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Figure 1, logends for sing 6-plate, ruvad single~plate.

r Page 7, ffth linc following oqe (1.13); in exponent of integrands

: ‘q ! for -a sin kt, rcad -a ginh t.

\ ' Upper right of Figure 3a: for{ W2 - 2, read J & - 2. Then

l’ ’ place a zcro (0) to upper loft of tho pointy/ x° - pz.
BN

i Figure 3f3s Plzce a aaro (0) on the roal axis diroctly above tho
polo {(o©) which lies in U ;e
Figure 4, legonds for nearby, read nearly.

Figure 7a: Placo a pole (=) at cach end of the contour and half

way betucen the o's on cach vertical dashed lne. (A "

™
total of six poles arc to be insertcd.) g{ A
. T
Page 19, 16 lines from the bottom, the integral should read L)

J(x):Spg(klsn(u,k))exp(ixsn(u,k)cn(u,k)dn(u,k)du. (Tho foctor dn(u,k)

is to be added.) Thon if g(klsn) has tho even properties of an on ] (say),
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' ,J ¢ : similarly, on the horizental, the integrand is odd about the midpoint
Can
‘ﬁfb_ K - 1K' owing to An., Hence, undexr Lhe assumptiors, J(x)= 0. ’
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ALSTRACT

Io wpplying the Wieaerliopl tecknique to pructical problems, the
central difficulty in in properly factoring biw), the Fourier ransform
of the kemel. This factorization in sometimcs made practicable Ly
teplacing the variahle w with # new variable, z, ia such a maaaer
that the form of hiw(z)) is factorable by ‘inspection’ ia the z-plase.
The lutroduction contuios & more gencral atalement of thic idea, nad
Section I, un upplication to the woll-kmowa problem of straight-odge
diffenction,

In Scction 1l, & rough-sucface reflection problem in formulated.
The aurfuce conniste in randomly speced, perailel, conducting baff-
planen, with edges lying in & ‘refiectiag’ plane oa which is incidest
« plane wave with electric vectar parailel to the edges. A well
connintens formulution of the problem of fiading the curveat-distribution
in a typical holf-plane results ia & Wiemer-lopl integral equaties.
The generul method of Section T in upplied, and a formai process for
‘inapection’ leads to fuctors having the ssitable analytic properties.

Saction Ul deals with some resulte valid when the half plases
are perpendiculur to the reflecting plame. When the grazing sagle,
W, is amall, and when S, the avecage distance beiween edgen, messwred
in wavelengths, is large, the soproximate reflection coelficiore R of
the reflecting nurface is given by

R’-(\‘l-ﬁz’-x‘i:}’ A}

where 22 * % X 11?S in a mcaswre of the number of Fresnel zoucs entee
ing & phynical-optics calculation of the ficld illuminating the edge of
« typical hall-planc. . A bighly implausible altermate Jerivation of (A)
is alsu presented, as well ao & formula for back-acaticred power deasity.

The problem considered in Section IV is that of diffraction by o
conducting half-plane which liew in the plane interince hetween two
different medin, The present fuclorization methcd in applied to obtain,
in principle, the (actorn required in solving thin problem by the Wiesor
Hopf method,

PROBLEM STATUS
Thix is a final report on one phase of the geaeral problem of wave
propagation over a rough surface; other witk continues,

AUTIHORIZATION

NRL Problem R11-01
P-aject Na. NR 511-010

Manuecript submitied Fobruarey 24, 1954
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APPLICATION OF A WIENER-HOPF TECHNIQUE
: TO CERTAIN FFFRACTION PROBLENG
i‘
1
!
| INTRODUCTION
The vow lamiliar Wiener-tlopf method has been fouad @ powerful 100l in the solution of certain
diffraction problems. (See the paper of Carlnon uad Heins ! for an exenple sod & comprehensible
3 discuasion of the mothod.) Generally speaking, the WicaerHopf method is weed to soive an integral
* Ey . equation of the Faltucg type haviog the following atructure:
j
» t f “ . ¢, x >0
’- !
: Here Flx) vanishos in x < 0 and is unkaown in x > 0, @ (x) in knows ia x > 0 snd venishes in x < 0,
. ¥ (x) iv unkaown in 1 < 0 and vanishes in x > O, and H is ksows. Taking Foucier trensforms of such
; side by multiplying by exp(-iws) and integrating over -» <x <@, we get
¥
i 2nf(w) h(w) = @lw) + wiw). (2
’ Hera the transiorms {(w) and @ (w) are Hin L (ceguler, zero-free, and of limited growth in In (w) < 0), '
i ¥ (w) is R ia U (reguler, zero-free and of limited growth in Im(w) > 0), sad b (w) goseraily bas singe- L7
. larities in both half-planrs, but (for simplicity) none oa Im(w) = 0. Then osc writes . .\
{ e
{ hiw) =bp (Wb, (o) : (0 S
: LW
where b, is R ia [, b, is R in L. If the singulerities of @ ace siple poles is U thon #(w) can be ‘..r-_‘
expandead in pastial fractions as :\ !
o
: < 5.
4 ow) =2, ——; h(p‘) >0. (0] 8!
. ""A . ‘:'j':}
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2 NAVAL RESEARCE LASORATORY
From (2) we readily obtuin

[

‘ w(w} c
. .

1 1
2nf(wh, (w) - 2 i -
Bt Tt Elwap) by (p) bW ‘Y w-p, [sum au(p‘)‘[

Here the left side is R in 1., the right B i U, Now, if it is aswwr e or sumehow proved that aeither
fiw) nor ¥iw) bave sivguiaritien on Im(w) = 0, then the two sides huve so common singelarities,”
and there is a ‘comman atrip of regularity’ containing Im{w} = 0, in which neither side, or in {act no
term on either side, bus a singularity. The two sides ae then equal in this strip, und thereface both
reprencnt the same function z{w). But 2(w) kus no singuluritics und grows tno slowly with |w |~ ®
to be other thun & constant C. Thus bath siden of (5) may be equated ta €, giving two equations, the
first containing {(w), the second ¥{(w). -One thea evaluates C by a discussion of the anymptotic
bebavior of either of the two equatisns, or otherwise, and solves the two equations for the Fowrier
transforms {(w) and w(w). Tuking iaverse transfarmations ticen yiclds F and ¥ buving the ociginally
prescribed properties.

In applying this Wiener-llopl method to a physical problem, we are entitled to dispenue with
analytic rigor in performing the varioun steps, provided that the final formulation of the solution is
rigoi. usly shown to cbey the ¢enquired physical conditions. In using the method 1o suggest the form
of the anawer to a physical problem, the only step that in 8ot soutine is the factorization of k{w} into .
by by. Givea the ‘cammon strip of regularity,” each fuctor can be exprensed through a coutour integral
containing a logarithm in the integrund.2  Generully apcuking, these integrals scew difficult. Peshaps
some study shoull be given to their asymptotic evalustion, which may be all thut in required in certain
problems. Certaia formre of b(w) can be lactored by inspection, or by development an wa infinite pro-
duct (as in Reference (1))

The diffractica problems to {ollow are formally of the Wiener-Hloj.f type, but the leniorization
problems uppear pracuically insolutble by any of the stated methods. An altemative procedure will be
presented. One starts, conceptually, at the end of the problem, whete the inverse transformation is
being taken to obtain F(x). For this purpose, one multiplies f(w) by exp (ixw) und integrates along
the rea! w-axis, in the cormon strip of regularity. One ix eatitled to translorm the integration into @
contour integral in @ complex z-plane through the substitation w = w(z), dw sw'(z)dx. The form of
wiz) can be choren so that h{w(z)) hus a conveajeat behavior us functiun of 2. One can perhaps factor
h in the z-plane, so that the z-equivalent of (3) is at band; but thea the probicm is to show thet the
z-integral, equivalent to the iaverse Fourier tranalormatioa, bas the correct propertics as fuactios of x.

An w(z) is ut teast putly determined through the singulusities of h(w), we 1cad to lose the
common strip of regulurity as a domuin for anolytic argumeat, and muat uscother properties to show
thot the senulos have the desired maulytic ur physical behavior, In the exemplew to foliow, 0dd and
even properties of various z-integrands will be used to guuruntee the correc. analytic bebavior of
the 1esulting expressions.

Without the cemman strip of regulurity, there is furthee difficulty in proving unalytically that, in
the z-analog of Equation (85), the two sides may be equaied to a constent. An sitemative is presented
by the phynicul arigin of the subsequent problems. One wets the lefs side of the analog of (5) equal
to wome constant G, wolves algebiraically for {w) and w(w), and shows that the tesulting F(x) and
¥ (x) sutisfy all the requircuicnty aet by the physics of the problem.
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NAVAL RESEARCH LABORATORY 3
SECTION 1 - DIFFRACTION 7Y A HALF-PLANE

Now we formulate the first of three two-dimenaional diffraction problems which ean in principla
be aolved by the Wieacr-Hopl inethod. This is the weil-known problem of the perfectly conducting
balf-plane, introduced both in order to have a solved problem and as a limiting case of the two preb
lems to follow.  We consider a matal ball-plane lying in the region y = 0, x > 0 of » rectangulac
coordinate system, and plane wave, @, (x, ¥) = A exp (ikx con 0 - iky sin 8)), I_(k) > @, incident
on this half-plane fromx < 0, v > 0. ?The time factor exp(-iwt) i |a nu,mreuud bere aad in the formu
lations to follow.) With the electric vector of this wave assumed parallel to the = axie, i.e., to the
edge of the ball-plane, there in a current deanity F(x) induced in the half-plane. Suppose tl\e total
field radiated by all cerrents in @, (x, y). Thes,

o, (xy -f'm D HdY [& V- xnze y’] . (LY
]

To satialy the boundary coaditions, we must buve @4(x, 0) ¢ @ 1,0 = Dinx>0. Thus, with
F(x) *0inx <0,

tkg cou 8

® - Ae ® :o(x), x >0
(13} .x! ! ' . .
f‘. FaD I (x-x'D & { e, x <0 1.y

It is well-kaows thet

B @i x? ¢ y%) =K I — 4 1D

and that, with ¢(x) “Oia x <0

¢(x

dw (1.4)

where 15 =k cos 6, and the constant K is soacesential, Letting

wix) ’I /™5 y(w) dw {1.5)
Filx) = “ ei¥* Kw) Aw (1.5)
J-.

we have from (1.2) and (1.4) an aigebruic relation among the Fourier trannfurme,

21K f(w) iA v ‘
Ji—(z--w2~ 2rw- ) viv L9
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‘ NAVAL RESEARCH LABORATORY

Kith Im(k) > O, there are an siognlusitics on the real weaxia, -nd the previously dewcribed procedure:
leads to the carrect soletion withont ditficulty, sirce h(w) * (k% - w?)™% 2 (k- w)" ‘a vmy®

=b, by, and h(w) ia split into two factors with the requirzd analytic propertien. ¥c thus obtain the
equivalent of Equation (5),

2aKfiw)  iAVE ¢ q A s[um-ﬁnul
Vicw  2n(e- ) Vi +w v(w)02n N J (L9

For f(w), the result of equatiag cach side of {5} 10 C is

.A - - -
21K fw) —;- ykew Vk-w o Vit (1.9)
X weli

Khen this {{w) is substituted into (1.6), the integrul vanishes for x < Q. lere the contour of integra-
tioa can thea be removed to infinity across the Im(w) < 0 hall-plane, where the integrand hus ao
singularitics; fr x < 0, the integrund vanishes with Im(w) ~- =, wad F(x) *Q, x < 0 follows.

On the other band, when x > 0, the integrand incréases exponentinlly with lm(w) <- @, Lut the
integral can be evaluated as a residue and u branch-lize integral iu Im(w) > 0 (ia U).

Rith C 7 0 the C-dopesndest term of F(x} is propastional to

’:':;-‘o . '. . . ) .

y ﬁ' .
2 3

c.*hr e**¢v du ~Cet® I'(3/2) x¥3,
)

oo
s

;‘ “ : b .’4

{ . j, . e :-':A

g. R The simiiar term in ¥(x) in -q
Y 3 k . _‘.‘

o Ll\a j

(ﬁ F‘k‘{; Celte .[‘ .--‘: ' f:_ = Ce''* T (1/2) n-'& . "'"'.
S 0F A 'y .

. = 3 [ :"-- ~":§

Thua Wix), tte scattered field, is infinite ut the edge of the plane when C £ 0, & physically unac- "-:'l

ceptable conclusion. Secondly, if C £ 0 and A =0, we have a source-frer solutioa of the problem, f_',-_"%

with the total field (calculated from (1.1)) properly *outgoing” and vunishing ou the sid -~ of the plate '_}

but oot vanishing for y =0, x /0, This stunding wave is not excited by Dye and would soon radinie
away if preseut at any time. Hence we may take C = 0in (1.8) and (1.9.

1
‘el S0 5
e 4
Aot et

.
a. A . _v

3
:
* “e e

Now let un examinc the case Im(k) 0. Here the contow in ihe w-planc iw delorned according
10 the scheme of Figures la, 1b, into portions of the real uxis counected by three semicirculer wes,
one lying in U and centered on w =-k, two lying in 1. and centered on w %k and w = . This contoer s
can be used in both (1.5) and (1.6). The singularitirs are now g Tm{w) * & a poie of Qat w = s and O
branch points of b at w = t k. Here we bave n2 *common strip of regulirity,” bat continuations of the
solutions ¥, ¢, alrcaldy obtained from an argument using u ‘common strip,” must be salutioan over the
new contour in the limit Im(k) ™0

1

For guidance in what in to follow, fet us ansume that we have obtained the transform relation
{1.7) und the deformed contour opplying to Im(k) = 9, but do not know how to factor hiw) = k2-whY,
If we let w =k ain 6, all of the knowa lunctions of w in (1.7) trunsform into perindic functions of O
for which the only singuluritien in the finite B-plune are simple poles. Thus the translormation
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achicves an apparent simplification in removing branch-poiats. In making the inverve Fourier trans-
formation to find F and ¥, we would now multiply ‘solutions’ of the {actorizution problem in the
@-plane by exp (ikx nin €) cos 6 d Band integrate, in the 8-plane, over the contour I which
cocresponds to the deformed coavour in the w-plane, The contour und the location of the known
polen (®) of @k sin 8) are shown in Figwre lc. Here the regions in the A-plane for which Im (w)
=klm(sin 6) >0 ure marked U, and the regions for which Iin(w) =kim(sin 0) < 0 are marked L.

gl
-

.,
)

.
T

Momentarily overlooking the singularitics marked in Figure ¢, let us find some B-analog of the
following statement: if glw) is R in U, nnd has no singulasities on Im(w) = 0, then f_: exp {iwx) g{w) dw
20, x >0. The conclusion follows becuuse the integration contsur can be removed across U, and the
exponential factor vanishes in the process. In the O-plane, the integinl becomes k fr\ exp (ikx sin 6)
g (k sin ©) cos 0 d0. When x >0, T' can be deformed acroas U jinto O = Wn ¢t treal. As
function of t on the new contour, ain Cis even, cos O is odd, und 40 is even, Thus the iategral
vanishes whea g = conatant, as the integrand is an odd function of 1. If g(w) ia R in U and on the
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seal w-avin, then g(k sin ©) in even int. Hut the ing wul bevmwumed v converge) vaninhes if g has
mace general propertinm, e, i glk win 6) is R ia -1 <Re(M : 4 R, e (R) > 0, and is an cyen
fuaction of ton 0 7% 1 + 3t (here we say that g in U in U ). Thus the propertica of g in other
Ueregicas of the E-plane ure not important, even though ¢ (t sin 0) may not be R except in-U_ (and
therefore in 1!, by the even propesty). OFf course, the same srgument can be carie d through in the
w-plane if the original contour in thought of an lying on a certain sheet of & Hiemann wurfuce, plw) i
Rin U on thin sheet, and the contowr evoids the singulariticn of g on Inv(w) = 0 by semicircles lying
in U. By passiag to the O-plane we unfold the Riemana surfnce wnd pethaps bave a clearer idea of
the structwre of the integrunds thas if we tried to argoe from a Riemann surfuce in the w-plane,

{n applying this analysi o (1.7), we sturt from

2nKfk #in 6} ;A 1

P e——

kcos O 21 kein 6-p

o wiksinf). (1.10)

Hevr the deaominutor k con 0 s an odd function about both % R and -4 T ; by the foregoing argument,
¥ (k ain 6) must be even nbout @ =-'51. The known fuuction @lk sin 6) is zven about both - 1tand
1%, The factorization problem beconics one of splitting b = cos €Y into two factors, one even about
-4 7, the other cven ubout % n. The ar-icture of the product con 01 in indicated in Figure 14, where
the symbol ¢ murks “even points® of cow 871, ubout wnich con 6 is even and where the O-derivative
vanishzn, and (8) indicates o pole. The structure of the two factors is indicated with the same
symbolism in Figures le, 1. One can obviously choose preiodic factors with petiod 4 X, whereas
cos O has period 2. Factors of (k cos 0}~ with the tequinite zevos, evea points, and periodicity

by [»sz sin (—"; -2—)]: hy [\{ﬁ in (%. —92-)]'.. (L.

The w-equivalents are respectively (k - wi'%, & + w)"%, Carrying out the aeparation of (1.10) jnto
two equations we get:

b} T3
. r— . _K_ RIS | (___)
Tk win @) N Y3k win|m e o eintd (o

x m(ﬁ _e_)' 21k win 0- 4)
4 2
n 4 n 1 M
iA Y2k {sin(—~ ¢ ——)- niu[—‘-—uin"-—J}
X 0 ¢ 2/ 4 2 k
= in 8) Vok win{— ¢+ — . (1.12)
vl sin 6 VZk uin (4 ¢ 2) ‘ 2 itk sin 0- u)

Here the beuristic argument is that the two sides are representations of the same function of period
47, and since the regions of regulurity of the twa sidex overlap in the period the function must be a S
constant. By a vernion of the previous argument, this constunt must be zero, no that each ride of C
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(1.12) can be equated to zero. The twe sesulting eqetionn cun then be aolved for $th sin B),
vk sin ). For {, the resuit in

cer [ﬂ 1 m x 6
iAk sia{— ¢ — win"! (— pig — - —
20K fk nin O) = 4 2 k $ 2/ _ .13

nik sin 8- )

AR e A

R R I LR T5e

g, §20q.0 2 F ¥ AT

P

77

The conatant-determining argument is baned oa the rate of growth of the part of w which is odd
about -4 . We assume that W(x) munt be bounded in the limit x .~ 0, The part of ¢ which is even
ubout -% 1t produces no contribution to ¥, and the behavior of ¥ in determined primarily by the
behavior of ibe odd part of ¢ newr t = 4 @ on the vertical line © *it -l . Herc the udd part mast
vanish with ¢ ~ @ at auch a rate that '.‘\".’ f:‘ e tsinkt y (G) Jt exista. Thin in ncen to be true
{or at leaat possible) oaly if the coastant, to which the right side of (1.12) ia equuted, is zero. The
argumeat is analytically slipshod, and we should show that we have been led to a comrect solutios of
the phyzical pioblem by exumining the renulting electromagnetic lield. Thin verification in straight-
forward, and will not be reproduced here.

) For this half-piuse probiem, Sommerfeld’s originul solution? waa a contour integral in & similer
6-plane. A good reasos for the fact that the preseat contour cannot be deformed inta that weed by
Sommerfeld is that he started with an exponent (ixk sin @) ¢+ iyk sin 0, }, whereas the corresponding
exponent in (1.3) is not analyticiny aty =0

SECTION Il - DIFFRACTION BY RANDOMLY SPACED, PARALLEL HALF-PLANES

%o conaider diffruction over tue ‘rough surface® shown in Figwe 2. The surfuce conuists in a
randomly spaced array of parallel, perfectly coeducting ball-planes {plates) lying in x > O, the edgea
lying in x =0, paralicl 1o the z-axis. The plates make an angle £ with the positive y-axin, Let the
plane wave

; wy = explipy ¢+ ix Vit . ) (2.0

be incident on the array. Let © measure distance from the edge of u plate, nud ansume that the
induced current-density in the plate with edge at v in given by explipy)l(u). That is, the same
cucrent is induced in each plate except for the phase factor, exp(ipy), determined by the location of
the plate’s edge on the y-axis. The currents beiween n and u ¢ duin all stripo radiste a ficld
W(u, du) which, ut leust on the average, is expreasible as aa integral,

%y, du) = Nl(w)duf -dy’ vy’ "0(" ko)

-t

o o» [(x-wcin8)® +{y-y'-wcon B)? )X (2.2
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where N 7o the average aunibor of glabes per unit leagth of y-sxin. Now, with

® _jan inzo o? I"
Nk Yx? +92) » K = 2.3)
A Yx? + y3) . W da (

-

where K is » aoncssential constant, and with 1(u} * [o ((w) '™ dw we have

© f(w) dw et™* elp(y - wcos ﬁ)ei 9.2_..‘3 ‘--- eoln .8’
“a_Pz)x *

wiln, da) * du 2aNK f (2.4) )

If we take & <0 and iutegrate this expieanion over the fength of the plates, we get the average
reflected field R exp (ipy - i Vit pi x}, where R is the elfective apecuiar reflection cuellicient
of the ‘rough surlace,’ regerded as lying in the x = 0 plane:

R =4n3NKf(pcoa B- Vk?-p? win B) (k2-p2)%, (2.5}

Thus the reflection coeflicient R is directly obtained through the Fowier tranelorm ((w) of the currest

deusity, and the cuent itsell bocomes of scconducy iaterest.
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g Hence we ace disectly interested in findiv  “(w). Toward this end, we aced to hnow the averape
g field Wl wcaltered to & point g in a plate with eap. acy. Here we anvume that Wi is independent of
= the presenca of the pasticulaz plate, and in the avesnga ficld luund ut the pasticulur paint in the

-~
s a

Py s

. R (u) ;” }— 21 NKE (w) e'®P "5 oin Pl
fu)eley =

. 2
k? min? B- p? + 2pw cos 8- w? . »

e
¥

T

i
n
1.
<
{
.
t.
'

Finally, we assume that the currentn in this plate radiate fields which cuncel the total incident ficld
"o ¢+ W‘ on the aurfuce of the piate. Using the fict that, in x > 0

I cllvs ¢ or) gy an
3 s T o
. ® 2ni J . w-(pcosB+ Vk?-p? ain B)

we have an algebraic relation among the Fourier transforma:

2nK[{w) ! + 2N -
: MR T Vit w3 k% win® P-p? ¢ pwcos B. w?

© r oy

v

i o
2Miw-pcon B+ k¥ -p? win B) 2nKEWhn) & @lw) * i) (2.8)

r x.

PN o

where w(w) is the transform of the unknown ficld scattered by the plate along itn continuvatioa jato
v < 0. (We set N =0 to verify that Equation (2,8) becomes easentinlly the same us Equation (1.7)
of Scction 1.)

Now f(w) must be R in L, as there arc no currents in w < 0, and w(w) is similorly R i U,
To find § and ¢ with thewe anulyiic behaviors, the problem im to factor hiw), the cocflicient of ?(wi.

Af EaTaTs e g
v 9 RS
4 - . - " LA
e L

By combining terms in b, one scea that to find the reats of the resulting numerator requires
the wolution of a fairly general quartic equation in w, unless B =% 1. We cuntinue with the detailed
discunsion of the latier case only.

f
. 4
D

.
] s
S
yete fe

’
i

Lot

o I N > 0, hiw) gains two additionai polen, owing tc the denominator of the second torm, and

L) four udditional 2emn, as one ucea by combining the termn and regarding both aigns of (k3 - w?)¥%
an poswible. Of course, two of the added zeron of b lie on the ‘wrong’ leal af the two-sheeted
Ricmann surfuce requited by the preaence of the radical in the firss tern of hiw). All zeros munt be
accounted for in a factorization.
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To lncate zecon and polen of b, we fitut find the poleo dve 1o the secend tesm, aamely, those at
w =t p®Y, Taking p - & cos > 0), nay, ashelitn the plune incideal wave, we see that these
polen lie symmetrically with respect to the origin on the line wegnient conmecting w =k and w = oL,
Thus the contour (the teal w-uxin) pauses below the pole on the right, shove that on the left, as in
Figure 3a. Now et lnlh)\0O, and let w =k min 9, s in Section 1. In the B-plane the contour, T,
avoids the pulen (@) an shown in Figure 3b. The fonn of b in now (with Q = N/k)

6 - con? H + '?.iO con 9- con® u . (2.9
k cow 6 (com G- con ) (ron O ¢ con )

The zeros of b wre found through
cow B¢ -iQ ¢ \eou? p- QF. (2.10)

(These zers are indicated by (0) on Figure 3b.) For small Q, the zeros lie near the poles of the
oripinal second term of b, In the factorization, each zero must be conteined in the saame factor as the
pearby pole, 30 that whea N0, the zercn move toward the polos und cancel them in each factor,
and the factocization of Scction [ remults. By examining (2.10) one verifics this behavior.

(The urgument for B £ % N im more complicated. it will, however, be asuumed that the discussion
cpplics 15 this cune, i.c, that the zerow and pales of h, migraliag in the O-plane under change of N
and £, alwayw lie with reapect to the contour us showa symbolically in Figwe 3b, This canaot be
proved, apparently, without a formal discusnica. Here one determines sigus of such forma as

(N2. p")\ by the fact that N > 0 und Im(p)\0.)

Now we (actor b into twe facters, b - byh, . where huin R in U und cven about %, end “L
is R ia L, and even about -4 1. (The expresmions R in U and R in L will be understood heace-
forth to include the foregaing evenness prope:tics.) Firwt (in Figure ?lc) we label the pelos on the
real E-axis, those with the notation U belonging in by. and those with the symbol L belonging with
h . This can be done nlmost without thought. Then we tabel the zero in U, with the symbol L,
since this zero cannot belong to by Similarly, the zero in 1., in labeled U.” Now there is no zero
in U | eymmetric at the image point {with respect to -% 1) of the zero in Ug: we place a zero (0)
here, and label it L., since such a zero in required in h,. Since h lacks this zero in U-l’ we cancel
it with a pole (=), which must belong to by, for if this pole in in h, . o similer pole must cancel the
tne zero ie U, (The danbed arrow repreacots the argument connecting the new zero and pole with
the zero in Uy, and in a first step iu a ‘zig-zag’ argument apecifying the pules and zeron required
by the presence of the zero in U.) If the new pole in U , belongs to h,,, & similar pole must be
found at & point symmetric with respect to 47, i.e., in U,. Placing a pole of hy bere, we find anew
zez0 of by required to cancel it, cic. (Thus there will be a double zero of b, at the point at the ond
of the second deshed arrow, since there was aiready a zero of h at this point.)

In Figure 3c the zero of b in L., must heiong to b _+ since otherwise h would tequire a new zero
in Lg; similarly the zero of h in U_, belongs to by T‘u zeros in 1., aud Ul , are annigaed in the
same woy, except thet oue wtep in a zig-zog argument is required. ic then carry out the zig-zag
urguments, sturting from each of the above zeros. {he resulting structire of b, is shown in Figuwe
34; rotating the mtructure 180° about the origin given the structure of by (Figare 30). Iu fact, we
may set

hy(0) = b, (6 (2.11)
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(3a) /,.ﬁ:; °

-“ o *
{3b) o o L= o (]
h(8) o~—+ -0«-4—4—0 - —+—0~ — -
o o o [ (o] o
Uy :
=y
(3¢) Lot - "f' L
TN '*“’ T g o= st A o -_—’_'
L"/ .
U
{3d) o [ - g o’ .‘: L o4
by —~——-{~-~~0 -*0‘——-» — il - e
- -, o o o - [ 4 o2 ot
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(3e) o «“ o o ’ o o - L d °! O. '
hy —e- ~o-»--——4 S 3 0-* - l S
O. o' - o O [ ] [ O o= -
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g-,gz . - L J (] o

Figure 3 <« Contoure and singuleritine for puralicl-plete Sithvacilon

alter making proper choice of conatant factors (ar, more geaerally, exponcstial factors). One readily
verifiew that the product of by und by is b (assuming correct ‘conviant’ fxcters) and that the behavios
of each is correct when N™0,

From (2.8) we now have, with w *k sia G,

i
Ink(ain O- sin u)

2nKfhy by - 2 2Kihghy * 9w, (212
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" The next step is to divide through by hy,, which results in

9 ¥

i 2nKth, ¢ — —

. ~‘ N N “ .

A . hy by

]
Ny

i) The fieat term oa the lelt is Rin L, the term on the right is R in Uy, bot the second term is of &
‘..,1 ) mixed character. Iin atructure is whown in Figure 3f,

u\('}‘j We note that @ is even about botn XN aad ¥ n;: @ in R is 1., but wot is (1, haviag « pele ot
"t U = u on the Uy aide of the integration contasr, The form v/hu in even about % %, but retaine the
ﬂ pole at © = 1, and hence innot R in 1. Ve now write
i w{6) ] 1 oo

T = «(0) [—-3— . . LU (2.14
0 by (6) b, (8) byl n) by (0

Heze the firat term on the right i even about % 7 and containu no pole in Uy, asd hence is R in Uy

L i
(zcros in Uy muy now be diaregurded). The second term is R in Ly, siace it difleca from @ by a
t conatant factor. We can therelore set

e v 1 1 . I
20K fh (Q) « —— LI o m— (2.35) A
L by(u) b (6) [hu(e) bu(ui] '_'.'_
The left side being R in L, the right R in U, the lvaction represcated by each side is even abomt .
) both % 1t and -} 1, und heace hus period 2 ®, and has no singularities iu Uy, U, L, aad L ooree g e
! the boundary, I, between these regioan. Thus the periodic function represented has e fisite singe e
Rt Ywritien in ono fuli period, and therefore has no singularitien in the finite S-plase. Finally, if the "ﬁ
\‘4" function grows sulficiently slowly with Im(0), the function can be only @ constust. As to these rutes ~\"
o of growth, one sees from Figure de that poles and zeros of by, may be paired ia such « way thet 0se RS
Ty, pole is lelt over at each of the points 7 (2n « %), Therefore 1/h,, must grow like cos(6/2) (the o
RN ¢ ‘exponential factor’® being a constant). The same growth holds for 1/h, by virtue of (2.12); heuce o .",“1
o 1/h grows liks con O, aw may be verified by inspaction of (2.9). Since @ vanishes for (6} ~ 1t &, P-_.
oy the rate of growth of the righy side of {2.15) ie ‘sufficiently slow® if ¥ grows more slowly thea e
'j con({0/2). The ¥ of (2.16) will be seen accepiable in this regard. N
j i Again we determine the constant {repremented by both midea of (2.15) ) by appeal to the physics, BN
Rl coucluding thal the constant must be such that the rate of growth witht >0 of w(¥%n + id) el
" R - w41 - it) i minimal. The purt of w(-!%$n ¢ it) which is cven ie t producss ao contribution to the R
g . part of the acattered field & found from ¥ by integration over -® <t <=, Owiagto ite poles at * - i
X ¥ ' AT+ 207, by, in essentially odi as function of large ¢ > O; the remaining poles and zeroe pair p Y
: 4 10 produce an asymptotically even behavior as function of 1. Equatiug the right side of (215)t0 a '.)-:’:$
et constant K ' and solving for vy, we have, uning the fact that @ is even in s oo }:
LW X AR
o . o
[ ‘ ! .:.
@(6) b, (8) N
?z': : Part of ¢ whichisodd int ~ bu(ﬂl), + K"iu 9 . ®
R o
| i
S | a7
b ) ,‘"r,;\

P
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Smece § -G with t ~=_ we eobtnin the minimal rate of growth by setting K" = 0. We thereforw bave

C . . ak s » l._____U - l . 6
2nK ik nin 8) ™ ——-( ) ¥y *0Q ™) 1 (2.16)

The poles of @ and by ut 8 = i cancel, and the zero ~f it; in the inteiior of Uy beéames the pole of
f which determives the maymitude of the currents at large x. When NN\, this zero migratea to 8= g,
and the cumreat distribution in the single plate of Section { is achieved in the limit.

Yith @ given io (2.12), we con say that the problem is formally solved by aubstituting an asalytic
expression for the b, by of Figures 3d aad 3¢ in {2.16). Toward thin cnd, we can write (see Figure 3b)
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The coavergence of the infinite product in required only io the strip - 1/2 < Re(6) < -Xx;
we do not explore this question, but it secms apparont that eenid convergence can be achieved by
peoperly grouping factors afser removing certain of the gamma functions with low n-indices from the
) 1 product. That in, alter removal (from the denominator) of the gamma Junctions containing the zeros
-1 § of b, in Uy, U, L, snd L, ,, the remaining gammn functions may be grouped four at & time in »
manaes prodacing {actors rapidly approaching unity in the atrip of interest.

2

PN DT

Ot conntthome 4

To cveluate the remaining constant ¢, we sct hu( 0) = b, (- 0), equate the produe: hu‘x. to
the b of (2.9}, and find, using the ideotities

P T(1-2) @ — -an["-fl] .s,[__'i] . Sony-comr o
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Through the logarithmic integrals, Baser and Karp® were able 1o fuctor an expressiou having
way of the difficultic. presented by the biw) of (2.8) in the v-euent case B = %1, Their factorization
may powsibly be edepted to tha present case, but the cane B8 £ % 1 woukdl ywalbebly present additional

difficultiea.

We conclude with nome reniosks about the uniqueacss of the factorization. The 2ig-2ag argoment
seems to lead 1o unique factors insolar as the zeron and palos are concaraed. Fox 1f we inlvoduced a
zero of by ai some acw point in the O-plane, there would have 1o be a compensating pole in k),
Furthermore, there would be a zero and a pole at pointa symmetric with respect to -% R and ¥ 1,
respectively, aad these new wingulurities would requice cumpensating zeros and poles, etc. Eveste-
ally a pole or zero would huve to be located in the ntrip -% % < Re(8) < %R, Such u pols or 2¢r0,
not being {ound in b, would have to be compenaated in @ munser resulting in (aay) a polvin hy; sad a
zero ia h at the same point in this strip. Thus the factors could not have the desiced amalytic pro-
perties in Uy or Ly, und the introduction of new poles or zcros is imposaible. We thea have the option
of muttiplying the present h, by e%(8) and b, by e X 8L flere { muat be an entire function and aven
about both -% & and hit: q is therelore periodic with period 21 and must be of the foem q' (sin ),
where q' is some entire function. If q' im ot idertically & constant, q'(vin 0) grows at least as

sl 24l

. fast we q, lsin 81, for some finite countant q, alosg some vestical liae in the foregoing strip, Hers
) the location of th¢ contour integrals would be determined by qq rather than x whes x| < qq: this
TE ) is physically inacceptable and we munt kuve q' = constant. Such a consteat would sot sppeas ‘
P_; explicitly in the prescat results, und so it may be tuken as zera
=l
;,: 3 : SECTTON Il ~ SOME QUANTITATIVE RESULTS

This acction is devoted to the consideration of some of the reflacting propesties of the parallel.
plate medizm of Section I (Figure 2). The plase x = 0 may be regurded an a cough snefnce, a surface
whoch ceu be described only wtatistically. The complete statisticul description of the surface is cou=
tained in the following otatemert, Let L be the distance (along the y-axis) between the edyes of
consccutive plates. The probability that L lies betweea L, aad L, ¢ dL is givea by exp (L., /S)dL,
where the aversgs separation S is conaected with the N of Section Ul thiough S = I/N, The fuct that
only Q *N/k (or, equivalently, S) appears iu the results of Scction Il might suggest that some of
the statistics of the surface have been ignored in the seli-consistent lormulation ol the scattering
problem. On the other bund, § (or N} is the only arbitrary quaatity in the atatistice of the surface,
and any average or statistical description of the scattering propertics of the suface sbould be

}l:h -
'
<

o

A 1 endeatially ia terms of S,
;‘ fﬁg The parailel plates of Reference 1 are regulasly wpaced with & pommen spuciag which we may

call Sy, The scattering properties of the ‘surfuce” of Relerence 1 depend on Sy in somewhat the
same way that the provent propertics depead on §; dilfereaces in the functiouur dependancies on

S wnd on S would shed light on the extent ts which the randomnens of the present surface actuafly
n?feczs the deduced senttering. Unfortunately this comparison is not cany, owing to the fact that the

<

mathematically convznient cane in Reference 1in S, = 0(1), whereas the prescatiy convenient case

! in S >>1 aad the grazing incidence ( V- p? “hkain u <<k in Equation (2.1)).
o %e naw abtnin on approximate expression for R, using Equations (2.5) and (2.16). With B =% n,
B ! we have .
T : 47 NKI(-& ain 1) K
o ‘ - (1.» RS
o } & sie & AN
A ' i T
":. i eann Ty
;ﬁ i :
. [
‘ = i
N ".\; '1 ‘7
N S
s -
. ‘f . |
i L ' ‘
4‘}_ - '-"-* Cs N S .‘-’ atL ot e o~ L.
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3 t

= We bypans nost of ** - material of Section I, eeaorting to an upproximation valid for the case

= Q *N/& <<l and @ <<, .e., for large spucinga between the platen aad for nearly grazing incidence.
(oo} bl Here in Figure 3b the poles und zeron in the interior of the strip U, L, lie close to the arigia, und
O those ia the interior of the adjncent siripa lin near t 1, well away from the contour of integration,
( ':C. ﬁ*‘ The outlying poles and zeros are impoctunt only in their effect on the behavior of varicus functions

. ‘ ol ia the strip [)0' !‘0 (% 2Re(6) < %) under the present assumptiona, the close grouping of

A

poles and zetos outside of the atrip means that their effecta cancel in the strip. Thus, to nome
epproximation, R dependn only on the poles und zeron in the strip Lo, U,. Instead of evaluating i

through the formal procedure of Section I, we aow reapproach the factorization problem from the .
poist of view just outlined.

T
ot
Mt e
v s

With B 2%, p *kcos , w =k sin 8, Q =N/k in Fquation (2.8), we may write dowa the
result of expanding the various trigoaometric functicns in power serien, obtaining, to a fizet
approximatien

L Ry

2nY{k sin €) (O- Vui+ 20010+ Yul e 2iQ) L .
k{B- u) (6 ¢+p) ank(8. u)

v. (32

Here ¢ has been exproased as & simple pole, a0 that the general procedure of Equation (5) is
immediately suggested. We cbtain

VSRR

2Kk sin 0) (8- u? + 2iQ) 24

{ (6-u) 2n(0-pydue u?+2iQ)
bt ; o
1O N _ _ viw m — . 3%
1 : 2RIKE(-k nin 4) = ' - [ e 2iQ - u)t, (3.3 .
L ; . fue Wr2iQ)? «w? L_._]
) s Heace e
St . (5 Va?e 2010 -2iQ ' o
Sl & ' 1
s | )
éi 3 : This clearly gives the correct R <.1 whea u~0, - e

« 1

The radiation from each plate is symmetric about the plaze of the plate and cach plate is
- z perpeadiculer to the plane x 0. Thus the power scattered buck alocg the diraction of the incident
'Q - ;‘__' . wave i reedily calculated from £(-k win p). We wne (2.3) and the subsequent expresnion for the

.
W e s s
2w ala’a

.
. 1

' .
’ - - . r

]:» ¢ carvent lu) (uax with B »%4 1) to detemmine the field radiuted by @ plate with edge at x =0, y+ 0, oy
- 3 toa pointx *rsin 4,y * -t com ii. Taking the absolute squure of the result and multiplyiag by > {
2 | . N, we conclude that the powsr back-scattered in thin direction, per unit length of surfuce, {s, at ._2
| e o
o | i 8ntK? 2 NN
&1 : No—— |#(-k ui . S
21 . . " {(-k nio ) | \."»\1\1
| .
- L)
i) v o
E ; N
t:;:'.'f
E v
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e ———

Substituting the § of (3.3 wr obimier

29 ul? . (1.9

re fwe Yo 0200

‘back-scaties’ =

The constant {actor on tha right i set guerenteed, and the whole calculation would have to be

. repeated io any aveat to obtaia wey comolation with the practical radw cese with point source, and
with apprecizble scattering in the z-direction. Nevertheleus, the formula may be corpered with
other two-dimensionai back-scatteriag lormulas as they may occur. Finally, the depeadence of the
back-scatter on Q and U is of primary iaterent; for {ixed Q, the buck-scatter varics as u? for small 4.

Now we wish to discues the physical significance of the spproximate results {3.4) ¢ad (3.5),
bath obtained in the mathematical approximation that ali but the most important fcatures of the material
of Section 1l huve been neglected. Although the problems osiensibiy coataine two perameters, Q ard
U, one can wet 2 * % kQ-% and obtain, from (3.4)

R o-fz-iz ¢ ﬁ~2i12]-’ = . f Jl-ﬂuz-l‘ ia]’. 3.6

Similarly (3.5) yields

‘back-scaties® = —;2— Y lt . .0
¢

In Figures & and 5, ihese quantities bave beea plotted agsinst the aingle parameter 2. The physical
significance of z in as follows. [f one calculates by physical optics the field iltuminatiag the edge
of one plate in the partial abadow of a plate at distance S, cne findu that 23 is a measure of the
oumber of complete Fresnel zoaes ontering the caiculation. ‘Thus in the limit 3 >> 1, thera is very
little sbadowing effect and It asd ‘back-scatter’ should ks computable as superpositions of ficlds

= -
IR AR T R

f(-k sin 6) of (3.3) is asymptotically equal o that of (1.13).

-

¥ :

,J scattered by the single, isolated plates discusucd ix Section |, The asympiotic jorms

o i

i i .

. i R y o i/82%, ‘back-scatter’ = C/a%, 2 >> 1 a8
HE i '

EE : are also those found in the manaer just suggested; here the simplest verification is to see thet the
X

cEL o

ol o
W We bave already discussed the case z << 1, which led ta R = -1 and ‘back-scatter’ au?or N
. az3, The singularitics in the principal strip of the 6-plane migrate with change in 2 in such o "
\ . manner that verious mingularities cancel to give the simple results found ia the limiting cases. We Tae,
R g may perhaps regard the present resulta us first terms in exparaions obtained by taking into actouat SR
B . i . . . Ve *1{
the groups of poles and zeron fovad in the successive strips in the O-plane of Section II. The terms
contributed by thene poles and zeros in the nth wtrip are perbaps interpretable an urising from ficlds 4

diffructed and reflected n times around the cdge of a plate.
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Ik coutretion with the foregoing approximatiens, it in intercsting te cossider a3 snalogous
pevblem, the pegagatinn of a plane wave through o lurge tegion 13, containing, per mit volume, N'
large ceflocting dishn of sres A. Suppows all disks are parallel to the yz-piane and thet a plane
wonochromatic wave Uy * exp(ilix) is incideat, where & is tha propagation constast of the air, or of
the disk-free upace. If the field incident on oae disk is uniform over the dink sad is represeated in
phase and amplitede by U, thea « unit uren of the disk acta as a sowrce of a spherical {(scalar) wave
gives by UGK/2 2 o) exp (ike), whese ¢ in distance from the usit area to any other poiot in space.
(Choice of the proportionality constant ia determined 0o as to give complete shadow immediately
bebind a euflicieatly large dink.) Thus, ueglecting edge effects, we may express the toral field &
& poial ia spaze p by

Ulp) = U,G) * f N J‘ (k/27 | 6, p B explik Jo. p ) (0) d arcal0) d vol(q)  (3.9)
D 4 .

fok with couter at g

where U ia the incident field radinted from some sowrce.

Now we are going to take & time average of the total {ield, under the assumption that the disks
are awitling rendamly about in D, remuining always parallel 1o the yz-plane. Toward thin end, we
further ussume that the {icld incident on a particulur disk is the average field at the location of the
disk which would be fouad in the abaence of that diok. (This is & ®seif-connistent field™ assumption
similar to that made in atomic physics, und made in the Section {I.) With these ansumptions sud the
well-known property of the Green's function exp(ike)/4 Tz, we apply the operator V3 + k2 1o both
sides of (3.9} end get, in 0, .

(V2442 U «(-2ikN'A) U,

Vg o (k214 IN'A/KIP < N3A) U = [VE 4 '2] Yy vy, (3.10)

Thus, in D, for small N', the effective propagation copstant k! is given by k' o k(1 ¢ iN'A/k)
Heace, the average plane wave behaves like e'** ¢ A%; itg power fulls off like a"2%°'4%, o5 tha,
in agrecement with well-knowa theory, vne large disk of area A elfectively removes from the average
tranemitted field {wice the power iucident on it.  (The general mathematical spproach used bere
is that of L. L. Foldy, Phys. Rev., 67, p. 109, 1945.)

Now we comsider that D filla the spuace y < 0, the disks remaining aurmal to the x-axis, With
the plane wave explikx cos 4 - iky sin 1) incident on D from ubove, we have some wave with
amplitude T trumsmitied into D, an’ some wave Hexplikx cos s + iky sin 1) reflected intay >0 at
the y =0 interface. We calculate R and T on the sasumptions that the total wave and its y-derivative
are contineous acrons y =0, use k' k(1 ¢ iN'A/k) as the propsgatioa constant applying in y < ©,
and obtaia :

R - 219" T (3.11)
lwin u ¢ ﬁiQ' + nind u)
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B

wheve ' = N'A/k. Btk tae obvinus idewtificutiae %'A - Sithe [ of Secticn W), w0 that Q' = Q
{the Q of {3.4)), we have an apparent generalization of the reflection coelficient formula (3.4), for
whick validity was claimed only in the came p << 1, Q =N/k << 1, The two formulas become
ideatical oaly ok gruzing incideace (i << 1. Here the mont important curcents must lie in the
exponed edges of the disks near y = 0, but the propagation constant k * was derived on tho prewiee
of a nepligible elfect of the dink’s edge on the curcents induced in it. Thus whether the agreement
of (3. 11 with (3.4} lands muse on less-esmdenze 1o the latter equation in set clean.

SECTION TV - DIFFRACTION BY A HALI-PLANE BETWERN
TRO DIFFERENT MEDIA

Ke now conaider the factorization encountered in the problem of the diffraction of a plane wave
by a perfectly conducting hulf-plane which lien ia the plane interluce between two electromugnetically
different media. When either the electric or magnetic vector of the plane ircident wave is parallel
to the half-plane’s edge, the cquivalent of h(w) in (2) or (2.8) turma out to be of the form

fve k% m v

+F ?"' e

Aw) = 1AC \fkZ-w? ¢ (k7 - w?)

where k, and k, are the propugstion canatunts in the two media and C iv a constant depending on
the faur complex electromagnetic conntants effective at ungular frequency w. We shall now tuke

k, >k, >0, on the grounds that the cuae of lossy propagation conrtunts may eventually be
obtained by analytic continuation. Writing k 7k, = k, we huve the prublem of factoring b ' =1/
T wZ e 1k w/l:llwh:re C' im again a conetuni. Ae function of w', b'
bas branch points at w' * 1, w' = 1/k, as showa together with the integration contour in Figure 6
To remove the beanch paints we make the transformation w' = anlu, k), (The function wn(u, k) in a
Jucobian elliptic function; for this and subsequent elliptic functions, the render is referred to
Referencen 3 anid 4.) The structure of salu, k) in the w-plane in shown in Figwe Gb, where poles,
zetos, and even pointe (points about which i is an even function) arc marked wiih the aymbols

=, 0, and ¢, respectively, The S.ahaped integration contour into which the real w-axis maps is
indicated by I', and, over thi= contour, the Fourier invervion integral Jx) = (o g(w)expliwx)dw
transforms cusentially into Jix) = fr £k snlukNexplix snluk)enfuk)du. The atructure of cn is
indicated in Figure 6¢ In the case g = 1, when x > O or x < 0, I' muy be deformed, respeciively,
acrans Ug, o er Lo, swcothe coptour | of the contour ], us shown in Figure 6d. In either cuae,
cane J{x) in seen to vanisk owing to the even properties of su(u, k) and both even und odd proper
vies of cnlu.k) and of du ulong the contours, If gk jun(u, k)) haw the even properties of sn on these
contours, then those portions of J(x) arising (after the contour deformutionn) from integrations
along | or { alwo vanish. From these geniral statements, it scems clear thet the fuctorization
problem in one of writing h' in the form hjh, , where by (an function of 4) haw no zeros or singw-
laritics in ('0,0 and hag the even properties of salu,k) on the contour ] (hu i R in "0'0)' and _I‘~
and where hl, hus no zeros or singularities ia l‘o'o and has the even propesties of anlu,k) on [ )
(b, is Rin L, )

o \ >
PR S Y AR

. ;-'— ¥

R L
|
Hal T
LY gkl k3
;.'» g Ry

Chaifd

o
o
S P A R A T e

%e first {ind he posuible locations of the zerusof h' at wy * snfu, L) «t VC EN 1/ ek
V2 . k2); mome of theue zaroy nre extrancoun, We then write h' = ¢ enlu,k) + dau,k), where A
c" is a conatant. The structure of dnfv, k) is shewn is Figure 6e and that of b ' in Figure Te, All e
the zeros of h' are determined by the zero in U throngh the indicated even property of h' and .
because of the fact that, in Figures 6c and e, cn and dn are odd functions about the points
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warked @ sud . The fact that zeros of h' are minning in the zcgions Uy,  asdl., . _(anscen
by comparing Fignre Ta with Figure 6b) means that 1/k{w) has no zeros in two of the four sheets of

the Riemane surface into which the w-plane must be developed because of the luwr branch pointesd

Figure 6a. The periods of h ' are 4K and 4iK ' (see Figure 6d foe K, K').,

The factor by, is even about the even pointa K, K¢ iK, K - iK ', of anle, k). R might be sosemed-
that b, is therefore periodic in u with period 2iK ', but branch cuts wre required and the period is
4iK ', the ‘vertical’ period of k', The same conclusion holds for b , and because b ¥ conveniontly
bns an cven point at u ~0, we may take b (u) = h(-u). The zig-2ag atgument must be invoked
because of the lack of zerox of b' in the odd-nuinbered vertical strips; for clarity we show the wiructure
of one period of the fuctor by in Figure 7b, that ol by in Figure 7e.

The zeco of h'in U ., belongs to hy , and is the ntart of a 2ig-20g argument ar indicated by
the (1) at the top of the figure on the vertical through the zero in question. The even property of by
implies zeras in the next strip to the left; this deduction forms step two in the wrument, as indicated
by (2) on the appropriate vertical at the top of Figure Tb. These zeros were not found in b', a0 that
cancelling poles must be found in hy. Thia third step in the argement is indicated by (3) on the
sppropriats vertical at the top of Figure 4h. Coccenpouding poles must be found symmetrically disponed
with resnect to the even points of hy,, along the vertical marked (4) in Figure 7c, etc. The zero of b'
in 1.0,0 starts & similar zig-zag argument which can be followed through the uumbers {1, 29,....

The polew of b ' are symmetrically disponed with reapect to the even poiats of the factors; the
resulting singulnrities in the factors are marked with heavy dots. In the acighborbood of the dot at
u "iK ' {say) bath factors are asymptotically proportional to (u - iK "%, (his in the behavior requicing
beanch cuis in each factor, cuts which may be taken to avoid the contour and which cause the periods
of the factors to be 4iK ', It weemn wimplest to regard each of the total structures in Figures 7b and
7c us a product of two factors, one having the structure given by the dots, the other containing no
beanch points and huving the structure amived at by the zig-zag arguments. The two structurca showa
in Figures 7b and 7c clearly have the requisite even propertics, and their product has the structure of

k' us indicated in Figure Ta.

Uader varintion of the physical parameters, the zero of h'in Uy, way migrate into Ly, aad
then, pechapa into U,, ;. [t is scen that this zero must remain in by , so that factors smnd subsequent
results will vary analyticully throughout the migration. Corresponding to a plane incident wave, the
prescot analogue of the §of (2) or (2.8) will have a single pole in the w-plave (about which the contour
in Figure 6a is propesly deformed). In the u-plane, @ will then bave the even properties of an so that
the separation of ¢/h into a termn R in Uy, o and a tean in Lg.g skould be casentinlly as casy as
in the previous cascs.
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