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University of Utah 
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Abstract 

After developing the formal integration of c5|?/dt = ^fy^xl?) 

it is 3hown that cyclonic convective motions in the core produce 

magnetic loops in meridional planes through interaction •with the 

toroidal magnetic field=  Expressing these loops in terms of the 

usual orthogonal vector modes, it is 3hown that they result in a 

predominantly dipole field.  Together with the nonuniform rotation 

of the core, which produces the toroidal field from the dipcle 

field, the cyclonic motions result in a complete a elf-regenera- 

ting magnetic dvnamo.  We conclude that anv rotating, convectinp, 

electrically conducting bodv of sufficient size will possess a 

magnetic field generated by this dvnnmo mechanism.  The possibility 

of an abrupt reversal of the field is discussed. 
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1.      Introduction 

In  the magnetohydrodynamic   theory of   the  Earth's 

magnetic   field   (Elsasser,   1946>   Bullard,   1949),   it   is   shown 

that   the nonuniform rotation  of   the   liquid   core   of   the   Earth will 

produce   a  strong   toroidal field,   (that   is.,   a field   along  the 

circles of  latitude).     The  nonuniform rotation  of   the  core   is   the 

result   of   the  Coriolis  forces which act upon  the   rising   and  falling 

convective motions.      If  we   are   to   show   that  the  dipole  field   is 

due   to a   self-sustaining  dynamo,   we must   demonstrate   the   existence 

of   a feedback  link,   i.e.   of  the mechanism  by which  the  dipole  field 

is regenerated  from  the   toroidal  field. 

Cowling   (1953)   has   shown   that  there   is   no  very  direct 

way of  producing   a dipole  field with   simple   fluid moticnj  we 

must   in particular  abandon  all models  possessing  rotational 

symmetry.     Cowling'3  point  is   that   in  a dipole   field  there must 

be   a line   singularity   about  which the magnetic   field  circles. 

The  field  vanishes  at   the   singularity,   but   the   curl does  not. 

But  for   a  steady  state  field,   the  field   equations   tell  us  that 

the  f ield JB,   curl E> ,   and  the  current  density^    ,  must  all become 

small  of   the   same   order   if   one   of  these   quantities   is   small. 

Hence   such   a field  cannot  be maintained   In   a  steady  state.     The 

linearity  in B   implies,   furthermore,   that  a   time  dependent 

velocity field   is  equally unable   to maintain  or  amplify the  field 

in  the  average. 

In  this paper we  first point  out   that,   owing   to  the 

Coriolis   force,   the radial   convective   streams must  produce   local 

cyclonic   and  anticyclonic  circulations   somewhat resembling   those 
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observed 3n the atmosphere.  The deformation of the toroidal field 
i 

by these motions can be shown to give rise to the formation of 

loops of the magnetic lines of force in the meridional planes which 

1        coalesce to a mean meridional field.  The dipole can be shown to 

be by far the largest harmonic component of this field.  Thus the 

interaction of the cyclonic and anticyclonic local motions with 

the toroidal field provides the desired feedback linkj together 

with the interaction of the nonuniform rotation of the core and 

the dipole field, this constitutes a complete regenerative cycle. 
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2.  Dynamics 

The primary motions in the core are assumed to be 

convective motions in a radial direction, (Bullard, 1949j 

Elsasser- 1950)«  It is readily demonstrated that they result in 

a nonuniform rotation of the core.in which the outer layers of the 

core lag behind the average rotation and the inner ones exceed 

the average. 

In the atmosphere of the Earth the Coriolis force of 

the large scale cyclonic motions shears the vertical motion to 

such an extent that the actual direction of flew in a risjng eddy 

may be lass than a degree from the horizontal. We do not expect 

the shearing to be so large in the core because of the retarding 

forces exerted by the toroidal field.  Bullard (19 54) has shown 

that for any self-sustaining dynamo there exists a steady state 

velocity which, when exceeded, causes the magnetic field to grow 

until its reactive forces balance the mechanical forces driving 

the dynamo.   Assuming that the core of the Earth is a self- 

sustaining dynamo, we expect to find it operating near the steady 

state velocity with the Coriolis force balancing the reaction 

of the toroidal field. 

Defining the magnetic Reynolds number c f the nonuniform 

rotation in terms of the radius of the core, Bullard (1954) finds 

It to be of the order of 25 for steady state operation.  If we 

choose 6   = 3.5 x 10 mho/m (Elsasser, 1950) we obtain toroidal 

velocities of the order of 0.1 ram/sec.  T0 obtain an estimate of 

the radial velocities required we shall assume a suitable value 

for the toroidal field and estimate the ^oriolis force needed to 
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overcome   Its  reaction.     A value   of 40  gauss   seems   a reasonable 

lower  limit  on the  toroidal  field, B,,   „   and four gauss  for  the 

dipole   field    B4 .     The reactive  force  per unit mas3   is (V/gjuB^j 

newton^/kg  where   /o   is   the   density   of  the  medium.     Approximating 

this   as    By E^/ (L^vc^a)    where   L    is   some   characteristic   length,  we 

obtaiin  a force  of the   order   of   1.3  x  10~       knewtons/kg for 

,o    -   10 gm/cm     and L =   1000 km.     With   c^ —4 .], 
10       sec  '" we  obtain 

-3 a lower limit on the average radial velocity of 10~ mm/sec. 

The individual active convective regions probably have radial 

-2 velocities one or two powers of ten larger than this, say 10 
_•> 

to 10 x mm/sec, and we estimate the ratio of toroidal to radial 

velocity to be ten or less, whereas in the atmosphere this ratio 

is generally of the order of a hundred. 

In this paper we shall disregard the nonuniform rotation 

and shall consider only the interaction of the radial motions with 

the toroidal field.  Consider, then, a radial, convectiv9 stream 

wish the associated influx and efflux of matter at its ends,  A 

rising stream will result in an efflux of fluid near the surface 

of the core and an influx near the center, and conversely for a 

descending stream.  As is well known from meteorological phenomena, 

the Coriolis forces resulting from the influx and efflux produce 

a rotation of the convective column about its axis.  To formulate 

this, we define a local cartesian coordinate system (§1>\>Z) 

where the i -axis is tangent  to the line of longitude through 

the origin and the positive £  -axis points southj the >\  -axis 

is tangent to a line of latitude through the origin and points 

east; and the Jf -axis • •- directed radially outwards.  We define 
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and  the  polar   angle  y^   measuring   azimuth about   the   J-axis  from 

the     § -axis,      In  this   system we   represent   an  outflow  from  the 

radial motion  as 

* \#, = v, (^o) (e, cos >/>   +• e^ -smyW   ,    sm ^ «=• *V//° j   fOJ'/>~  5//° 

where   the   JB '•' s   are  unit  vectors   in  the   corresponding  directions. 

The   angular  velocity  of  the  Earth   is 

&£      -      <•**     (SyCos6   --    e, sin©) 

where 0  is the colatitude of the origin of the {€,\,X )   system. 

The Coriolis force due to this efflux is 

-2(UXV,J        =    2    UlV,{,«)        f.   COSB   foil/'      -    C,C(>56 COS  ijj       -    €.      5>/« <9   "Si*  tA J 

The     )T -component  of   the   curl  of  this force   is 

= -2to cosS-i  -f(x>v,) 

JGov, )/e^o is positive for an efflux and negative for an influx} 

this defines the .sense of the circulation. 

We shall furthermore assume that the dissipatlve foree3 

of viscosity,. turbulence* etc. may be neglected in a first approxi- 

mation (the Reynolds number being large) with the result that the 

convecting regions will always show a sense of circulation corres- 

ponding to an influx8  The convective region is set in rotation by 

the influxj in the absence of dissipation the angular momentum of 

tne convective column is conserved and is stopped only by the 

equal and opposite angular impulse of the efflux at the terminus 

of the convective stream.  In the northern hemisphere the circula- 

tion is counterclockwise,, in the southern hemisphere clockwise, if 



-6- 

viewed from outside the core.  These motions are Illustrated in 

figure 1. 
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3.     Magnetic  Field 

i 
I 

Bui lard  (19 54)   has   analyzed  the   toroidal magnetic 
i' 

%        field generated by the interaction of the nonuniform rotation with 

the dipole field.  The result essential to the feedback link 

discussed in this paper is that the toroidal field has a maximum 

about half or two thirds of the way out from the center of the 
> 

core and drops off to zero near the center and near the surface. 

The conductivity of the core is sufficiently high so that 

fluid velocities of 10~"' mm/sec or more may be expected to carry 

the lines of force along bodily.  Thus, a conve ctive upwelling 

produces an upward bulge in the toroidal field.  The rotation of 

the upwelling about the radial direction twists this bulge into 

a loop with a nonvanishing projection on the meridional plane 

resulting, in the northern hemisphere, in the sequence illustrated 

in figure 2. Figure 3 shows the similar process occurring in a 

sinking column of fluid in the northern hemisphere.  In the southern 

hemisphere the se: ie of the toroidal field and of the rotation of 

the convective column are reversed, figure 4 illustrates the 

complete dynamo model:  A typical line of force of the dipole field 

of the Earth is shown as having been drawn out by the nonuniform 

rotation to give a toroidal field} the loops produced from the 

toroidal field by convective motions in both hemispheres are 

shown. We note that the loops produced nearest the surface of 

the core arise from rising convective currents and have the same 

sense of circulation as the overall external dipole field of the 

core$ the loops produced near the center of the core have the 
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opposite sense, but their great depth means that they will decay 

before diffusing to the upper part of the core where the main 

amplification of the toroidal field occurs.  The dipole field 

observed outside the core, which is due to the coalescence of 

all the loops formed by the convective motions, will have the same 

sense as the original dipole fi^ld. 

This qualitative discussion indicates that the simple 

dynamical model of the convective motions presented in the previous 

section should result in a self-sustaining dynamo with a dipole 
4} 

field .  Insofar as our model is correct,it would follow that any 

sufficiently large, convecting, electrically conducting fluid body 

should exhibit a magnetic dipole roughly parallel to the axis of 

rotption If the body rotates rapidly enough.  On reversing the 

sense of either the magnetic field or the rotation of the body 

in the diagrams we see that the amplificatory process is inde- 

pendent of either.  Thus, the sense of the dipole field will 

depend only on the sense of the initial field from which it was 

generated,, 

The entire process has been dubbed the bathtub effefet   .,.. ., 
for, as every physics freshman has heard, the rotabion of the 
water running into the drain of a bathtub is the result of the 
Coriolis force. 



-9- 

4.  Generation of Loops 

The basic equations for the deformation of the magnetic 

field JB "by the velocity field jg are, for a perfectly conducting 

fluid (Elsasser, 1950) 

Thi3 differ-ential equation is equivalent to the integral equation 

4 IB-JS-o (2> 
ol J    —    — 

where dS is an element of a surface moving with the fluid.  It 

fellows that the complete integral of (1) is 

I?.-dS = constant (3) 
/' 

which may be written as three linear simultaneous algebraic 

equations for B; by choosing infinitesimal areas over which to 

integrate.  Thus we consider the infinitesimal element of volume 

determined at time t = 0 by the three linearly independents but 

otherwise arbitrary, vectors  6a; J  <£bi-  £ct  •  Let now one corner 

of this element, of volume be  at x.< , then 

ba, = x,'  -*.'' . Sti = x,'' - 3c.*' , & C. = x,' - :*. '     (4> 

At some later time, L f   we write for the same material element 

^ -•*.'-x:, &B. = x'-x:, sC, -v-x.'       (5) 

The Lagrangian coordinates X  are functions of the initial 

position ac'' and of t, so that 

X'- X'« 0 
Now 
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and similarly for X,  and X,  •  Hence, by (5) 

The areas of the faces of the element of volume are 

(we use summation convention) 

£tlh^^Bk ,   c'ik^B^Ck (  £.'14 %Q S/AK 

where    €.cik     is the usual  permutation tensor,  being +1   if   ij k    is 

an even,   -1  if  it is  an  odd permutation of  1,   2,   3,   and  zero  other- 

wise.     If  the magnetic  field   is written as    B; (X\ {)    with  the 

initial value      B>: C*.\ o)     »     hi C'*-')   , the flux  through the 

face  bounded by    SA;     and  €>B;    is   initially    b>< £'jk  &A; SB„   ;   at 

time   t    it  is   B; «. 'J   £> A; ^Bk   »   and  similarly for  the  other 

two  aides*    Thuss  upon using  (6)   to  eliminate     6Ai^   ^B(    and   SC,' 

we find from  (3) 

fei«"k*b,*c.   -     Si*"***!^**"   «c. (7) 

b;e-Sc;%ak   =    B: eiih   ^  %T* *Cr   S*' 

Since  the    &Ak>   &bi;and    &c;     are  essentially  arbitrary,  we 

may  set 

where     Sc4      is  the usual Kronecker delta.     Then (7)  reduces  to 

h _ B ^aX?*£     b = B,*^^^!    ^,= Oic'^Sfi  (8) 

These   three  linear  algebraic  equations  can be   solved 

to yield    B,(X\i)     in terms  of    bt(xO   and  the  Lagrangian 

I 
| 
i 
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coordinates X .  To facilitate this solution we denote by J;j the 

derivative "^X/^*-' 9 the J(J form a matrix which we shall write 

as (J ).  The determinant of this matrix, denoted by \J\     , is the 

Jacobian of the transformation  X = X  (*-\  O •  If ( b ) and (B) 

denote the column matrices with components b, and B, respectively, 

than (28) may be written 

(b) = (HJJ)(B;> 

where the adjoint matrix is defined as usual, by the relation 

BJ; J = {J)"  IJ'I 

and hence 

(B;- -±- U)00 o) 
j 

Thus,  finally1* 

V 
Bs = 7-—- b, \6 (10) 

U 
which is the general solution of (1). 

We shall now use (10) to demonstrate that rotating 

convective currents will produce loops of magnetic flux which are 

displaced, relative to the height of the toroidal field, in the 

direction of the convective motion.  Since we use the Lagrangian 

method, the velocity field must be expressed in terms of the dis- 

placement of the individual fluid particle s.  On the assumptions 

made the trajectory of a particle will, in the first approximation,, 

be a helix. We set 

.dl JS&. ^ C,,-^  cli\    w. e c , .  c)£   w «?/-->      (11) jt   a ^v•' >  -JY - -5- § S(^)  , -£  = v. PC^J u~u 

The pitch of each helix is (v./w.Xi,/tf; RC<=0/ S (/-=0 

TJ  Some steps of this integration procedure have already 
been indicated by Lundquist (1952) 

!_._.. 
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Integrating   (11)   we  obtain 

r=K i=Aco»[tswttx;j tx~A^ijfs»)i+ x.].jr- ***»* * *.   d2) 

where    X, V ,     ,   and   X»     are   constants   of   integration,,      If   f -   §r 

"\* »V,     and    J*» £    for     1=0,   then 

X-V(€.% V'j    , X, .J        coi>. -A <13> 

It  follows   that 

3^ =   _  jv^       ^x„        if.        -ax. 

Using (14) it is readily shown from (12) that 

* A 

^    =— ^If f n  n )  + £i i    SV >) t J "2>\ 

^ = - *?'(V) t It      M = v. R'(»t A.       *_* 
•£>€. x ~*\. A 2>X 

(14) 

The flow  is   Ir.c empress ibis   and    !J!    ~   i.    . 

We now  specify our magnetic field  as  purely  toroidal 

and  locally  a function of height  only,   say 

Bf  =   By- o   t   Bx =  B(jr; (IB) 

Prom  (10) we  then find 
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i 

i 

Bf - B(y.;ji = B^)[i (v1 ~ f- 0 - «• v s'on f J 

B  = B(yj^i =, B(rjv. R'CX; t As- 

Let  us  now use   (12)   to  eliminate   f. j n,        and X    from 

(16).     From   (13)  we may rewrite   (12)   as 

£  - 

-fesOHJ   +   ^   cos [I* 5(X)(] 1 •   «.* 

Solving these two equations for i. and \.  and using (12) again 

we obtain 

- § «•»["* SO)*] ^SII^SM] 

1. = • [*S00l] +A<oS[# S(A)t] 

(17) 

(18) 

X  - jr - v. RU)t 
We   let      H =   XcosV^ and      ^=  A sm <//   so   that 

i. = x coS [^ - %. s wt], ^ = x *» j> - *• sayi] 
Using (17) and (18) we now rewrite (16) as 

E»S = -8or-vi ^wt)(s.n^ sew) + f* s'(>.; xt *,*<// »,-«^- g* so.)4]} 
•^ 

i*> •:. 
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Let  us   investigate   the   field   in the     jfj -  plane.     We 

put '^ - o  and  obtain 

Bf =   - B (J- v. R(X) t) sin [^ SO) t] ^ 

B^^B^-V.R(»t)|co«[^scA)t] - f. s'(>;>tsihg^sa)t)| J> (20 

B^ -- e(u -w.f?a)t) x R'(>; t *«[^ sa)t] 

We  are  primarily  interested   i.i  the   loops  formed   and we 

therefore   subtract  from  this field   the   portions   that  do  not  con- 

tribute   to the   loops.,,   namely,   those   due  to   the motion   in  the Jf 

direction  alone   and  those  due   to   the   circular motion  about   the 

% — axis  alone,   so   as   to  retain  only  the   part  that  results  from 

the  superposition  of   these motions.     Thus„   for   w. = o   we  write   the 

field  as 

For      v. = O   we write 

{&t = - BCJO«-.* [^ scot] 

^ = +• BOO (CQ«[* scot] - £ s (A; xt s^j> s(X)t] 

^ = o 

Hence 

^t-^i-ft = tew- B(J- **(Mtjj]sm[]p sax] 

- B(jr - vc R(X)0 

B/- *i 'ft "  ~ B(jr - v. RU)Ovi RVx)f  si* FJJL SCx.ul 
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The projections of the lines of force on the $ §  -plane 

satisfy the differential equation 

dl = B* ~ °fr -&   m 
^ Bf - «f -^ 

B(Jr-v. gcjQU y. R'(*;t 

We define the variable yu.  as 

^K. = v. F?CA) t 

so that 

Then 

v. f^OOt «l> 

=j^ J5 

This may be rewritten as 

We define the function X(x) as 

The integral of (23) becomes 

(21) 

(22) 

(23) 

(24) 

(25) 

If we assume that  R (.X)  is a function having a maximum 

at h = O  and decreasing monotonically to zero for large  | X|  „ it 

can be shown that (25) results in magnetic loons j the loo"os for 

SDecial case that 

are shown in figure 5 for v. t = a .  The neutral noint is 

I = O t   $ = v. t/2 = a/2. 
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Thus , we have demonstrated that the loons are cisnlaced 

in the direction of the convective motion. 

It is well to note that if w.    is so large that the 

convective column rotates more than one half a revolution after 

passing through the toroidal field, the it ens e of part of each loop 

will be reversed.  We shall assume that loopr, in the first half 

revolution oredominate and the average sense is as illustrated in 

figures 2.   3, and 4. 

In the next section where we studv the coalescence of 

loons we shall see that a set of loons of one sense of flux above t 

the toroidal field and another set of the onnosite sense below this 

field combine in such a wav that the net average field is dominated 

by the loops at the higher level, i.e., the resulting oololdal field 

of the core has the same sense as the upnen lcot53a  We know little 

about the dynamics of convective motion and it is quite nossible 

that in the core there are rising and descending streams in equal 

numbers and of svmnetrical structure.  Again, it is nossible that 

the convective motion is assvmmetrical, the ascendinp strc-ar,o 

being concentrated in narrow regions and the compensating descending 

motions being spread over a large area (the familiar pattern of 

atmospheric thunder stcrms).  Now it can be demonatrated that in 

such ~v model of convection only the intense risinp currents nroduce 

appreciable magnetic Docr.s whereas the contribution of the spread- 

out subsiding motions to the meridional magnetic field is negligible. 

This might be shown on using the nreceding analysis, but the cal- 

culations turn out to be extremely involved.  In the appendix 

we therefore solve equation (l) again, this time by a perturbation 

procedure.  In the approximation which we use; the displacement of 



-17- 

the loops in the direction of the convective stream does not yet 

annearj on the other hand we obtain simple analytical expressions 

for the secondary magnetic field, and these exhibit clearly the 

fact that the contribution of the rnread-out descending motions to 

the meridional looos is negligible-  The general conclusion is that 

we can construct a self-sustaining dynamo on the basis of either a 

symmetrical or an asymmetrical kinematical model of convection. 
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5.  Coalescence of Loops 

It remains to be shown that a number of loops with the 

sense indicated in figure 4 will actually result in a field ob- 

served outside the core which is predominantly a dipole field. 

Tfre study of the geomagnetic secular varit\tion shows (Elsasser, 

1950) that there are about fourteen distinct local irregularities 

in the field of the -Earth.  Taking this figure as a lower limit on 

the total number of loops in various states of decay in the core, 

the total number of loops might be as high as twice this amount. 

We shall assume that the loops are distributed randomly over a 

sohere off given radius concentric with the core, and we shall 

represent this distribution by a uniform average density. 

Before we carry out the calculations, let us briefly dis- 

cuss this averaging process.  We shall find that the looos produced 

beneath the toroidal field by descending currents of fluid (and 

which have the "wrong" sense for feedback) are buried so deeply 

in the core that they do not contribute appreciably to the resultant 

mean poloidal field.  Since the coalescence problem is linear, we 

may demonstrate this fact in the following fashion:  We first com- 

Dute the magnitude of the mean noloidal field with the restriction 

that the loons are confined within a sphere of arbitrary radius 

not exceeding the radius of the core.  We can then represent the 

condition where there are loops of one sense in the upper and loops 

of the opposite sense in the lower part of the core by means of 

a linear superposition of two concentric spheres of different 

diameters, each being filled with loops of only one sign. 

-*. 



| 
i 

Let  T,-&  , <f*   be   a  system of  polar   coordinates   whose oi-igin   is   at 

the   center  of   the   core.     Let   a    designate   the  linear   dimensions  of 

a tynieal   loopj   we   assume  the   loons  s-nallj, a« P    where   P    designates 

now   the   radius   of   the   core.     Consider  a   loop whose   center   is   at 

r= R",•£>""= cS5> f *• <&.  For  any point  on   the   loon  we   set 

where/9, 2^, c^   are  small  quantities  of order a/f^  whose  higher 

Dowers  will   be neglected* 

To   simplify the  calculations  we  next   assume   that   the   loop 

can be  described by means   of   a gaussian   s vrrietrical  about   the 

loon   center.     We   chooso 

E^   «  + B.f   e^/° [-£ (^»V ^V f Rv 5,^<s> v
1/) 

; 

the line*? of force are nipp.lfi'? with centers on the cp -axis; together 

they form a torus of magnetic flux.  Some of the later analysis 

is more conveniently carried out if we work with the curl of the 

magnetic field, since this is a toroidal rather than a ooloidal 

vector (Elsasser 1946).  We shall need onl? the <p -i-.omuonent of 

the curl for reasons that will anoear presently. 

V/e now expand (27) in terms of orthogonal toroidal vector 

modes, whereupon we average over all possible positions of the loop 
I 
j centers.  If the distribution function of the loons is independent 

of <X> g   only the rotationally symmetric modes (zonal harmonics) 

will survive the averaging nrocess,  The toroidal zonal modes are 



\ 

-20- 

T  - T  - O   T  - r ,'L  I clP(^sa>*j        (28) 

where u (x.) is a spherical 3e3sei function defined (Stratton, 1941) 

as (n/^Z*-))  "xX**, (-*•)   and where the boundary conditions require the 

k«r  to be the roots of (Eisasrer, 1946) 

P being the radius of the core. 

We now develop (28) in ascending nowers of the small quan- 

tities^ and i>    defined in (26). 

| T^ = c. (A..+ *„.,.• C. •> + EX^* E.yo* + ^ ^*°V^) (30> 

We will be interested only in D„«  and FT, j w'nich are readily found 

from (28) to be 

U. •= J- J ><"»*) °lF?(c»»<a»)  ^ „ J. j^*) d!£k£^£?  (31) 

The modes  F  are orthogonal ao that if we write 

- 

multiply by    |.     ,   and  integrate over the  volume of  the  core,  we 

obtain 

fff*x.b*-B>--X» = fff^jL X„- X,        (32) 

Noting  that 
r. *< 

(MacRobert, 1948, pg. 105), and that 

(from (29) and Jahnke—&nde, 1945, pg. 146), we obtain 

ff[** T«X„ - <„' P' i,.«(,rp) - gp<rQ (33) 

From (27) and (30) we find 
2V+- I 
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fff** (?*BJ- X«,   = " ^ B- c" *' (D
M + ^ + °6%) j (34) 

all   other  terms   cancelling out  for   reasons   of  svmmetry.      Sub- 

stituting   (33)   and   (34)   into   (32)   we   obtain  finally 

(35) 

We  next  consider the   tine   dependence  of  the   loops.     They 

will  ai~>oear   in   some  random   fashion   and  decay subsequently.     The 

easiest  way  to   discuss   the   decay of  the   normal  modes  will   be   to 

use   the   time dependent  differentia"!   equation   with a   suitable 

source  function       fB, (i) .     The   amplitude     T'T, (U    of   the    ^s    mode 

ihen   satisfies 

An.?Ct(t)       +     -TTK.U)     =      L{t)   , A„.   =       ~ (36) 

The   general   solution  of  this   equation   is 

;ct)  -   2dt'  f-Ct'J «xP [A«s(i'-t)7 

Let us assume that the loops annear suddenly at random times 

t,- 3 thereafter they merely spread out by diffusion.  It is readily 

seen that the source function f»«(i)  is nrooorti onal to the rate 

of appearance of the loops} we therefore take 

where  SCt-t,')  is a -Dirac delta function.  Then 

where the summation is over all i for which t > t; 

The average of ^ (t)     over time is 
*T 

which gives after some calculation 

* •• 
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. 

«>« c./,*, -^21 7T = -/" (37; 

where   x->    is   the  number  of   loops   nroduced per  unit   time. 

We  assume  the   apriori  probability of  a  loop   appearing at 

(jR.c5>)<&)   to  be   h (P?)   ,   normalized   to   give  unity when   integrated 

over  the   snhere.     The   expectation  value  over   both  snace  and  tins 

of   the  amplitude   ~^T   is 

Using   (31),   (35),   and   (37)   we  obtain 

and 

cJ €&     SlA   ^» 
d'R»ctos <a>) 1,00- fj©v,e ^Sl££*^a      , l\(.j =   / 

J a COD J* 

To   evaluate   I.C*)   we   integrate  by parts   and obtain 

X, <„A)   =    -     / d cea  cos <a> R! (cos o^ 

(40) 

This may be evaluated (MacRobert„ 1948, pg. 106) to give 

To eval uate 1, (r<)  we note that 

(41) 

which  vanishes   at cSD-oor •*   ,     Thus   UDon   integration  by narts 

we  obtain 
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j   (n) _ _ T (n; (42) 

To evaluate X, <>,.•.>,> and X4(r.js) we must assume a form for 

h(F?) •  Let us assume equal apriori probability of production of 

loops over a sphere of radius R. £ P and zero probability outside, 

With suitable normalization we then have 

I   O     for  R >  R. 

By (41) we need only consider mode3 of odd order, and for these, 

To evaluate  X3(2*+l,5.) we integrate by parts and obtain 

X,C««+',s) - 2r,(aMi)S) tl,(zft4i,*)      
(45) 

where 

Consider finally  1, (^«+ l;s)  „  We use the identity 

and integrate by Darts.  Repeating the orocess n  times gives 

JJ- )>...<w;) - - 2_ -g^j —_* 
Noting that for small 

^«n+ I 1',!  ' 

we have 

4^-' i. (2ri, i %) = 2^__ __ V" 2-yi      Uz ^,,,,^0       ( > 

Using   (42)   and   (45)   we  obtain 

(48) 
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Consider now   the   expansion  of   jB     In   terms  cf ortnoconal 

poloidai modes     5CM     •     Thdse   -.ire   related  to   the     "J^,     by 

From   (28)   we   compute  then 

Prom   (48),   which  gives     <£ ~?H^> »   the mean   value  of    c„    , 

and from   (4T <we find that the   expectation value of  By.   is 

* - Z XT s_ 

where 

e_   B.-^^^IF (50) 

The expectation value of the coefficient L of R C--os <as) is 

C-0JL.-«(^3)I.(—^^   ^     iR)]J(    ^    (51) 

To compare these results with observation we compute IT 

and (7 s the coefficients of the dipole end octuoole moments for var- 

ious value s of R", .  The results are given in table 1 for the 

magnitude of the^e coefficients at the surface of the core, whence 

they can readily be converted to the corresponding values at the 

surface of the earth. 

' 
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TABLE i 

THE COEFFICIENTS OF F? (coS<S>) ANb ^(eos<6>J AT THE SURFACE OF THE 

CORE 

Si. 
P 

C 
0.5 

0.8 
0,9 

1.0 

-0.0222 

—u»Uoio 

-0.120 

-0,162 

-0.00086 

-0,00235 

-0.01125 

+0.0251 

Nowwe  have  shown  Dreviouslv   that   the   loopa   oroduced 

by cowngcing  currents   are   eooosite   in   sip-n   to   the   ioors   orochiced 

by uogoing currents;  we   remarked  that   the  loops   nroduc^d  by  the 

downgring  currents  were   formed  farther   from   the  surface  of   the   core 

than   the  loooa   formed by  rising   currents   and  therefore  would make 

a much  smaller   contribution.     L«t  us  now  show quantitatively   that 

this   is   the   case.      Let us   assume   that   the   downgoing  loopa  are 

orodtced only out  to   n?m = P/jEi     and   that  they   are  opposite   in 

sign  and   equal   in  number   to   the   loops   resulting  from rising 

currents,,   which  are  produced   in  the  region    R/2<r\<P . Table 

1  shows   that       l"7~. ( R*..) > >   YL. (P/e) for    R. ^= P 

The  superposition  of  the  upgoing  and  downgoing loops  gives 

a net  fisld of     f^, CF?.)  -  £„ (P/&;.     The   ratio   of  the   dipole   to 

the  octupole  terms   at R = P is   given   in   table   2  for   R*. = O- &   O^ 

ana      ) < O   .     We  expect  that Tr^ is   somewhat  less   than   P :      It   is 

physically imoossible to  nroduce   a  loon  of  finite  size   exactly 

at    P=P i  the   toroidal   field from which the   loops   are  formed 

goes   to   zero  at    P=P(Bullards   1954).     Observation   indicates 

a valuft of °bout  15«7  for  the   ratio  of the   ^    component  to  ths  P* 

component  at  the   surface   of   the  core,      (Elsasser,   1941)   which 

* • 
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igrees with our calcu lab ions for Rt '--' Q . g, 5- p> 

TABLE 2. 
RATIO OP ZONAL DIPOLE TO OCTUFOLE MODES 

AT THE SURFACE OF THE CORE 

17 (RI)- rcp/s; 

0.8 
0.9 

1.0 

18.5 

8.1 

5.4 

There is probably no point in comtmting higher modes than 

the octupole term because the external fields of these mode3 are 

strongly influenced by the random motions near tbe surface of the 

core$ thus, as with the observed quadrucole f5eld, it is most 

likely that they arise mainly from random fluctuations rather than 

from the average feedback effect discussed here. 

In the above numerical calculations we have neglected the 

effects of a possible inner solid core because the volume of such 

a sphere is small compared to the volume of the entire core, and 

because, as has been shown, Qvi ( Fv*0 )  decreases so raoidly with 

F?.    .  If ons desired to take into account an inner core, it 

would only be necessary to superpose a third set of loops confined 

within a radius F?, t~^ P/3 tu neutralize all other loops in R< F^, , 

The net field would then be HL, (F?J- HL. (f=V2) ¥ ^ EL (F*,J where \ 

is equal to fs/giOjIgP- \/f?f\   .  The effect of i)  £,, (,F?t) will 

be small. 

Finally, we note that, with a toroidal field which vanishes 

at the equator and the poles, our assumntion that the loops are 

t  • 



distributed uniformly over latitude is at besJ- a rough apDroxi- 

mation to the actual conditions^ we may exoect the loons to be 

concentrated in micc'le latitudes.  If this is admitted,the ratio 

of the dipole to the octunole term nay be made arbitrarily largo, 

for instance by concentrating the loops near latitude +50 where 

both FJ and its second derivative are small. 



-2g. 

5 .  Reversal of Field 

Runcorn (1954) has cited geological evidence to the effect 

that the dipole field of the Earth ha3 reversed itself in the past. 

The question naturally arises as to whether sucn a reversal can be 

incorporated into the model presented in this oaper.  Apparently 

there is a means of reversing the dipole if one assumes a sudder 

large increase in the convective motions within the core, as the 

following qualitative discussion will indicate. 

The decay of the mapnetic field in a dvnamo may be thought 

of as a slipping of the lines of force beck through the fluid, 

equivalent to an attempt to unwind the contortions introduced by 

the motion of the fluid.  In a steady state dynamo it is physically 

obvious that the slip velocity and the fluid velocity are comparable, 

which is another way of saying that the characteristic time of the 

circulation of the fluid and the decay time of the magnetic field 

are comparable.  Indeed, it can be shown that the regenerative 

operation of the dynamo requires a certain amount of phase shift 

resulting from the decay (Bcridi and Gold, 1950) ^ the decay acts in a 

very crude sense as the commutator of the dynamo.  One might expect, 

then, that the regenerative process of the dynamo would be thrown 

out of gear if, for instance, the characteristic time  of the cir- 

culation of the fluid were to be suddenly decreased. 

To see Just what will go wrong in our dynamo, let us 

consider a loop of flux produced near the surface of the core by a 

rising current as shown in figure 6,  Per normal steady operation 

of the dynamo, we find that during the time that the loop is being 

produced and then drawn out to reinforce the toroidal field, it will 

* 
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diffuse as is indicated by the broken line in figure 6; the side of 

the loot) nearer the surface of the core will diffuse uo through the I. 
surface of the core into the mantle and so escape the nonuniform 

rotation of the core.  Hence it will not contribute to the toroidal 

field, which then results primarily from t he side of the loop nearer 

the center of the core.  But suppose, on the other hand, that just- 

as the loop is being formed, the velocity of the fluid increases 

in order of magnitude.  The diffusion of the loop will not have 

time to occur and both sides of tho loon, not just the inner side, 

will be subject to the nonuniform rotation of tha core and contri- 

bute to the toroidal field.  The outer side of the loop is in a 

direction such that it will degenerate the existing toroidal field 

near the surface of the core.  This degeneration will continue 

until the  toroidal field reverses.  The reversal will start at 

the surface of the core and occupy an increasingly thick shellj 

looos produced in the reversed layers will degenerate the dipole 

field.  The characteristic decay time of the toroidal field is of 

the order of 10 years for- 6 =3*io5  mho/m (Elsasser 1950)$ the 

characteristic time of formation of a loop is 600 years for a char- 

acteristic length of 1000 km and a velocity of 0.05 mm/sec.  Thus, 

we see that the reversed toroidal field, if once begun by a brief 

U U. 0 L) Ul'O L- 'J -L  l^uuvc^-O-LVC?  uiu u lu d persist long enough to completely 

degenerate and ultimately reverse the dipole field. 

-s   • 
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Appendix 

We shall treat th2 case of a conveetive stream closed in 

itself but so that the motion in one (aay the upward) direction is 

stronglv concentrated whereas the return flow is spread over a wide 

region.  As announced in the text w* shall show that the return flow 

makes only a negligible contribution to the formation of magnetic 

loop in the meridional planes. 

W© use the local cartesian system (Jj, >^ ( J ) and assume a 

toroidal field of the form (15).  Let the velocity field of the fluid 

be i» = if •*- v^ *  H    represents the convection along th«  Jf -axis 

together with the associated influx and efflux and the necessary 

return flowj v# represents the rotation of the fluid about the 

Jf -axis. 

Without too much loss of generality we may take <J_ = o 

and set 

where the primes denote derivatives.  We represent v\# by wy = o and 

^•-jico^RC/*) sc<o   ;   *\ = n{t)i RC^) sir) 

where u. (fcj  and f~i (t) are representative of the corresponding 

magnitudes, provided all the other functions are suitably normalized. 

The forms (3) and (4) guarantee that V-sg and ^?j*? vanish. 

From (l) we have for the first-order perturbation of the 

magnetic field, 
t 

The  second-order  perturbation   field   is 
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f g(i) = j JI 7x[(a f»;^co] 

This field consists of the sum of four terms which arise depending 

on whether the first step of the interaction is taken to involve 

either i* or v* . and whether the second ster. involves either u» orjjf 

Two of these terms are quadratic, in j    alone and in vg alone; it 

ic physically obvious that they will not contribute to loops in the 

meridional or ^jj-nlanes.  This may be demonstrated quantitatively 

by noting that the  £ -comoonent of the term of second order in o„ (,t) 

and the V -Component of   the term r>f  second order in Pi (t)   are zero. 

Thus the terms cannot contribute individually.  If we combine the 

nonzero j>-component of the former and the nonzero £-comnonent of 

the latter, we obtain a field which can be shown to have no net 

circulation about the n-axis.  We therefore omit these quadratic 

terms and keep only the two mixed terms which involve j_    in one step 

of the interaction and */ in the other.  After somewhat lengthy 

but straightforward calculations this ^art of the second-order field, 

say ^S(t), is found to have the followinr comnonents in the meridional 

nlanes: 

&5(0 = f (t)X(«) (- [^Yco^ VRW] F'(jr; s(?; BC?j 

(a) 
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where 
t t - 

f(t)=  fdt'u.co fjt"D(t"; =  /«Jt'j)(0/«Jt"u.ctV 

The   field   lines   of     J(w and    _§_   are   given   by 

£A=_iI iJ^^A dg d^     _     JjT (c) 

For u»    we  obtain   the  family of  curves 

Y(0 2(y; -   c, (-d^ 

For vf 

|,+   ^     =     C* (e) 

where C, and C, are the parameters of each family.  The differential 

equation for che field lines of £•_ is not readil^ integrated except 

in SDecial cases.  We therefore consider the case of a gaussian 

distribution 

Then (d) becomes 

and (a) and (b) become 

c (g) 

where 

*K>=i* 0 + 2^)+fKl-^X'M = ^0-^>>^>-£(<-£)   (h! 

The neutral line where S (I) and ^(^vanish simultaneously 

will be denoted by  I.(^) , Jf«, C »\)   •  w® 5ee from (g) that 
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Substituting (g) into (c) we obtain for the field lines of S(U the 

family of curves 

I [Jf-xco]" +  £&«*- c, <*> 
These are ellipses for n1^ a4 with centers on the neutral line*, 

For **•> a.* the lines form hyperbolas. 

The problem of defining the "strength" of the magnetic 

looo generated offers some difficulty.  The r» -component of curl & 

vanishes on integration over the volume, but this does not mean that 

there is no net circulation of magnetic flux about the neutral line. 

Perhans the simplest way to demonstrate that such a circulation has 

been generated is the following:  We compute the flux across the nX - 

plane above X(\) , and show that at least some of it bends around so 

as to penetrate the surface j  - X CO< ^ > O , The fluxes are 

*• 

<E>, - "2 

Using (g) we find 

x 

In the  integrand of   the  expression   for   <^X   ,  we  have   jf ^ X (O 

From   (i)   it  follows   that   the   integrand   is   always  positive.      In   the 

expression   for   <3?y  the  sign  of  the   integrand     is   the  same   as   the 

sign of 60(1^) ,     From   (h)   :ve  see   that    OJ(OJ  is  positive  if   n'< a1 
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otherwise negative.  But for n' > a1 the gaussian factor is very 

srnall? so small in fact that the integration over »\l> av constitutes 

only a few cercent of the total value.  Thus the integrals are 

oositive and &>    and <§>     have the same sign| hence there is a net 

circulation of flux about the neutral line indenendent of the 

relative magnitudes of a, b, and c. 

Since the existence of a net circulation is independent 

of a, b, and c we shall limit the evaluation of the fluxes to 

social case b = 0, a = c.  Then jf. (M )   = O and 
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