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ABSTRACT

A dislocation model of a yield nucleus for materials, such as
arnealed low-carbon steel, which exhibit a distinct yleld point, is
presented. On the basia of the model an analytical expression ia derived
vhich relates the time delay for ylelding under constant applled atress tc
the magnitude of the stress and the temperaiure. This expression involves
the ratio of the hinding energy of a dislocation with a Cottrell
"atmosphere" to the total energy of a dislocation. The expression also
involves the frequency of thermal fluctustions associated with the re-
lease of & dislocation from an "atmosphere". The numerical values of
these two constants are chosen to fit the analytical expression to experi-
mental data. The value of the ratio of the binding energy to the total
energy 8o determined is essentially the same as the value obtained by
Fisher (1)*. However, this value disagrees markedly with the theoretical
estimate made by Cottrell (3). The value of the frequency of thermal
fluctuationa is shown to be in substantial agreement with the frequency to
be expected from consideration of the length of the thermally activated
portion of a dislocation during the process of its release from an

"atmosphere”,

* The figures mppearing in parentheses pertain to the references appended
to this report. 11




INTRODUCTION

A Theory of the delay time for the initlation of ylelding in
materials which exhiblt a distinct yield point has been recently propesed
by J. C. Fisher (1). This theory 1s based upon & relatively simple dis-
location model and predicta the dependence of the delay time for yielding
at constant stress upon the stress and temperature. The resulte of the
theory vere compared with experimental messurements (2) of the delay time
for yielding at constant stress in annealed mild steel as a function of
stress and temperature.

One of the adjuatable constants used to it the experimental
data is 2ssentially the frequency factor associated with the thermally
activated process involved. The other constant is a function of the ratio
of the binding energy between a dislocation and an "atmosphere" of inter-

“stitial solute atoms to the total energy of a dislocation without an

"atmosphere”. The value of this energy ratio which Fisher finds by fitting
his theoretical formula to the delay time data is about 1/3 per cent.
Beveral methods of estimating the binding energy based upon both theoretical
considerations and experimental evidence have been discussed by Cottrell
(3). They all indicate a value of approximatély 0.5 eV per atomic distance
along the dislocation line. Since the energy of an unanchored dislocation
is generally estimated to be approximately 5 eV per atomic distance, the
expected energy ratio is about 10 per cent rather than 1/3 per cent.

The purpose of this report is to manalyze a more complex disloca-
tion model than that used by Fisher to determine if by means of such a
model results can be obtained that are more in accord with the theoretical
value of the bdbinding energy discussed above.
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DISLOCATION MODEL OF A YIELD NUCLEUS
The dislocation model of & yield nucleus employed in this repari
hae been discussed previously (2), (4). Briefly, this model consists of a
slip surface tounded by a grain boundary and containing a Frank-Read dis-

location source (5) (& short segment of dislocation line with fixed end
points). The source dislocation is assumed to have asgoclated with it a
Cottrell "atmosphere" (6) of interstitial solute atoms such as carbon and
nitrogen. Dislocation loops are generated at the Frank-Read source when a
stress ie appiied. The first of these expands rapidly outward from the
source until it is held up by the grain boundary, as Cottrell has suggested
(7). Bucceeding dislocation loops expand until they reach equilibrium cone
figurations between the source and the first dislocation. The inhomogereous
streas fields of the dislocations which eccumulate in the slip surface in
this manner are added to the applied stress. This results in two important
effects. Firat, the local stress at the grain boundary increases as the
number of accumulated dislocations increases, Macroscopic ylelding is
assumed to begin when this stress reaches a critical value. BSecond, the
local stress at the Frank-Read source decreases as the number of accumu-
lated dislocations increases. This results in a decrease in the rate of
generation of new dislocations during the delay period prior to the onset
of macroscopic yleliding.

A polycrystalline specimen of low-carbon eteel 1s assumed to con-
tain many such yield nuclei, Those nuclei which are favorably oriented
with respect to =n applied stress are the source of the inelastic micro-
strains which are observed to cccur prior to the beginning ot macroscopic
yielding (4), (8). Yielding is initiated at the site of the nucleus which
first produces the critical grain boundary stress. Thus the delay time for
ylelding under constant applied stress is governed by the properties of
thie most critical nucleus, This is a nucleus which is so oriented that it
18 subjected to the maximum possible resolved shear airess, namely, one
half the value of an applied tensile stress. Also, as will appear later,
it is 8 nucleus in which the distance from the Frank-Read source to the
grain boundary is & maximum. Thus ylelding is lnitiated, according to this

2.
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model, in one of the largest grains of the specimen, and by a dislocation
source which lies near the center of the grain.

This dislocation model for the initlation of ylelding differs
from that discussed by Fisher (1) In two reapects. First, the critical
condition for the onset of ylelding depends upon the magnitude of the
appllied stress as well ae the number of dislocations generated by the Frank-
Rend source, whereas Fisher assumes only the latter., 8econd, the rate of
generation of dislocations decreases, under constant applied stress, as
the number generated increases. Fisher assumes that the rate of generation
is constant.

3.




THEORY OF THE DELAY TIME FOR YIELDING UNDER CONSTANT APPLIED STRESS

An expression for the delay time for yilelding under constant
applied stress as a function of stress and temperature may be derived in the
following manner on the basis of the dielocation model of & yleld nucleus
described above, The rate of generation of dislocation loops at the Frank-
Read source is assumed to be controlled by the thermally activated release
of the source dislocation from its "atmosphere" in a manner similar %o
that described by Cottrell and Bilby (9). Fisher (1) has proposed a
simpler expressiqn for the mctivation energy than that derived by Cottrell
and Bilby. Although Fisher's expression involves & somewhat greater degree
of approximation than the Cottrell-Bilby relation, the former expression
will be used in this report, namely:

w= 5= H() w
4
vhere f(-%): COS-'(}E)" '}Z(I- _;Y::)l’

X;is the energy per atomic distance of a
dislocation without an "atmosphere”,
8’13 the energy per atomic distance of
a dislocation with an "atmosphere”,
b:is the atomic 8lip distance or Burgers vector,
and 1; is the resolved shear stress at the Frank-Read source.
Although the source dislocation may be released from its atmos-
phere when the energy given by equation 1 is supplied by m thermal fluctua-
tion, a mew dislocation loop will not be generated unless
72 Sk (2)
where f; is the shear modulus,
and AZ 1s the 4distance between the end points of
the Frank-Read source.

hl
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Equation . “1Jtion that the stress must be capable of
extending tu slaloeation out into & semlclrcular ave,
Thus tion of dislocation loops is given by
»
T (3)
’ . Gb
h=0 T
where n is: ‘hions generated,
1) is the Do sroprinte form of
thermal fluctuais...-
K is Boltzman's constant,
and | 18 the absolute temperature.
Now it is necessary to relmte the local resci. shear shress

at the Frank-Read source to the applied stress and the num. . ~ of dislocations

. generated. Such a relation has been previously derived (L) i:.~ a con-

sideration of the equilibrium configuration of a planar array oi <treight
dislocations acted upon by an applied stress and with the first dis.ocation
held up at a grain boundary. This relation is

n=p(L-r), n2 % .

n=0 )'rn.<-%b‘
vhere L_ 18 one half the shortest distance along the slip

surface fﬁfm the source %o the grain boundary,
B= 3
and 4 is the applied resolved shear stress.

Equation % is only applicable to those sources which are located st such
positions within a grain that l_ i8 much less than the grain diameter. The
largest number of dislocations will be generated by a source which lies at
or near the center of a large grain (maximum value of L. ). Such a source
will govern the initiation of yilelding. Hence equation 4 requires modifi-
cation for use in the present analysis. An approximate modification may
be deduced from the work of Leibfried (10) and gives

5.




L.
n=mp(ta- %) , 2 Gk

- Gb
hwo ) ’m<T,

Equation 5 applies to an antisymmetric arrangement of straight parallel
dislocations with the source dislocation in the center and arrays of dis-

{5)

locations of apposite sign on either side of {t. This is assumed to
represent a sufficlently good approximation to the present case of con-
centric circular dislocations with the source in the center, The value

of the shear stress at the Frank«Read source according to equation 5 is

'r;=’r:.(l-’l‘—"—-‘i)"‘L (6

Wl /.

_ The local resolved shear stress at the grain boundary ia alson
a function of both the applied strees and the number of dislocaticns
accumulated in the yield nucleus, This stress ls assumed to be the same
an the stress at a single locked dislocation which is obstructing the
motion of an array of 1 linear dislocations. An expression for this
stress has been given by Eshelby, Frank, and Nabarro (1l1), namely

T=NTa (n

where 73 is the local resolved shear stress at the

grain boundary.
If 'the eritical value 01‘1; at which dislocations break through or are
generated at the grain boundary is 1; *, then ylelding begins when the
number of' dislocations accumulated in the yield nucleus reaches the value

¥
- ’T’///
However, in view of equation 3 this number of dislocations can be generated
only 1if ’
Gb

T2 f
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throughout the yield delay period., ‘Thus, using equation 6, the minimum
velue of the applied stress which can cause yielding (i.e. the resolved
atatic upper yield shear stress) 1s

7 = {(i”) + _Br"i }t (5)

For applied stresses 7’, yielding will occur in the time required to
generate F) * dislccations. Frog equation 3 this time is

n=n
W
t= -;)‘-j” exp(-,;.-,-) dn . (10)

=0
Using equations 1, 6, and 8 in equation 10 the final expression for the
yield delay time §gcomes

»

n="oz, 2 {1 L
W fE) >
h vn P BKT (1= B ) dn o>
'tu = 00 '{O" 'n:<:'13 Y




COMPARISON OF THEORY AND EXPRRIMENT

The results of the theory as represented by equation 1l may be
compared with experimental measurements (2) of the delay time for yielding
in an annealed low-carbon steel as a function of applled stressa and tempera-

ture. The various constants in the thaory are chosen as follows:

(a) G = (13. 30 -0.003 T)"'Ob ’b/m’-) vhere |
is the ebsolute temperature in degrees Kelvin, This is based upon Khster's
measurements (12) of Young's modulus and the assumption that Polsson's
ratic is independent of temperature,
-8,
(v) b=0.985+10 "jn. 18 the Burgers vector for

iron.

Gb*
{c) Xo = T is the usual type of expression

for the energy of a dislocation and gives about 4,2 electron volts per
atomic plane along the dislocation,

-3,
(a) L =[,}%)07in. is based upon the assumption that
the largest grain in the material has sbout three times the diameter of
the average grain.

is equal to the theoretical

(e) ’T':: 2‘6,1"7_,

strength of a perfect crystal lattice.

€9 1 = 680 b is the value of [ which pro-

vides agreement between equation 9 and the value of the static upper yleld
stress at room temperature which was determined experimentally, This. value
of ,e_ also agrees approximately with values deduced from measurements of

pre-yield inelastic microstrains (4).
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(g) ﬂ: 6,7/!‘0 sec ! is the value which is found
to provide the best it between equation 11 and the experimental datsa,

(h) (' - ?Y; ) =0.0037 {8 the value found to provide a
good fit with the experimental data. :

The values of the applied resolved shear stress, 1;_, are taker to be one-
half the values of the applied tensile stress employed in the experiments.

The calculations of the integral in equation 11 were made by
means of an asymptotic expansion. A sufficient number of terms of the
expansion were retained to give a maximum uncertainty of 0.1 in the cal-
culated values of the logarithm of the delay time in seconds. The solid
lines in Fig. 1 indicate the numerical results of these calculétiona while
the plotted points represent the experimental data.

The‘theory may also be compared with experiment in another re-
spect., Values of the initlal microstrain rate when stress was first
applied may be cbtained from the experimental measurements of pre-yield
inelastic microstrains (4). The logarithms of these values in sec™t
units are plotted in Fig. 2 versus the reciprocal of the applied tensile
stress, These data were cbtained at a temperature of T3°F (296°K). A
straight line i1s drawn to represent the average trend of the data. If it
is assumed that this microstrain rate is proportional to the rate of
generation of dislocation loops in yield nuclei, then the theoretical value
of the slope of the line in Fig. 2 may be cbtained approximately from
equations 1 and 3. ..ssuming that at the initial instant of load epplica-
tion the microstrain rate 1s governed by the maximum resolved shear atress,

then ’TE:’E,MK': % ’
’ 2 _L\ |
and hence d('°9m E) - 2 B; -f()’g) ‘Dgwe (12}
d(w) bkT -
When equation 12 is fitted to the line in Fig. 2 the value
(’--}Z): 0.0015
()

9.
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Fig. 1 Logarithm of the Delay Time vs. the Tensile Stress for
an Annealed O.1T% Carbon Steel at Five Temperatures from -320°F (77°K)
to 250°F (394°K).
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is obtained for the ratio of the binding energy of e dislocation with a
Cottrell "atnosphere" tc the total energy of the dislocation, This value
compares favorably with that which was found to give a good fit of equation

11 to experimental datm, considering the various approximations involved,

12,
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DISCUSSION OF RESULTS

The values of the energy ratio, (I'"g;) obtelined in this lua-
ventigation are substantially the same as the value cbtained by Fisher (1),
namely a few tenths of one per cent.

A few attempts to employ other reasonable values of the constants

’TZ* and L_ which appear in the theory have been made. These modifi-
cations tend to give a poorer fit with the experimental data without leading
to an appreciable increase in the value of the energy ratio,

Thus the more complex dislocation model employed in the present,
report does not resolve the discrepancy between the energy ratio found by
Fisher and the theoretical velue which is estimated by Cottrell (3) to be
about ten per cent. The essential difference between theory and experiment
in this respect is that the theory (for the binding energy) predicts a

much greater sensitivity of the yleld delay time to temperature changes

than is observed experimentally. A major revision of some aspect of the
theory may be required to resolve the discrepancy.

The differences petween the theory and experimental data for a
temperature of -205°F (141°K) indicated in Fig. 1 might be attributed to
the use of an incorrect value of the shear modulus at that temperature. An
increase of ten per cent over the value used would improve the fit consider-
ably, The authors are eware of no measurements of the shear modulus of iron
or steel at temperatures in thie range. The discreponcy between theory and
experiment at -320°F {77°K) may be associated with some change in the
mechanism of yielding. This is suggested by the occurrence of brittle
fractures after little or no plastic deformation in the tests made at
-320°F,

The value of the frequency, Zb) , of the thermal fluctuations for
release of the source dlslocetion from its atmosphere which is found by
fitting the theory to experimental measurements of yleld delay times appears
to be a reascnable value, as the following considerations indicate., The
length of the activated portion of the source dislocation at the time of

its release from the "atmosphere" may be eotimated as follows. The radius
13,
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of curvature of the activated section of dislocation is « Numeri-
cally this gives a radius of curvature of about ESOb , \-r?'xen ’r,".-.:,25';'1¢)J Ib/,‘nfl
vhich 15 within the lower range of experimental stresses. From the work of
Cottrell and Bilby (9) it appears reasonable to assume that the center of
the activated segwent of dislocation moves a distance of about hb away
from the "etmosphere"., MThese values lead to a length of the activated
segment of the source dislocation of about 0.9 x 10'6 in. The wave length
of 8 thermal fluctuation causing this segmant of dislocation to be activated
18 thus about 1.8 x 10'6 in. Bince the velocity of shear waves in iron is
about 1.3 x 105 inches per mecond, the mbove wave length corresponds to a
frequency of 7.2 x 1()1O eycies per second. The latter value agrees well
with the value obtained by selecting the conetants of the theory to fit

the yield delay time data,

' Further consiferation of the thermally activated length of the
"anchored" dislocation indicates that the frequemcy,2’ , 1s approximately
proportional to the square root of the local streas at the dislocation
source, ’r; . Bome modification of the theory given in this report would
be required to take this effect into account. However, such s modification
would probably have only a small effect on the final result of the tleory.

1k,
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