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Preface

Tuis report is the fifth concerned with research accomplished in
connection with Navy Gontract Nonr-433(00), between Dunham Laboratory,
Yale University, and the Office of Naval Research, Department of the
Navy. In this report is given a discussion of the solution for a
nonlinear differential~difference equation., Methods of attacking
equations of this general sort are but imperiectly developed, and
only approximate solutions can be obtained., The particular equation
considered here may apply to several physical phencmena of interest,
and the mathematical analysis is of interest in itself,

The research was carried on by W, J. Cunningham, with the
assistance of J. G. Skalnik; the report was written by the under—

signed,

W, J. Cunningham

New Haven, April, 1954
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Abstract

Certain physical phencmena appear to be described by the nonlinear

differential-difference equation
ax(t)/dt = [a -~ b x(t - r‘)—} x(t)

where a, b, and <t are positive real constants, This is an
equation of growth in which the growth rate of a quantity depends in
part upon the value of that quantity at some earlier time, liethods
of obtaining exact solutions for this sort of equation are unlmown,

Approximate sclutions for the equation are obtained by several
analytical methods. Variable x can never go through the value zero,
and thus reverse its algebraic sign. If x 4is positive and the
procduct av is small, solutions approach a limiting value a/b,
either monotonically or with a decaying oscillation. If product at
is larger, a steady-state oscillation of definite amplitude occurs,
If x 1is negative, solutions run off to negative infinity,

Examples of solutions for particular values of the parameters

are obtained with an analog computer,

R . P =



I, FPhenomena and Equation under Consideration

There are certain natural phenomena in which the magnitude of
some quantity increases at a rate proportional to the magnitude itself.
A simple example is the growth in population of an organism,l where
the number of new individuals appearing within any given short time
interval depends upon the number of individuals present at the beginning
of the interval, Certain chemical or neuclear reactions2 may operate
in a similar way, with the rate of reaction proportional to the amount
of end product that is present.

Phenomena such as these can be described mathematically by the
differential equation

dx/dt = ax (1)

where x is a measure of the preduct in question, t is time, and a
is a positive real constant, the relative growth rate, This equation
is sometimes referred to as the equation of zrowth, Its solution can
be written as

X = exp(at) (2)
where X, is the value of x existing at zero time, Curves repre-
senting x as a function of t have the well~known exponential shape
of Fige, 1, where a family of curves is shown for corstant X, but
several values of a, As t 1increases without limit, so also does Xx
increase without limit, the rate of increase beccming proportionally
larger.

There are certain phenomena which appear to be goverred initially
by an equation such as Eqs (1) However, as the quantity represented

by x increacses, some effect comes into play which reduces its rate of

w em am e am ws e am em ey s Em Em e e Em em = @m Wy W Em =y W mm W we em am em am W e e o

1., He. Margenau and G, ils Murphy. Mathematice of Physics and Chemistry,
(Van Nostrand, New York, 1943), p, 33

2, W, Jost, Explcsiosn and Combustion Processes in Gases, (McGraw-Hill,
New York, 194¢), p. 282
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Fig.1  Exponential functions satisfying Eq.(I).
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Fig.2. Exponential curve approximating a parabolic path.
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3.
increase, Ultimately x may apprecach a constant value, This might

be the case for a colcny of biological organisms in circumstances where
the food supply or living space is limited, As the population of the
organisms approaches the maximum which can be supported continuously,
the rate of growth must be reduced in some way., Or:2 hypothesis that has
been suggested3 is that the members of the population samehow recognize
that crowding is soon to occur, Upon making this discovery, they try
consciously to reduce their reproduction rate., Because of a finite
gestation time, the actual birth rate is not lowered until a definite
time after an effort has been made to lower it., An equation describing
this kind of operation is ‘
ax(t)/at = [a = b x(t = 7)] x(t) (3)

where a and b are positive real constants, t 1is a constant delay
time, and x(t) and x(t -~ t) are values of x at the instants t
and (t = 1), respectivelys The effective grewth rate in Eq, (3) is
[é - b x(t - TZI' It is less than parameter a by an amount propor—
tional to the value of x existing at the time (t - t), earlier
than the time t at which the derivative dx(t)/dt is evaluated,

Another example where Eq. (3) might occur is in the control ef
some reaction which fundamentally is governed by Eq. (1)s In order to
prevent the reaction running away, with catastrcphic results perhaps,
some modification is intentionally introduced into the system to
reduce the reaction rate, The controlling mechanism, which senses
the rate of reaction and takes steps to change it, requires a finite

time to operate. If the delay time is of fixed value, =T, the equation

applying to the system is Eq. (3).

- e em = e e @ w = W W wE e S S WL e S mp e mh e ap S ap = e e e em == ae am W ==

3. This equation appears to have been introduced in the paper,
G. E. Hutchinson, "“Circular Causal Sy:tems in Ecology', Annals of the
New York Academy of Sciences, 50, 221, (1948).
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St1ll another example where this equaticn mignt arise is in the
determination of the path of a controlled projectile, A mass particle,
falling freely in a constant gravitational field with no retarding
effects, follows a parabolic pathe Furthermore, the curve of height
as a functioen of time also 1s parabolic, since the horizental component
of velocity remains constant, and the horizontal position is propor—
tional to time, An example of the relation between height and time is
shown in Fig, 2. Coordinates x and t are chosen so that the vertex
of the parabola is located at x =0 and t = —tl. For convenience,

positive x is plotted below the t-axis, At zero time the particle

is at the point x = X and t = 0, The parabolic curve can be
approximated over a part of its length by an exponential curve
suitably chosen, Such a curve is shown also in Fig. 2, An actual
mass particle, falling in the gravitational field of the earth, is
retarded by the effect of resistance with the atmosphere, This retai-
dation ultimately makes the vertical component of velocity constant,
so that the curve of Fig, 2 would approach asymptotically a straight
line of constant slope, The curve then could not be approaximated by
an exporential curve,

Instead of the particle falling freely, it might be subject to
corntrol, the intent of which is to make the path become horizontal at
zome definite value of x, Again the control system requires a finite
time to operate, If this delay time is constant, and if the free fall
of the nrojectile is assumed to be essentially exponential in shape,
Eq. (3) may describe the path which the projectile follows,

Equations similar to Eq, (3) occur in econamic studies™

of
business cycles, where time delays occur in various steps of the

business operations, \
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In general, any phenocmenon in which some quantity tends to grow

at an ever-increasing rate, but is subjected to a throttling effect
involving a constant time delay, may be described by Eq. (3).

The analysis cf nonlinear differential-dirfference equation35 seems
not to have been studled in great detail, so that methods of finding
exact solutions for Eqe, (3) are unknown. Qualitatively, however, it is
apparent that if x(t) ever vanishes, the value of dx(t)/dt also
must vanish., If this occurs, X can never become different from zero
again, Thus, if =x(t) is not zero, it must always retain the same
algebraic sign, and the signs of both x(t) and x(t - 1) must be
identical,.

If x(t) is positive, the sign of dx(t)/dt may be either
positive or negative, depending upon the reiative magnitudes of the
terms on the right side of Eq, (3). Thus, the appearance of oscil-
lations with x(t) positive is allowed, A steady value, x(t) =
x(t - t) = a/b, for which dx(t)/dt = O, also is a possible solution,
If x(4) is negative, the sign of dx(t)/dt always is negative, and

the solution can only go to negative infinity,

II. Degenerate Case for T =0

A simple case of Eq. (3), and a profitable one to take as a
starting point, is that for which the deiay time < is zero, so that

the equaticn is6

5 R, Bellman and J, iy Danskin, "Stability Theory of Differential~
Pifference Equations," Proceedings of Symposium on Nonlinear Circuit
Analysis, (Polytechnic Institute of Brooklyn, New York, 1953). p. 107.
This reference contains a long bibliography,

6. This is the Verhulst-Pearl equation, See A, J. Lotka, Zlements of
Physical Biology, (/illiams and Wilkins, Baltimore, 1925), p. 64.




6.
Thiz equation can be studied initially by considering a plot of the

new variable y = dx/dt = x as a function of x, Such a plot is the
Poincare'! phase plane,7 widely used in studying second-order equations.
The phase-plane curve for Eq. (4) is shown in Fig, 3.

There are two points, x =0 and x = a/b, wherc y =0, These
are pcints of equilibrium, since no change can occur if x initially
has either of these values. If x initially has some other value,
changes will occur, If y is positive, x changes to become more
positive, and vice versa, Thus, changes in x with respect to time
take place in the directions indicated in Fige 3. The point x = O
is unstabie in the sense that x tends to run away from this point
with time. The point x = a/b is stable, since x tends to converge
toward this point, Both points are termed nodal peints, with the
curve of y as a function of x approaching from a definite direction,

An exact solutior for Ea. (4) can be fcund, ccnsidering it as an
example of Bernculli's equation, The substitution w = 1/x is made,
giving the linear equation

dw/dt + aw = b (5)
which has the sclution
w = b/a + C exp(~at) (6)
with C an arbitrary constant, Solution of Eq. (4) is, then,
x = [b/a + (1/x, ~ b/a) exp(-at)| ™ (7)
where x = X, at t =0,

The nature of this solution can readily be compared with Fige. 3.

As t becomes infinjtely large, x always approaches the value

x = a/b monotonically, If X is positive, the curve for x as a

. Minorsky, Nonlinear Mechanics, (J, W, Edwards, Ann Arbor, 1947)

g 5z
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function of t is continuous, Its curvature is zsro at the value of
t making d°x/dt> = O, which is the same as dy/dx = O, This value is
e 1n(a/bxo - 1) at which instant x = a/2b, and the slope of
the curve has its maximum positive value at this peint, If X, is
negative, the curve for x goes to infinity for the value of t
causing the quantity in the bracket of Eq. (7) to vanish, This value
is t =a T 1n(1 - a/tx, ).

A family of solution curves for Eq., (4) is shown in Fig, L4e For
small values of x, the rate of growth is determined primarily by
parameter a; for large values of x it is determined primarily by
parameter b, The uitimate value of x depends upon the ratio a/b,
These solution curves apply to Eq. (3) with T = 0, and with both a
and b positive, Extension to the case of reversed sign for these

parameters is self-evident,

I1I, Differential Equation Approximately Equivalent

III, 1., Derivation from differential-difference equation
It is difficult to study the differential-difference equation,
Eq. (3), tecause of the term x(t = t) which is evaluated at a time
different from the other terms, x(t) and dx(t)/dt, A differential
equation, with all terms evaluated at the same instant, is more easily
analyzed, The term x(t = 1) can be expressed by the Taylorts series
x(t = ©) = x(t) - wax(t)/at + (t2/2)a%x(t)/at?

~ (P/6)Ex(t)/at + o ¢ o o (8)
where each term on the right side is evaluated at the same instant, t.
If the delay timc, <, is sufficiently small, its higher powers become
still smaller and the series of Eq. (8) may converge fairly rapidly.

Then a gcod approximation tc the value of x(t = t) may be had from

e
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only the first few terms of the series, If either <t or the higher—

slowly, and many terms must be retained for accuracy,
If only the first three terms of Eq. (8) are substituted into
53), the resualt is

T azi/bx + alx = a28 (9)

~~

b=

Qe

where a2 = 2/12, g a/b, and all terms are evaluated at the same

}}

instant, If t =0, Eq. (9) reduces to Eq. (4) as it should.

Equation (9) is a second-order, nonlinear differential equation,
representing a system with a single degree of freedom, %ith certain
choices of parameters its sclutions are oscillatory, but only a single
mode of oscillation at a single frequency can occur at a given time,
A differential equation of infinite order would have resulted if all
terms of Eq. (8) had been used. Such an equation would represent a
system with an infinite number of degrees of freedom, having the
possibility of simultaneous oscillation at an ianfinity of frequencies,
The modification of the differential-difference form, Eq. (3), to the
pure differential form, Eq. (9), has brought a simplification, but at
the expense of losing the possibility of simultaneous oscillation at
several frequencies, Techniques for studying a second~order equation,
such as Eq, (9), are well developed; equations of higher order are more
difficult to analyze. It is not unreasonable to hope that solutions
for Eq, (9) will be similar to those of Eq, (3), although exact cor—
respondence cannct be expected,

Equation (9) itself can be interpreted as applying to a physical
system somewhat different from the examples used in connection with

Eq. (3)s If the nonlinear term, azi/bx, of Eq. (9) is neglected, the
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remaining terms are linear, and the equation has the solution

x =B + C exp(t/1) cos(t/t + 8) (10)

where C and 6 are arbitrary constants, This solution is the sum
of a constant term and an oscillation with amplitude growing with time.
The nonlinear term of Eq. (9) represents damping which varies inversely
with the value of x, Thus the solution of nonlinear Eq, (9) might
be expacted to resemble Eq., (10), but with large damping occurring at
those instants when x d1is small, It is not unlikely that the combi-
nation of this damping with the growing exponential factor of Eq. (10)
will result in the appearance of a limit cycle,8 an oscillation of
fixed amplitude determined solely by the parameters of the equation and
independent of initial conditions, Thus, Eq. (9) might apply to an
oscillator with a linear negative—~damping term, and a positive-~damping
term varying inversely with the value of x, O5ince the positive
damping would become infinite if x ever goes to zero, it is evident
that a steady oscillation can occur only about some nor—zero mean value
of X, and this is provided by the constant term of Tq. (9).

Equation (9) may be compared with the well-krown van der Pol

9

equation,” X - e(1 - xz)i + x = 0, which also has solutions in the
form of limit cycles, In the van der Pol equation, pcsitive damping for
large amplitudes of oscillation occurs symmetrically at either extreme
of the cycle, In Eq. (9), positive damping occurs asymmetrically,

being large only for instantaneous values of x on the negative side

of the mean value, B.

8. N, Minorsky; ref, 7, pe 62

9. N, Minorsky, ref. 7, pe 113

RN —aP%
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111, 2, Singularity at x, = B8, ¥ 0,

The qualitative nature of the solutions for Eq. (9) can be deter—
mined by studying the singular pointslo of the first~order equation
resulting from the substitution, y =X, so that X =y = y dy/dx.

This equation is

%§ = azf(x - l[;;)y - x + Bl . (11)

Its solution can be represented as a curve on the phase plane having
as axes the coordinates x and y. Singular points are located at
those values of x and y which make both numerator and denominator
of Eq. (11) vanish simultaneously. Only one singular point is so
determined; its coordinates are Xy = B and g Os* The nature of
the solutions near this singularity can be found by replacing x and

y with

X -—-= X, tu B +u

y ..._.;ys+v=v
where u and v are small increments, If these substitutions are

made in Eq. (11), and only linear terms are retained, the result is

dv _ o?((t = 1/a)v = u)
du v

. (12)

Since dv/du = (dv/dt)/(dw/dt) = (1/v)(d*u/dt?), Eq. (12) is equivalent

to the equation

Pu/dt? - a?(v = 1/a) dy/dt + a2u = 0 | (13)

Solutions for this linear second-order equation depend uncn the roots,

A and Aoy for the characteristic equation

sl az(t - 1/a) s + a =0 . (14)

- ws ® S w W s = MR w wp Ep T W mp P wp wE P E P W WS . W ws = wp WP = m ey W ww =

10, N, Minorsky, ref. 7, Ch. III

* It is worth remarking that a second singularity is located at the
origin, but that this point is not a simple singularity and cannot be
discussed in the same manner as the first singular peint, It is cocn—
sidered briefly in Sec. I1I. 5,

-yt - b [P SN
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These roots are

As Ay = (arz)—l {(at -1z {zar - 1)2 - 2a21?31/2 j. {35)
Solutions are nomoscillatory if the roots are real quantities, that
is, if [(at = 1)® = 2a%¢°| >0, This will be the case if
(—21/2 - 1) < (av) < (21/2 - 1); otherwise oscillations will occur.
Solutions are stable, in the sense that they do not increase without
bound as time increases, if (a‘r‘?)“l (at =~ 1) <0, Actually, of course,
parameters a and T were assumed positive at the beginning of the
discussion, but they might be allowed to become negative under some
conditions, The qualitative nature of solutions is depicted graphically
in Fig. 5. The notation used here is that conventional in referring
to the nature of a singularity, A focus refers to an oscillating
solution with amplitude either decreasing cr iucreasing; a node refers
to a solution apprcaching a limiting value monctonically, The solution
found in Sec, II, for a>U and < =0, approaches the singular
point monotonically, and the point is a stable ncde,

According to tne theory of Liapounoff,ll the nature of sclutions
for the nonlinear equation, Eq, (9), are similar to those of the linear
equation, Eq. (13), so long as the variables u and v are suffi-
ciently small, Thus, in the nieghborhood of the singular point, solu-

tions of Eq, (9) have the properties illustrated in Fige 5.

III, 3. Approximate solution by variation of parameters, about (xs,ys)
Still more information about the solutions of Eq, (9) can be
found by applying the method of variation of parametersol2 This method
is useful where an coscillating solution occurs with only small changes
in either amplitude or phase taking place within a cycle, In applying

11, N. Minorsky, ref. 7, pe 51
12, N, Minorsky, ref, 7, Ch, X

PR (R S et e b o b SR 2 - . —
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14,
the method, it is convenient to rewrite Eq. (9) as a pair of first~

order equations,
x=y

(16)

y = a?”(r - 1/vx)y - ax + a.zB .
If the term in y, with its nonlinearity, is omitted from the second
of these equations, a generating solutién is found as

x=p+Asin(at +8) =g + A sing

(17

y = alA cos gf
where A 1is the amplitude and € is the phase angle found from initial
conditions, and é= (at + €). This generating solution is then used
in the complete form of Eq, (16), allowing both A and € to beccme
time~dependent instead of being mere constants, The result of this
substitution is
Asind+Aécos¢f=O

(18)

3 . 3
Ao cos # ~ Aa® sin ¢ = o o Gos d - bBI’la+A(K;;)¢sin i)

Solution for A gives
2= coszd [1: - a—l(l + A/B sin ;5)-1}

If A/B<<1; approximately

(L+a/Bsind) L al-a/gsind+ A%/ sin® g+ o o o (19)
and A becomes

i = g%l cos g ~ azA/a cos® g+ azAz/aB cos® g sin &

- a2A3/a62 0052 zf sin2 gf + ¢ e 0

If the amplitude changes but slowly, only the average rate of change

over a cycle need be considered, Since

coszgf = -:]2-'(1 + cos 24)
2 " 1, . . A
cos“d sin £ = z(sm 4 + sin 3¢)

coszg{ sinzgf = -]8-'(1 - cos 4¢)
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the average value of A over a cycle is

(A) = (ar?)™ (a1 ~ 1) & - boa3/aP+2

= ph - qi’ (20)
where p = (atZ)-l {at = 1) and q = b2/ha312

av

In a similar manner, 8 can be determined, and its average found
over a cycle of @4, The result is
8),, = 0. (21)
If the average value of A, given in Eq. (20), is used, the
variation of amplitude with time can be found, This equation, another
example of Bernoulli!s equation, can be made linear by the substitution

w = A-2. The resulting linear equation is

dw/dt + 2pw = =2q. (22)
Its solution is
w = C exp(-2pt) + q/p (23)
and thus,
A= [b exp(=2pt) + q/p]-(l/z) (24)

vwhere C is an artlirary constant, If A = A, at t =0, amplitude
A is given as a function of time by
A=at) = fo/p+ (a2 = o/p) expl-2pt)] "), (25)
The solution just obtained is only approximate because just the

first three terms of the infinite series of Eq. (19) were used. This

approximation is good if A/B <<1, which is true only near the beginning

of the growth of A and provided A6<(B. As the instantaneous amplitude

increases, the solution is increasingly in error.
Quantity p in Eq. (25) may be either positive or negative, as
product avr 1is greater or less than unity, respectively, If p 1is

positive, amplitude A approaches a steady-state value,

A, = (W)Y? = 28(ar - Y2 (26)
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as t becomes infinite, If initially Ao is small, the amplitude

grows, with its maximum rate of change occurring when X = 0, at which R
instant A = As/31/2. If p 1is negative, amplitude A wvanishec as
t Dbecomes infinite,

Plots of the variation of & with A, and of A with t, as '
given by Eqs. (20) and (25), are shown in Fig, 6. Since Eq. (21)
shows that the average frequency is constant, the approximate solution
for Eq. (9), just found, is

x = B + A(t) sin(2¥3t/x + o) (27)
where A(t) is given by Eq. (25) and plotted in Fig, 6, and 8, 1is a
phase angle determined by initial conditions.

Limitations can he set c¢cn the value of product at 2llowed fecr
this soluntion. The assumption is made initially that the charge in
amplitude per cycle of the oscillation must be small, If p is
positive, the maximum value Am for the average rate of change of
amplitude occurs for the amplitude Am = (p/3q)1/2. The relative rate
of growth is then, frem Eq. (20), Am/Am = 2p/3., The pericd of the
oscillation is T = 2n/a = 21/2ﬁ1. Thus, the maximum relative change
in amplitude per cycle is nearly

v hya, = @Y @p/3) = Y23 ar - D@ (2s)
This quantity must be less than unity, say, te meet the assumption
inherent in the methecd of solution, Thus, the requirement is that
at <[1 - 217/3)"'1]“1 2 3/2. (29)
If p 1is positive, the amplitude approaches the steady value,

AS = 2p{at - 1)1/2. This amplitude exceeds the value g for ar)>5/h,

and would then require instantaneous values of x to change algebraic
sign. OSince sign changes cannot occur because of infinite damping at

x = 0, a more realistic upper limit for at in the solution is at<5/4.

————— — et o s
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<~ P 1is negative, the amplitude cdecays with time. According tc
Eq. (20), the maximum rate of decay occurs for the largest, or initial,
amplitude, A rather crude estimate of the lower limit for av can be
obtained by disregarding the nonlinear term in Eq., (20), in which case
the relative rave of decay is .l'\/A = p, independent of the amplitude.
The relative change in amplitude per cycle is, then,
T A/A = (2l/2m)(ar - 1)(a®)t . (30)
This quantity must be greater than minus one, say, so that
at> [’l + (21’/211')'.1]-l = 4/5, (31)
Thus, in order that the approximate solution found by variation
of parameters be reasonably accurate, the value of product at must
fall within the limits
L/5 <(av) <5/4.
For these conditions, the approximate solution i1s an oscillation,
approximately sinusoidal with angular frequency 21/ 2/ T, having its
mean value at x = 3, Its amplitude decays if avt< 1. The amplitude

approaches a steady value, AS = 28(at ~ l)*/z, if at>l,

I1I, 4. Apprcximate solution by iteration, abocut (xs,ys)

The approximate soluticn obtained by the method of variation of
parameters consists of an oscillation, essentially sinusoidal in wave—
form, with its amplitude varying in time. An oscillatory steady state
is achieved if at>l, More information about the waveform in the
steady state can be found by a process of :'L’t,era.t*,ion.l3

Tf the terms in X are omitted from Eq. (9), it becomes

¥ +ax = a2!’, (32)

- am am s e am en an e e e . A e Sw T an an wm A an wn em an wm wm e AR =y wm = am  am e am

13. J. J. Stoker, Nonlinear Vibrations, (Interscience Publishers,
New York, 195C), p. 83
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which has the solution
x =B + A sin at (33)
subject to the initial conditions of x * B, X =aA at t =0, This
generating solution can now be put into those terms of E£q, (9) in
which x appears so as to give
% + g%x = a28 + a2TA cos at
- (aBA/bB) cos at (1 = A/B sin at
+ AZ/B2 sinfat + o e -0 ) (34)
where the series is accurate only if A/B <1, Use can be made of

the identities

sin ot cos at = (%) sin 2at

sin® at cos at = C%)(cos at = cos 3at)
to give

e & GZB + GBA(T - 1/pv8 - Az/thB) cos at

X+a
+ (aBAz/Zb Bz) sin 2at + ¢+ ¢ ¢ o (35)
In order to avoid a secular term in the solution, something which cannot
occur since it grows indefinitely with time, the coefficient of cos at
must be zero, or
A = 28(at = Y2, (36)
This is the steady—-state amplitude of oscillation, and is the same
result found in Eq, (26).
Solution fer Eq, (35) is, then
x=8+A sinat - aA2/6b52 sin 2at + » » o o (37)
vhere the coefficient of a possible term in cos ct is made zero to
keep x=B at t =0,
The waveform'of the steady-state oscillation is approximated by

Eq. (37), and considerable second~harmonic distortion is seen to be

-—a——a'cw ‘-__n_,
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present, The relative amplitude of the second harmonic compared with

the fundamental component is

2nd/lst = ah/6bp? = (2Y%/3) (ax - 1_)1/2(“)'1. (38)
The largest value of at which will keep instantaneous x positive
(as is necessary) is at = 5/4, For this value, the relative second
harmonic is 2nd/lst = 1/5.

A sketch of the resulting waveform is shown in Fig. 7. The presence
of the harmonic actually makes x go negative momentarily in this
example. The rise in x from values just greater than zero to large
values occurs more slowly than does the drop from large values to small
ones,

It should be recognized, of course, that Eq. (37) is only approxi-
mate because of the gross assumptions made in its derivation, It

applies reasonably well only between the limits l<at<5/4,

III. 5. Solution by isocline construction

It is profitable to study in still more detail the solutions of
Eq. (9) as represented graphically on the phase plane, In carrying the
analysis further it is convenient to normalize the quantity y = x by
defining a new variable 2z = 1y = tx, Thz dimensions of 2 are then

the same as those of xX. In terms of 2z, Eq. (11) hecomes

dz _ 201~ ‘thx x)z = x + Bl
dx

(39)

This equation gives the slope of a sclution curve at any point .. the
z=x plane. If this slope is assigned a constant value, say m, the

locus of those combinations of 2z and x glving this assigned slope
14

can be found, This locus is the isocline™ " curve connecting points
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Fig. 7 Approximate steady-state solution
for Eq.(q), with aTt = 5/4.
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of constant slope, m. Its equaticn is

bx(f ~ x)
2 = Tl . (40)

Isocline curves for any assigned value of m pass through the
singular point, xg = B, Zg = O, found earlier, All curves also
pass tnrough the origin, x =0, 2 = 0, which is another singular
point of more complicated nature than that found first, The slope of
all isocline curves as they pass through the origin is the same,
dz/dx = art.

A set of isoclines is plotted in Fig. 8 upon axes of 2z and X,
For this figur<, positive numerical values of the parameters are
assumed as B =1, bt =1, so that also ar =1, According to the
analysis based on variation of parameters, this value atv =1 is Jjust
sufficient to lead to an oscillating solution about the singular point
(xs, zs) with the amplitude of the oscillation remaining constant,
Isoclines, calculated from Eq, (40), are plotted in Fig, 8 for several
values of slope m, and line segments drawn through the isoclines
have the corresponding slope,

Ceveral solution curves are sketched in, always cutting the
isoclines with the reguired slope, The predicted oscillaticn about
the singular point is seen to occur, Since the solution curve is not
a circle, but is distorted, the solution for x vs, t 4is not a
simple sinusoid, although it is periodic, A solution curve coming
from a large positive value of x bends so as to approach the z-axis
closely, but never to cross it, This effect comes about from the very
large positive damping occurring when x approaches zero from the
positive side, as has been discussed previously. Because of this

action, a limit cycle appears, For the assumed values of bt and B,

i
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a positive initial value of x leads to an oscillation abecut
the singular point,

If x is initially negative, the solution curves sketched in
Fig. 8 indicate that x always returns to zero with a value of =z
that goes to infinity. Presumably x will then pass through zero,
with X dinfinite at that point, and beccme positive, As soon as x
is positive, the solution curve spirals inward about the point x, = B,
zg = O, as before, It appears, therefore, that regardless of the
initial algebraic sign of x, ultimately it becames positive,

While the nature of the singularity at the origin cannot easily
be studied so completely as was the singularity at X = B, 2 = 0o,
it is evident in this example that the origin is an unstable point,

For positive values of x, the origin is similar to a saddle point;

for negative values of x it is similar to an unstable nodal point,

I11I, 6, Approximate solution for negative x

Some of the gualitative aspects of the solution obtained for
negative values of x c¢an be found through the following approximate
analysise. The differential eguation is

(t%/2) ¥ - % + %/bx + x = a/b (41)

which is merely Eq, (9) with the coefficients rearranged,

If t =0, this equation reduces to Eq. (4), having the exact
solution given in Eq. (7)e This latter equation, rewritten here for
convenience is

X, = !g +h exp(~at5}-l (42)

where g = b/a and h = (xo:'l -~ g), with x = x, at t =0,

— cemar
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If 120, but is small, an approximate solution for X can be
found by an iteration process, The soluticn for x,, given by Eq. (42)
=0

for T =0, can be used with Eq. (41) for >0, Lo give a new solu-

tion for x as follows, From Eq. (41) the new solution is

X, =X * X - (%/2) X, | (43)
where X, is an approximate solution, valid for T small, In writing
this equation, % is put in place of the third and fifth terms of
Eq. (41), to which it is equivalent,

A tentative conclusion from the isocline plot of Fig. 8 was that
if x initially is negative, it always returns to zero, even if
initially x is negative, In order for x to return to Z6ro, 'd
must become positive., If x is initially negative, there must be
some instant at which it passes through zero as it changes sign.

Thus, the time at which X = O is of interest., This time can be
determined approximately, making usc of Eqe. (43). The time derivative
of this equation, with the assumption that < is small enough that

the last term can be neglected, is

X, = X * Xy (44)
Derivatives of x,, found from Eq. (42) and used here, give

. _ ah exp(=at) [g(1 ~ at) + h exp(=at)(1 + at)]

2 [g + h exp(=at) 3 ed
If x, = O, the requirement is that, approximat<ly,
exp(=at) = ~=(g/h)(1 - 2at)
= (1 - 2at)/(1 - a/bxo). (46)

If © =0, the value of t from this equation is the same as that
found earlier as the time for which x, starting with a negative value,
goes to minus infinity, If < is made slightly greater than zero, the

time for iz = 0, given by Fq. (46), is also made larger,

-
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The rate 2t which x changes, for Tt Jjust greater than zero also

can be estimated, If 7 =0 and if the magnitude of x is small
enough, it is given approximately by
X =X, exp(at) . (&7
This equation results from Eq. (42) if ixo| << a/be This value of Xy
used in Eq. (43) leads to
(x, = x))/%x = at(1 - at/2). (48)
This equation gives the difference between solution Xy s applying
for v =0, and solution x, applying for t>0, but small, Since
* and %5 must have the same algebraic sign, the left side of
Eq. (48) is positive if |x2!>!x1‘, and negative if lx2‘<lx1|. It
is evident from the right side of Eq. (48) that the fraction is positive,
ard thus lx2}>ixlz, for O<at<2; otherwise ix2l<lx1|. These
conclusions apply only so leng as the magnitude of x remains small
enough,
The result of this discussion can be summarized in Fig. 9, in
which x is plotted against t, with parameters a and » held
constant, The initial values for both x = x_ and x = 3’co are nega-
tive, and both X, and io are assumed the same for all curves, The
indication is that unless <t = O, the curves for x always return to
zero, and that the point where x = 0 occurs at later times as T is
increased, If O<at 72, the magnitude ‘x l initially increases
faster than for t =0, If at>2, the magnitude !x | initially
increases more slowly than for <t = 0, The critical value, ar = 2,
separating these kinds of solutions is only approximate because of the

crude method by which it was obtained.
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III. 7. Sclution by analog computer

The differential equation, Eq. (9), was set up on a Reeves ‘nalog
Computer, using the system diagrammed in Fig. 10, Control of the
parameters a, B (= a/b), and T is possible, as shown, The
additional inverting amplifier must be used when negative values of x
are being studied, so as to give the correct algebraic sign to the
quotient term, The computer gives accurate results so long as x and
its derivatives are not too large. and sc long as x is not too small,
If x approaches zero, the division in the nonlinear term is inaccurate,

Same typical curves representing solutions for the equation are
shown in the accompanying figures. In Figs. 11 and 12, a plot of x
against t is shown, In both these figures, B = 20; in Fig, 11, =<
ie varied keeping a constant, while in Fig. 12, a 1is varied keeping =
constant, Initial conditions in both cases are x_= +B/4 = 5,

(e}
X =y_=0, When the product at is unity, an oscillation about

o o

X = B occurs, with its amplitude decaying slowly. The approximate
analysis of Sec, III, 3. predicts a limit cycle for this value of ar,
out with very small amplitude., A limit cycle of small amplitude may
actually occur; it ie difficult to decide from the computer solutions.
The period for the solution with at =1 is quite close to that
predicted, T = 2l/2nr.

If product at exceeds unity, the limit cycle with nonsinusoidal
waveform becames apparent, The waveform is similar to that predicted
in Sec, III. 4, If product at is small, the final value of x is
approached monotonically. Curves of x =X, exp(at) and of x, as
given by Eq. (7) for <t = 0, are plotted in Fig. 11, These are limiting

curves as T varies between zero and infinity.

R o eava.
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Fig.10, Ana\o9 computer setup for solving Eq.(9).
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Captions for Figs. 1il-—15

These figures are all solutions for Eq. (9) obtained with the

analog computer set up of Fig, 10, The conditions for the {igures

are as follows,

11,

12,

13.

15.

—— ot

a=1/2, B=20, 1 as indicated, X, = 5, 5:0 =0
Tt =2, B =20, a adjusted to give value for at as indicated,

x =5, x =0

a=1/2, B =20, 7T adjusted to give value for at as indicated,
X, set to value indicated by circle, io =0

a =1/10, B =10, T as indicated, k=5, >°co = =0,75

a =1/10, B =10, T as indicated, initial ccnditions as indicated

by circle
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In Fige. 13 are shown several phase~plane curves for y plotted

against x, Cn each diagram are shown solution curves for several
initial values of X, always with Ty ™ O, The initial points are
indicated with circles, The limit cycle for at = 1,4 is evident,
and a 1imit cycle of small amplitude may occur for at = 1, The solu—
tion curve for <t = 0, given by Eq. (4), is plotted for comparison
on the diagram for at = 0,35, Here, y Jjumps quickly from its
initial zero value to a value near that which would have to exist
with the case of =t = O,

The phase~plane curve obtained here for at = 1 has a different
vertical scale from that of Fig., 8, since the vertical coordinates
are 2z and ¥y, respectively, Otherwise the curves are very similar,

In Fige 14, a plot of x against t is shown, with the initial
value X, being negative, Parameters were chosen as a = 1/10,

B = 10, so that b = 1/100, The initial value of x is X, = =5

A curve, calculated from Eq, {7) for © =0 4is shown for camparison,
The initial slope of this curve, y = =0,75, was used as an initial
he other curves alsc, The curve for « = 5,
at = 0,5, 1is seen to depart from zero more rapidly than the curve for
v = 03 the curve for <t = 20, at =2, leaves zero more slcwly,
Phase~plane curves of y plotted against x are shown in Fig. 15,
again for negative values of X, Once more, the curve for < = 0,
calculated from Eq. (4), is shown for comparison, If T is small,
the solution curve either rises or falls abruptly, dependent upon
whether the initial point is just above or below the curve for «t = O,
If t 4is larger, a slower change occurs, but the return to x =0 is
evident, The curves of Figs, 14 and 15 agree with the qualitative

conclusions of Sec, I1l,6.
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IV, Differential-Uifference Equation

IV, 1, Comparison with differential equation

The original nonlinear differential~difference equation, Eq. (3),
was replaced by a nonlinear differential equaiion, Eqe. (9), for the
analysis of Sec, IIXZ, The differential equation waa cbtained by
replacing the difference term in the original equation by the first
three terms of a Taylor's series, Eq. (8). The two equations should
yield similar solutions so long as the Taylor's series approximates
the difference term well, The approximation is good provided the time
delay Tt is small enocugh that the terms amitted from the series are
small compared with those retained, In particular, it is necessary
that (©/6) &>x/dt’> be much smaller than (v/2) d°x/dt® , and
so on, This inequality holds if <t is sufficiently smalle If < is
larger, it is unlikely that the approximation is valid, Solutions
for the two equations then would be expected to differ by significant
amountse

An estimate of the magnitude or the terms can be found from the
approximete sclutions of Egs. (36) and (37). If product at is
slightly larger than unity, approximately x = B(l + sin ot). Then
X = -Ba2 sinat and % = -Ba3 cos at so that (13/6)§?= 21/28/3 and
(12/2) X = B, where only the amplitudes appear in the last two rela=-
tions, Thus, the first term cmitted in the serjes has an amplitude
about one half that of the last term retained, and the approximation
is rclatively poore If product at is larger, the solution changes
more abruptly with time, and higher-order derivatives are larger,

The approximation could be expected to be even less accurate,
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Furthermore, the differential~-differeiice equation is equivalent
to a differentizl equation of infinite order, which inay have an infinity
of modes of oscillation, The approximate differential equation, of
second order, can have only a single mode of oscillation, It is not
difficult to see how the various modes for the difference equation
can arise,

The analysis of the differential equation has predicted that if
product at exceeds unity, a limit cycle appears, leading tec an
oscillation of period T as shown in Fig, 16. This solution can be
assumed to apply to the differential~difference equation, also,
According to this latter equation, the value of x at some time t
depends, in part, upon its value at the earlier time (t =~ 1). If
for example, the time (t - 1) is zero, time t at which x is
determined, can be t =171, (t+ T)j, (v +2T), « ¢ ¢ o (T +nl).,

For any of these times, the same result must be obtained for x,
because of the periodicity of the solution. The same steady—state
solution results if the original delay time is increased by any
integral multiple of the period. The solution of Fig. 16, then, can

be obtained for fixed values of parameters a and b, and an infinity
of values for 7t. The period and waveform remained unchanged,

If all three parameters, a, b, and 71, are fixed, a variety of
steady-state solutions also may occur. An example is shown in Fig. 17,
where the waveforms are merely sketched roughly. If the product at
is large enough, a violen% oscillation of leng period, Tl = t/k, may
occur, where k is a constant., If at is just larger than unity,
the period of the oscillation has been shown to be T = 2L/2nr, sc
that k = (21/217)-l = (h.hh)ul. Fcr larger values of at, k will

be smaller, but the effective time delay rewains in the order of 1/4
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of a2 period, For an initial value of at sufficiently large, anotheir
steady-state oscillation may occur, with pericd T, = /(1 + k), The
effective time delay is then in the order of 5/4 of a period, and the
period of the second oscillation is about 1/5 that of the first. The
waveform of the second oscillation is determined by the product av!,
where the value of <! 1is the least delay that could give the
observed oscillation, or atout 1/5 the actual value of =T, Thus, the
waveform of the oscillation of shorter period depends upon the quantity
at/5, approximately, and if there is to be a steady-state oscillation
this quantity must be large enough to lead to a limit cycle, that is,
somewhat, larger than unity. The oscillation of longer period will have
its waveform dependent upon at, which will be greaitcr than five, and
the waveform will involve large peaks and violent changes,

If product av were sufficiently large, a whole sequence of
steady~-state oscillations of this sort might be obtained, each having
a different rericd and a different waveform., Suitable and rather
special initial conditions would be required to start such oscillations,
however, It is likely that only the oscillation of longest period
will actually occur in any physical system to which the equation

applies,

IV, 2. Solution by analog computer

The differential~difference equation is difficult to set up on a
simple analog computer because of the necessity for introducing the
time delay v, This delay time would have to be reasonably long in
comparison with the period of oscillation of th< highest frequency
that can be handled by the computer. It is not easy to set up a system

with the available components so as to obtain the necessary delay,
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In order to avoid the need of introducing a time delay in the
computer itself, a step-by-step computation was used, The compute:
was used to solve the equation
ax(t)/dt = [a -b x(to + At/2 - x)] x(t) (49)
in place of Eq. (3)s In Eq. (49), Ot is the time interval during
which computation occurs and to is the {ime at the beginning of the
interval, In the bracket, a constant value for x dis used, evaluated
at the delay time <+t earlier than the average of the time during the
interval, If the time interval is chosen small enough, this procedure
should lead to accurate results, It suffers, of course, from the
usual errors of step-by—-step computations.
The computer vwas set up as shown in Fig. 18, The procedure is to
put into the multiplying circuit of the computer the value of
x(to + At/2 - 1), The value of x(to) is put into the integrator as
an initial condition, The computer is allowed to run for the time
interval A4t, after which the value of x(tc + At) is read, This
new value of x is then used for new initial conditions with the
next time interval, and the procedure is repeated. In this way
successive points for a curve of x versus t can be obtained,
A family of curves found in this way 1is shown in Fig, 19, where
X 1is always positive, WNumerical values for the parameters were =t = 18,
B =20, and At =4, Parameter a was adjusted to give product art
the indicated value, The initial value of x at t =0 was taken as
X, = 2. It was assumed furtiner than x had this same value during
the four intervals At preceding t = O, This assumption gives x
the constant value, x =2, during the time -=16< t+< 0, after

which x begins to change, %ith a value of x as small as this,
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Capticns for Figs, 19-20

These figurec are solutions for Eq, (3) obtained with the analog

computer set up of Fig, 18. The conditions for the figures are as

f41llows,

19, v=18, B =20, A&t =4, a adjusted to give value for at as
indicated, x =2 for =16 t<0

200 vt =18, P =20, At =14, a adjusted to give value for at as

indicated, x =-~2 for -6 t< D

PR = 1
e ramat . .
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in comparison with B = 20, the exact valus used in starting the
computation does nct influence the resulting solution curve very much,

The curves of Fig, 19 for the differential-difference equation
are similar qualitatively to those of Fige. 12 for the differential
equation, The period of the oscillation is similar for 2 given value
of product at. However, the minimum value of at leading to a
limit cycle for the differential equation, at =1, is less than that,
at = 1.6, needed for the differential-difference equation, A differ—-
ence oi this sort is not unexpected, however, because of the approxi-
mation that was used in getting the differential equation, In the
appendix is given a discussicn which might indicate the limit cycle
would first appear near atv = n/2,

Another family of curves, with x negative, is shown in Fig. 20
The same numerical values of the parameters were used in obtaining
Fig, 20 as in Fig, 19, except for ine initial value of x, For Fig. 20
it was assumed that x = =2 for the time -16 € t < 0. The curves of
Fig. 20 show the expected shape, with X becoming an increasingly
large negative quantity as t increases, The rate of increase
depends upon the value of parameter a. The monotonic increase of
the curves of Fige. 20 ic again different from the solutions for the
differential equation, shown in Fig. 14, where x always returns tc
zero, Again, this results because of a basic difference in the two

equations,

V. Conclusion

The differential-difference equation has been approached in a
variety of ways, and a number of approximate sclutions for it have been
obtained, Most complete information comes fram the differential equa-
tion that is approximatel& equivalent, Informaiion about the solution

is summarized in Tables 1 and 2.
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Table 1

Differential—~Difference Equation

Form: dax(t)/dt = [a = b x(t = 7] x(t) (3)
a, b, T are positive real constants
Equilibrium conditions:

x(t) = x{t = 1) =0, unstable

x(t) = x(t - ) = a/b, stable with, perhaps, a limit cycle
Algebraic sign of solution: solution cannot change sign

Exact solution for =« = O:

x = [b/a + (:co-.l ~ b/a) exp(-a ',j-l , (7)

Approximate soluvtion for x>0: qualitatively similar to solutions

for the differential equation, Eq. (9)s See Fig, 19,
Probable value of at for oscillation, x>0: at>1/2,
this value is estimated

Probatle value of at for a limit cycle, x>0: at>n/2

Solution for x<&0: soclution always sces to x = ~o, See Fige 20.
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Table 2
Differential Equation
Form: % - a®tt + a? */bx + o x = azﬁ (9)

o = 2/12, B =a/b, where a, b, T are positive real ronstants
Equilibrium conditions:

x=0, x=0, unstable

x = a/b, x =0, stable with, perhaps, a 1limit cyclc
Algebraic sign of solution: Starting with either sign, sclution
always beccmes positive.
Exact sclution for <t = O

x = [b/a + (xom:L - b/a) exp(-at}] = N

Approximate sclution for x>0:

For 4/5<at<5/4:

x =8+ A(t) sin(21/ 2t/'r + eo) (27)
a(s) = [a/p + (4% = o/p) expl=2pt)] /2 (25)
p=(at®) ! (at - 1), q =bYha>?

at t =20, A=Ao, €=€o.
In steady state, 1< at<5/4:
x=pf + A sinat - cx.A"a/ébﬁ"2 sin 2at + ¢ + o o (37)
See Fig, 12
Probable vaiue of av for oscillation, x>C:
at>(2¥2 - 1) = o4
Provable value of atv for a limit cycle, x>O0:
at D1
Solution for x<0: golution always ultimately returns to
x = 0 and becomes positive, with x =@ at x = 0, Nature of
solutinn depends upon parameters of equation and initial conditions.
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Appendix A, Method of Equivalent Linearization

There is yet another method that is sometimes useful in finding
an approximate solution for an equation that cannot be solved exactly.
This is the metiod of equivalent linecarization, sometimes referred to
under the names of Kryloff and Bogoliuboff.ls’16 It can be applied
to the equation under discussion here, wi ch is

ax(t)/dt = [a - b x(t - ©)] x{t). (3)
Under scme conditions this squation has beer. shown to have steady-
state solutions, oscillating about a mean value,

The procedure is to assume a solution of the necessary form

x(t) =P+ Q sin wt (4.1)
where P, Q, and w are all constants to be determined, The
assumed solution is then substituted into Eq. (2), giving

Qw cos wt = (ab = PP = % sz crs wT)
+ (aQ = DFQ ~ bLFR cos wT) sin wt
+ (bPQ sin wt) cos wt
+ % bQ2 (cos wt cos 2wt + sin wt sin 2wt).
It is argued that this equation must be valid fecr those ccmponents of
zero frequency and the fundamental frequency, and terms of frequency

higher than the fundamental are ignored. The following three relazations

are thus obtained,

censtant:  aP - bP° ~ % bQ2 cos wt = 0 ?

i
sin wts aQ -~ bPQ - bPQ cos wt = 0 / (4.2)
cos wt: Qv = bPQ sinwt = O

s

These equations are not correct if v = 0, since then w =0, and

the term in cos 2wt becomes a constant and must be ccnsidered,

- e s e am em v em W em em m T oy e e mm em em em mm em mm e mw my mm my v mm = e s =

15, N, Miuersky, ref. 7, Ch, XII

16, F. E. Bothwell, Econometrica, 20, 269, (1952)
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The relations can be rearranged to give
sin wt = ng/(az + w2) (
cos wt = (a% = wz)/(aZ " w2) } (443)
P = (a2 + w?)/2ab (Al
0-2/2r. (Ae5)

These equations musi be satisfied sinmultaneously, and can be solved
for the necessary values of w, P, and Q.

It is evident from the transcendental form of Eq., (A.3) that an
infinity of values of w, the angular frequency of oscillation, are
allowed, This is the result expected, since the original equation is
equivalent to a differential equation of infinits crder, However, the
relation betweer P and Q, Eq. (A.5), cannot correspond to a correct
sclution for Eq. (3)s It requires that Q exceed P, so that
instantaneous values of x always changs sign twice during a cycle of
the oscillation, somethirg which cannot occur, Furthermore, Eq. (Aek4)
indicates that the amplitude of oscillation is larger for a higher—
frequency meode of cscillation, which seems to be unreasonable.

If product at =mn/2, Eq. (A.3) predicts that w7 =1r/2 = 1,57,
and Eq, (A.4) predicts that P, = a/bs This result agrees fairly
vell with the discussion of Sec, III, 3 where for a+ near unity; it
was found that wr = 21/2 = 1.4 and the mean value of the solution
is B = a/b, A second value of wt, allowed by Eq. (As3) with
at =1/2, is about w,T = 9.1 or approximately, w, = 548 ©ye This
result 1s also about what is expected, with the ratio of the rfirst two
frequencies of oscillation being in the order of five tc onz, The
value of P for this second frequency, from Eq. (A.4), is predicted as

P2 = 17 a/b, and this seems far too large. Furthermore, numerical

i v
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S
values found from Eas, (4.3-5} do not appear reasonable for values of

product at differing from at = n/2,
The concluzion must be drawn that this method of solution yields

results of same utility only for a narrow range of values of product

at near arv = /2, Most likely this is about the value of product at

which first gives a limit cycle in the solution of the differential-~

difference equation. In general, however, the methed gives results that

seem quite unreasonable, Presumably this occurs because solutions
for Eq. (3) are sufficiently non—sinusoidal that the assumed form of

Eq. (A.,1) is far from correct.,
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Apperdix B, Approximate Solution for at2>>1

An exact solution for Eq, (3) with the time delay equal to zero
was found in Sec, 11, Solutions with values of product at in the
order of unity were found in Sec, IV, It is of interest to explore
the nature of the solution if atr becomes very largc.

It was shown in Secs, III and IV that if atv is sufficiently
large, the solution is periodic with the period T, The oscillations
are nearly sinusoidal for at Just large enough to give the periodic
solution, and become violent relaxation oscillations for av very
large. Always, howsver, the inean value, =X, of the solution is the
same, ¥ = a/b = 8. This relztion can be shown as follows.

Equation (3) can be written as

Qﬁit\§§§ = g - { )
x(é a=-bxit- 1), (Bol)

If the solution is periodic with period T, both sides of this equa=

tion can be averaged over a period to give the relation

t) _
t

S

dt- (Biz)

==

i
o= +3
» iﬁ'

T
{'_a*bx(t-'t
/o

Beccause of the periodicity, the integral on the left side of the

equation is zero, Also, the mean value of the ozcillating solution is
T T.
% = (1/1) [ x(t) at = (/1) } 2t = ) &, (B.3)
o o
Thus, Eq. (B,2) beccmes

O=a=bXx

- wm wm wm B e T e W R s W 8 mw m A e mw wt mw mww e e ee ww wm e c® s e mw e e

¥ This fact was observed by L. Onsager (ref, 3, p. 237). The deriva~
tion given here was suggested by P, M, Schultheiss.
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This equation is valid for any periodic solution.
As product at is made large, a plot of the solution for £q. (3)

approximates the shape sketched in ¥ig. B.l, where the time origin is |

chosen at the point at which X crosses the value x =8 as it l
increases in magnitude, The rise from x = to the maximum value,
Xnax? takes place aliost linearly, The drop fram Xz to a very
small value, nearly x = O, takes place very abiuptly., The solution
stays at a small value inost of the remainder of the period, and then
begins to rise again rather suddenly, The shape of Fig. B,1l is consid=
erably simplified, of course; the actual solution curve does not change
value discentinuously,

At the “ime t =0 in Fig, Bsl, x =R, and the vaiuve of x at
the earlier time, (t = 1) = (=1), is essentially zero. Thus, at
t = 0, the slope of the solution curve is almost dx(0)/dt = ap, from
Eqe (3). It is assumed that this slope is maintained uver the inverval
0< t< t. At the end of the interval, t = v, and fram Eq. (3),
the slope must vanish, dx(t)/dt = O, since x(t - t) = B, Thus, at
t =1, x has its maximum value, Koo kB, tris re¢lation defining
the constant k., The combination of the known slope for the solution
curve, maintained over the known time interval, allows the value of k

to be determinesd ae

cx/dt = ap = (k - 1)p/<

[¢]
Lo}

k={(1 + at). : (B.5)
Thus, the maximum value of x 1is

- (1 + at)fe (F.6)
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Since it was shown in Eq, (B.4) that the mean value cf the
periodic solution is constant, the positive and negative areas between
the solution curve and x = X = B must be the same in magnitude,
Thus, the relation can be written

t(k = 1)p/2 = (T - 1)B
or the periocd is
T = (k+ 1)t/2 = (1 + at/2)7, (B.7)

Equations (B.6) and (B,7) can be used for sketching the approximate
shape of the solution curve, provided product at is known and is
sufficiently large. Probably the maximum value of x, given by
Eq. (B.6), is reasonably accurate for at 2 2. The period, ziven by
Eg. (B.7). probably is not very accuratz unless avt 2 10, howsver,
The poor accuracy in this latter equation results from the assumption
of discontinucus jumps in the solution, and these approximate the
actual solution well only if atv is quite large,

An estimate of the ratios (xmax/B) and (T/t) for periodic
solutions of Eq. (3) is showr in Fig. B.2. These estimates are based
on the solutions found in Secs, III and IV for at near two, and upon
the equationz just developed for atr very large. Because of the
wide range in values of x which occurs when at is large, it has
not been possible to check these estimates quantitatively upon the

analog computer.
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Fig. B.2 Estimated period and maxiiawa value of solution for fq. (3).
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