Peak Pressure Measurements of a Diffracted Shock Wave

GEORGE COULTER
WESLEY CURTIS

TECHNICAL LIBRARY
AUXBR-LB (Bldg. 305)
ABERDEEN PROVING GROUND, MD. 21005

DEPARTMENT OF THE ARMY PROJECT No. 503-04-002
ORDNANCE RESEARCH AND DEVELOPMENT PROJECT No. TB3-0112

The Ballistic Research Laboratories Technical Note is designed for use within the laboratories or for issuing available information, when the occasion demands speed.

The contents of this paper are of the nature of advance information and may be extended or otherwise revised.

BALLISTIC RESEARCH LABORATORIES
ABERDEEN PROVING GROUND, MARYLAND
PEAK PRESSURE MEASUREMENTS OF A DIFRACTED SHOCK WAVE

George Coulter
Wesley Curtis

Department of the Army Project No. 503-04-002
Ordnance Research and Development Project No. TB3-0112

Funds for this work were supported by the
Armed Forces Special Weapons Project.

ABERDEEN PROVING GROUND, MARYLAND
PEAK PRESSURE MEASUREMENTS OF A DIFFRACTED SHOCK WAVE

ABSTRACT

Pressure versus time records of the shock wave diffracted through a slit are presented. For the particular geometry and pressure range tested a pressure decrease of approximately 60% was recorded in the diffracted wave. Accuracy of measurement, however, was very low and further work awaits improvements in gauge and experimental techniques.
DESCRIPTION OF EXPERIMENT

At the present state of the art of making air blast pressure-time measurements on small models in a shock tube, the piezoelectric gauge recording of blast loading on exterior surfaces of essentially solid models has become routine at the NRL Shock Tube Facility. However, similar measurements on inside surfaces of hollow models have not been successful. The inherent limitation is the size of a satisfactory gauge. The gauge size determines the model wall thickness and the overall size which is in turn limited by the size of the shock tube.

As a first experiment, an 1/8 inch thick wall cut with two 1/8 inch wide slits which had been placed in the 4 1/2 inch shock tube normal to the flow for another program was instrumented with a barium titanate pressure gauge as shown in Fig. 1. Considerable vibration of the thin wall could not be avoided.

Comparison of the pressure versus time record of the shock wave incident at the wall or model before reflection (i.e. as though no wall were present) to the pressure-time record of the gauge on the inside wall surface is shown in Fig. 2. The bottom trace in Fig. 2 shows the effect of reflection and diffraction of this step shock as recorded on the downstream side of the wall. The vibration of the wall and the gauge is apparent in the record tracings. Several other records at the same gauge position are traced in Fig. 3.

The first small peak of vibration may be associated with the shock striking the wall and the gauge casing in which the crystal element is mounted. The second, and largest, peak is taken to be the peak pressure of the diffracted shock. The third peak may be the wave from the upper slit which is further from the gauge. (See the sketch, Fig. 1).

The remainder of the trace is quite difficult to interpret since the vibrations are thoroughly mixed with the pressure record.

Several shots were fired using this experimental set-up and varying the incident shock wave peak pressure from about 3 to 12.5 lbs/in². Pressures recorded on the gauge inside the wall over this range of incident shock pressures are plotted in Fig. 4. The scatter is quite large showing an error of approximately plus or minus 20% in any individual measurement. However, it is indicated that the peak pressure of a step shock incident to this particular geometry is decreased to about 60% of its original value due to diffraction by the slit. The wave form is changed radically from the step shock configuration to a rapidly decaying peaked shock wave. The original 3 or 4 millisecond step shock duration is reduced to less than 1 millisecond total duration after diffraction. Although this duration was recorded only at the one gauge position, presumably the duration should increase with distance from the slit as the pressure decreases.
CONCLUSION

Pressure-time records have been made of a shock wave diffracted through a slit in a wall placed in a shock tube normal to the direction of shock propagation. The gauge was located in the wall near the slit. The records for the particular geometry and pressure range used indicate a great decrease in pressure after diffraction and an even greater change in wave shape. However, it must be concluded that the gauges used are not sufficiently free of vibration or acceleration effects to be used generally for the measurements of pressures within hollow models. As the art of making satisfactory vibration-free gauges smaller and smaller continues together with the improvements in model manufacturing techniques, some limited work on hollow models in a 2-foot diameter shock tube may become feasible.

George Coulter
GEORGE COULTER

Wesley Curtis
WESLEY CURTIS
FIG. 1
SKETCH OF GAUGE LOCATION
AND WALL DIMENSIONS
Fig. 2
Comparison of an undisturbed shock with shock as recorded with piezo-electric gauge in wall.

$P_0 = 5.7 \text{ LBS/IN}^2$

(Before Diffraction)
FIG 3 (a thru c)
PRESSURE-TIME RECORDS OF A DIFRACTED SHOCK
FIG 3 (d thru f)
PRESSURE-TIME RECORDS OF A DIFFRACTED SHOCK

(d) SHOT - 13
(e) SHOT - 16
(f) SHOT - 25
Fig. 4

Pressure inside of model as calculated from piezo-electric gauge measurements plotted as a function of incident pressure.

Measured peak pressure inside of model

Peak incident shock pressure before striking model
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
</table>
| 4 | Chief of Ordnance
 Department of the Army
 Washington 25, D.C.
 Attn: ORDTB - Bal Sec |
| 4 | Chief, Bureau of Ordnance
 Department of the Navy
 Washington 25, D.C.
 Attn: Re3 |
| 2 | Commander
 Naval Ordnance Laboratory
 White Oak
 Silver Spring 19, Maryland
 Attn: Explosives Division |
| 1 | Commander
 Naval Ordnance Test Station
 Inyokern
 P.O. China Lake, California
 Attn: Technical Library |
| 1 | Director
 Naval Research Laboratory
 Anacostia Station
 Washington 20, D.C. |
| 1 | Chief, Bureau of Yards and Docks
 Department of the Navy
 Washington 25, D.C.
 Attn: Code P-300 |
| 1 | Officer in Charge
 Naval Civil Engineering
 Research & Evaluation Laboratory
 Naval Station
 Port Hueneme, California |
| 1 | Deputy Chief of Staff
 Development Research & Development Directorate
 United States Air Force
 Washington 25, D.C.
 Attn: Chief, Research Division |
| 1 | Director
 Air Research and Development Command
 P.O. Box 1395
 Baltimore 3, Maryland
 Attn: Lt. Col. D. L. Crowson |
| 1 | Commander
 Air Force Cambridge Research Laboratory
 230 Albany Street
 Cambridge, Massachusetts
 Attn: FRHS-1, Geophysical Research Library |
| 1 | Commander
 Air Materiel Command
 Wright-Patterson Air Force Base, Ohio
 Attn: MCAIDS |
| 1 | Diamond Ordnance Fuze Laboratories
 Connecticut Avenue at Van Ness Street, N.W.
 Washington 25, D.C.
 Attn: Mr. Fred Harris, Division 20 |
| 1 | Director
 David Taylor Model Basin
 Washington 7, D.C.
 Attn: Structural Mechanics Division |
| 5 | Armed Forces Special Weapons Project
 P.O. Box 2610
 Washington 25, D.C.
 Attn: Blast Branch |
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
</table>
| 1 | Chief of Engineers
Department of the Army
Washington 25, D. C.
Attn: Mr. M. D. Kirkpatrick | 1 | Broadview Research & Development
P. O. Box 1093
Burlingame, California
Attn: Dr. Richard I. Condit |
| 1 | Commanding General
Technical Command
Army Chemical Center,
Maryland | 1 | Dr. John M. Richardson
Institute of Industrial Research
University of Denver
Denver 10, Colorado |
| 1 | Los Alamos Scientific Laboratory
P. O. Box 1563
Los Alamos, New Mexico
Attn: Dr. Fred Reines | 1 | Dr. S. J. Fraenkel
Division of Engineering Mechanics
Armour Research Foundation
Chicago 16, Illinois |
| 5 | Director
Armed Services Technical Information Agency
Documents Service Center
Knott Building
Dayton 2, Ohio
Attn: DSC - SA | 1 | Dr. R. J. Hansen
Massachusetts Institute of Technology
Cambridge 39, Massachusetts |
| 1 | Director, Project RAND
Department of the Air Force
1700 Main Street
Santa Monica, California
Attn: Mr. Marc Peter | 1 | Dr. N. M. Newmark
III Talbot Laboratory
University of Illinois
Urbana, Illinois |
| 1 | Applied Physics Laboratory
8621 Georgia Avenue
Silver Spring, Maryland | 1 | Dr. Otto LaPorte
Engineering Research Institute
University of Michigan
Ann Arbor, Michigan |
| 2 | Sandia Corporation
P. O. Box 5800
Albuquerque, New Mexico
Attn: Physics Div. - Dr. B. Cox
Blast Model Studies Div.
Dr. J. Shreve | 1 | Dr. Walker Bleakney
Princeton University
Princeton, New Jersey |
| | | | Dr. J. Kirkwood
Department of Chemistry
Yale University
New Haven, Connecticut |