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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 3067

ROLLING EFFECTIVENESS AND AILERON REVERSAL OF
RECTANGULAR WINGS AT SUPERSONIC SPEEDS

By John M. Hedgepeth and Robert J. Kell
SUMMARY

Linearized supersonic lifting-surface theory is used in conjunction
with structural influence coefficients to formulate a method for ana-
lyzing the aercelastic behavior in roll at supersonic speeds of a rec-
tangular wing mounted on a cylindrical body. Rolling effectiveness and
aileron-reversal speed are computed by using a numerical solution which
incorporates matrices.

R

Results obtained for an example configuration by using this method
are compared with the results obtained by using simplified methods of
analysis., For the particular configuration considered, the variation of
rolling effectiveness with Mach number is found for two constant-altitude
flights.

INTRODUCTION !

In the past, most aeroelastic calculations have been based on the
use of beam theory for the structural analysis and strip theory for the
aerodynamic analysis., The application of these simplified theories
avolds complications which result from using more refined theories; in
addition, the simplified theories are quite adequate, in most cases,
vwhen applied to wings of high aspect ratio. When applied to wings of
low aspect ratio, however, these simple theories may become inadequate;
if so, more refined structural and aerodynamic analyses are necessary.

The purpose of this paper is to describe a method for predicting
aeroelastic effects on the steady-state roll of rectangular wings at
supersonic speeds in those cases for which beam and strip theory are
inadequate but for which the aerodynamic effects of chordwise deforma-
tion may be neglected. In this method the structural distortions caused
by arbitrary loads are expressed in terms of structural influence func-
tions. The aerodynamic loads caused by arbitrary angle-of-attack distri-
butions are determined by superposing basic aerodynamic loadings resulting
from unit-step angle-of-attack distributions, which loadings are obtained

N TUDA- VLA L < -
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herein on the basis of linearized aerodynamic theory. By means of this
superposition procedure, first outlined by Frick and Chubb in refer-

ence 1, the application of three-dimensional lifting-surface theory is .
considerably simplified.

The aircraft configuration considered herein consists of two flex-
ible rectangular wings with trailing-edge ailerons of constant chord,
diametrically mounted on an infinitely long, rigid, cylindrical fuselage.

The analysis of the aercelastic rolling behavior is separated into
various parts. The analysis of the structural deformations is described,
the aerodynamic loads are then found, and the two parts are combined.

A numerical solution of the resulting equations 1s presented in matrix
form. Tables of aerodynamic matrix elements usable for any rectangular
plan form are included. A particular example is analyzed and the results
are compared with those obtained by simplified methods. The structural
analysis of the example configuration is included in appendix A and the
details of the aerodynamic analysis are relegated to appendix B.

SYMBOLS

D local flexural stiffness, Et2/12(1 - u2)

E Young's modulus of elasticity i

G shear modulus of elasticity, E/2(1 + p)

GL(y,n) structural twist influence function which results from a
unit concentrated load at the wing midchord

GM(y,n) structural twist influence function which results from a
unit concentrated torque

L(y) aerodynamic load per unit span, positive upward

M free-stream Mach number

M(y) aerodynamic moment, per unit span, about the midchord,
positive in the positive twist direction

Py static pressure at altitude

Pg standard static pressure at sea level

Qy) aerodynamic moment, per unit span, about the elastic axis,

positive in the positive twist direction
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Xy¥Y,y2

Be (¥)
Bep(y)

ch(Y)

8(y)

free-stream velocity

ratio between fuselage radius and exposed wing semispan
total wing span, 2(ail + 1)

single alleron span

wing chord

alleron chord

distance measured forward from the midchord to the elastic
axis, expressed as fraction of chord

exposed wing semispan

modified aspect-ratio parameter, Bi/c
rolling angular velocity (see fig. 1)
tangent of the wing-tip helix angle
dynamic pressure

thickness of wing cross section

coordinate system (see fig. 1)

cotangent of the Mach angle, JMQ -1

section 1ift coefficient, L(y)
qc/p

M(y)
qc?/p

Qy)
qc2/p

section moment coefficient about the midchord,

section moment coefficient about the elastic axis,

aileron deflection (see fig. 1)

angle of twist of wing (see fig. 1)

structural parameter, %-V2h(l - u

P
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Subscripts:
F

R

I,II"..VI
1

Superscript:

1

Poisson's ratio
local angle of attack of wing

rolling effectiveness, (pb/2V)F/(pb/2V)R

velocity potential

nondimensionalized velocity potential

flexible wing

rigid wing

airloads due to aileron deflection
airloads due to roll

airloads due to structural deformation
aileron reversal

aerodynamic coefficients due to unit pb/2v

NACA TN 3067

aerodynamic coefficients due to a unit rate of roll about

the x-axis

aerodynamic coefficients due to a unit angle of attack of

the entire wing

aerodynamic coefficients due to a unit aileron deflection

indicial aerodynamic coefficients due to a unit-step angle-

of -attack distribution
regions on surface of wing

nondimensional quantities used in appendix B

serodynamic coefficients due to a unit-step angle-of-attack

distribution on one wing only
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ANALYSIS

Structural Deformations

In this report the treatment of the structural deformations is
based on the assumption that there is no chordwise bending of the wing. :
The effect of the structural distortion on the aerodynamic loads is '
then determined entirely by the angle of twist 6(y), the contribution :
of the spanwise bending being negligible. (See fig. 1.) Consequently,
only the determination of 6(y) will be included in this analysis.

If the section 1lift L(y) and the section moment about the mid-
chord M(y) are known, the angle of twist can be obtained from

1 1
8(y) =/; Gr(y,m) L(n) dn +/; GM(y,n) M(n) an (1)

In this equation, Gr(y,n) and Gy(y,n) are influence functions which

define the twist at y caused by the application of a unit concentrated
load at the midchord and a unit concentrated torque, respectively, at
the station 7. For many structures these influence functions may be
obtained analytically as is done in appendix A for a uniform flat-plate
wing; other structures may be handled analytically by methods such as
those described in references 2, 3, and 4, for instance. For some
structures, it may be more convenient or even necessary to resort to

the use of experimental influence coefficients. The analysis proceeds
hereinafter on the assumption that the influence functions are known.

In general, the two influence functions are needed in order to
specify completely the twist of the wing. For many rectangular wings,
however, sufficient accuracy can be obtained by expressing the twist
solely in terms of the moment about some "elastic axis." This elastic
axls is herein defined as a line along which loads can be placed without
producing significant twist anywhere.

If an elastic axis does exist, it 1s no longer necessary to know

the influence function associated with load; only Gpm(y,n) need be
determined. The twist, in this case, is given by

1
o(y) = fo Gyly,n) a(n) an (2)

d
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In this equation, Q(y) 1s the section torque about the elastic
axis and can be expressed in terms of L(y) and M(y) by means of the
simple moment-transfer relation .

Qly) = M(y) - e(y) ¢ L(y) (3)

where e(y) 1is the distance measured forward from the midchord to the
elastic axis, expressed as a fraction of the chord.

Aerodynamic Loads

The section 1lift L(y) and moment M(y) may be expressed in coef-
ficient form as

L(y) = 3;— peq (y)
(%)
M(y) = 1;-?- Bep(y)

For convenience, the products of B = JM? - 1 and the coefficients are
considered herein rather than the coefficients themselves.

It is assumed that the aircraft is undergoing a steady roll about
the axis of the body and that this axis is in line with the direction
of flight., Consequently, the resulting loads are due solely to struc-
tural twist of the wing, the rolling velocity itself, and the deflection
of the ailerons. Since linear aerodynamic theory is to be used, the
coefficients resulting from this steady rolling maneuver can be expressed
as

Bey = (Bey), + (Bey), + (Bey),

(5)

bom = (Pem), + (Pem), + (Pem),

where s, r, and a refer, respectively, to structural deformation,
roll, and aileron deflection.

In the determination of the coefficients on the right-hand side of
equations (5) the wing and body must be treated as a unit. In view of
the fact that in this problem the pressures resulting from the presence
of the body are important only in the neighborhood of the wing root and
therefore contribute only slightly to the structural distortions and
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rolling moment, a rather simple idealization is made regarding the

body; that is, the body is replaced by a rigid plate Joining the two
wing roots together. The width of this plate is the same as the body
diemeter. (See fig. 2(a).) While it is not argued that this ideali-
zation is the most nearly correct one, the resulting aeroelastic model
does have the advantage of simplicity and allows aerodynamic interaction
between the two wings. The presence of the cylindrical body is further
taken into account by neglecting the effects upon the rolling moment of
the pressures acting on the rigid plate, since the pressures acting on

, the actual cylindrical body would produce no rolling moment.

Although the detalls of the calculations of the aerodynamic loads
have been relegated to appendix B, a short discussion of the loads due
to each of the three causes - structural deformation, roll, and aileron
deflection - is included in the subsequent portions of this section.

loads due to structural deformation.- As a consequence of the pre-
viously assumed linearity of chordwise deformation, the local angle of
attack of the wing is campletely defined by the twist of the wing. Since
the twist is not defined explicitly, the deformations being dependent on
loads which are, in turn, dependent on the twist itself, it is necessary
to be able to perform the rather difficult task of calculating the aero-
dynamic loads caused by an arbitrary angle-of-attack distribution. This
task is considerably simplified for the rolling problem by superposing
loads caused by an antisymmetrical unit-step angle-of-attack distribution
obtained by imposing a positive unit angle of attack outboard of any
spanwise station 1 on the right wing and a negative unit angle of
attack over the corresponding portion of the left wing as shown in fig-
ure 2(b)., These basic load distributions, which have the nature of aero-
dynamic influence functions, are hereinafter called "indicial" loads for
the sake of brevity. Superposition of the indicial section coefficients
of 1ift and twisting moment, designated BcZe(y,n) and che(y,n),

respectively, which result from such basic angle-of-attack distributions,
yields the section coefficients [}cl(yi]s and [?cm(yz]s due to struc-

tural deformation. The required superposition integrals are given by

-~

Eacz(yﬂs =fol Bcze(y,n) %% dn L
(6)

[Benls)]_ - fo l e (v,1) 5 a0

J

where the twist at the root is assumed to be zero.

e - oC
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The indiciel section coefficlents are dependent not only on the
spanwise coordinate y and the position of the step 1 but also on
two additional parameters. These parameters are the modified aspect-
ratio parameter Bl/c, which usually appears in theoretical supersonic
aerodynamic calculations, and the nondimensional body radius a. The
dependency on the body radius is undesirable since it restricts the
application of these indiciasl section coefficients to a particular value
of a. Fortunately the dependency can be eliminated by making use of
the fact that the loads due to the antisymmetrical unit-step angle-of-
attack distribution can be separated into two parts: the first is the
loads due to a unit-step angle of attack on the right wing only (see
fig. 2(c)); the second is the loads due to a negative unit-step angle
of attack on the left wing only. It can be seen that the second part
is merely the negative mirror image of the first and, consequently,
only the first case need be considered in detail. The total indicial
section coefficients can be written in terms of these partial indicial
section coefficients, designated Bcle' and che', as follows:

Beyg(ysn) = Beyg'(y,n) - Beyy'(-2al-y,n)

(7)
che(y)n) = che'(Yﬂl) - che'(-aa’l-y,n)

The first term on the right-hand side in equations (7) gives the contri-
bution of the right-hand step angle of attack; the second term gives the
contribution of the negative left-hand step.

The advantage of the foregoing separation is that Bcle' and che'

are independent of the body radius end are functions of only the modi-
fied aspect-ratio parameter, provided that this parameter is greater

than 1‘2 , that is, when the Mach number is great enough so that
a

there is no point on either wing that is influenced by both wing tips

Bl 1
simultaneously. Thus, if the restriction = > T % is imposed, a

single parameter remains - Bl/c itself - and it is feasible to compute
tables applicable for any body radius. Numerical values of acZe'

.B‘El.g%gl and Og%Sl in steps of 0.1 are pre-

sented in table I for several values of Bz/c. These numerical values
vwere obtained from expressions derived in appendix B.

and che' for -

VSR
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loads due to roll.- The section loading coefficients resulting
from roll can be written in the form

pb

(Bey), = Beip 57
(8)

- po

(ch)r = Pemy, 57

The rolling derivatives Bclp and chp are given in appendix B.

Here again the derivatives are dependent on both Bl/c and a. Inspec-
tion of the resulting expressions (eqs. (Bl3) and (Bl4)), however,
reveals that the dependence on a 1is gquite simple; the expressions

for Bczp and chp can each be separated into two parts - one with

the coefficient 2, the other with 1 - both of which parts
a

are independent of a. It is possible to show that in each case the
first part is merely the derivative which results from a unit angle of
attack of the entire wing and the second part is the rolling derivative
which would result if the wing were rolling about the x-axis. There-
fore, these expressions become

-~ _ _ 8 1
Bczp T T I+ a Peyg * l+a BCZPO
. (9)
Beg = - —2 g 4+ —2 pe
"p l+a M 1+a M
y

In order for this simplification to be correct, it is again neces-

sary to impose the restriction 8t > 1 .
c l+ 2a

The quantities pec c d -
q B 1o’ cha’ B ZPO’ an chpo have been calcu
lated for values of 0 S %»5 1l in steps of 0.1 and are presented in
table II for several values of Bi/c.




JE

10 NACA TN 3067

Loads due to alleron deflection.~ The section coefficients of 1lift
and twisting moment,

(Bcl )8. = 50155
and (10)
(ﬁcm)a = chsb

respectively, are found for constant-chord trailing-edge ailerons of
arbitrary length. All gaps between the wing and aileron are considered
to be sealed. The calculation of the aileron derivatives B°l5 and

acm6 is very similar to that of the indicial structural loads and is

included in appendix B. For most reasonable aileron configurations, if
the aircraft is flying at supersonic speeds sufficiently high to satisfy

the Mach number limitation previously imposed (that is, %} E-ELEE),

an aileron deflection on the left wing produces no loads on the right
wing. For this reason, only the case 1s considered wherein the loads
on one wing are independent of the aileron deflection on the other. In
this case, the limitation on the modified aspect-ratio parameter Bl/c

for the analysis of ailleron loadings in appendix B is that Bl/c must
cg/c
be greater than -——-EL-—-—-. Numerical values are given in table III
1+ 2a - 7%

for 0S %-S 1 in intervals of 0.1 for several values of Bl/c; the
computations have been made for bg/l = 1.0 and cg/c = 0.2,

Significance of Mach number limitations.- Although the restrictions
that have been placed upon the modified aspect-ratio parameter limit the
utility of the aerodynamic results contained herein, these restrictions,
in reality, are not serious. This fact is substantiated by considering
a8 typical configuration such as that used for the example contained in a
subsequent section. For this wing, which has an aspect ratio of 3.6,
the pertinent parameters are 1/c = 1,5, & = 0.2, cg/c = 0.2, and

ba/l = 1, The restriction imposed upon the expressions for the loads

due to structural deformation and roll, %} > i'f;ii‘
a

cg/c
loads caused by ailleron deflection, Bl >-———j!L——Trj become M > 1,108

a
1+2&--—1—

and M > 1.054, respectively. Since the validity of linear aerodynamic

, and that for the

b il et ettt
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’ theory is questionable near a Mach number of 1, these limitations are
* of little consequence.

Aeroelastic Solution

Structural and rolling-moment equations.- In the solution of the
asercelestic rolling problem, not only must structural equilibrium
(eq. (1)) be satisfied but also the equilibrium of moments about the
rolling axis. If the loads in equation (1) are replaced by the loads
arising fraom the various causes as derived in the preceding section,
the equation specifying structural equilibrium becomes

_qc 1 l ae
JORE- fo 61(y,m) fo pe (1,8 g 46 +

1
c GM(y,n)fo che(n,C) a8 ]dn +

qc pb

. ‘
-F 5\-/._/;) EL(Y:T\) Bclp('\) +c GM(Y:'I) chv(ﬂﬂdn +

3

Rolling-moment equilibrium i1s attained by setting the total rolling
moment equal to zero. This condition can be written as

1
f (a1l + 1) L(y) dn =
0

Again, the results of the preceding section can be used to give

|

| 1 1

i %‘-L (a1 + 1) L Bcze('ﬂ,g) —E at + Bcl (n) + 8 Bcl (n)jan =0
¢

(12)

ey - . . . . ——

'.fh‘ M-J -tl'l « b - 4 ~4

JURPTORIRIERVRS S S
»
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Alternate structural equation.- Equations (11) and (12) completely
express the necessary conditions for this aeroelastic problem. It is
to be noted that the quantities & and gqc/B are, in general, known,
the structural twist 6(y) 1is unknown, and the aeroelastic rolling
rate pb/2V is the quantity that is desired. The simultaneous solu-
tion of these equations in closed form is, in actuality, extremely
difficult if not impossible to obtain. Some sort of numerical solution
{s therefore inevitable. One type of numerical solution, which utilizes
& collocation technique in the solution of equations (1l1) and (12), is
derived in a subsequent section.

The numerical methods with which the indicated integrations in
equations (11) and (12) are performed can be expected to be accurate
when applied to reasonably well-behaved functions. In addition to
numerical integration, however, numerical differentiation must be used
in order to express the rate of twist de/dy, upon which the loads due
to structural deformation depend, in terms of the twist 6. As is well
known, the process of numerical differentiation is not as accurate as
that of numerical integration and therefore should be avoided if possible.
The numerical differentiation can be eliminated by differentiating equa-
tion (11) with respect to y, which operation yields

119Gy (y,n) 1
20 _ g [l a0
il L —-83'_—”/;) BCIG(H;C) at ag +

aGy(y,n) i ae
c Tj; che(ﬂ:C) EE ag|dn +

qc pb [ t]96(y,n) 9
5 o S Bclp(ﬂ) +c 5 chp(fl) dn +

L1dcL(y,n) oGy(y,n)
qce LAY, N
N e A

In this menner, equilibrium equation (11) is replaced by equation (13)
and the twist 8 no longer appears in the problem. The rate of twist
becomes the unknown and can be used directly in the numerical solution.

The use of equations (12) and (13) is particularly desirable when

oG 3
the functions ;y,ﬂ) and éz’n), wvhich are merely the rates of
A

5
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twist due to concentrated loads and torques, respectively, can be found
accurately. The example considered in a subsequent section is one for
which it was possible to obtain these functions analytically. When
camplicated structures are to be dealt with, however, recourse must
usually be made to experiment or to approximate theories in obtaining
the structural properties, For these structures, probably only discrete
influence coefficients for twist can be found; the determination of the
rate-of -twist influence functions would be subject to at least the same
inherent inaccuracies as the numerical differentiation discussed pre-
viously. In such cases, therefore, the use of equation (13) instead of
equation (11) would not be advantageous.

Aileron reversal.- If the rolling-moment equation (12) is solved
for B, the result is substituted into equation (11) or equation (13),
and pb/2V 1is set equal to zero, the following equations result:

For equation (11), h

%Leey® 1 1
8(y) = ;V L/—\0 EL(Y:'\)A Bcze("hC) :—z ag +

3
c GM(Y}“)/; che(q,g) %—g— dat{dn -

1l
fo EL(y,rn by (1) + ¢ Gy(y, ) chs(nﬂdn

1
f (a1 + n) Bcla(n) dn
0

X

1 1
de
, — 4
fo (a2 + n)fo org(n,8) 3¢ 48 an (14)

T T o e — - L T

-
i
"
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For equation (13),

de(y) qrevc fl: (y,n)f 319 ) :g at +

3 o1
GM(y f Bme(n,Q) ¢lan -

f GL()’:'I) (1) + o M) GM(y,n) "‘ms(":ld"

/; (a1 + 1) Bcza(n) dn

X

"1 l a6
0 = a
/o (a1 + n)j; Begg(n,8) at & (15)

Either of these homogeneous integral equations expresses the condition
for ailleron reversal, where the dynamic pressure at reversal Qg

appears as an eigenvalue.

Rolling effectiveness,- The effect of the elasticity of the wing
on the rolling behavior may be determined by examining the ratio between
the rate of roll of the flexible wing and the rate of roll which would
occur if the wing were rigid. This ratio, the "rolling effectiveness,"
is designated as f, where

(Pb/2v)p
(pb/2V)g

g =

In this equation (pb/2V)y 1s the rate of roll determined directly
from the aerocelastic equations. The quantity (pb/2V)R, the rate of roll

PN
LR

T ‘-'f ‘(-,33 o

A“&..J' I TR R Y

. T M A o i o h
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H

for the rigid wing, is found by setting the twist per unit length equal
to zero in equation (12):

1
j; (a1 +y) Bey (¥) dy

) -

1
ﬁ (al +y) Bclp(y) dy

Simplifications for wings with an elastic axis.- If the wing is
constructed in such a manner that an elastic axis does exist as previ-
ously described, the expression for structural equilibrium 1s given by
equation (2) instead of equation (1). It is to be remembered that, in
this case, the twists are dependent only on Q(y), the torque about the
elastic axis, and not on the load L(y). The aerocelastic structural-
equilibrium equation which results from using equation (2) instead of
equation (1) can be obtained by merely deleting the terms in equa-
tion (11) that involve Gp(y,n) and replacing the section moment coef-

, ficients about the midchord by the section moment coefficients about the
elastic axis., Thus, the derivatives che, chp, and chﬁ should be

replaced by Bcy., PBcg » @and Pec, , respectively, where
. d 9p %

‘W
che = che -e Bcze

chp = chp -e BCZP > (17)

cha

Pomg, - © Bclad

In these equations, as before, e 1s the distance measured forward from
the midchord to the elastic axis, expressed as a fraction of the chord.

The equations analogous to equations (13), (14), and (15) are
obtained in exactly the same manner.

. NUMERICAL METHOD

Since an exact solution of the aeroelastic equations is not feasible,
even for the simplest configuration, this section is devoted to the

b

4

. pom -
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presentation of a numerical method of solution. The method is based on
satisfying the equations at a number of discrete spanwise stations.
Matrix notation is used as an aid in organizing the numerical procedure.
A step-by-step outline of the procedure is included at the end of this
section in order to aid the reader.

The accuracy of the numerical method is directly dependent upon the
number of stations used. Experience has shown that for this particular
problem 1l stations, defined by the end points of 10 equal spanwise
intervals, are sufficient. The derivation that follows is therefore
based on 10 equal intervals, the extension to other numbers of intervals
being evident. Simpson's rule is used to perform the integrations and
parabolic difference equivalents are used to replace any necessary
derivatives.

Matrix Operations

Two distinct types of integration appear in the aeroelastic equa-
tion. The first is of the form

1
f £(n) g(n) dn
0

and the second is of the form

1
[ nm s an
0

The integrands in these equations are evaluated at each of the spanwise
stations Mg, M3, Moy ¢ ¢ « Mgy ¢ « « M0 vhere, for equal intervals of

width €, n4 = ie. In a similar manner this subscript notation is used

to denote evaluation of the integrands at each spanwise station. Thus,
fy = f(ﬂi) = f(1e), g4 = 8(“1) = g(ie), and hyy = h(yi,ﬂJ) = h(ie, Je).
For 10 intervals, ¢ = 1/10 and Simpson's rule becomes, for each of the
integrals, respectively,

1
l
A f(n) g(n) an = %(fogo + Ufig) + 2fp8p +

ufBEa + ¢ o o + hfgsg + floglo)

T ——————— T - e A S o g
r — ,,\v e
* 3 ; - -
“ N ‘ J»
3ok o .
,* . — ?:-“5,("‘:5". ‘;%,_ B :{,{. e [ \,‘Q ) -
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and (for any single y)

)
1
fo B(y;,n) &(n) an = g5(ny o8y + ¥hyyE) + 2008, +
hhiBgB + e e o ¥ hhigg9 + hi,loglo)

In matrix form these integrals can be written as, respectively,

j;l £(n) g(n) an = |£,][s]|gy]

I

end (for all yy)

1
l(f h(y,n) &(n) dn)
0 i

The row matrix is given by

Ei_] - Eo £) £ f3 ... fg flo,l

and a typical column matrix by

s

- a2 ][ o]

R N,

e e oo
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where the subscripts denote the position of each element. The square
matrix is given by

- -
hoo ho1 hoz2 .- Bg 10
hjp b1 b2 ... D130

l:h“:l = hgg hp) hpp ... By

hy0,0 P10,1 P10,2 -+ P10,10

- —

where the first subscript designates the row and the second subscript
designates the column in which an element appears. This subscript nota-
tion is used throughout this section. The integrating matrix is given
by

[s] - % ) . (18)

| 1

A1l derivatives which appear in the aeroelastic equation are of
first order; difference equivalents based on passing a parabola through
three adjacent points are used herein to approximate the derivatives.
For the points 1 =1, 2, . . . 9 the standard difference equivalent

derived by finding the slope at the center of the three ordinates is
used:

(g) T Ry T
1 2¢

dy

Y T - T "I L il
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For the end points 1 = 0 and 1 = 10, the slope at the exterior of
the three ordinates must be used:

ar -Bfo + ll»fl - f2
(—)0 ) 2¢

(E) . f8 - hfg + 3f10
/10 2e

In matrix form with € = 1/10, these expressions become

&), - e

where the differentiating matrix

344
101
-101
<2101
<101
[D]=-5- 101 (19)
l -101
-101
2101
-101
1-4
_ 4

Aeroelastic Matrix Equation

The aeroelastic equations may now be written in matrix form by
using the results of the foregoing numerical analysis of integrating
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and differentiating processes. Equations (11) and (12) become,
respectively,

o] Jbod

81

(BclP)J ve
%S ) (GL)U:I l: S J (Bcls)J +c l:(GM)“} S J (chB)JI >
i B T20)
and
x |fz+y_J_| S (acze)dk [ s }[ D 1 o | +
53 l_al + yJ—I S (Bclp) + SLal + yd_ll: S] (Bcza)J} =0
(21)
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If these equations are divided through by & and the resulting
matrix equations are combined, the following partitioned matrix equa-
tion results:

[ ]

T | v
B ' =

] [ Dy | ‘iEu g—;/s F

= (GL)iJ S (Bcle)Jk S D
[ M —_l—
| @yl o {feee), ||
JL JL
[ ar 7] ]
- (GL)j_J S (Bclp) -¢ (GM)U
L JL - -
(GL)ij L S (Bcls)d +c (GM)ij L

N e ————— e A 5

L

(22)

e e, U N -
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E = -Ifl + yj- S ‘ (BCIP)J |

I L

1!

F= |fl ¥y s (Bcw.t,,)J

where
i, J, k=0,1,2, ... 10

For a given configuration flying at a given speed and altitude,
all the quantities in equation (22) are known except the twist 6 at

each station and the rate of roll g%/%; solution of this matrix equa-
tion yields these quantities.,

The rigid rate of roll, as found by expressing the integrals in
equation (16) in numerical form, is merely

(2 s)R -1 (23)

If the rate-of-twist influence coefficients are known, it is prefer-
able to employ equation (13) instead of equation (11). In this case, the
partitioned matrix equation analogous to equation (22) is

(®)
R T e
B I =
IREREERE

e

where the submatrices are given by
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r ~ r
—_ 3G | |
) = (ay_L)m B LG ON | N
e ey
Gy
© (5—3'_)13 ; (che)dk °
o JL JL .
=1 a&) acM>
S| e e ]| (e
a JL -
=1_ BGL BGM
Cy | = (5_)13 S o), |+ 5;—)13 5 | |(bems,),

Lo f=-frev| s [|(ers

)

and the expressions for the scalars E and F remain the same as those
given immediately after equation (22).
By applying the same numerical processes, the alleron-reversal equa-

tion (14) (or eq. (15)) can be put in matrix form. Equation (14), in
which 6 is the variable, becomes

o = 2552 ] -

The submatrices are defined immediately after equation (22).

Cil %Lnkﬂlekl (25)

e s AR St s
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Similarly, equation (15), where de/dy is the variable, becomes

@ - == | (=

The submatrices are defined immediately after equation (24).

% |3 150]|(8) (26

A solution to equation (25) (or eq. (26)) is easily found by using
matrix iteration. The process converges to give the lowest eigenvalue
from which the dynamic pressure at aileron reversal may be obtained.

Reduced Matrix Equations

Up to this point, the numerical analysis has been based on the use
of 11 spanwise stations, a number that was deemed necessary in order to
obtain the desired accuracy because of the ill-behaved nature of some
of the aerodynamic loading functions. In most cases, however, the twist
(or rate of twist) is well behaved and, therefore, requires fewer sta-
tions for adequate specification. Utillization of this fact allows a
considerable saving in the amount of work necessary to solve the matrix
equations because of the fewer degrees of freedom involved,

If either the twist or the rate of twist is specified at the even-
numbered stations, an interpolation procedure can be used to determine
the values at all 11 stations. The particular type of interpolation
used herein is obtained by passing a fifth-degree polynomial through
the even-numbered stations and then evaluating this polynomiasl at the
odd -numbered stations. This interpolating procedure can be written in
matrix form as

o - ]l
or
@[],

Vhere k = 0, 1’ 2’ e o e 10 arld l = 0, 2, h" ‘e e @ lo and the inter-
polating matrix [?k{] is given by

[ I

.
L

e o e
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2 0 0 0 0 o ]
0.24609% 1,230468 -0.820312 0.492187 -0.175781 0.02734k4 |
0 1 0 0 0 0
-0.027344  0.410156 0.820312 -0,273437 0.082031 -0.011718
0 0 1 0 0 0
[:Tkl:l = | 0.011718 -0.097656 0.585938 0.585938 -0.097656 0.011718 (27)

0 0 0 1 0 o
-0.011718 0.082031 -0.273437 0.820312 0,410156 -0.02734k4
0 0 0 0 1 0

0.027344 -0.175781 0.492187 -0.820312 1.230468 0.246094

0 0 0 0] 0 1
L -

The twist (or rate of twist) now needs to be known only at the
even-numbered stations, the quantities at the odd-numbered stations
being obtained by interpolation., Therefore, only the even rows of the
influence-function matrices are necessary; these matrices become rec- ‘
tangular with 11 columns and 6 rows. When these simplifications are :
used to write the matrix equations for equations (11) and (12) and the '
resulting equations are combined, the following partitioned matrix equa-
tion results:

- P
|
i
‘ql?[:l '[Aml{,:Bm* 63/5 C*
SRR SN B I I
|
L D,* _J: E -g%s F
o P
|
{
f
] T e N
. ‘,’f., Ci s N 4 R .
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vhere the submatrices are given by

g Tl - T

; E = -Ifz + yil S (Bczp)d
; e -

1

‘ F=|_az+yéj[ 5 ](Bczb)d

Note that the subscripts J and k assume all values, both even and
" - odd, and the subscripts m and 1 assume only the even values.
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The analogous partitioned matrix equation to be used when the rate-
of -twist influence functions are known is

where the

=

Cn*
= (29)
v
Tkl +
s B
)m:l [ (Pomp),
s Be
)m[ (<o),
Tiy

oy o MM s Fonn s

P s ottt o

."
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The scalars E and F are given after equation (28). Here again the
subscripts J and k take on all values, whereas m and 1 assume
only even values.

The aileron-reversal equations may also be expressed in this
reduced-order form. Thus, equation (14), in matrix form, is

ek' = qr;vc [Aml*] + %'-‘

Cm* LDZ*J 8 (30)

The submatrices are defined after equation (28). Similarly, equation (15)

becones

| | D7 (31)

_qrevc e 1
ot ]

The submatrices in this case are given immediately after equation (29).
Again, standard matrix iteration procedure may be used to solve equa-
tion (30) or (31), the amount of work being approximately one-fourth as
much as is involved in the iteration of equation (25) or (26).

&

&),

Simplifications for Wings With an Elastic Axis

Two operations are required to modify the aeroelastic matrix equa-
tions when an elastic axis exists. First, all terms involving the

oG

matrices | Gy, | or S_L are deleted. Second, the section-moment-
Y

coefficient matrices [? ], chp , and ch5 are replaced by

chp , and ch6 in accordance with equation (17).

)

v ; ' e‘"' + .
L O S { -
~ . ,”’4}3;@f &&r"{@ e ,
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Computational Procedure

As has been previously mentioned, the task of calculating the
rolling effectiveness for the given configuration flying at a given
altitude and speed is straightforward; only the solution of a set of
simultaneous equations is necessary. If a complete knowledge of the
aeroelastic behavior over large ranges of speed and altitude is desired,
however, the manner in which the various parameters are involved should
be teken into account in determining the sequence of calculations. It
should be noted that the Mach number enters the problem in a complicated :
manner, whereas the dependence on altitude is rather simple; that is, :
the Mach number affects the aerodynamic matrices and the altitude affects
only the dynamic pressure q. It is therefore obvious that the most
economical way to perform the computations is to calculate the variation
of rolling effectiveness with dynamic pressure for several constant values
of Mach number. In addition, since the rolling effectiveness is of little
interest when the controls are reversed, the range of dynamic pressures
should be restricted to values less than Qreye Ihe dynamic pressure at

reversal should, therefore, be determined for each value of Mach number
before proceeding with the calculation of rolling effectiveness.,

L LT

An outline of the steps required in the determination of the aero- i
elastic effect on roll for a range of altitude and Mach number is f
included herein. For simplicity, only one of the several numerical

. approaches derived in this section - that is, the one wherein the twist
influence functions Gy, and Gy and the interpolation procedure are

utilized - is illustrated; the others follow the same outline, differing
only in detail,

(1) Evaluate, either analytically or experimentally, the twist
influence functions Gp(y,n) and Gy(y,n) at stations y/1 =0, 0.2,

0.4, . . . 1.0 due to loads and torques applied at stations n/l = 0,
0.1, 0.2, . . . 1.0. From these values, form the 1ll-by-6 matrices

o] = o]

(2) For a given Mach number (one should be chosen which results in
a value of Bl/c which appears in the tables) determine the indicial
section 1lift and moment coefficients Bcze and che. These coeffi-

cients, which are found by applying equation (7) to the values of Bcle'
and che' in table I, can then be used to form the square matrices

. (Bch)Jk and (che)Jk )

ind o ——————— ———— : - - -
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(3) In a similar manner, form the colum matrices and

(BCIP)J
(chp)dl’ making use of equation (9) in conjunction with the values of

Bclpo and Bcza in table II.

(4) Determine the section loading coefficients due to a unit ailleron
deflection. Use these coefficients to construct the column matrices

. f
(ﬁcls)J (Scmﬁ)dl (These coefficients are listed for one

aileron configuration in table III. Equations for the coefficients for
a rather general aileron configuration are included in appendix B.)

(5) Compute the matrices [?mlf]’ Bm*l, Cm*l, and l_ DZ*_J and
the scalars E and F defined immediately after equation (28). The

integrating and differentiating matrices [s] and [D] in these defi-
nitions are given by equations (18) and (19); the interpolating matrix
E?ki] is given by equation (27); the row matrix [?Z + qu is made up
of the moment arms about the rolling axis.

o)

(7) Obtain q,,, by iterating this matrix (see eq. (30)).

and

C®

(6) Form the matrix [émz%] + %

(8) For each of several values of q between zero and Uy fOrm

the matrix equation (28). Solution of this equation yields (gg/%)
F

for each value of q. Obtain the rolling effectiveness ¢ by dividing
COR N TR
=8 by {=/® = ==l
2vi /g 2vl /g 2V R E
(9) Repeat steps (2) to (8) for several other values of Mach number.

SAMPLE APPLICATION

In this section, alleron effectiveness and reversal speed are found
for a specifie aircraft by the approach set forth in this paper, which is
termed "lifting surface theory," and by two simplified methods. Each half

- . TR e o ks v A" s Pl i o e
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of the exposed wing consists of a uniformly thick aluminum jassate with
an aspect ratio 1l/c of 3/2 and a thickness ratio t/c ofli. « O2, The
full-span aileron is formed by bending the plate along the (838-chord
line; therefore b/l = 1.0 and cgfc = 0.2, The wings anmmmounted
rigidly on the body, which has a radius of one-fifth the exuased wing
semispan; therefore a = 0.2. These ratios are sufficient i define
completely the configuration, since, as is seen later, the rmsasults are
independent of absolute dimensions.

Although the plate is considered to be bent in order tif'¥ oxm the
aileron, the plate is assumed to behave structurally as if v~ bend had
been made. On the basis of this assumption the necessary siwcac-tural
influence coefficients are determined in appendix A by meaniixo>f =& sim-
plified flat-plate theory. 1In this case, as could be expecti A, not only
does an elastic axis exist but also this elastic axis coincies=s with the
midchord.

Calculation by Lifting-Surface Theory

Since the influence functions are obtained analytically # the rate-
of-twist influence function rather than the twist influence irumction has
been determined in order that no numerical differentiation kr: mecessary.
In addition, the wing structure being free of discontinuitie, the inter-
polation procedure developed in the preceding section may besw uccessfully
employed. Equations (29) and (31), modified as outlined in fewe yreceding

section, are therefore used to compute g%/& and q..,, regeoctively.

Before proceeding with the solution of equations (29) ai (31), the
dimensional character of the structural, aerodynamic, integriiling, and
interpolating matrices involved in these equations should bewoonsidered.
The aerodynamic and interpolating matrices are clearly dimeninconless.

The integrating matrix [s] and the rolling-moment-arm mati » |ai + yi]

are proportional to the exposed semispan 1. The influence-imerac-tion
matrix for the example configuration, which is presented in #-ole IV, is

Gt5c

written as the product of the quantity l/ 3 and a nondimguts 1onal

matrix.

The aforementioned independence of absolute dimensions w & mow be
demonstrated. Equations (29) and (31) can be written in the jrsexm
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— : a
1 )
)
2 ) p— —
at3/31 |:I:| Gt Am{|:6_t_ x| | ]2 ot? R
qc/B 322 : 1 d% 31
: = | (32)
! ‘
——————————————— | o e e e ] (e - - — ——— e — - -
|
1| 7% I E _pb F
-23 Dy J : ? 2‘!'/5 12
L | -
and
d6m | _ q~revcl Gts[ ] I—_J a6,
" % t3 312 C* T ) % (33)

where the multiplication of the various submatrices by the indicated
quantities yields nondimensional results. Inspection of equations (32)

and (33) shows that only ratios of the dimensions are involved, and that
the quantity

is an important nondimensional parameter for this particular configuration.

- The step-by-step procedure previously outlined has been followed
for the example configuration and the results are included in figure 3.
Since the dynamic pressure in this case is essentially an altitude param-
eter, the results in figure 3 are shown plotted against the pressure ratio
Ph/Po, where P, 1s the standard pressure at sea level, as obtained from

reference 5, and Py, 1s the free-stream static pressure at altitude and
is related to q by the equation

2q
Ph = et
M

in which 7 1s the ratio of specific heats of air.

-~
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Simplified Methods

Two simplified methods of analysis have also been used to solve
for quey and § for the example. They differ from the method pre-

viously described only in that the airloads are determined by simplified
means. In the first method, lifting-surface theory is modified in a
manner similar to that used in reference 6, wherein it is assumed that
the chordwise center of pressure due to structural deformation and roll
coincides with the elastic axis of the wing. Thus, the total twisting
moment about the elastic axis is equal to the twisting moment due to
only the aileron, and equation (15) becomes

0

o S feag (1) @0 (34)

The rolling-moment equation, equation (12), is unchanged. A solution
to the problem has been obtained by using matrices in a manner similar
to that employed previously. In this case, however, de/dy is given

explicitly by equation (34) and, therefore, g%/% can be calculated

directly, the solution of a set of simultaneous equations being
unnecessary.

In the second method of analysis, the aerodynamic terms are derived
on the basis of two-dimensional (strip) theory. For the case wherein
the elastic axis lies on the midchord, the center of pressure due to
structural deformation and roll coincides with the elastic axis of the
wing and the only twisting moment about the elastic axis 1is that produced
by the aileron. Therefore, equation (34) expresses d6/dy exactly, and
the rolling rate obtained by solving equations (12) and (34) is exact.
Because of the simplicity of the strip theory, these calculations can be
performed analytically.

The results obtained by using these methods, termed, respectively,
"modified lifting-surface theory" and "strip theory," are also shown in
figure 3 for comparison with the results obtained by using lifting-surface
theory.

RESULTS AND DISCUSSION

The results shown in figure 3 indicate that the variation of rolling
effectiveness @ with the pressure ratio Py/Po 1is, for practical pur-

poses, linear., This linearity suggests the possibility that, for configu-
ations of the type considered, only the computation of pressure ratio at

.
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reversal (Ph/PO)rev would be required; the rolling effectiveness for

smaller values of Ph/PO could then be obtained by linear interpolation.

In this way the computation time could be greatly reduced, the calcu-
lation of (Ph/PO)rev being a relatively simple process. Some care

should be taken, however, in making use of this linearity, since it
appears to depend on the proximity of the elastic axis to the chordwise
center of pressure due to angle of attack. For wings wherein the elastic
axis is distant from this center of pressure, considerable curvature of
the rolling-effectiveness curves could result. At the other extreme,

the results in figure 3 obtained by using the two simplified methods are
exactly linear, since, in both cases, the elastic axis and the center of
pressure are coincident,

An additional consequence of this linearity is that the accuracy
with which a particular method predicts (Ph/PO)rev is a direct measure

of its ebility to predict rolling effectiveness. A comparison of the
values of (Ph/PO)rev obtained by the two simplified methods with those

obtained by the method presented in this paper is therefore shown in fig-
ure 4, wherein (Ph/PO)rev is plotted against Mach number. Although the
results show very little difference in the values of (Ph/PO)rev as
obtained by the three methods at high values of M, considerable differ-
ence exists at low values of M. The results obtained by the use of the
modified lifting-surface theory are consistently unconservative; the
results obtained by the use of strip theory are consistently conserva-
tive. Modified lifting-surface theory neglects the twisting moments
arising from the twist of the wing; only the torques caused by aileron
deflection are considered. Neglect of the twisting moments due to angle-
of -attack changes evidently reduces the resultant angle of twist and
therefore reduces the adverse rolling moments caused by the deformation.
When strip theory is used, the elastic twist is again lower than that
obtained by lifting-surface theory because, again, only the twisting
moments caused by the aileron deflection are present. Here, however,

the absence of the finite-span effects actually results in a greater
adverse rolling moment, even though the twist causing the adverse rolling
moment is in itself smaller.

Further mention should be made of the behavior at large Mach numbers.
Actually all three methods should yield the same results as M approaches
infinity because, as M increases indefinitely, lifting-surface theory
approaches strip theory. As an illustration of this fact, the rate of

roll for a rigid wing (g%/a)R is shown as a function of M 1in figure 5.

The values of (g%/%)R obtained by using lifting-surface theory rapidly
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approach the values obtained by using strip theory as the Mach number
increases. Thus, at high values of M the use of strip theory should
yield aeroelastic solutions of an accuracy comparable to that obtained
by using lifting-surface theory.

In actual application it may be convenient to have rolling effec-
tiveness given as a plot of pressure ratio against Mach number for con-
stant values of rolling effectiveness. A graph of this type may be made
by cross-plotting the information contained in figure 3 and is included
in figure 6. Also included in figure 6 is an additional ordinate that
gives the altitude as obtained from the standard-atmosphere table in
reference 5.

The rolling effectiveness ¢ at any time during a particular flight
may be determined as a function of Mach number if a history of the flight
is known in the form of a plot of standard altitude against Mach number,
For example, consider two constant-altitude flights, one at 30,000 feet
ard the other at 20,000 feet. The resulting variation of the rolling
effectiveness of the example configuration with Mach number is shown in
figure 7.

The indicial-solution (aerodynamic-influence-function) approach used
herein in the calculation of the aserodynamic loads exhibits considerable
promise of being espplicable to plan forms other than rectangular. The
delte wing and the low-aspect-ratio swept wing at supersonic speeds can
te handled in the same way as the rectangular wing; care should be taken
in these cases, however, to account for chordwise bending where necessary.
Other static aeroelastic problems such as center-of-pressure shift (which
has been considered by Frick and Chubb in ref. 1 for high-aspect-ratio
swept wings) and load distribution seem to be amenable to analysis by the
methods contained herein, It might even be possible to extend the
approach to take into account unsteady aerodynamic effects and thereby
to obtain accurate solutions to flutter problems., The calculations in
the last case would undoubtedly be arduous and the main usefulness of
the approach would be to establish a basis for the evaluation of more
practical but necessarily less accurate solutions of the flutter problem.

Problems involving configurations about which the flow is not sub-
stantially potential are generally not ameneble to this type of approach.
More specifically, the success of the approach depends on the applica-
bility of linearization to the aerodynamics and on the ability to calcu-
late the necessary indicial load distributions.

CONCLUDING REMARKS

A method has been developed for the prediction of the aeroelastic
effects on the roll of rectangular wings in supersonic flow. The method

P
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is based on the use of influence functions, either analytically or
experimentally obtained, to calculate the structural distortion due to
airloads. The airloads, themselves, are calculated on the basis of line-
arized lifting-surface theory by superposing basic airloads resulting
from elementary angle-of-attack distributions. The solution of the aero-
elastic equations has been obtained by means of a numerical procedure
suitable for use with desk-type calculators.

Results for an example configuration indicate that the variation of
rolling effectiveness with the free-stream static pressure at a constant
Mach number is almost linear; a good approximation may be made by assuming
a linear variation. Thus, in any other cases wherein this linearity can
be expected - that is, when the elastic axis is near the center of pres-
sure due to angle of attack - the calculations may be greatly simplified
in that it is necessary to compute only the free-stream static pressure
at aileron reversal,

The results obtained by using the method of analysis presented in
this paper are compared with the results obtained by using simplified
methods of analysis. Although aerodynamic strip theory is valid at high
Mach numbers, too conservative results are obtained at low supersonic
Mach numbers because of neglect of finite-span effects. A modified
lifting-surface theory, in which twisting moments due to structural
deformation and roll have been neglected, yields results which are
unconservative at low supersonic Mach numbers.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
langley Field, Va., December 2, 1953.
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APPENDIX A
STRUCTURAL ANALYSIS OF THE EXAMPLE CONFIGURATION

The deformations of the wing of the example configuration are ana-
lyzed herein by using the approximate plate theory presented in refer-
ences 4 and 7. This method expresses the deflection w of a plate at
any point (x,y) in the form w(x,y) = W(y) - x 6(y) where W(y) is the
deflection of the wing at the midchord and 6(y) 1s the twist of the
wing. (See fig. 1.) An energy solution of the problem is used wherein
the expression for the potential energy of the plate is written in terms
of the approximate deflection function. Minimization of this potential-
energy expression yields two ordinary differential equations in w(y)
and 0(y). Since the deflection W(y) has no effect on the airload, it
is eliminated from the two equations; the process yields a single equa-
tion in 6(y). This equation has been derived in reference 7 (eq. (A22)
of that paper) and for a rectangular cantilever plate of constant thick-
ness t becomes, in the notation of the present paper,

De? a9 4o _ L
E..;y-}.-a(l-u)Dcay—— -fy M(L) ag (A1)

with the boundary conditions

a0(0) _ d%0(3) _
&y gy?

8(0) = 0

In equation (Al), D 1s the plate stiffness:

N .
12(1 - 42)
where E 1s Young's modulus and u 1is Poisson's ratio. As could be

expected for this structure, the twists are seen to be dependent solely
on the twisting moment about the midchord M(y).

The solution to equation (Al) for a general M(y) can be obtained
by superposing indicial solutions found by considering the moment to be

= S
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concentrated at any spanwise station 7. Thus, let
M(y) = 8(y - n)

where &(y - 1) is the Dirac delta function.

Equation (Al) now becomes

D3 3 Gy(ysn) 3ay(y,1)

T 359 -2(1 - p)De 5 = -1(n

where J(n -y) 1s the unit step function:

In-y)=1
J(n-y)=0
AGy(y,n)
The rate-of-twist influence function Sy

in order to obtain the rate of twist by superposition.

AGy(y,1) 2
LY = 121 1 Eosh A - cosh )\(1 - l) -
dy Dco)e cosh A l

sinh )\(l - %)sinh x{‘

s _ s oo -3)

(-l + cosh A %)

oy Deone  cosh A
where
A= %\121&(1 )
; - :’s; T ; ‘ ‘

.411‘.'.\‘%“' . A’ .
inkngbs, Pa 0 N

NACA TN 3067

-y)

(ys

(y >

(ysm)

(y > n)

(A2)

1)

1)

is the quantity required
This quantity is

2

r (A3)
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With regard to this solution, it should be noted that the gquantity

3
1212/Dc5)\2 can be written in the form l/m"3 c, where G 1s the shear
modulus of elasticity of the material.

Superposition of the rate-of-twist influence function yields

ae(y) - l aGM(y)ﬂ) ‘
2l fo 2w en ()

Values of dGyfdy for 1/c =3/2 and p = 1/3 (which yields
A = 6) have been computed for O S %’- $ 1 1in intervals of 0.2 and

0sg % €1 1in intervals of 0.1; the results are included in matrix form
in table IV.

B

e
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APPENDIX B
DERIVATION OF AERODYNAMIC COEFFICIENTS

In this appendix the aerodynamic loads necessary for computing
rolling effectiveness are derived. The loads are found in the form of
section 1ift and moment coefficients by applying linearized supersonic
lifting-surface theory to the rectangular wing with three different
angle-of-attack distributions: the unit-step angle-of-attack distri-
bution shown in figure 2(c), the angle-of-attack distribution caused by
rolling, and the angle-of-attack distribution resulting from aileron
deflection,

Analyses of each of these problems are contained in the literature.
The unit-step problem is essentially the same as the problem of finding
the loads due to deflection of an outboard aileron, which has already
been solved (see, for example, ref. 8); the rolling problem has been
treated by many investigators (see, for example, ref. 9). There does
not seem to be any report, however, that gives the desired coefficients
in a form sufficiently complete for the purposes of this paper. For
this reason and also for convenience, the necessary aerodynamic quan-
tities are derived completely herein.

When linearized lifting-surface theory is used, the lift per unit
area of a thin wing is given by

y) = ES 5¢(x,y)

x (B2)

P(x:

where x 1s positive in the directlion of the airstream. The poten-
tial ¢, evaluated at the surface of the wing, is

q>(x’y) = ! U(§;§) dag d§ (B2)
" sff\l(g - x)2 - pR(L - y)2

where o(&,{) 1is the local angle of attack of the wing. In general, for
a rectangular wing, the region of integration S 1includes the entire area
on the wing within the forward Mach cone from the point (x,y). However,
in order to obtain the potential at a point near a wing tip, the proper
region of integration S 1is determined by using Evvard's method (ref.10).
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The spanwise loading and twisting moment about the midchord are

glven by

L(y)

M(y)

If the expression for p(x,y)

c/2
=f/2

-C

c/2
oy

; J

is substituted into equations (B3), and

p(x,y) dax
> (B3)

x p(x,y) ax

the results are integrated, the 1lift and moment become:

L(y) = ¢

A

M(y) = -‘*—v?

(]
3’ Y)

5 o)

/2
-fc o(x,y) dx

-

. (B4)

-c/2

~/

where the fact that the potential is zero at the leading edge has been

taken into account.

The foregoing equations can be nondimensionalized by letting

Bcl =

Bey =

X1

L8
qc

MB_
qc?

N -
+
YL

[
1
~I<

X
v

JUNTOREE——— L% VR

et At
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The resulting equations are

Bey(¥1) = i:* %(1,y1)
> (B5)

im{1 1
Ben(¥1) = -=|5 0(1:¥1) 'L ®(x1,¥1) dx;l

-

where

o(k1,81) a8y a&;

(B6)
S J(Xl - 51)2 - m2(yl - §)2

O(xl,yl) =

and m is the modified aspect-ratio parameter Bi/c.

Derivation of Bcle' and che’

The equations for the spanwise loading Bcle' and the twisting
moment about the midchord che' due to the unit-step angle-of-attack
distribution shown in figure 2(c) become, from equations (BS),

2

PR

, I
Bezg'(Y1oM) = = O(Ly1my)
. (37)

1
Lm|1
che'(yl,ﬂl) ='-:? 2 °(1;y1,ﬂ1) -u/; °(x1:y1;ﬁ1) dx,

-

where the potential ¢ 1is found for an angle-of-attack distribution
defined by the unit step function:

U(yl:ﬂl) =,Z(ﬂ1 - yl)

or

!
[

o(yl,nl) = (ﬂl 2 yl)

U(ylynl) =

[
o

(n1 < ¥1)

.
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Equation (B6) becomes

d;l as,

°(x1:y1:'11) =

z W"l - 4)? - 2¥(yy - 81)?

The region of integration Z 1includes only that portion of S5 which
lies within the region of the wing between the wing tip and the position

of the unit step in angle of attack at 7.

The plan form and angle-of-attack distribution considered are those

From this figure it can be seen that the position
of the unit step is restricted to the range 0 g 1y S L.

tion, the modified aspect-ratio parameter m 1s restricted to values
, the potentials ¢ for the finite wing in fig-

shown in figure 2(c).

1
t than
greater T 8

ure 2(c) are exactly the same as the potentials on the finite wing por-
tion of the following semi-infinite plan form which has been obtained by
allowing the left tip and the trailing edge of the finite wing to

approach infinity:

If, in addi- !

43

(88)

v

) s
yl’;' o //T\ I /’ '
prad [Tio) "> < ‘I
n ,// // \\\
//’m(b) //// or(a) ,//‘
//// //// P4 //
-7 _Smn T X
-~ e
,/// ’,//I(b) &
X., [

Thus, attention is confined to the derivation of the potentials on this

semi-infinite plan form.

cients on the finite wing are given by equations (B7).

With the potentials known, the loading coeffi-

The Mach lines shown in the above gsketch bound a number of distinct

reglons,

These regions are significant because the area of integration

in equation (B8) takes a different geometric form in each; it is to be
expected, therefore, that the potential ¢ 1is given by a different

equation in each region.

The proper area of integration £ (shown

-
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shaded) and the potential ¢ for the various regions, as found from
equation (B8), are:

In region I:

y,; - P W_/'
e P >~ ”
< \\/\
// -~
- - ~
// /a' (xl"yl) />
// P //
- -~ -~
P -~ ”
-~ Pd P
-~ -~ e
” P P
-~ // /4’
-7 - -
P ~
P -~
- -~
,/ // '
- -~

R

°I=—x1

In region II:

y.,;. -~

2'—,)—(—— -1,] ™1
QII=E<W1 l-wl+x1tan x1 -Wl>
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In region ITI(A):

V.Q;,t

45

n

- -1
®111(8) = H[*1 ten J

In region III(B):

x) +m(ny - yp)

X - m("]l = yl)

+ m(nl - yl)ta.nh

-lel - m(‘ll - Yl)

Xy + m("ll - yl)

-2 -1xl+m(711‘)'1
®r11(B) = 5[*1 tan J"l - m(nl - 3’1;

+ m(ql - yl)tanh"l

X + m(ql - yl)
xl - m(ql - yl)

s
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Notice that the only difference in the equations for °III(A) and
°III(B) is that the radical in the inverse-hyperbolic-tangent term in
the equation for °III(A) is the reciprocal of the radical in the
corresponding term in the equation for °III(B)' Thus, the following
form holds for both regions:

2 A1fX By - Y1) -1
¢ = =[xy t +m - tanh™ "k
III ~ gf*1 tan Jxl Tmey - yg) | LT Y 1
where
X, =mn, =Y
Ky = Jl ( 1 1) (yl < Tll)
Xy + m(nl - yl)
X3 + m(ny - Y1)
Kk, = 2
1 Jxl - m(r‘l - Yl) (yl T11)

A similar situation occurs in the derivation of °IV(A) and ¢IV(B)
and of ¢V(A) and °V(B)’ Therefore, the equations for °IV and &y
may be derived for either the subregion (A) or (B) and applied through-
out the entire region.

In region IV:

y"g' -

xl’el

2 7, iy, -1/X1 + B(M - ¥1) -1 - ™ -
°IV'E Wlxl-wl+xlEan x————-————l_m(nl_yl)-m -—7‘;—;—- +m(n1-yl)tanhl’kl

T




|
v
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In region V:
:‘:
2 - .
by = ﬁ[’"‘llm + m(M - yp)tanh kg’
where
k= v /m (vy $m)
= >
kp = My, (v22 m)
In region VI:
y', ;' // \\ ,’
- ~a
~ P
[ ] _ P //
(xn yt) // 47 \’
P - ”~
-~ -~
_ // P P
- -~ -~
- -~ L~
-~ ~
P —~ rd //
-~ -
P P
/// // - ‘
xl ’el
OVI = 0
- ‘:ﬁf - S ot
el -~ . A o .
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; Since the spanwise loading Bey e' is determined by the value of ¢
' at the trailing edge (see eq. (B7)), the equation for Beyg' s

dependent only on the region that the trailing edge is in. For example,
if for a given value of Y1 the trailing edge 1s in region III, the

value of Bcle' is

bm
Eclg'(yl’nlﬂ ITT . Orrr(¥1,1smy)

Thus, the equations for ey 9' are:

(Bcze')I =4 b

a4 )

8 -1]1 +o(ny - ¥p)
1 = 21t
(Bcle )III w0 V1 -mm -y

+ m(nl - yl)tanh'lkl
J 8 -
(Bcle )IV = =1 - myy + m(ny - yp)tann kg + ~ (B9)
1 - 1l -
tan'lJ o y1) - tan'l _—Wl
1-m(n -y;) d myy

(Bcle')v = SET% mn; + m(ny - yl)t.anh-lkaj]

g P - T s < L

-~

and the particular form to use for Bcze' is determined by the region
in which the trailing edge falls.

i (Bcle')vx =0
J
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The determination of che' requires evaluation of the integral

of the potential along the chord of the ving. However, the indefinite
: integrals of the expressions for the potentials valid within each region
) happen to be continuous across the boundaries of each region. Further-
{ more, the indefinite integral of the potential that is valid in the
z neighborhood of the leading edge is zero at the leading edge. Thus, the
’ integral of the potential along the chord may be found by evaluating at
: the trailing edge the indefinite integral of the potential that is valid
within the region in which the trailing edge is located, When the
trailing edge falls successively in each of the regions I to VI, the
resulting equations for che' are, therefore,

(boag"), = ©

S

¢ - —
(che')m = % m(ny - y;)|tanh ™l - Jl - m2(:1 - yl):

; (Beme')IV = 2n(n - vy Eanh'lkl - V- ma%h:—' yl)z + r (B10)

| %(1 - m5’1)3/ Vv

(che')v = % (1 - '@) o, oy, + m(ny - Yl)tanh'lkz:'

l (Pemg) = © )

'i‘
»
»

\ . - -
bowe 3 Oy Do e - B
. N ‘
% ‘ i - J -
o '-- - — »qg « - - - ) e
. * T .4 C o . - .
B . . ’ Y, .
.
v
, J’i ]

.
h
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where
1-m(ny -y) Y1
k= Jl T Rl ey (vpsm)
[ +m(m -¥)) _m >
s Jl TR (22 m)

As before, the particular form to use for che' is determined by the
region in which the trailing edge falls.

Equations (B9) and (B10) may now be used to obtain the spanwise
loading and twisting moment sbout the midchord due to a unit-step angle-
of-attack distribution for particular values of 7; and m. In summa-
rizing the information, it is convenient to separate m and 4 into

various ranges. Sketches of the Mach lines and summaries of the par-
ticular forms to use in each range follow:

For m22 and 0$ n1€%=

‘ y - 2(1+a) 1+20 | 7, O
| | /F\ /
: , \//
/ / \
n / ]I[ / m/l
/ /’ /
£ / 1/1
J ]

ﬁ
for region V when oS ¥y s % -1

for region IV when
Use the coefficients <

L

for region III when

Bi~ Bl 8
A

for region VI when
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For m2 2 eand %S nﬁ%z
y, o
(a
I I TR\ /
/ |\ /
/ \ /
/ N/
\/
/
I | T M
/ / A\
/ /o \
/ / X\
L I l
Wt m m "t_ﬁf
(. 1
for region II when O0€ Y1 S no-F
for region IV when 1 - %g y; S %
Use the coefficients < 1
for region III when %S Y15+ m
for region VI when % + 1 Sy S2(1+8)
2
For m2 2 and ﬁé nl§ 1:
y, «— T
| T 7
\ /
/ \
/ \\ /
/ \ /
I / o\ I // ju
/ \ /
/ \ /
-1\
n+ iy = m &

© -
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% P 1
i for region II when O0S ¥y < z
<
for region I when %5 Yy = 'ql - %
Use the coefficients {
for region IIT when 1, - %5 ¥y < n, + %
for region VI vhen 1y + %g y1 £ 2(1+ a)
_
1 1l
Sm<$2 and 0S 0, =
For T+2a- " an M =a
K
ar—
% 1 1 7T~
) / N/
/ \\/
! // /7 \
| / /N
/ / \
I yapii s I
/ / /
// // / g
“ / Z Z Y
| | |
I'Ti"'nl m m "(

~
i for region V when

for region IV when
Use the coefficients <

for region III when

for region VI when
-

~'. i_!"’
o
v "1
i
' t
|
i
|

-

B

I~
W
t<
(=]
uA
]
+

yls 2(1 + a)

A

1
at ™
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i For l _<mns$2 and

l-_ < < 1.
l+2a m= M=
' Y -— '7! v
| T T~ )
/ \ /
1 7/ \ /
! // \\ /
: b Sl m P
H / / \
. / / AN
7 S DN
+ L ) )
5 ,'l m L) ,)c- mw
- e
for region ITI when O2y, 21, -=
; 1 1 n
1< 1
: for region IVwhen 1%, -Z3Y; s -
Use the coefficients 4
1 1
for region III when = 'Y Y $§M +3
for region VI when 1, + 1<y . S2(1+0)
1" m 1

-

Derivation of Bclp and chp

The local angle of attack due to a unit rate of roll (pb/2vV = 1)
is given by

o(8,87) = -(l ! ) (B11)

l+a

The potential is therefore given by

9 (x1,¥7) = _f/’ ( =21 alw dfy s — (B12)

- 81)? -2y - 4y)

e o

e <4 < A

¢ st
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In this section, the potential ¢ 18 derived for a finite rectan-
gular wing with a nondimensional span of 2(1 + a). In order to simplify
the derivation, it is asssumed that no point on the wing is influenced by

both wing tips; this assumption is valid provided that m 2 I i =

The Mach lines originating at the intersections of the leading edge
and the tips divide the wing into two distinct regions (see the following
sketches) and the potential ¢ for these two regions is given by equa-
tion (Bl2) as follows:

In region I:

'59;1""'

QI 22 - e + )
m\]l + a l+a

In region II:

yu;| - r\

\
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2 1 12X 1] ™
°11=-.7+a (1 "3 "3 ;‘)J"Vl\l"l - my; + x)(1 - yp)ten Jxl -t

[y - af ™
a(Wl Xy -my; +X tan l‘x:L n Wl)

The equations for the spanwise loading Bclp and the twisting moment
about the midchord fcmp, are found in a manner similar to that used to
determine the equations for fc; 9' and che'. Thus,

g

"j
_ 1-y &
(BclP)I—J+(l+a +1+a)
_.8_1 Y1 _2
(o) = 2|t - 5 - B , (a5
B13
1| ™ 8 =a
(*-n)e T TR Ty ( 1t - wy
tan-1 ol )
l-ﬂwl J

The equations for chp, obtained in a manner similar to that used pre-

viously, are

(), ™ © )
gy S Tl -3 e Bl - ) - o

w1)5/E]

8

x1+al3

-




P o S A T e [

56 NACA TN 3067

In order to conform to the assumption mede in the aerodynamic
analysis, the airloads over the rigid plate in the center section of
the wing are to be neglected. Therefore, the limit of the modified
aspect-ratio parameter can be lowered from m 2 I—i—; to me T _’_1 ™

Summaries of the particular forms to use and illustrative sketches
follow:

For m2 1:

T ’\\ 7 %

for region II vhen 0O § Y1 < %
Use the coefficients

for region I when %§ Yy g1
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It should be noted that each expression for Bczp and chp can
be separated into two parts - one with the coefficlent i and the

other with the coefficient 1 : = - each of which is independent of =,

The first part is the result that would be obtained on the right wing if
the wing were rolling about the x-axis (see fig. 2(a)); it is therefore
designated Bczp or chp . The second part can be shown to be the

o (o]

section 1lift or moment coefficient which results from a uniform angle
of attack; it is therefore designated Bcza or cha. Thus, the quan-

tities aclp and chp can be written as

R S _ _8
Py " T+ a Bclpo T+a Cla,

1 a
Pomp = 7% Pmp, " T & "

where the coefficients in the various regions are:

(BCIPO)I = -1}(1 - yl)

(Perg) = ¥
(),
(),
(ot 2| - 3 - BN 2 -t
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Derivation of Bclb and chb

In this section, the aerodynamic loads due to aileron deflection
are derived for a tralling-edge aileron of constant chord cg and
span ba. The spanwise location of the inboard end of the aileron is
left general; the outboard end of the aileron coincides with the wing
tip. It is assumed that there are no gaps between the aileron and the
wing. Furthermore, the portion of the wing forward of the hinge line
may be assumed to be absent because the wing is considered to be at zero
angle of attack, the aileron hinge line is unswept, and only supersonic
speeds are considered. The resulting configuration is exactly the same
as that encountered in the derivation of Bcle and che. In addition,

since, for most reasonable aileron configurations, the pressures on the
right wing are unaffected by the deflection of the left aileron, the
total spanwise loading 3015 and the total twisting moment about the

midchord chs can be found by properly substituting the ailerou: dimen-

sions for the wing dimensions in the results already obtained for Bclg'
and che'. In order that the foregoing be true, the restrictiosn

m 2 o i a
"1+ 2 - by Ty

If c, 1is substituted for c¢ and bal = bg/1 for 1m; 1in the

expressions for the loads due to structural deformation, the load due
to a2 unit aileron deflection will result. Several more steps are neces-
sary, however, in order to produce the desired results Bcls and chﬁ'

In the first place, the reduced aspect-ratio parameter which was Bl/c
becomes Bl/cg = mfcg), Where cq; = cy/c. In addition to the substi-

tutions mentioned in the preceding paragraph, therefore, the subsi.tu-
tion of m/cal for m must be made, both in the expressions for Bcle'

and che' and in the expressions which define the limits of applica-
bility of these terms. Furthermore, in the nondimensionalization of the
moment expression the quantity ¢ 1s involved. In order to preserve the
nondimensionalizing coefficient qc/p for the aileron loads and 4c2/p
for the aileron moments, the expressions for Bclg'(yl’bal and

che'(yl,bal) mst be multiplied by Cay and cala, respectively.

Lastly, since the moments are taken about the midchord in the case of
pressures due to the structural deformation, direct substitution yilelds
the moment about the aileron midchord; thus, the moment must be trens-
ferred back to the wing midchord.
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The proper forms to use in determining B¢, 5 and acm6 are

| 2cq
: summarized as follows for values of m greater than both 'b—_l and
; a1
Ca.
1+ 2a - bg_
&
Ca
—1
For bal <1 ==

="

1 —-Lc°
bol - m
™ cal
for region IT when O S y1 S ==
Ca c
1<y < 8
for region I vhen == = yp = bal - =
Use the coefficientaﬁ
c c
“ for region III when by - :-3-' €y, S b + .:!:
al m 1= 81 m
. c!,‘l )
5 L’t‘or region VI when bal + = s Y, § 1
8
€ o
R - [T .
¥ s I » T "‘ -
. o - ) . — e
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Ca
21 -1
For bal z 1 =
Y, -
\ - cal
} for region II when O < ¥y, 2 ==
H m
« ca Ca
Use the coefficients < for region I when Tl.<-. Y S 'Dal Tl-
F ‘a1 <. <
for region III when bal - === Yy = 1

-

The expressions for the coefficients in the various ranges are:

(Bcla)I = ll»cal

e R
L

8 -
? (Pete); - ;lelca S+ cay ten” °a1m'rlmf1>
| 8 o eay * m(ba -y
" (Bo28) gy = |Cea *o° I cal - m(baj - yi) + m(bay - yp)tanh Ky
\
(Petg) ;= ©
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(Pong ), = ~2cq, (1 - 4, )

‘ Sca,
(BC"’B)II } '%K ) 31+ '?l)ﬁm +

- ’ myy
(l - cal)cal tan ﬁ%l - m’]:]
“sln ran-1/°21 * 2(Pay - 1)
3 ( ] cal)cal Ca; - m(bal B yl) '

R e Y N RO nﬂ}

(B cmﬁ) III

I 1 o U AR A et oobvin SRS 1 LorRer RIS K - o

e w4t oo arde T

where
Ca) - m(bal - yl)
o Jcal + 5%y - 1) (2% vey)
cal + m(bal - yl)
k' = Jcal - (ba - -‘/1) (yl 2 bal)
- . ;,‘ . L
- mE «

’ . ,." . - N
. ] g I3 S 1111 “:‘.”" E . .
. ¢ oaigl . o o PORE ) y - - - .
~ i - YQ\C’%;&; T #" 4:? P S “” : e 0
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TABLE I.- PARTTAL SECTION LIFT AND MOMENT COEFFICIENTS Bejy' AND Bc.”

FOR A UNIT-STEP ANOLE OF ATTACK

(a) Bi/c = 5/7

63

y For n/1 equal to -
¥/
0 To.l [ 0.2 ro.a Io.u ] 0.5 Io.é [o."( l 0.8 J 0.9 Jl.o
5c;9'(y/l,v|/l)
-1.3{ 0.023339/0 0 0 0 0 0 0 0 0 0
-1.2] .067298| .023339!0 o] 0 0 0 0 0 0 0
-1.1{ .126173| .067298; .023339(0 o} 0 0 0 0 0 0
-1.0] .198493] .126173| .06T298| .023339 |0 0 ¢} 0 0 0 0
-.9] .283854| .198u493| .126173| .067298| .023339 |0 0 [+] 0 0 0
-.8] .382u47| .283854| .198493( .126173| .067298( .023339(0 0 0 0 0
Tl Juoko3l| ,382khk7| 283854 .19849%| (126173 .067298( .023339|0 0 o] 0
-.6] .622469| .Loko31| .382447| .28%65L| .198493| ,126173| .067298| .023339)0 [+} 0
-5 .7o5859| .622u69] 494931l .3B2447| .28385k| ,198493| 126175 .067298| .023339|0 s}
-b) o .930849[ 766859 622469 J4ou931| .382ukT| .283854| (198493 | .126173| .067298( .023339| O
-.3] 1.04930 | .897717| .T33726] .569337| .461799| .349315| .250723| .165362| .093041| .034167| O
-.2] 1.24247 [1.022886| .83k923] .670937] .526543| .399010| .286521| .1679%2| .102572 .035611| O
-.1| 142537 |1.157726] .938137| .T50178| .586189( L41798| .314260{ .201778] .107498| .037253{ O
0 | 1.7k32 {1.320358|1.052711( .833126! .645163| .481175| .336785( .213062| .113216| .039149] O
.1} 1.98315 [1.589087[1.195130] .927484| .707806] .519936] .350491| .22650k | .119961| ,Ok1365! O
.2| 2.10430 |1.836762(1.442695(1.048Th0| .781092| .564900| .387676| .242903| .128081| .okkoos| O
30 2,15443 11,9548k [1.667505|1.2732k0| . 882613 .625377{ .42bog)| .263557| .138125| .Ok7229| O
4] 2,14681 [1,958854 (1.739267|1.474968{1.001348] . 715331 .L74209{ .290757| .151004| .051285| O
.5| 2.08438 [1.920391 1. 735864 ]11.526792}1.277190]| . 57| .550858] .3291k2| .168392| .056609| O
.6( 1.96398 |1.823206(1.670192|1.5008691.308059]1.076031 .727565| .390548! .193838( .06LOk1{ O
LT1 177946 |1.663767[1.539261|1.403506| 1. 25264k |1.079785| 869634 ] 545674 257054 | 075502 O
L8[ 1.51367 |1.423440|1.327050(|1.223027|1.109179] .981991| .835096| .654029( .363783| .096919! O
.9 1.1112% [1,049983| .984929| .915250( .839798( .756835( .663525] .554592| .M1T5uB) .181801] O
1.0{ 0 0 0 0 0 0 0 (o] 0 0 0
Bemg ' (v/1,/1)
-1,3/-0.010999{0 0 0 0 0 0 o} 0 ) 0
-1.2| -.029761|-.0109990 0 0 0 0 0 0 0 0
-1l.1| -.052085( -, 029761 |-.010999{0 b} o] 0 0 0 0 0
-1,0| -.075012|-,052085 |-, 02976k | ~. 010999 |0 o} 0 0 0 0 0
=29| ~.100087|-.076012]-,052085 | -.029761 | -.010999| 0 0 0 0 0 0
~.8] -.123018]-.100087|-. 076012 -, 052085 -. 029761 | -.010999| 0 0 0 0 0
-7l ~.143537| -, 123018/ -,100087 | -. 076012 -, 052085| -, 029761 -. 010999 |0 0 ] 0
-.6| -.160289] ~. 143537 |-.123018{ -, 100087 | -, 076012| -,052085| -. 029761 | -. 010999| 0 5} 0
-e5| -.172703] -.160289 | -. 143537 |-, 123018 -. 100087| -, 076012| -, 052085 | -. 029761 | -. 0109990 0
=l ~,175804|-,171703 |-, 160289]-. 143537 ~. 123018| -, 100087 -. 076012 -. 052085 | -, 029761 | -.020999| 0
=53] ~.154246] -,1601290| -, 156087 | -, 144674 | -, 127922| -, 207401 | -. OBk T2| -, 060397] -. 036470| -.O141N5] ©
-.2{ -.107098} -.127428(-,133372(-. 129270} -. 117857| ~. 101104 -. 080584 | -. 057654 | -, 035579{ -.012198| O
-1| -.031475| -.074895-,095225{ -. 101170| -, 097067| -, 085653 | -. 068902 -, 048381 [ -. 027503 | ~. 010100 O
0 +109560| .003450!-,039971|-.060299| -, 066244| -, 062141 | -, 050727 ] -. 035792 -. 020862| -, 007815] O
.1| .251367| .145258| .039147|-.0Ok2T2] -. 024602| -. 030546] -, 028130] -. 021767] -, 013514 | -. 0O5301| O
.21 .329556| .286136] .180025| .073915| .030k95[ .008549| .002149| .005845| .005251] .002495]! O
.31 .382066| .361737| .318317| .212207| .104509] .05%480| .028715| .012702| .ook2k5| .000698{ O
4] 415838 .4ooB0k| 389565 .3kkssk| .233 .120461| 0673241 .035135] .015493( .00kk26] O
.51 433166( 43T7268( (k29601] .kok701| (353949l .238191] .120L87] .063932| .029k15{ .008936{ O
6] J434189| .uk3882| .L43121| .429608] .399L3h| .344338| .225199| .105261| .047922| .01M697[ O
«7| <415320{ .k26825] .430171| .423910| .405836] .372163| .314800] .194884| .0T6094[ .022748| O
L8] .369u81] .380991| .386357] .38u655[ 374563 .35kOkS| .3195%%] ,263366| .1kT2M6| .036210| O
9 .281716] .291131| .296h77| .297212| .292601] .281579| .262k71] .232288] .184276] .oB2284| O |
1.0 0 0 0 0 0 ¢} 0 0 0 0 0
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64 NACA TN 3067
TABLE I.- PARTIAL SECTION LIFT AND MOMENT COEFFICIENTS fc;,' AND Bepy'
FOR A UNIT-STEP ANGLE OF ATTACK - Continued
(®) prfe =1
For n/1 equal to -
78}
0 0.1 0.2 0.3 0.k 0.5 0.6 0.7 0.8 0.9 {10
Beyy ' (¥/1,0/1)
-0.9 } 0.038956]0 0 0 0 o} 0 0 o} 0 0
-8} .113297| .038956|0 0 0 0 0 0 0 0 0
-7| .21i524| .113297] .038956/0 0 0 0 0 0 0 0
-6 .341391| .214524| .113297| .038956|0 [o] 0 0 0 0 0
-5 | J4ouosh| .341391| (214524 .113297| .038956 |0 0 0 0 0 0
-4 | (678079] JuougBk| .341391( .21k524! .113297| .038956|0 0 0 o] 0
-3 | .896307| .676079] .kohosh]| .3u1391| .21k524| .113297| .038956(0 o} 0 0
-.2|1,159858| ,896307| .678079| .Lou9BL| .3k1391[ .21k5241 .113297| .038956|0 0 0
-.1]1.491353}1.159958| .896307| .678079| .4ouoBh| .341391] .214524| .113297| .038956]0 0
0 | 2.000000|1.491351|1,159860| .896307| .678076| .Louosk| 341389 .214524| .113298| .038956| O
o1 | 2.453263|1.9uL614 1. 435965] 1. 106472| .B40921| .622691| .L4395k5| .286005] .159137] .05T90k| O
.2 | 2,678063 |2.346570| 1. 837924 | 1.329272] .997784| .T34229| .516001] .3328%5] .179313} .061607| 0
.3 | 2. T94595]2. 531045 2. 199552 1.690903| 1. 182254 | .850761] .567210] .368980f .193375| .066116] O
4 | 2.825815]2.607584 2. 344034] 2.012541|1.503895 | .995243] 663753} .k0OTO62| .211406| .OTIT99! O
.5 | 2.778311|2.595163 | 2. 376932] 2.113382( 1, 781889 |1. 273240| .TT1201] .460798] .235749] .079250| O
.6 | 2,649749|2. 496209 2. 313064 | 2,004:830( 1. 831283 |1. 506444 | 1,018592 546767} .271373) .089656] O
o7 | 2428463 |2,301597 | 2. 148057] 1.964909| 1. 75370k |1.511699]| 1.217489{ . 763944} .331875] .105701) ©
.8} 2,085961|1.984736)1.857670] 1. 712257|1.5520851 1. 374788 1. 169134 | .915640| .%509296] .135688! o
.9 | 1.544320]1.469978| 1. 376901} 1,281350( 1. 1757221.059575| .928935| .776827} .584570f .25h6u8} ©
1.0}o0 0 0 o 0 0 0 0 0 0 0
Bemg ' (v/2,0/1)
<0.9 {-0.017908|0 0 o 0 o} 0 0 0 0 0
8] «.Oh7438|-.017808| 0 0 0 0 0 s} 0 0 0
«T | -.080858]-.047438| -. 017908 0 ) 0 0 o o 0 )
-6 | - 114061 -, 8| -. ok 7438 -, 017908/ 0 0 0 0 (o} 0 0
-5 =.143536| -, 114061 | -.080858] -. Ok TH38| -. 017908 |0 0 0 o} 0 o
=l | =.16550k |-, 143536 -, 114061] -, 080858] -, Ok T438|-. 017908 0 0 0 0 0
«e3 | = 175684 |-,165594 | -, 143536] -. 114061| -. 080856 | -. Ok 7438} -, 017908 |0 0 0 0
=e2| «,167231}-.175684 | -, 165594 | -. 143536 -, 124061 | -, 080858 -, 047436 -.017908| 0 0 0
-e1} =, 127212}, 167131 -, 175684 -, 16559k | -. 143536 | -, 114061 | -. 8| -.0uT438] -, 017908] 0 0
o |o =+ 127212| -, 167131 -, 175684 | -. 165594 | -. 143536 -, 114062 -, 080858| -, O 7438 -, 017908 ©
o1 =4152677| 02546k |-.101T48] -, 141666| -, 150219 | -. 140129] -. 118071 | -. 088596| -. 055393 | -. 021977] ©
2| .235037| .195119{ .067905| -.059306| -,099224 | -, 107778 -. 097688 | -. 075629| -, W6156| -.017213] O
31 292379 .283625| .243907] .116694| -.010518]-.050436] -. 058989 -, Ok 8899| -. 030353 | -. 011857] ©
| .331928| .342019| .333467| .2935h7| .166336] .039122|-.0007T9k{-.012545] -. 011913} -.005684| O
5| «3557W3| .377801| .387801| .379338 .339419| .212207| .081914] .033149| .010505| .001664] O
6] 363565 .3 415008 .425187| .416635] .373614] .237672| .096958] .039652| .01087s| o
«T| +353146] .306348] .L15823] .437881| .Mhu699] .h27101] .373510| .220183) .082769| .023446| O
8] .319064] .3 385686] JL1WTS| JhessTe| J418071) (392499 .333068] .1867h2] .ok3835| O
91 J24TO91] . 305315 .326265{ .338357] .339983| .328655| .300000] .2Wh267] ,110%k7
1.0|0 0 o [ 0 (o} 0 0 0 0 (4}
-~
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NACA TN 3067

TABLE I.- PARTIAL SECTION LIPT AND MOMENT COEFFICTENTS fcy.' AND Bemy'
FOR A UNIT-STEP ANCLE OF ATTACK - Continued
(c) Bifc = 4/3
For n/1 equal to -
y/1
0 0.1 0.2 0.3 0.l 0.5 0.6 0.7 0.8 0.9 1.0
Bcle'(y/l,'l/l)

-0.7| 0.021016|0 0 0 0 [0} 0 0 o} 0 0
- .113298| .021016]0 0 0 0 0 0 0 0 0
-5 .253952| .113298| .021016|0 0 0 0 0 0 0 [0}
-h LLbOSK6[ .253952] .113298] .021016 |0 0 0 0 0 0 0
-.3] .678076| .buoSk6| 253952 .113298| .021016(0 0 o] 0 0 0

- 2| .9TBN05| .678076] .Mko6ME| .253952| .113298| .021016]0 (o] 0 0 0
-.1| 1.370753| .978405| .678076] .LLOGLE| .253952] .113298| .021016{0 0 0 0
o | 2.000000{1.370753] .978405] .676076| .Mu066| .253952] .113298] .0el016}0 0 [
.1] 2.629246]2.000000| 1.370755| .978405| .6780T6| .4koBL6| .253952] .113298] .021016{0 0
.2| 3.021605]2.629246} 2.000000(1.370753 | .978395| .678076] .LLOGHE| .253952| .113298] .021016| O
3| 3.29209512.99177712. 599419} 1.97017h |1.340925 | .9u8567| 64829 .410818} .22k124! .083470| O
.| 3.3972783.159848] 2. 859530) 2. 467172 |1. 837926 | 1.208678] .816320] .516002| .278571] .095T30| O
.5 3.379164 |3.192470] 2.955040} 2. 654721 |2, 262363 | 1.633118]1.003870| .611522| .314331] .1 o
.6| 3.242058(3.101401| 2.914707]|2. 677276 |2.376958|1.984600]1.355355] .729023| .361831| .119542| O
.7| 2.970118]2, 877841} 2. 737187| 2. 550492 |2. 313062 |2, 012737 [1.62331911.018592| .4u2500| .140936
.8] 2.507915|2.507915( 2. 394621 (2. 255963 [2. 0672691 1. 835051 | 1558846 1,220853| .679061| .180917] O
.9| 1.817493[1.817493| 1. 817498 1. 704192 |1.567623 | 1.412759|1.238580|1.035232| .TT9423| .339531| O
1.0} 0 0 0 0 (¢ 0 0 0 0 0 0
M'(Y/lnﬂ/l)

-0.7|-0.009946 |0 o] 0 0 o} 0 0 0 0 0
-.6| -.04Th39|-.009946]|0 0 0 0 0 0 0 0 (o}
-5 -.092126(-.04Th39] -, 60 [¢] 0 0 0 0 0 [¢]
aoli] < 134344 {-,092126] -. OWTU39]| -, 009946 [0 0 0 0 0 0 0
~e3| -.16559% |-, 134344 | -, 092126] -, O4TH39 |-, 00996 |O 0 0 0 0 0
we2| =.175340]-.165594 | -, 134344 | -, 092126 |-, Ok TH39| -. 009946 | O o] 0 0 0
-e1| -.145363|-.175340| -. 165594 | -, 13434k |-, 092126 -. O4TL39] -, 0099k6| O 0 0 0
.0l 0 - 145363] -. 175340] -. 165594 |-. 134344 | -, 092126 | -. OU T4 39| -. 0099U6] O 0 0

1] .145363]0 - 245363| -, 175340 |-, 165594 | -, 134344 | -, 092126] -, O4Th39| -. 009946} O 0
.2] 175340 .145363]0 -0 145363 |-, 175340 -, 16559 | -, 13434k | -, 092126] -, Ok TH39} -.009946| O
L3 .179710] .166456| .159479] (141157 |-.131247|-.161224|-.151478] -, 120229 -. 078010] -. 033323} O
L] 202250 .233500| .2u32u6| .213269) .06 -~ OTT456] -. 207343 | -. 097687| -. 066437] -. 026062| ©
.50 .225508| .267723| . 4| .308722| .278743| .133380| .011982]-.041960| -.033713| -.01k650| O
6] .245058| .289745| .331962| .363213| .372959| .342982| .197619| .050866| .010187|-.000590| ©
1 .259us1| .206043| 341631 .383848| k15098 .h2L8uh| .393465] .237671] .073396| .018193| O
8| .2715268) .275268] .322707| .36739%% | .409611| .439329] .4BT969| .388647] .218809] .OWTTTE| O
9| .250073| .250073| .250073| .297512| .340250| .368951] .37TBT| .360T .)ohskﬂl .139585| o
1.0] o 0 0 0 o} 0 0 0 0 0 0
-, i . - i
— ;«g : .. f: ) ) o
. R -
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66 NACA TN 3067
TABLE I.- PARTIAL SECTION LIFT AND MOMENT COEFFICIENTS fc; ' AND Bop,'
FOR A UNIT-STEP ANGLE OF ATTACK - Continued
(a) pife=2
For n/i1 equal to -
y/1
0 0.1 0.2 0.3 0.4 0.% 0.6 0.7 0.8 0.9 |lo
Beg ' (y/3,m/1)
-0.4| 0.113298|0 0 (¢} 0 0 0 0 0 0 0
-3 341391} .113298|0 0 0 0 0 0 0 0 0
-.2] .678076] .341391] .113298|0 0 0 0 o (o} 0 (o}
-.1] 1.159860| .6768076| .341391| .113298{0 0 0 0 0 0 0
0 | 2.000000]|1.159860| .678076] .341391} .113298|0 (o} o} 0 0 (o}
.1| 2.840139|2.000000|1.159860| .678076| .341391] .113298]0 0 o} 0 0
.2| 3.32192%|2.840139|2,000000}1.159860| .678076] .341391] .113298|0 (o} 0 0
.3| 3.658608|3,321923} 2, 840139} 2. 000000| 1.159860| .678076| .341391| .113298|0 0 o}
.| 3,886701|3.658608]3.321923| 2. 840139| 2. 000000| 1. 159860| .678076| .3%1391| .113298|0 0
.5| 4.000000{3.886701|3,658608]3.321923] 2. 840139 2. 000000| 1.159860] .678076] .341391| .113298| O
.6 3.387921|3.857921(3. 724623|3.496530| 5. 159844} 2.678061]1.887921| .997782| .515998| .179313| O
«7] 3.503889]3.503889|3.503869| 3.390596| 3. 162503 | 2. 825813} 2. 344029 1,503889] .663755| .211k09| ©
.8 2.991140]2.991140]2,991140| 2.991140]| 2. 877837 2. 649T749| 2. 313059] 1. 831270 1.018592] .271373| ©
9| 2.199262]2,199262|2.199262| 2. 199262| 2.199262| 2, 08596k | 1. 857870| 1.552848| 1,169134| .509296| O
10| ¢ 0 0 0 0 0 0 0 0 0 0
Bemg' (v/1,0/1)
-0.4] -0, 04TH38[0 0 o} 0 0 0 (o} (o} 0 0
-3] -.114062| -, 04T438|0 o 0 0 0 0 (o} 0 o
-e2] -.165592]-.114062{ -. 047438 0 0 0 0 0 0 0 0
-1| -.167131|-,165%92| -. 114062| -. Ok T438| 0 0 0 0 0 0 0
0 (o] -.167131| -.165595| -. 114062} -. 047438} 0 (o] 0 0 0 0
.1] .167131]0 -.167131{ -, 165592 -. 114062| -. O 7438} 0 0 0 0 0
2] .165595| .167131|0 -.167131| -, 165565| -. 114062] -. Ok 7T438]0 0 0 0
.3 .114062] .165%92] .167131]0 «.167131| -. 165592] -.114062| -. O4Tk38] 0 (] 0
A .OuTH38| .114062] .165%95| .16T131}0 =.167131] -, 165595| -. 114062| ~. 04 7438] O 0
5| 0 LObTL38| .114062| .165592| .167131{0 -.167131] -. 165592| -. 114062| -. 04 7438] ©
6| 067907} .067907| .115345| .181969| .233502| .235035| .067907|-.099223] -,097688] -.0u6154| ©
7| 166336} .166336] .166336| .21377Th| .280398| .331928] .333467| .166336|-.000793| -.011922] ©
L8] .2ug50h| .2u950k| .2ug504| .24950u] .296042] .363566| .415099| .h16632| .237672] .039653| ©
9| 271625 .271625| .271625| .271625] .271625| .31906k4{ .385685| .Le3s5Th .592&99[ .186741| ©
1.0| 0 o 0 (] 0 0 0 0 0 0 0
o,
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TABLE I.- PARTIAL SECTION LIFT AND MOMENT COEFFICIENTS Bey,' AND ac,,e'
FOR A UNTT-STEP ANGLE OF ATTACK - Concluded
(e) Bifc=1b
For /1 equal to -
¥/
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 |10
Beyg' (v/1,0/1)
-0.2| 0.113298/0 0 0 0 o} 0 0 0 0 0
-1} .678075| .113298|0 0 0 (o} o} 0 (0} 0 0
o | 2.000000| .678075| .113298|0 0 0 0 0 0 0 0
.1| 3.321923|2,000000( .678075| .113298|0 0 0 0 0 0 0
.2| 3.886711}3.321923]|2.000000] .678075| .113298]0 (o] 0 0 0 o]
3! %.000000| 3.886701|3.321925|2.000000] .678076| .113298]0 0 (o} 0 0
4| 4.000000| 4, 000000} 3. 886711| 3. 321923 2. 000000] .678075| .113298]0 (i} 0 0
5| &.000000] 4,000000|4.000000|3.886701| 5.321923 |2, 000000] .678076] .113298|0 0 0
.6 14.000000| 4.000000] 4. 000000] 4. 000000] 3. 8867113, 321923 |2, 000000] .678075| .113298|0 0|
«7| &.000000] &.000000] k. 000000| 4. 4. 000000|3. 886701 |3.321923} 2. 000000| .678076f .113298f ©
.8| 3.837920] 3.8357920] 3. 857920] 3. 837920| 3. 837920| 3. 837900|3. T2L633] 3. 15984k |1, 837926 .515998] ©
.9| 2.991145] 2,991145{2,991145|2.991145] 2.991145] 2. 991145 |2.991145| 2. 877837 2. 313059| 1.018592| ©
1.0/ © 0 0 0 0 0 0 0 o} 0 (¢}
50‘0'()'/1:‘\/1)
-0.2|-~0.047438] 0 0 0 0 0 0 0 0 0 o
=e1] =.165594] -, Ok Tk38|0 0 0 0 0 0 0 0 0
o ]o -, 165594 -, ObT438| 0 0 0 (o} o} 0 0 0
1] .165594| 0 +165594 | -, 047438 0 0 o] 0 (o} 0 0
2] LOLTU3B] .165594|0 =¢165594| -. 04743810 0 0 0 0 )
.3/ 0 LOUTH38| L165%9%]0 -.165504| -, 04743810 0 0 0 0
Al 0 o ~OWTU38] ,165594] 0 -0 165594 | -, Ok T438] 0 0 o} 0
.5] 0 0 0 LOWTH38l .1655941{0 -4 16550l | -. O4 7438 0 0 0
6] 0 0 0 0 LObTH38| 16559k {0 -. 165594 -. o4 7438| 0 0
Tl © 0 0 0 0 .Ok7h38] .165504|0 -.165594| -, Ok 7438] ©
8] .6790uk]| .06T90L] .06T9OM| .O6TIOM .06T9O0L| .06THOM] .115356| .233502] .067905]-.097688] ©
9] 249504 .259504| .24950k} .2u9504 .2u950h| 249504 | 24950k . o] .L1k6ko| .237672] ©
1.0} 0 0 0 o} 0 0 o} 0 (i} 0 0
{2 -
- '
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TABLE II.- SECTION LIFT AND MOMENT COEFFICIENTS ac,p AND chp
POR A UNIT RATE OF ROLL
-2 fo; + = fic
1+a W T+a ' lp
Bop, * -2 Bop + —— B
mp " Tva W' Tsal Up
| v/ Bey, (v/1) Bclpo(y/ 1) Bep, (/1) Bc,,po(y/ 1)
(a) B1/e =5/7
0 ' 3, 74314 0.306768 0. 109560 -0.118325
.1 3.589100 047812 .145258 -. 159784
.2 3, L2604 -. 184467 . 180026 -.201629
.3 3,273239 -.387793 .212207 -.241915
b 3, 077662 -.558069 . 240010 -.278412
.5 2.851240 -.693521 . 261463 -.308527
.6 2.586448 -. 78498 < 273900 -.328680
.7 2.270441 -. 823060 273661 -.333866
.8 1.878086 -+ 789604 « 254504 -.315697
.9 1.344769 -.641916 . 202991 -.255769
\ 1.0 0 ) 0 0
(v) Bl/c =1
0 L. 000000 0 0 0
.1 3.944613 -. 343532 . 025464 -. 025974
.2 3.837918 -.631772 . 067905 -.070621
.3 3.690902 -. 873882 . 116694 -. 123696
o 3.503889 -1,068886 . 166334 -.179641
) 3.273240 -1,212206 .212207 -. 233427
.6 2.991135 -1,295676 . 249503 -. 279443
. .7 2.6L42985 -1.305516 . 272287 -.310407
.8 2.199256 -1,216158 271624 -.315084
] .9 1.568%274 - 966580 .22918% -. 270436
1.0 0 0 0 0
! (c) Bifec =u/3
0 4 . 000000 0 0 0
.1 k4, 000000 -.400000 0 o}
.2 4, 000000 -. 800000 0 0
.3 3.970171 -1.169877 .014115 -. 014256
! ob 3.837919 -1.433309 - 067906 -. 069943
‘ .5 3.633116 -1,616485 «133380 -+ 140049
3 .6 3.355351 -1.716783 .197619 -. 211452
\ o7 2.991142 -1,719543 .2k9502 -.271957
' .8 2.507913 -1.593429 «275267 - 305547
.9 1, 817491 -1.260633 « 250073 -.282582
1.0 0 0 0 0
| I . N -
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TABLE II,- SECTION LIFT AND MOMENT COEFFICIENTS Bclp AND chp

FOR A UNIT RATE OF ROLL ~ Concluded

e e o

T g S ooy e TN

P

Cy == +
B i
M"p l+a Bc"a. + 1+ Bc"‘po
/1 Bey o (¥/1) Bclpo(y/ 1) Bem, (¥/1) chpo(y/ 1)
(d) Bifec =2
0 4. 000000 o 0 0
.1 4. 000000 -.400000 0 0
o2 4,000000 -. 800000 0 o}
.3 &, 000000 =1, 200000 0 0 ;
oh hom -1.600000 o 0 j
.5 4. 000000 -2. 000000 0 0 i
.6 3.837921 -2,234846 . 067906 -. 069264 ;
o7 3.503723 -2.286270 .166336 -.172989 !
.8 2.991137 -2.143407 249504 -. 26447k ;
.9 2.19927h -1, 707722 271624 -. 293354 !
1.0 0 0 0 0
(e) Blfe =1l
0 4, 000000 0 0 0
.1 4, 000000 -. 400000 0 o]
.2 4, 000000 -« 800000 0 0
.3 4, 000000 -1.200000 0 0
ok L. 000000 -1,600000 0 0
<5 4. 000000 -2. 000000 0 0 :
.6 4. 000000 -2.400000 0 0 ]
.7 %, 000000 -2. 800000 0 0
. 8 30 857920 -5- 0365& . %79% -e %8585
1'<9> g.”nﬁ -g. 567274 o° 249503 5' 256987
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TABLE TII.- SECTIONAL LIFT AND MOMENT COEFFICIENTS Bclb AND chb

FOR A UNIT AILERON DEFLECTION

Ao WL - A npags. =i s

% .
v ,
O — -

=
o
¥ S
’

a2 0.1
ba/l = 1.0
cdc = 0,2
y/1 Bcza(y/l) chs(y/l) y/1 Bcza(y/l) ﬁc%(y/l)
(a) Bife = 5/7 (c¢) Bifc = 4/3
0 -0.400000 | -0.160000 0 -0.400000 | -0.160000
.1 -. 646627 -.251783 .1 -.Th9212 - 295998
.2 -. 760302 -.301080 .2 -. 800000 -. 320000
.3 -+ 800000 -. 320000 .3 -. 800000 -+ 320000
R -. 800000 -+.320000 A -. 800000 -« 320000
5 -. 800000 - 320000 .5 -. 800000 -.320000 |
.6 -. 800000 -.320000 .6 -+ 800000 -. 320000
.7 -. 800000 ~«320000 o7 -. 800000 -+ 320000
.8 -. 742863 -.292771 .8 -. 800000 -. 320000
.9 -.570248 -.217640 .9 -. 726623 -.285314
1.0 0 0 1.0 0 0
(v) Bife =1 (@) p/e22
0 -0.400000 | -0.160000 0 ~0.400000 | -0,160000
. l e 701015 e 27“‘665 . 1 e 8«)000 - 52m
02 -.800000 -.520000 .2 -.m -032m
o} -.800000 -.320000 03 "QBM -.52m
A -. 800000 -. 320000 A4 -. 800000 -+ 320000
.5 -om -QBM 05 ) -.8“)000 -.520(”0
.6 -. 800000 -+.320000 .6 -. 800000 -+ 320000
07 -.80(»00 -.520m 07 -o&m 'QBW
08 -.800000 -.520000 08 -.&)0000 -.520000
.9 -, 654649 -.253370 .9 -+ 800000 -+ 320000
1.0 0 o 1.0 o] 0
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Figure 1l.- Configuration considered in the aeroelastic analysis. Positive
directions of displacements and velocities are indicated by arrows.
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T3
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(a) Wing with rigid-plate center section.
g=0 |
y

Q X
(v) Wing with antisymmetrical unit-step angle-of-attack distribution.

=0

l
|
R

(¢) Wing with unit-step angle-of-attack distribution.

Figure 2.- Configurations considered in the aerodynamic analysis.
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Modified lifting-surfoce
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(a) M= 1.108.
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(b) M= 1.202.

Figure 5.~ Variation of rolling effectiveness with pressure ratio for
constant values of Much number.
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/—Modified lifting— surface
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/—Sflrip theory
Rolling
effectiveness,
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A
2
20\

0 2 4 .6 .8 1.0

Pressure rotio , —g‘;

(e) M =2.848.

Figure 3.- Concluded.
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Modified Iiﬂinq-lsurfoce theory —-//

Lifting-surface theory
1 l

T 1
Strip theory
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| 2
Mach number, M
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Figure 4.- Variation of pressure ratio at reversal with Mach number.
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Figure 5.- Variation with Mach number of the rate of roll for the rigid

wing.
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Figure 7.- Variation of rolling effectiveness with Mach number at
constant altitude.
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