

classes,  described by property (6.3) below and for a wide class of 

^-capacities   c« .    In a later paper it will be shown that all usual 

functional classes arising in application to differential problems 

satisfy property (6.3). 

, 

(6.3)    Positive majoration property.    The basic set 

can be written as    £>  = U cS      and constants  M   n           n 
can be chosen so that for every     f €. *&     and 

every n  there exists a function    f €. *%?    such  i.      ___^___^_        n   

that     || Vj lMn||f|| 

for     xeE      exc. (ft 

and Re  fMx)   1  |f(x) 

THEOREM III.    If T  satisfies (6.3) and the capacity   c = c„ 

is formed with   a function   Cf   satisfying     linn sup J/fofp) < °°     then 

Proof.   We have to prove that if   B€.&     then   B£*Sr°.    Put 

An) 
co 

t(n) B(1S ,    hence   B = U B    '.    Take positive constants  a  and n n=l 
C   such that     f/cp(o)<  ^   *or     ty^f) < a"    ^or every positive    £ < a 

we can find a covering of  B      ,    B^'^^J^B*     ,      such that 

Z2tf(6(B[n))) <£,    ;   hence    J2x 6(B^n') < C £ .    Take then functions 
kW k k=l k 

fnk^r    such that    ||fnjk|| <6(BJQ
n') +^      and    |fn>k(x)j   > 1     for 

x G. BJ  ' exc. Ot.    By property (6.3)   we have a function   f^ v     such n,k 

and        Re  f^x)   |  Jf^x) |     Jor 

Bn,CO      exc.tft-.    It follows that the partial sums      2-i i k n 

that    ll^fkll<Mn||fn>k 

k=l n'k 

•• 
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CD   , , 

form a Cauchy sequence |g \   with the properties 

Hrn inf  Re o    (x)   >   1         for x <= B*n)C ^ &\n) exc. 0t , 
m                                                                 CO °°    r-                 /        I 

llgjl % £11^11 S^fjJVJ * Mn £{«'»£"'» + £] S Mn<C+1>* 
Hence     £(Bln') < M  (C+1)E for all        £< a   and thus    Bv"'e^S-c 

co        -      r*v/ 

and      B = UB(n)£i°. 
n=l 

Remark 5.    For particular classes ^-    with property (6. 3) 

Theorem III may be true for larger classes of     ^-capacities.    In 

all investigated cases where the norm in  ^jF  was quadratic (i.e. 

jf an incomplete Hilbert space)   it turned out that     <*J-   = OU     with 

c = c.,      $ (P ) = f   .    It would be interesting to know if this is true 

for all functional classes with quadratic norm. 

Remark 6.    Often a strengthenedversionof (6.3) holds, 

name ly: 

(6.4)   Global Majoration Property.      There is a constant M  so that 

for every function f  in_ ^*  there exists a function f• _in     ^ 

such that     Re f'(x) > |f(x)| exc.o*.     and     ||£'|| < M||£||. 

It is easy to see that if (6,4) does hold,   then     B £• c*r-    when- 
1   <** 

ever     c.(B) < co, and for such B:     c.(B) >    JJ 5(B).    The spaces 

LF  and  the spaces of  M. Riesz potentials form important examples 

in which   M = 1    is a satisfactory constant.    For   M = 1,    in which 

case we shall call  (6.4) the strong majoration property,   c.(B) = 6(B), 

(provided   c.(B) < co),   as it is always true that   c.(B) g 5(B). 

7. Proper  functional completion.    The complete functional 

spaces occuring in analysis arise most often ad functional comple- 

tions of more elementary functional classes which consist of func- 

tions defined everywhere and which are in fact proper normed 

functional classes.    This is not to say,  however,   that the complete 

space is proper,   for in the process of completion it usually happens 

• 
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that   some sets become exceptional.    We show in this section that 

sets cannot become exceptional if the initial proper functional class 

is a proper functional space.    In discussing proper functional com- 

pletion we will use the notations:   for each   x  in S   ,   M      is the 

bound of the continuous linear functional f(x),    and  c     is the set 

function which takes the value  1 on any set containing x and   0 on 

any other set. 

\)   If   r   is a proper functional space,   then for each  x _in    c» 

and each set B _in »&.    c (B) < M  c.(B)   (where,   as always,   c. is 

the   ^-capacity defined by    <f(t) = t).    In particular,    (%.   = (0). 

Proof.    Since the left side of the inequality is 0 whenever  B 

does not contain x,   it is possible to assume that {xj belongs to «£_ 

and therefore to •£ ,  and that   xe B.    Given    e> 0,    let    fe *3^ be 

such that    |f(x)|   >1   and    ||f || < 5({x"$)+£ .    Then    c (B) = 1 £ |f(x)j < 

M^jjfi| <Mx[6(ix})+£] =Mx[Cl({x)H£] ^Mjc^BJ + e] . 

THEOREM I.    If a proper functional space  ^   has any func- 

tional completion,  then it has a proper functional completion.    A 

necessary and sufficient condition that a proper functional space y 

have a functional completion is that    jjf   jj -»•   0   whenever f i 1 ia 

a Cauchy sequence in ^  converging to   0 at every point. 

Proof.    Theorems I and II, Section 6. 

Remark.     There are simple examples of proper functional 

spaces which do net have functional completion,  but they are sonic - 

I what artificial.    Indeed,  non-existence of a functional completion 

of a proper functional space can be ascribed to an awkward choice 

either of the basic set or of the norm in the functional class.    It is 

always possible to redetermine either of the two in such a way as 

to obtain a proper functional space with a completion. 

In order to modify the basic set £» we consider the abstract 

completion V  of the normed vector space  T^ .    Each point   xe.£> 

corresponds to a unique continuous linear functional X on  V;  X is 

. - 
• 

. 
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defined by the equation   X(£) = f(x)   for all   i^.^ .    We will think 

of   &   as a subset cf the set  V    of all continuous linear functionals 

on  V,   and in order to use notation in harmony with the notation 

for ^    we will write   v(X)   for   X(v)   whenever   v€ V   and   X€: V . 

Then each v  in V   is a function defined not only on  <&   but on ail 

of  V"  In this notation the condition stated in the theorem is that 

v = 0   whenever    v(X) = 0   for all   x€<5>   -    When the original ba«ic 

set  2»   does not have this property,   additional  X from V*can bs 

added to it so as to obtain a new basic set    <5 ',  which does.      The 

functions   v(X)   for   v^ V   restricted to the new basic set      &' 

form a  complete proper functional space which can be called a 

"quasi-completion" of   7*. 

A similar  process can be carried through when ^ is a 

functional space rel. Ot     for some   ^7-capacity ' c = c^   with   g{t) > 

t.    In this case °¥   is not a normed vector space in the proper 

sense of the term,   but V   can be taken as the abstract completion 

of the normed vector space  V  which corresponds to ^ through the 

equivalence relation     fs g     if     f = g exc. Of,  .    There is no way 

to think of  IS  as a subset of V   ;   nevertheless a suitable new basic 

set     S1   can be obtained in the form     £»' = tU *j ,  where  <S     is 

any total subset of V*.    The manner of defining the   f ez 9- as func- 

tions on     «2»' is obvious.    Let  c'  be the   ^-capacity in    ^'    corres- 

ponding to the same function   (f .    It is not difficult to provide an 

argument similar to the argument following proposition 1 to shew 

that     Ob-, =   OP \'    Nor is it difficult to use Theorem I,   section  6, 

to show that  V as a functional space on the basic set     £J'   has a 

functional completion rel.   <)i, ,.    Such a completion can be called 

a "quasi-compketicn" rel. 0t,<  .    It would seem that there is consi- 

derable arbitrariness involved in the selection of  o   •    Oftentimes 

natutal choices present themselves,   however,   and the idea is im- 

portant in connection with measurable spaces and pseudo-reprc- 

ducing kernels,   subjects which will be discussed in a paper to 

follow. 

i ft. 

-   ' 
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The   procedure for modifying the norm in the functional class, 

on the ether hand,   is unique.    We will suppose that *£•   is a proper 

functional space,   and we will use the same notations as before for 
+j 

the abstract completion,   the linear functionals,   etc.    Let   V     be 
••^ ^, 

the set of all   vC V    such that   v(x) - 0   for every   x «=: & .    Being 
,->      ^* 

the intersection of closed subspaces of  V,    V    is itself a closed 
f^>   ° 

subspace.    Therefore the quotient space     V/V     is a complete 

normed vector space when the norm of a quotient class  C   is de- 

fined by the usual formula    j|C ||  = inf ||v ||    taken over all    v e C. 

For every   xe5  t    v(x)   is constant over each quotient class  C  in 

V/V ,   so that every such   x determines a unique linear functional, 

which we continue to call  x  on   V/V .    Each   x e. £»   is continuous '    o 
on   V/V ,   for if   M   is the bound of  x  as a linear functional on   V, o 
and if  C   and     £. > 0   are given,   then there is a   \-S. Q   such that 

|x(C)|  =   |v(x)|   <  M||v||   <  M[||C||+e];     and also      ||C||  = 0     if 

x(C) = 0   for every   x e <?> .    If we write,   as before,    C(x)    instead 

of   x(C),   then   V/V     appears plainly as a complete proper function- 

al space over the basic set   ^> ;    and it contains   "^ .    Therefore, 

if   </-   is re-normed with the norm of   V/V    ,   then,   as a subspace 

of a complete proper functional space,   it has a pioper functional 

completion.    It is clear from the definition of the norm in     V/V 

that the new norm of a function   f €."&   is less than or equal to its 

original norm. 

By a somewhat more complicated argument it is possible  to 

prove a similar result for functional spaces rel. OU .    We state the 

result but  omit the proof. 

2)   Let   V~  be a normed functional class rel. CV-,   and let   c 

be an admissible capacity on j£-   .    If  ^ is a functional space rel. 

01   ,  then it is possible to define another norm,     || f ||',   on   J-   so 

that;   (i)    ||fj|'   ^   ||fj|;    (ii)    ^ with   ||f||'   isa functional space rel. 

QP     and has a functional completion rel. 0^_. 

• 

- 
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CHAPTER   II.       EXAMPLES. 

^8.    Example 1.     Analytic functions.       We take as basic set  5 

the closed unit circle in the complex plane,   and we consider the 

class   j-    of complex-valued functions continuous in the whole of £S 

and analytic in its interior.    We define the norm in "7-   by the for- 

mula    ||f |j  = j j   |f(x)|     dx r "   .      "7^ is a proper normed functional 
, 1. lvC ' class. 

Let   3 S>      denote the boundary of   £   .    Each of the functions 
n >M 

f  (x) = x     is  1  in absolute value everywhere on 8& .    Therefore 

aS    "£nll  =~^£h   ~* °'     5(8S) s °'     and   8£»€-S-°-    By the corol- 
lary at  the end of section 5,   any exceptional class relative to which 

°&   is a functional space must contain   8^> .    In particular,   ^r is 

not a proper functional space. 

With respect to the points in the interior of   cT ,  though,    %£ 

acts as a proper functional space.    Each of these points determines 

a continuous linear functional.    Consider the    Cf -capacity   c, 

(determined by     ^ (t) = t).    Proposition 1,   section  7,   shows that if 

x   is not a boundary point,  then     c,({x})   >   T-T- ,    where   M     is the 
x    2 bound of the linear functional determined bv   x. From this and 

the last paragraph we deduce that     <ft   - <&    - <&.. =   the class of 
Cl 

all subsets of 8 £  .    There is no difficulty in seeing from Theorem 

I,   section 6,   that there is a completion,   necessarily perfect,   rela- 

tive to this class. 

1. This space is the simplest case of spaces considered extensive- 

ly by S. Bergman (see L 9 J). It has the reproducing kernel, Berg- 

man's kernel function,       K(x,y) = «•    (see   L^J»   L'O )• 
Tr(l-xyT 

2. The exact value of   M     is given by the reproducing kernel: 

Mv =  VK(x,x)    =   —i     . 
TTT(l-xx) 
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§9.  Example 2.    L-   spaces.      The Lebesgue spaces  IF  are so 

thoroughly familiar now that the theory of functional completion 

cannot be expected to provide essentially new information about 

them.     By reason of their familiarity,   however,   they provide an 

example which illustrates well the concepts which have been intro- 

duced here,   especially the capacities,       Reciprocally,   by focusing 

attention at an unusual point,   the theory of functional completion 

underscores an interesting peculiarity of  Is . 

We are concerned here with obtaining  Lr   as a functional 

completion of a subspace composed of elementary functions.    In 

the case of a measure on an abstract set there are no new prob- 

lems corning specifically from the functional completion point of 

view.    The natural choice for the space of elementary functions is 

the space of linear combinations of characteristic functions of 

measurable sets of finite measure.    The passage from this space 

to its completion with respect to the   1? norm is completely stan- 

dard.    The proof that the perfect completion is the usual   1?    re- 

quires nothing   (beyond the definition of "perfect'') from the theory 

of functional completion. 

The situation is different in the case of a measure on a topo- 

logical space.    Here the natural choice for the space of elementary 

functions is usually a space of continuous functions.    Since the con- 

tinuous functions *re defined everywhere (not almost everywhere), 

it is not at all evident that the sets of measure 0 form the excep - 

tionai class for the perfect completion.    Indeed this is not true in 

general,   as we shall show in the succeeding paragraphs. 

We take as the basic set <£,    an arbitrary locally compact 

Hausdorff space.    The two  C-rings used in topological-measure 

theoretic investigations in locally comp?ct spaces are the Borel 

S'-ring,   which is generated by the compact sets,   and the Baire G~- 

ring.   which is generated by the compact   G-'s.     '    In all ordinary 

1,    We use the terminology of Halmos.     P-^3 • 
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topological spaces,   for example separable spaces or metric 
spaces,   these two   <r-rings are identical,   but in general they are 

distinct.    The measures usually considered are regular Borel 
measures, those defined on the Borel sets and having the additional 
properties:   (i)    the measure of each compact set is finite;   (ii)(re- 
gularity)   the measure of each Eorel set is the infimum of the me?„- 
fluies of the open Borel sets containing it. We suppose given 
such a measure on  £ ,   and we call it |ju.    We denote by  C  the class 
of continuous real valued functions on &  which vanish outside a 
compact'set.    For each real number   p > 1   we define 

||£ ||    = | f \t{x)\pd\i.y/p,   and we denote by  C     the class   C with 

this function as pseudo-norm.    It is well known that relative to the 
exceptional class   Oi     of subsets of Borel sets of ^-measure   0, 
C    is a functional space,   and that it posesses a functional comple- 

tion,    Lf (n),   relative to 0U .    We shall illustrate some of the gen- 
eral theorems of this paper by re-proving the existence of IT,  by 
finding the perfect completion,   and by computing some of the 
capacities. 

Because the capacities themselves are outer measures,   and 

because the classes with which they are associated,   the    <#,_,<&•   , 

etc. are all hereditary classes,  there is some advantage in exten- 
an 

ding the measure  u  so that it isAouter measure too,  defined on the 
hereditary   CT-ring   Sftz, on which all capacities are defined. 

C    is a proper normed functional class if and only if there 
is no open Baire set in   &   of measure 0.    In general the smallest 
exceptional class relative to which C    is a normed functional 
class is the class of subsets of open Baire sets of measure 0.    We 
call this exceptional class   OU,   and we consider   C    as a normed 

functional class rel.   01*.    In this case  «§- is the class of sets which 

1.    For example,   Bourbaki considers only measures of this type in 

its presentation of integration theory £l0j. 

J 
. 
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are contained exc.QP an a compact set, (or,   equivcilently,   in a com- 

pact Baire set)    and •&-.   is the hereditary    C-fing generated by the 

compact rfets,(or,  compact Baire sets).    We effect the extension 

of [x.  to &~. by the standard device of setting   ix(B')   equal to the in- 

fimum of the numbers   JJI(B)   taken over all Borel sets   B   contain- 

ing  B'. 

If    iif   !!    —>• 0,   then   f   —>• 0   in measure,   and each sequence " n"p n n 

which converges to 0 in measure contains a subsequence which cdn- 

verges  to 0 almost everywhere.    Therefore   C    is a functional 

space rel. OV   ,   and we, can apply the corollary at the end of sec- 
o 

tion   5 to conclude that   *&   C &L  . 
0- u 

Let  K be any compact set in & .    ''Then   K€^(3- t   as we have 

mentioned above.    We prove now that   5{K)    = (J.(K).    First let   f be 

any function in C    which is   > 1  on K exc. OU .    Then   J |f(x)|pdu > 

u(K).    As   6(K)r  is the infimum of the numbers on the left side, 
p 

6(K)r > u(K).    On the other hand,   it is possible to find a function 

f€C     which is ^ 1   on K  and which is such that    u(K) > f\i(x)\Pd\k-g, 

for arbitrarily small   £> 0.    Therefore    6(K)? < \x{K), and so 

6(K)P = u(K). 

Suppose that  B  is any set in a?-.    It is easy to see that there 

ia a decreasing sequence of non-negative functions     f   €i C      such 

that   f    > 1   on   B exc. OU    and such that    IIf   ||_ —*» 6(BK        Let n_ — _. co n • • p 
K    =    F[f (x) > l\    and let   K = P|K  .    Then   KDBexc.i^,    and 

n        x t-n       "   J n=i n 

we can write   6(B)P= lim||f  ||p ^ lim u(K  ) = u(K) = 6(K)P ^ 6(B)P, 

so equality holds throughout.    We have proved the following state- 

ment. 

1)   For each set   B^.^   there is a compact   GfilK ,     such 

that   K :=> Bexc. OU    and such that   6(B)P = 6(K)P = ^K) ^ u(B). 

From this it follows that p. is an admissible capacity on ^b-. 

We can use Theorem I section 6, to prove that there is a function- 

al completion rel. OV   .    Suppose that jf j is a Cauchy sequence 

v 
J 

- 
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which converges pomtwise to 0 exc.^t   .    By Fatou's lemma, 

J\i (x)p   d(i < lim inf    { |f (x)  — f    (x)|• du,    and the rig'.it side can 
n - j-n —t- co A     n m 

be made arbitrarily small by a suitable choice of  n.    Therefore 

||f —>•  0   and this is the condition of the theorem. " n ''p 

Now we can employ Theorem III of section 6 to "obtain the ex- 

istence of a perfect completion,   for   C    has the strong majoration 

property:    a majorant for an arbitrary function f(x)   is the function 

|f(x) |.     We obtain also from Theorem III the exceptional class for 
~o the perfect completion,  the class    j&   .    As we have mentioned,   the 

completion rel. op     is not necessarily perfect;   that is,   it is not ne- 

cessarily true that      <%•   = *&r   .    According to Remark 4,   section 6, 
u-        C 

the existence of a completion rel. Ot-    implies the existence of a 

completion rel. {(PI   C\ "#£-_«_). .    The latter class does give the per- 

fect  completion and may be smaller than    OU    itself,   as we shall 

see.    In this example the class   T£ ,   which is composed in general 

of all sets of the type        E[a<Re f(x) < p" exc. C\\     for   a > 0, 
x 

P > 0,   is the class of sets equal exc. &    to a bounded open Baire 
*  1- set. 

It  is possible to identify the perfect completion itself,   as 

well as its exceptional sets.    The  r ^andard device which we used to 

extend the original Borel measu...   ri  to an outer measure serves to 

extend any measure defined on a  *3"-ring to an outer measure defined 

on the class of all subsets of sets in the   CT-ring.    Let   \x     denote 

first the restriction of |A  to the   c-rmg of Baire sets,   then its own 

extension by this scheme to an outer measure on   5x_.    In general 
2 the outer measures  \x  and  u     are different. 

1 

ft 

1. A set is bounded if it is contained in some compact set.    Kence 
every bounded set is in SGr. 

2. It. is obvious from the construction that ji(B) = HQ(B)   for all 

Baire sets and for all compact sets,   that   u(B) < u  (B)   for all seta, 

and that the class    QL      is exactly the class of subsets of Baire sets 
Ho 

of u-measure 0.    All compact sets are measurable with respect to 

the Whiter measure \i..  but this is not necessarily true of u-      (see 
Halmos  [18]). C 

• 

-    ; • • 

-J 
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By the general theory of Baire measures it can be proved 

without any difficulty that    #,   = (Of  m£_,£_)u;    and most of the 
M-o M1        <> cs" ^ w 

rest of this section will be given to proving that     «£    = dp    ,    that 

the perfect completion of  C     is. LT(u  ),   and that for any set   B€»5L, 

urt(B) - c^(3),    where   c     is the    (/-capacity defined by the function 

Cf(t) =  t*. 

Let B  be an arbitrary set in 3&_ ,  and let JB ^ be a sequence 

of sets in J$r such that     BCy   B    exc.W'      and such that 
111 

00 
c   \B)  ^ ^^ 6(B  )P-£.    By  1)  there is a sequence |K \ of compact 

p        ~ n=l 

G,'s   such that for each n,    K  ZD B    exc.dk   and     6(B   )p = 6(K  )p= o n n n n 
u(K  ) =n  (K ).    It follows easily that     c   (B)  > \i  (B). 

Next we establish the opposite inequality,  and in addition we 
»*     o 

prove that     \i  (B)   > 6(B)r     for bounded sets   B.    From the latter 
— ""O will follow the relation      Or   C 3&~     • 

Let G be an arbitrary bounded open Baire set and let 
oo 

G = |JK       be a representation of G  as a union of increasing com- 
n=1   n 1 pact sets.    *    For each n choose a function f    in  C    with the r n p 

properties: 

(i)     fn(x) = 1     if    x€Kn; 

(ii)    fn(x) = 0     if    x£G ; 

(iii):    0 < f (x) < 1. 

The   sequence{f \ is a Cauchy sequence since it converges point- 

wiae and is dominated by the characteristic function of  G  which is 

integrable.    As   lim f  (x) = 1   for every   x6 G,     6(G) ^ iimjjf   j|     < 

^ H(GPP.       Thus   uQ(G) > u(G) £ 6(G)P £ c  (G).    2*    By a passage 

1. It is known that every open Baire set is a countable union of 
compact sets,   and that conversely every open set which is a coun- 
table union of compact sets is a Baire set=    See Halmos   fl-*^. 

-5*     **      o 2. For any set   Be-.Cr,     6(B)r ^ c  (E).    This general property of 
capacities is a simple consequence of Remark 3,   section 6. 

- 
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to the limit in which the regularity of  u.     is used we net     u  (B)   > 
^j ° ' "o ° ^o = 
6(B)"  >  c  (B)     for every bounded set  E.    In the light of this fact 

the relation     Ot   CZ  o&       -LS obvious.    Furthermore,   an arbitrary 

Baire set  B  can be written as a disjoint union of bounded Baire 
co co 

sets  B   .    Therefore    c (B)  < /\ c (B )  < J\ ti (B )  = u (B). n p*    '   = *—\   p*   n    - *—\ 'o    n'       ro F n=l  r n=l 

Combining this with the inequality   c (B)   > \x.  (B)    already proved, 

and with the regularity of \i     we obtain finally     c (B) = jx  (B)     for 

any set   B €.& .    The one remaining assertion,   that  L?(fi  )     is the 

perfect completion of  C , is now clear. 
P 

It  can be proved that the capacity  c    is identical with   (c,)   , 

In fact,   we know from the strong majoration property that     Be-Gr if 

and only if   c,(B) < co;   and if   B^.^ ,  then   c,(B) = 6(B).    Using the 

lemma in section 5 it is easy to show that   becaase   the strong ma- 

joration property is present   6   is identical with   6,   the   6-function 

for the complete space;   and   3Cr  is identical with 3&  .    In this ex- 

ample the composition of  <s6-   is evident.    It is the class of all sets 

of finite   \i -measure.    The function  6   ia easy to calculate too:    if 

Be£  ,   then   6(B)P = p.  (B).    Thus,   if   c,(B)   is finite,   then 

B^£r = £&•     and     c.(B)P s 6(B)P = 6(B)P = |i  (B);     while if   c.(E) - 

+ co,    then   &£<&    =   s&    and   u  (B) = + co. 

The  following theorem gives a summary of the main points 

of interest in this example. 

THEOREM I.    The space   LP(jx  )   is the perfect functional 

completion of the space  C   .    The exceptional sets are the sets of 

jx_-measure   0;   equivalentiy they are the subsets of Baire sets of 

|x-measure 0.    The class J^,  is the hereditary    p^-ring generated 

by the compact sets,    (c,)^,    c   ,   and |JL    are identical outer mea- 

sures on <^~.    c^r = «5r-     is the class of sets of finite [i -measure. 

On this class    6P- 6P= u   . 
  ^o 

Remark 1.   We have stated in an earlier part of the paper that 

the   classes <^S-_ and    <£•     are different in general.    For an example 

. 
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take the space   C    with   5S   the interval    0 < s < 1     and   u.   Lebes^ue 
^o   P =      = 

measure.      «*~-    is the class of all sets of Lebesgue measure   0; 

<^^ is the class   of all subsets of sets   F^   of Lebesgue measure 0. 

As each subset of an F^ of measure 0 is first category,   and as 

there are sets of measure   0  which are not of first category,    the 

example is established. 

a) R|e-x|n 

n   ' • 

The functional class which is to be considered is the class   r of 

all complex-valued functions continuous in   £   and harmonic in the 

interior of   Co   .    The norm in V* is defined by   jjfjj   =(  f     |f(6)|Pd6f' 
..,.,.      . 1. P   L^9& J where   p is fixed and satisfies    ] < p < GO. 

The object  of the section is to show how the well known 

theorem of Fatou on the boundary values of harmonic functions can 

be proved by means of capacities.    In the course of the develop- 

ment of capacities it was shown that each convergent sequence in 

a functional space contains a subsequence which converges point- 

wise uniformly outside a set of arbitrarily small capacity.    Thus 

each function in the completion of a space composed of continuous 

functions is continuous outride a set of arbitrarily small capacity. 

1.    The case   p = co   has no interest here,   for    jlf II     =   sup   |f(6)|  = 
00    6 69C 

sup    |f(x)|,     and   <3- is already a complete proper functional space. 
X<£<5 

1 

§10.   Example   3.    Some spaces of harmonic functions and 

Fatou's theorem.       In the first part of this section the basic set <!S 

is the closed sphere with center   0  and radius  R   in n-dimensional 

space  E   ;   8S       is its boundary;    &, (6   etc.   refer to points on the 

boundary;   d&,   d<2> ,   etc.   to the n-1-dimensional measure on the 

boundary.    u>     is the area of the surface of the unit sphere in  E   . 3 n L n 
h(9, x)   is the Poisson kernel for   5    : 

„,,,„>.-aid*'2 
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Once the 3et8 of small capacity are identified in the example at 

hand, it becomes clear that each function in the completion has 

non-tangential boundary values almost everywhere. 

if  f(8)   is a continuous function defined on  82r- ,   then the 

\X.)   —    I n\<7,x.) iV"/uo      uciu: 

in the interior of  X .    f(x)   is harmonic there,   and if it is extended 

to the boundary by assigning  f(8)   as bcandary values,   the result- 

ing function  f  is continuous throughout   C    Thus the class   ^h  is 

exactly the class of functions  f(x)   obtained as follows:   f  is deter- 

mined by a unique continuous function f(8)   defined on  8 8=>    by the 

equations     f(x)   =   I     h(8,x)f(8)d8     if     x €. interior of S> i   *(x) = 

f(6)     if   x = e. 

Consider the class  "3s of functions determined in the same 

way by functions  f(8)  defined almost everywhere and in  Lr   on 8K 

With the norm      ||f ||     = j Hf(8)jPd8| 'P       ^isa complete func- 

tional space relative to the exceptional class  CP of subsets of  9£ 

of n-1-dimensional measure 0.    It is clear that <5e' is contained in 

V and that 7^ is dense in 7" .    Thus ^  is a functional completion 

of ¥ . 

We can use Theorem III of section 6 on positive majorants 

to prove the existence of a perfect completion.    For each function 

fCy    the function     f+(x) =   f    h(8,x) |f(0)j d8    belongs to  3* and 

is a positive major ant for  f.    In addition,     ||f ||    =   jjf   jj   .      There- 

fore,  by the theorem quoted,       OU   = »&_  ,   and since it is estab- cx       fl- 

ushed that there is some functional completion,   there is a  corn- 

pletion,   necessarily perfect,   relative to    <fy   «  ^S-__ .    It is easy to c. u 
i~ l 

show that       J&-   - OV :    if   AC3S     is a set of n-1-dimensional 

measure 0,   then there is a sequence jf (8)1   of continuous functions 

on   9£     such that       (      If (8)|Pd8—y0     and    f («) —>-co   for each 
Jas n      r 

n 

8€A;  the sequence  f (x) = { h(e,xjfn(0) d8  is such that 

J 
• • 

• 
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llf   II   -^ 0   while   £  (6) —>oo   for each   8€A,   so   A6^-_   ,      and 1  ji'< n n w 
"o jA- ZDOU.    The opposite inclusion is trivial.    We can conclude that 

^   is the perfect completion of   *& . 

The connections between the values on 9£ of a function 

i&'t and the values in the interior of S form the subject of 

Fatou's theorem.    Actually the assertion of Fatou is that   f(x)  —>• 

f{6) pcintwise a.e.  under suitable conditions.    For the sake of 
- 

completeness,   we proceed to show first the well known fact that a 

certain convergence in mean takes place.    Define   f  ((f) = T i(Cf) = 

I      h(e,r^)f(e)d6  =  f(rCP)     for each function  f(0)   belonging to  if 

on 3CJ   ,   and each   r < 1.    The mean convergence which takes place 

is that     lim   ||f-f   II   * 0. 
r-*l r "P 

The   proof is a classical one which we will reproduce only in 

brief.     Since   1  is harmonic,   the Poisson formula gives   j .h(8,x)d£ = 1. 

Since   h(6,x)    is a harmonic function of x,   the mean value theorem 

gives     /     h(9,r^)d^   =  1.    These two facts in conjunction with Hol- 

der 's inequality give    /       jf   (0)|Pd4> =    / /     h(d,rC?)i(6) d61   dCC   < 

<     I        j     h{0,r<y) |f(6)|P d6d<2>   ^    i     |f(0)|"' d6,        from which  it 

follows that the transformations   T    are a uniformly bounded fami- 
r ' 

ly of linear transformations from  \J   on 9&     to  L.    on  82S .      In 

order to show that   T f —*- f   in  iF for each   f e LT   it is enough to 

show that this happens on a dense set of  f.    For the dense set take 

the continuous functions. 

The  functions :lr the cor iplete class   T can be characterized 

in another way.    Suppose that  f  is a function defined only in the in- 

terior of  & .    According to the preceding paragraph there is at 

most one function in "IF which coincides with f  in the interior of & 

(at moat one function up to equivalence in "St,  that is).    It is there- 

fore clear how the phrase   "f belongs to  ^ "   should be interpre- 

ted when f  is defined only in the interior of  & . 

V 
J 
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1) If   p > 1,  then  <y consists of all harmonic functions  f 

defined in the interior of   £>  and having the property that 

sup    f       |f(r 9)|pd9 < co    . 
0<r<l J9£' " 

2) If   p > 1.   then  7"   consists of all harmonic functions   f 

defined in the interior of   S» and having the property that there 

exists a sequence   r   ^ 1   such that the functions   f   (8) = f(r   8) 

converge weakly in  LT  on   9£ 

Proof.   If an f  satisfies the condition in 1),   then it satisfies 

the condition in  2),   for bounded sets are weakly compact in  LT, 

p>l. 

Suppose that the condition in  2) is satisfied for a certain 

function f and some sequence  r   ^*' I,   and let g be the weak 

limit of f     .    Since    g € Lr     on   92S ,    when we have shown that r Q 

f(x) =    /     h(9,x)g(9)d8     it will follow that.   feT\    Let  x be a 
J3£ 

fixed point in the interior of   & .    Then   h(8,x)   is a function of  0 

which is continuous and hence belongs to   LT    on 9&  .       Thus 

I h(S,jt) g(9j dtr =    iim     I      h(8,x) i'(r   9} d8 .      On the other hand, 
9£ r

n^
l JBZ n 

f(r  x),    r     fixed,   is a function harmonic in the interior of   SS  and 

continuous in *&> ; that is,    f(r  x)   is a function in *7~ .    Therefore 

f(r  x) =   i     h(9,x)f(r   6) d8.    Finally,   as  f  is continuous at  x, n       Jst n 

f(x) =   limfirx). 
r -*• 1      n n 

In the statement and proof of the fundamental proposition 

which comes next,   and in the rest of the section,  we shall use the 

following terminology.    The set  C  of points   ft in 9£»   satisfying 

J9-^|   <p     is the circle with center  CP   and radius p ;   JC |     and 

p\C)   denote the n-1-dimensional measure of  C   and the radius of 

C.    For each   x 4 Of    9     is the point    -i—i— x.      If  C   is a circle on 

9^    and  x  is a point interior to S   and on the normal to  9&   through 

the center of  C,   then the cone with vertex x and base  C  is the set 

generated by joining  x to each point of  C.    The axis of the cone is 

••   • 
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the normal to  9E.     through the center of   C.     The angle of the cone 

is the maximum angle between the axib and any line joining  x to a 

point of  C. 

3)   To each angle   a,   0 < a < S',   corresponds a constant  k > 0 

such that for every f >   0  in_ *£" and every x in the interior of    S, 

there is a cone with vertex x  and angle  > a  with the property that 

the average of f(8)   over the base of the cone is   >  kf\x). 

Proof.    For each    p> 0,  write   Co    for the circle with center 

9     and  radius j>   ,   and put   1(P) -   I    f(0)d8.    Let      p    be such that 
J Cp 

C.     is the base of the cone with vertex x  and angle   a,   and set 

m(x) =   sup   I(f)/n-l.    Since the ratio    |C|/n(C}n"*     is k°un<led 

above and bounded away from  0  by constants depending only on the 

dimension,   the inequality to be proved takes the form   m{x) > kf(x). 

If     Dj  is an arbitrary number  >    0   ,   then 

«X)S
R2-,H2 f    -aa.de + R2-1*I2 f 

n tJ C„        9—x n ,11 Jc     |e-x|n wnR     Jafi-c   ie-x!n <&- de = 

= i1+i2. 

Using the majoration      19 —x |   > R —|x|,      we obtain 

-       .     R+|x| 1 Tl.  >    „     2  ,   9\     ,n-l   Hgjj 
h   $    ~1T^   ._     j   ,.n-l   I(Pl>    ^   ^ (RT|xT) ^nTT   ' n (R-|x|) n '   ' rl 

Using the majoration    |9-x|    >   ^/2 | 0—©   |,     we obtain 

1.    The calculation of ths best possible constant will be given 

elsewhere.    The constant which appears below in formula (10.Z) 

has the correct order of magnitude for   a —>-  7C/2 . 
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1 

,n+L I      <     2       (R-Jxj)    f   -"   d!(/>) 
2    = 

2R 

J Pi '" 
Now, 

I    2R   d TfO\ !//>} 

<>J>1 

Thus 

,n ,n 

i    < ^n+i(R-|xl) 
2   = u> n 

I(2R) I(Pl)       nm(x)   _   nm(x) 

(2R)n ft " />1 

t -> 

(iO.i) 

I  +1     <   -  2n(n-l)(R-jx|)m(x) 
1      2   = to R n 

/    -Pi     xn-1       ,r. ,R~ixL 
An-1 

2       n .R-lxl.       .   .  (—-i—L) m(x). 
n /»1 

To complete the evaluation we use the simple   geometric in- 

equality        sin a  <    ^   \"T   ^ tan a'      Putting      p. = J>       in  (10.1), 

and dropping the obviously negative terms,   we obtain 

2 (10.2)      f(x)   ^ I,+ I2  ^ J    r     n-1            2nn "1        ,   , —    tan       a +   —:         m(x) 

A different evaluation of  (TO-!)   is better when a  is not too large. 

If.     a  < arctg(2),    then     •=—i—i-   <  2,    and it is possible to choose 

Pi   >    P       ao that        •=—r—r   -  2.      Using this   j).,    we obtain from 

(1 0.1) 

->n 
2   n 

Hv)   i  *i + *•»   5 m(x)     whenever     a  < arctg 2 
n 

In the course of the next proposition we shall use a general 

covering theorem not unlike a part of the Vitaii theorem.    It has 

some intrinsic interest,   so we shall present it as a lemma sepa- 

rate from the present line of discussion. 

II 
- 
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Proof.   The sequence {S \ is defined inductively.     Let   M     be 

the least upper bound of the radii of the spheres in IT,   and let  S. 

be a sphere in TT whose radius is larger than   (2/3)M   .      If 

S,,..,,S,    have already been defined,   let   M,    be the least upper 

bound of the radii of the spheres in IT which do not meet any of 

S, S,    and let S,   .   be a sphere in "IT which does not meet any 

of S.,.. .5,    and whose radius is larger than   (2/3)M, - 

Suppose that the point  x  lies in a sphere  SG.TT which meets 

the sphere  S,   but no sphere  S.   with   i < k.    If r   is the radius of 

S,   and if r,    is the radius of S, ,    then   r  < M,    1 <     y r, .       Thus, 

if y  is   a point common to  S   and S, ,   and if  x,    is the center of S, , 

then     d(x,x.)   < d(x,y) + d(y,x, )   ^  2r + r,    <  4r, and so  xCS|. 

On the other hand,   every point    xe   vJ S   lies in a sphere which 
sexr 

meets  some  S,       In fact,   two cases arise.    If the inductive pro- 

cedure  for defining  S,    cannot be continued beyond some finite   k  , ~     *. ' o 
then all spheres in TT must meet one of S,,...,S,   .    If the inductive 1 kQ 

procedure can be continued,   then there are infintely many S,    and 

their radii   r,   —v 0.    But we have seen above that if S  does not 
k 3 meet one of S,,..., S.    .,      then    r <   ^r,   , 

Turning once again to the harmonic functions we provide a 

1 

Lemma 1.    Let   TT be a family of spheres in a metric  apace. 

For each sphere   S^IT   let  S'   denote the sphere whose renter is 

th^ center of S   and v<hose  radius is four times the radius of S.   If 

II has the two properties listed below,   then there is a disjoint se- 

f     1 It °° quence,   perhaps finite,   {S   *rC TT     such that LJ   ScZ (J S1   . 

The properties are the following; ^^" 

(i)       The radii of the spheres in TI  are bounded,   and all are 

(i i)     If a sequence of spheres in IT  is disjoint,   then the se- 

quence of radii converges to 0. 

J 
.     - t 
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notation tor use   in the next proposition.    Given a Bet   BC!S     and 

an angle  a   we write   B     for the set of points   869&     which lie 

either in B   itself or in the base of some cone of angle   a  with ver- 

tex in B. 

4)    To each angle   a,     0 < «£ <- j   ,   corresponds a constant k 

such that for every set   B C & ,     JB   |   <  kc.(B)P,    where    |B   |   de- 

notes the  n-1-dimensional measure of B . 
• a 

Proof.    For sets in dS>    the present capacities are the same 

as the capacities determined by the functional space   L    on 8 £P    . 

By virtue of the di&cuission we have made of the latter spaces we 

cau write for any set   BC 3£» ,     jBJ = c.fB)1*.    It follows easily 

that for the remainder of the proof we can assume that   B  lies en- 

tirely in the interior of   <£» . 

FroiTi the fact that the strong majoration property holds it 
** 1 follows that the set functions   c.   and   6   are equal. In addition, 

we have seen earlier that  6   is essentially the  6-function for f-   . 

Hence,   if m is an arbitrary number larger than c,(B),    then there 

is a function f > 0  in V   such that     m >  |jf ||    and such that    f(x) ^ 

1    for every   x€ B.    Let  k.  be the constant of proposition  3),  and 

for each   x €. B    let   B(x)  be the base of a cone with vertex x,  with 

angle  > a,   and with the^mean: rvalue property of proposition  3). 

Let k'   be a constant such that    |S'|   < k' jSJ    whenever  S   and S'   are 

circles in 8 6     with the same center and.with     ^(S1) = 4j)(S).    Let 

B'(x)   be the circle with the same   center as  B(x)   and with 

p £B'(X)|  = 4^ [B(x)]J.    By virtue of the covering theorem there is 
oo 

a disjoint sequence     B(x_)     such that     B C  (J B'(x ).    Therefore 
n=l 

CO oo oo 
|BJ   <  2L |B'(xn)|   <k' Zl |B(x )\    =  k'JA|,    where     A=  (jB(xJ. 

a     "   n=l n     "       n=l n • n=l 

1. Remark  5  at the end of section  6. 

2. The lemma in section  5. 

 „ .      • •   • ! — - 
• - . 

j 
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Furthermore,   the mean value of f  over  A  is  > k.,   since the mean 

value is   ~z k.   over each   B(x  ),   and these are disjoint.    From this 

it follows by Holder's inequality that    |A |   <  (l/k.)P ||f ||   ,     and 

hence that     ]B    |   < (    /, p)mp.    As   m   is any number   > c.(B),    4) 
G,        —        /   K- 1 

results. 

It   is simple now to derive Fatou's theorem.    Let  a'   be a. 
7f be given angle,     0 < a* <  V       For each point   8£ 92>   let   K_ 

a closed conenextending into   &  from the vertex  d  and touching 

9&     only at 0;   let  K      ,   have angle  a,'   and axis the normal to 3 5? 
u, a,   

through 9.    Fatou's theorem asserts that if f  is a function in   *£ , 

then for almost every   B,   f is continuous in K 
%,a< 

It is proved 

as follows. 

Let A be the set of points   8 for which 1  is not continuous in 

K 9,a' For each     £> 0   let  B^   be a set such that   c.(BS) < £>    and 

such that f is continuous outside  B    .    Then for each     c > 0,    and 

each   9€A,    B       contains points of Ka arbitrarily close to 9. 

This implies that   AC(B£)      for every a   satisfying   a1 < a  <  y  . 

Therefore    |A|   <   |(B&)   |    < kc,(B£)P   $ k€.P,     so finally    |A| = 0. 

The results which we have descirbed are not restricted to the 

sphere.    They are valids   and large parts of their proofs as wellt 

for all cloued domains wiih sufficiently smooth boundaries.    A 

brief discussion of the situation follows. 

We shall suppose that the basic set    & is a closed bounded 

domain in Euclidean space  E   ,   and we shall suppose that the boun- 
w 1 1 dary  9eS    is a  C    surface. This ensures that at each point of 

9j£?   there is a tangent plane to  9?5>   , and that the tangent plane turns 

1.    To say '.hat  9&   is aC    surface is to say that each point c£  &5 

has an n-dimensional neighborhood V  which can be mapped in  1-1 

fashion on an n-dimensional cube by a transformation T   such that: 
-1 1 a)   T  and  T~'L  are both  C    transformations with non-vanishing Ja- 

cobains;   b)   T(9£» C] V) is the intersection of the cube with one of 

the coordinate hyperplanes. 

" 
• ••   - •     • 
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continuously.    Also there is a normal to  9G>    at each point   (S   of 

9<5>    ;    X\Q   denotes the unit vector in the direction of the exterior 

normal at   <f .    If  x  is any point of  E   ,   there is at least one point 

8 on  95     which minimizes the distance    | cp — x |,   cpe95   .    The 

line determined  by  x   and any minimizing point   (^   x)   is normal to 

9&   .    In case there is only one minimizing point we shall call it 

8  .    6     is a continuous function of x on the set where it is defined. x        x 
In general   8, <? etc.   refer to points on  S£>   ;   d8,    dCf   ,   etc.   refer 

to the   n-1-dimensinal measure which is definable on  9^    in the 

classical manner;     |E |   where  E   is a set O 9^5 refers also to this 

measure.    If  C   is any circle on 9<5   .   and circles are defined as 

they were before.     P(C)  denotes its radius. 

In addition to supposing that  9&>   is       C    we shall suppose 

that it has bounded curvature,  by which we mean that 

|sin(?/2 n^)! 
(10.4) l/r     -    sup        < co 

°     e*y      \/z\*-q\ 
1. 

where    nft
n£^    denotes the angle between  n_   and   n^ . Wc list 

here the essential properties ox such boundaries.    Proofs will be 

given in a separate note. 

a)   The number   r    and the two numbers r1    and  r"   defined '         o       o        o      
below are all equal. 

r'   = sup Q    taken over the numbers   p   such that there 

,,f. c\ exist no two distinct line segments,   each of length less 

than   p   and each intersecting  d&   and normal to  95>   , 

which intersect one another. 

(10.6) 
r" = sup p   taken over the numbers p    such that fo 

each point   8S9S> the exierior tangent sphere of 

1.    The usual definition is that   sup   i n_a\   = M < oo;   this is obvious 

ly equivalent to (10.4) and the constant  r    as defined in the text is 

more convenient. 

• 
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radius  f   at  9  contains no interior points of & ; 

and such that for each point   9 the interior  tan- 

gent aphere of radius   0   at   9 contains no interior 

points of the complement of  <2> - 
• 

It  is the exterior tangent sphere of radius   r    which inter- 

venes in most subsequent calculations.    When we speak simply of 

the tangent sphere at  0  we mean this one.    We write  yfl    for its 

center. 

b)   If   a((0, 0)  denotes the angle between  n«   and the directic-n 

CfQ    then for any two points   q>  and   6 on  9<S .     jsin Iff'  - a(#, 6Jj < 

O 

c) For every point  x£&   within distance   r    of 3S>    and 

every point  8  on  8^>    the following inequality is satisfied; 

(10.7) 0  <  |x-ye|  -rQ - |x-6x|   <   lir!xL . 
o 

The significance of the inequality will appear upon examina- 

tion of g) below and the proof which is given aftei this list of pro- 

perties. 

For  each number   r,    o < r < r ,    and each point   9  on 8& — o 
we define   z(r, 9)  to be the point ai distance  r  from  6 on the in- 

terior normal passing through  6.    For each number  r,     0 < r < r , 

we define the parallel surface to 8*Cj    at distance   r,  for which we 

write   (8£)   ,   to be the set of all points   xSJJb    at distance exact- 

ly r from 8 2> . 

d) Each surface  {BJSa)^   is both C    and of bounded   cur - 

vature.    The curvature constant of  (10.4)   can be taken as   r - r. 
 =• * ' o 
For fixed  r the transformati on  & —*» z(r, 6)   is a 1-1 continuous 

transformation of 8"5>    onto  (816)   .    It possesses a Jacobian which 

is bounded and bounded from 0,   and these bounds are uniform with 

respect to  r  for    r < r' < r ;   the Jacobians converge uniformly to 

1    as   r -*-   0. 

••••'"•*• 
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I 
I 

e)    There are constants  K,   and  K-,   Buch that for every circle g£ __        1     - 2 —*  
C  onKjf(C)        <  |C| <K2f(C)n"1.    If   r' < rQ   is fixed,   the con 

0 < h(6,x)   < 
|y»-xi -ro 

r u>   |e-xjn 

on1 • 

The function cr. the right is the POIBPOTI T^mci for the exterior ot 

the tangent sphere at 6.'    (Note the inequality in c). ) 

We consider the functional space & of all complex valued 

functions continuous in ?S   and harmonic i*i the intexior of   2»  ; we 

define the norm by     l|fjj     =|(      |f(6)|PdepP.    where   p  is fixed 

and satisfies   1 < p <  oo. 

It is obvious that there is no difficulty in  showing that the 

perfect completion of ^  is the spac« ^ of Poisscr. integrals of 

1.    Both properties  fj   and  f)   are obtained by constructing  h  and 

h    by the classical method of integral equations.    See for example 

Kellogg    [_19l. 

stants can be chosen so that the flame inequality is valid on each 

(8&)p,     rgr'. 

f) The  Green's function G(y,x)   for the domain  <2>   exists. 

For each fixed  x  in the interior of "&   the function   G(y,x)    as a 

function of  y has a normal, derivative   h(6,x)   at every point  b  of 

3 &>  .    If  8  is fixed,    h is harmonic in x,   if  x  is fixed,   h  ifl con- 

tinuous in  d.    The Poiseon formula holds with respect to the ker- 

nel    h:      f(x) =   1      h(8,x)f(0)d&    for every function f  continuous 
— Jatt  
in "g and harmonic in the interior. 

f' )   If_  h.J'yr.x)   denotes the kernel for the domain     <^> 

bounded by   (8"S)   ,   then for fixed  x the functions   h   [z(6,r),x3 

converge uniformlv as    r —^ 0   to   h(9,x). 

g) h(0,x)    Satisfies the following inequality,   obtained by the 

method of comparison domains 

\ 

• -t» 
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tunctiona   Lr   on 8<S>  .    This goes as it did before. 

The   various assertions about the manner in which the func- 

tions in 9s"   assume boundary values require some comment. 

The  first step is to define the   inalogues of the transforma- 

tions   T  .    For each  r,     0 < r < r ,    and each function i\9)   in Lr 

on 8£»     we put      T f{&) = *r(<^) -   f    h[9, z(r, Cf)\ f(6) d6.      It must 
** 81> 

be established that there is a constant K1    such that for every 

f € Lp, (      If  (Cp)\pd(P  < K,P   f     |f(9)|P d6.    Once this is done 
J 8&.    r J 3S 

it follows by the argument we have used before that     lim  ||f-f   ||     = 
r-^0 r   P 

0.    In other words,   the values of f  on the parallel surface  to   B<& 

at distance   r   converge in mean of order  p  to the values of  f    on 

8&   .    It is true,   and for the same reason as before,   that 

/      b(0, x)d0 = 1.    It is no longer true that        I     hr0,z(r,ft)l d<0    = 1, 
h& JdZ * 
but the   integral is  <   K"   for some  X"   independent of  r   and  0, 

and this is just as good;   however,   proof is required. 

We will continue to use the notations we have used through 

the section.    For example,   if we are considering a given point   0 

on the boundary,   then for any number   r  we write   C    for the circle 

with center   8  and radius   r; etc. 

Let   r   and   9  be fixed.    Then by property   g) , 

2      2 

Jate L        *J T    - Jcr   Wnro|e-z(r,f)|n      3 

• f        l2 
J 8<g> -C     w 

2 
-i |y6-

z(r.flf)l -rQ °    d<?    = i. + i 

Now,   if    j 0— (D\ < r,    then    jyA—z(r ,<p)\ -r     < 2r,    and in any case 

|yfi—z{r,rtj)|   +   r    < D + 2r       where  D   is the diameter of c© . 

Therefore, 
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2(D+2r ) . 2(D+2r ) 
L   < 21 L_   |C   I   < °-  K?    . 1  = <o  r n-1   '    r '   =        w  r 2 nor no 

The evaluation of I?   is essentially the same as the evaluation of 

the  I-   which appears in the proof of proposition  3).    We have 

i_   ^£   f le-?|2 

o n o   J 8£—( 06-C.    |9-z(r,^)|n 

if we make use of  c). 

I? 

The  first of the two integrals is just like   I?   in proposition 3) 

lei (with   £ S 1,    hence   m(x)   < sup   —•—\ < K, ). 

If we note  that     i6-z(r,^)|   > l/2|e-^j,    and if we 3et 

Cp | s= d<2> ,   the second of the two integrals is majorated by 

The last 

expression is obviously bounded by a bound independent of  r   and   9. 

The   proof of proposition  2)   was entirely special to the sphere. 

A proof which will yield the statement of  2) in this more general 

case can be based upon £') in the following way.    Let  f be a har- 

monic function for which the functions    f   (CP)   - f [z(r ,<jf>j[[    converge 
n 

weakly for some sequence   r   —y- 0.    If  g((P)   i» the weak limit,   and 

if x is fixed in the interior of   £ ,   then        /      h(6,x)g(6) d8   = 
n J as 

= lim  j      h(0,x)fr(6) de.    On the other hand,   if    yr     denotes the 
t) 86, n n 

variable on   (o£)    ,    then 
n 

f<x) =  Chr^r.-)^r)^r •   rh
r[

z<Ve>'x3ye)Jr   de. 
V (ofi)    n     n n n      J oc,   n n       n 

n 

^\ 

D+2r      r |y--z(r,tf)|-r D+2r       f i   -     _.     -, 
I, <  2. / ' Q        T-    °dy< °   I l£i£i£Ll£j    a? + 
2~    Vo   J 9S-Cr    J9-z(r,Cf)|n   ^= wnro    J a£-C.   16-z(r,^)jn 
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where   J      is the Jacobian of the transfermation     8 —*• z(r , 8). r n n 
Now because of the weak convergence of the   f       and the uniform 

rn 
convergence of the Jacobians to   1,   and of the   h      to  h,   we deduce 

n —    rn 
that   f(x) =   /     h(8,x)g(8)de,    and hence   fe^   . 

J dt> 

There is nothing at all to impede the extension of the key 

proposition  3).    We shall not repeat the proof,   for with the origi- 

nal proof and the calculations used to show   ||T f ||   bounded as a 

model,   the reader will not find it difficult.    One remark will suf- 

fice:   3)   should be proved only for x within distance   r    of 9S , 

but as each set of small capacity is included within this strip,   the 

restriction is harmless.    Proposition 4)   is valid as it stands,   as 

is Fatou's theorem. 

§11 .     Example  4.    Potentialsof order  a  of M.  Riesz.    In this 

last example we shall discuss the potentials of order  a  of Marcel 

Riesz.    Among the many papers on the subject especially relevant 

to our needs are those of O. Frostman  |l7j,   M. Riesz  J23],   H. Caf- 

tan £^13Q,and J.  Deny jT.5^2 - The paper of Deny even gives explicitly 

several of the functional space properties of the spaces of poten- 

tials,   but through most of the paper the prevailing interest lies in 

measures or in distributions,   and not in their potentials. 

In the coui'se of the discussion we shall prove that our   (J- 

capacity  c,,   formed with the function     (f(t) = t  ,   is exactly  the 

classical outer capacity.    This cai: be taken as justification of our 

use of the term capacity. 

The  basic set *6  is Euclidean n-dimensional  space,  n > 2. 

We designate by K    the kernel of order  a  of  M. Riesz: 

(11.1)                K (x) = K       (x) -   tt1,   r |x!a~"      for      0 < a < n, v       ' ax   ' n,a*   '       H  (a) '    '   nv   ' 
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Fundamental in the theory of potentials with respect to these ker- 

nels ie the composition formula established by Riesz: 

/» 
(11.2) Ka+p(x-y) =  j Ka(x-z)Kp(z-y)dz     if    a+p < n . 

Let us write    Q.     for the class of ail positive Bovel mea- 

sures  n  on  Co v/ith the property: 

(11.3) ||u ||2 = i j Kft(x-y)du(y)d^(x) < oo   , 

and let us write    Q.    for the class of differences of measures in 

Q.   .    By means of the composition formula (11.2) it can be shown 

that the integral (11.3),  which is called the energy integral,   is fi- 

nite   and non-zero for every non-zero measure y. £ Q. .    The value 

of the integral is called the energy of (x.    A measure in  JQ.    is 

said to  be oi finite energy.    With the usual definitions of addition 

of measures and of multiplication of a measure by a real number 

the class   XT:     is a (real) vector space.    On it the function   |||i|j 

defined by the integral (11.3) is a quadratic norm.    The space   £1 

is not complete in this norm.    However,   an important theorem of 

H. Cartan (for 0 < a < 2)   and of J. Deny (for the remaining a)   as- 

serts that the subset   Q   ,  which is a convex cone in  Q  ,    is 

complete. 

Now we define the corresponding space of potentials,   the 

actual functional space in which we are interested.    First,  the ex- 

ceptional class    OL    is to consist of all sets   A for which there is 
.0. n 

we define its potential 

a measure (iCi. L     such the a it the mt< igral   J K 

for every x€ A .    Given a measure ue^2Q  i 
Qf   /^-»»#1»»*      ** Hows. 

(11.4) KQ(I(X) =    /*Ka(x-y)du(y) , 

1.    Deny s proof is based upon the theory of the Fourier transform 
in the space of distributions of L. Schwartz.  [MJ .    It is possible to 
obtain through direct analysis of the energy integral (11. 3) a proof 
./hich does not make use of distributions. 

. 



Iv-IWOl-U       111 JWX- a 
theory of Hilbert space it can be shown that corresponding to any 

u. e-Q.    ie a unique   |Af€ P.   which minimizes the distance from p. 
o H        r -     A 

1.    A similar important result is that each function which is in- 

finitely differentiablc and which vanishes outside a compact set is 

equal everywhere to the potential of order   a/2   of some measure 

u. e .Q- •    In both cases the measure  u. €. Q.    is the indefinite inte- a a 
gral (with respect to Lebesgue measure) of a square integrable 

density. 
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for every  x.  for which the integrand is integrable.    It is obvious 
_ 

from 'he definition of    O-    that     K u(x)      is delmed exc. Oi  •     We 
a <r a 

write   "£     for the functional class rel. CU     consisting of all func- 
o. a ° 

ti ons     K u(x)     for     u £. £L .      An important theorem  asserts that 

every function which is infinitely differentiate and which vanishes 

outside a compact set is equal everywhere to the potential of order 
1 

a   of some measure    u €. ^i   .     '      From this it can be proved that o 
K ii(x) = 0 exc. 01,        if and only if    u •    0.      Therefore if we define 

Ci a 7 1- 

||K U II  -   ||(i ||,     *SF"    becomes a normed functional class with quad- 

ratic norm.    We shall see presently that    ^   is a functional space 

rel. Q1,    and that it has a functional completion rel. OL . 
a a 

We shall make use of an exceptional class,   to be called   QU 
a 

and to consist of all subsets of the sets   Gc   which have measure 

0  for every measure   ~P& Q. .   Although this class seems to be dif- 

ferent from the class   OU„>   we shall finish by showing that the two 

are identical.    The proof is difficult,   however,   and for the moment 

we are content to observe that    OP COU~   •    The argument for the 

latter proceeds as follows.    If  p.  and   V   belong to    \JL   ,   then the 

potential     K (i(x)     is lover semi-continuous   and the integral 

(u, V) - | K u(x) dV     is finite.    Therefore the set of points at which 

K |i(x)   is infinite is a set  GR   of    y-measare   0. 

For   an arbitrary closed set   At—t*   let      pA   denote the cou- 

vex cone of measures in    £2.     which are supported by A.      P.    is 

closed in     Q.     and hence complete.    By arguments standard in the 

. 
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to elements of    P. : i.e. |u--u-' ||  = min||u-\? j!    overall   V<£ P. A* H' 
is called the result of sweeping the measure   u   onto  A.    It can be 

shown that   K u'(x) = K |i(x) a.e.   (a'),   and that   K u'(x)   >  K ^i(x) 

for   zc <£ A. exc.OJo    .    Since    O'   contains each restriction of Le- 

besgue   measure to a compact set,   a particular consequen.e is 

that   K u'(x)   > K u(x) a.e.  in the Lebesgue sense.    It can be shown 

further that      |||x' ||   <   j|u||;    in addition,   if  ^x"   is the result  of 

sweeping   -u  onto A,   then    ||u-'+u."jj   <  |||x||.    '    Consider the spe- 

cial case   A = £> .    We have    j|K (u' + u-")||   £  ||K u ||,    and also 

K ((jt1 + ^,;)(x)   >   |K jx(x)|exc. Qi In the next paragraph we shall 

see that the inequality holds exc. OP- ,   and this will yield the strong 

majoration property. 

From a lemma of Frostman ensues the fact,   observed by 

Deny,   that if  \i. belongs to   Q.    .   then at every point  x the mean 

value of  K \i  over the sphere with center   x  and radius   r   converges 

0   to   K u(x)   (whether the latter is finite or infinite). as    r • 

From this it is clear that if \x€. Q.     then at every point  x exc. op 

the mean value of K n  over the sphere with center  x and radius   r 

converges as   r —>• 0   to   K u(x).    Hence,   if \i  and  V belong to 12   , 

and if     K V(x)   > K \i(x)   almost everywhere with respect to Lebesgue 

measure,   then   Kv(x)   > K u(x) exc.Ot  . a =     a a 
The strong majoration 

t- 

1.    We make use of the following result which is valid in abstract 
Hilbert space. 

If P  is  a closed convex cone with vertex at the origin,   and if 

|xf and n" are respectively the points of P  at minimum distance 

from ji  and — \i,  then    |||x* + ji" || <   |'u||,   whatever be the vector  \j.. 

Proof.    Since   JJL —l-t*   is orthogonal to  p.1,   and since — u — JJL" is 
orthogonal to \i",   the inequality to be  proved  takes  the  form 
2?2 .2 

Hull   (cos   6+COB  (|-Z COB 8 cos ^cos^/)  <   ||uij   ,    where    6, If •  ty* 

are the angles between  u  and u',   n' and jx",  p." and - \x  respective- 
ly.    Because of the inequality   y^<. 9 + y + &  ,   it is sufficient to 

2 2 -77 
prove that   cos   9 + cos  £7—2 cos ftcos6|cos(6 + ^)  <  1.    It is not 

difficult to see that this last hold* identically in  9  and (p . 

• 
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U 

property in   "^     results 
a 

With the aid of the strong majoration property it is easy to 

show that   e-~f   is a functional space rel. OV -    Let  (u   X   be a se- v a a in S 
quence of measures converging to 0 in norm,    For each n  let   u 

be such that   K IT     is a positive majorant for   K u.     with the same 

norm,   and from the sequence  \ \x.   \   pick  a  subsequence    \ y.      | 

such that     2i l|i^     || < °o«    Aa   Q     is complete there is a jiea 
k»l     nk a a 

CD 

such that    n =   /Lxf1    •       It can be   shown  that if u   belongs to   £2 
k=l nk ° 

a;;d if the   sequence   ia  \    converges to  w,    then for every  x, 

K u>(x)   < lim inf K o>  (x)„   ' Tf the seauence    (a)   \    is increasing, 
a        '   - a.  n*   ' - l   n •> 

then for every v.    K co(x) > sup K v (x),     so that in fact     K o»(x) = 
a    '      ~ a  n a 

- lim K o) (x). Applied to  the  partial sums   of the   series 
co co 
2L*U,    ,    this gives   K u(x) ••= ,£_; K u   (x^   for every  x ( 
k:l' nk a k-1   "•  nk 

where the 

value   + oo must be admitted,   of course).    Finally,   therefore,   exc. 

Oir   we have      |K  p.   (x)!   < K IT   (x)  —*•   0. 
a '    a^n*   "   =    Q   "fc 

We are prepared to show that the functions   6   and  6   are 

identical.    One consequence oi this will be that   &--£-    and   d6-    - 

= ^p.    Let  •[u \   be a Cauchy sequence of measures such that for 

a given set  ±Jfeo<3-,      iim ini! jK u.  {;<i!   > i   en H sxc.i* a*^ 0 ^ '   a^n      •   ~ a 
lim||»i   ||   <  6(B) + £. .    Let   a'    and p.''   denote the results of 

sweeping  u     and   — u  ,   respectively,   on 2> .    Then each of th*» 

sequences  ji'     and   ji"    is Cauchy,   so the sequence   (X   = JX' + IA" n n n       n       n 
is Cauchy,   and because of the completeness of Q-      it has a limit 

u.    As  ^^   is a functional space rel. 01 ,    f jx   V  contains a sub- 

sequence | u    1   such that    K jl(x) = lim K jT   (x) exc. C£ .    There- 
k "k 

fore we have exc. fr  ,    K u(x) - lim K u   (x)   > lim inf |K U.  (X)| 

_ _ k * 
and at the same time      ||u||  - lim||(ji   ||   <  lim|||j.   ||   <  6(B) + £, . 

1.    S«e   H, Cartan  J13j.    The simple proof is based upon the fact 
that  K    is lower semi-continuous, 

a 

• 
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(U.5) 

20 

-n 

If A   is any set in ^ ,   the a the measures    u^ Q       such that 

K ji(x)   > 1  on A  exc. OU    form a closed convex set.    Call it    V\, 

A closed convex set in a Hilbert space necessarily contains a point 

at minimum distance from the origin (or from any other point). 

Thus the infimum,     inf ||j.t||  taken over    p.€ Y\ ,   is a minimum,   ie. 
+ is assumed;   for each   A<=3&-   there is a measure   u G.Q.      such a 

that   K u(x)   >  1 on A exc. 0J-     and such that    II all  = 5(A).    An  im- a = a *,j 
mediate consequence is that    fa    - o&     ( = jj-   ).       V?  will be used ^ a. <r ar A 
again later, 

The next iiep is Co obtaixi th'e relation uitw'scn cu»  capacities 

and the classical capacity (of order a).    One of the many common 

definition! of the classical capacity is as follows. 

If C  is a compact set, then \(C),  the capacity of C, 

is the number   jj^Jj", where  nc  minimizes the ex- 

pression    || fi ||   - 2|i(C)   among all measure a   \x€.£2^ 

support ed by C.    uc  ia called the capacitary diatri- 

bution of C.   _M A ia an, arbitrary set,  then   y.(A) , 

the inner capacity of A,   ia the supremum of the num- 

bers  y(C) over all compact seta  CCA.   Jf_ A  is an 

arbitrary set,   then   v (A),   the outer capacity of A, 

is the infimum of the numbers  y.(G)   over all o pen 

seta   G3 A. 

It is well known that the capacitary distribution exists for 

any compact set  C  and is uniquely determined by C.    |&~,   is the 

result of sweeping onto   C   an arbitrary measure V whose poten- 

tial is equal to  1 everywhere on C.    Consequently,  the potential 

of u.^.   is > 1 on C exc. OL,      and is equal to 1 a. ••=  (li,-).    If   Y* is c       * aa <- 
any measure in    Cl      ouch th~t   KS'(x)   > lonC exc.tfk,   ,   then 

Hncll IMI * (HC'
9)
 
s jVw d^c ijVc(x) d^c = l^cii?«  s 

IIV II   > W^c II*    aR(* we nave tne following formula. 

• 
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Y(C) = i nf || V||      taken over all   VeQ+     such that 

(11.6)        K v(x)   > 1 on C exc. Op    .    The minimizing 

measure is  u.. 

It  is convenient to express the capacity also as the square of 

the distance from a certain convex set to the origin.    The measures 

u€ i2      such that   K u(x)   >  1 on C >fx.c. OU        form a closed convex 

set similar to     P_\    Call this new  set P*£.    By virtue of (11.6) 

it is plain that y(C)   is the square of the distance from   P*? to the 

origin,   and that  u—   is the point in   T^" closest to the origin. 

Suppose that an open set  G  is written as the union of an in- 

creasing sequence   (C   *t   of compact sets,   and suppose that the se- 

quence {|x—   1   of capacitary distributions is bounded (as they must 
n' 

be if G  has finite inner capacity).    Then there existe a subsequence 

f fXp      J  converging weakly to a measure   u€" £1   .    For each k,   all 

k 

JJL_       with   i > k   belong to   p\£   ,   so,   as   P^T     is closed and con- 
n. n. n, i K k 

vex,  u. belongs to V*X    •    Hence   K ji(x) > 1 on C   exc.(fi.   .   Mid so 
nk 

nk a 
K u-(x) > 1 on G exc.#,   .    By taking mean-values it follows that 

7 2. 
K |JL(X) > 1 on G everywhere.    Now,    j|u||    < Jim inf |j}j     Ij £ y.(G) ; 

.2 " nk 
and    |ip. ||     > y.(G)    is obvious from (11.6).    We have proved: 

1)   If v.(G) < co   for an open set G,   then there ig a   u-€. Q. 

such that   K |i(x) > 1 on G  everywhere and fru-~h th;it_   y (G) = v.(G) = 

= w^T 
The same argument (up to the point where the mean-values 

are taken) applied to 5 and 01 gives a similar result which will 

be important. 

2)   If A  is the 'onion of an increasing sequence of Sets  A 

6(A) = lim 6(A )   whene 

A_€.^    and     lim 6(A ) < co. 

then   6(A) = lim 6(A )   whenever  A€2j-;   Ae^j-    whenever each 

-- 
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2 
It   is plain from (11.6) thai   y(C) < 6(C)      for any compact set 

2 
C.    It follows immediately from 2) that     y   (G) = y.(G) < 6(G)      and 

2 o ;        - 
from  1) that   y  (G) = y{<~>) > 6(G)      whenever  G  is an open set in ;£•; 

and it follows also that   G£*Sr   whenever   y.(G) < x>,    An immediate 

consequence is that if  A   is any set with   y   (A) < <JO,   thjzc,     A€& 

and   6(A)    <y  (A).    To obtain the converse,   let   AEiJ-,    and let 
+        —    o 

u. C Q-      be auch that K   u(x) > 1 on A exc.dj,       and such that a a — Q 

||JJL|| = 6(A).    For each     -q< 1,    let   G   = ^ JK |x(x) >^].    Then for 

each     t) < 1,    Gy,   is an open set,    G.DA exci^ ,   and     6(G._)  < 
Hull * l a n    = + 

<    •u5-u   .    If A     is any set in 01 .   then there i« a measure   Ve£>   • 
-      </ o a ~a' 
j|yj|  = 1,   such that   KV(x) = + oo   at every poxnt  x of A   .    Setting 

Gi   = F f*K y(x) > i-]    we have   Gi Z> A  t   and   6(G' ) <   £ .      Now, 

taking    A    = A — G/>    we obtain an  open set   G»UGL     containing:  A 
° l II'     ii 

and such that   6(GnUGJ. )   < 6(GA) + 6(Gi, ) <    WLll   + £, ,   a number 
i - - ^ W - .£ 

as close as we please to   6(A). It follows that if   A€^-,    th'in 

6(A) = inf 6(G), the infimum being taken over all open sets in s£- 

containing A. And from this and the previous discussion follows 

immediately the next statement. 

3) A6^-  if rand only if y   (A) < co.    If_A«=;<y,    then 

6(A)2 -v (A). 

4) y   (A) = c,(A)   for every set  A (where c,   is the 
SO <£ • *     c. 

cf-capacity formed with the function   ^(t) = t   . 

oo 
Proof,    Suppose that     AC   L) A     with   A <£.;&-.      Then 

n~l 
CO CO ? 

y   (Al <   T\v   (A  ) = T\  6(A  )   ,    and be rause   •[ A   ~\ is any se- «ox   •  =  *—l,   o     n'     •*—»     v   n' I    nj ' 
n=l n-1 

I 
quence covering A,    \  (A) < c,(A).    Now,   if   -^   (A)   is finite,   then 

o —     t* O 

1.    The sub-additivity of  6   results from the fact that   6(A) = 6(A) = 

= c.(A>    whenever    c«(A) < co.    The second equality comes from the 

strong majoration property. 
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A£&    and   v  (A) = 6(A)2 >c,(A). o —    & 

The natural question f.n approach next is that of the relation- 

ship between the inner and ou:er capacities. A necessary prelimi- 

nary result is the following,  obtained directly from  2)   and  3). 

5)   If A  is the union of an increasing sequence of sets  A  , 

then   V  (A) - lim y   (A  ).     >o     '       'o     n 

With the aid of  5)   and a theorem of G. Choquet we are able 
1. to state: 

6) If A is any analytic set, then y4(A) = y^(A). In particu- 

lar     ^<\. 

It has not been proved explicitly yet that the space *y has 

a functional completion. We bring the example to an end by doinwr 

that and by exhibiting a representation of the functions in the per- 

fect completion. 

With the aid of the Riesz composition formula,   (11.2),   it is 

easy to see that if \-'€.Q.   ,   then for every  x,    K u.(x) = K   , f(x), 
'a a a/2 

where   f = K     u.,    and where   KRg   for any funcilun  o   signifies the 

potential of order  p  of the measure whose density ^vith respect to 
2.   r      2 

Lebesgue measur : is   g.    Furthermore,     ||u||     -   I [f(bc)|    dx.    It 

follows that for any   u e O  ,   and for   f = K     u,    we have 

1.    G. Choquet has developed an abstraxt and very general theory 

of capacity in topological spaces.    Tiie crucial properties of the 

present set funut.o^a  y, v.,   and y     by virtue of which Choquet's 

theorem is applicable are the following;    (see   Choquet   |1TJJ 

a) y is an increasing non-negative set function defined on 

all compart sets. 

b) Given a compact set  C   and an  £, > 0 there is an open 

set GDC   such that   y(C') < y(C) + e.   whenever   CCC CG. 

c) y    and   y       are coi-fltructed from y  as in (11.5). 

d) y      satisfies   5). 

r '   •     • 
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(11.7)        K u(x) = K ,f(x) exc.^  ,     acid      II u ||2 =  f|f(x)l2 dx. 
Q °/2 a J 

Let  A   be the set of points where  K , f(x) = + oo   for some 

non-negative square integrable function f.    Because of the lower 

semi-continuity  of  K     f(x),   A  is a set  G,.    It is a well known 

fact  that if a measure   u & .Q.^  has compact support,   then the in- 

(* tegral     I K     f(x) d|i(x)    is finite.    It follows that   u(A) = 0.    Thus 

for arbitrary   JJL e O.   ,   and for every compact set   C d A,     u(C) = 0, 

and hence   n(A) = 0.    In other words,    ACdt.  =  0ln.    Th« class of 
i* ~ 

subsets of sets whe^e the potentials   K     fix),    f > 0   and square 
a/2 " ~ 

integrable,  become infinite ia exactly the class   (ft   .    It can be 

proved  easily by methods we have already used that the class   <5Z- 

of functions   K . f(x),   f  square integrable,   is a functional space 
. 

: 

a 

rel. Gl'    when given the   norm      ||K     f j|  = J j   |f(x)|'idxy 1   ,    It is 

evident that this class is complete,   and by (11.7)   it contains     y- 
Q 

as a subclass.    Indeed,    ^-    is the perfect completion of   "^   ;   the 

only remaining point,   that r>i the density of   "~r     in  *¥ ,   is easy to 
infinitely Q a 

settle with the aid of the fact tnat ~verv aifferentiable function 

which is   0  outside a compact set is the potential of order   a/2   of 

a measure   u fe 7X   .    This is a fact we hav« mentioned in footnote   1. r a / 

fy,  page 58. 

* ** 

i 
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