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IC NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 3067

ROLLING EFFECTIVENESS AND AILERON REVERSAL OF

RECTANGULAR WINGS AT SUPERSONIC SPEEDS

By John M. Hedgepeth and Robert J. Kell

SUMMARY

Linearized supersonic lifting-surface theory is used in conjunction
with structural influence coefficients to formulate a method for ana-
lyzing the aeroelastic behavior in roll at supersonic speeds of a rec-
tangular wing mounted on a cylindrical body. Rolling effectiveness and
aileron-reversal speed are computed by using a numerical solution which
incorporates matrices.

Results obtained for an example configuration by using this method
are compared with the results obtained by using simplified methods of
analysis. For the particular configuration considered, the variation of
rolling effectiveness with Mach number is found for two constant-altitude
flights.

INTRODUCTION

In the past, most aeroelastic calculations have been based on the
use of beam theory for the structural analysis and strip theory for the
aerodynamic analysis. The application of these simplified theories
avoids complications which result from using more refined theories; in
addition, the simplified theories are quite adequate, in most cases,
when applied to wings of high aspect ratio. When applied to wings of
low aspect ratio, however, these simple theories may become inadequate;
if so, more refined structural and aerodynamic analyses are necessary.

The purpose of this paper is to describe a method for predicting
aeroelastic effects on the steady-state roll of rectangular wings at
supersonic speeds in those cases for which beam and strip theory are
inadequate but for which the aerodynamic effects of chordwise deforma-
tion may be neglected. In this method the structural distortions caused
by arbitrary loads are expressed in terms of structural influence func-
tions. The aerodynamic loads caused by arbitrary angle-of-attack distri-
butions are determined by superposing basic aerodynamic loadings resulting
from unit-step angle-of-attack distributions, which loadings are obtained
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2 NACA TN 3o67

herein on the basis of linearized aerodynamic theory. By means of this
superposition procedure, first outlined by Frick and Chubb in refer-
ence 1, the application of three-dimensional lifting-surface theory is
considerably simplified.

The aircraft configuration considered herein consists of two flex-
ible rectangular wings with trailing-edge ailerons of constant chord,
diametrically mounted on an infinitely long, rigid, cylindrical fuselage.

The analysis of the aeroelastic rolling behavior is separated into
various parts. The analysis of the structural deformations is described,
the aerodynamic loads are then found, and the two parts are combined.
A numerical solution of the resulting equations is presented in matrix
form. Tables of aerodynamic matrix elements usable for any rectangular
plan form are included. A particular example is analyzed and the results
are compared with those obtained by simplified methods. The structural
analysis of the example configuration is included in appendix A and the
details of the aerodynamic analysis are relegated to appendix B.

SYMBOLS

D local flexural stiffness, Et3/12(l - p2)

E Young's modulus of elasticity

G shear modulus of elasticity, E/2(l + i)

GL(YA) structural twist influence function which results from a
unit concentrated load at the wing midchord

GM(Yn )  structural twist influence function which results from a
unit concentrated torque

L(y) aerodynamic load per unit span, positive upward

M free-stream Mach number

M(y) aerodynamic moment, per unit span, about the midchord,
positive in the positive twist direction

Ph static pressure at altitude

PO standard static pressure at sea level

Q(y) aerodynamic moment, per unit span, about the elastic axis,
positive in the positive twist direction

|
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NACA TN 3067 3

V free-stream velocity

a ratio between fuselage radius and exposed wing semispan

b total wing span, 2(aZ + 1)

ba single aileron span

c wing chord

Ca aileron chord

e(y) distance measured forward from the midchord to the elastic
axis, expressed as fraction of chord

I exposed wing semispan

m modified aspect-ratio parameter, O3/c

p rolling angular velocity (see fig. 1)

pb/2V tangent of the wing-tip helix angle

q dynamic pressure

t thickness of wing cross section

x,y,z coordinate system (see fig. 1)

1 cotangent of the Mach angle, - i

OcI(y) section lift coefficient, L(y)
qc/

PCm(Y) section moment coefficient about the midchord, M(Y)

qc 2/03
Q(y)

Pcq(y) section moment coefficient about the elastic axis, qc2/0

5 aileron deflection (see fig. 1)

e(y) angle of twist of wing (see fig. 1)

structural parameter, S.424(l p
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Poisson's ratio

a(x,y) local angle of attack of wing

0 rolling effectiveness, (pb/2V) F/(pb/2V)R

((xy) velocity potential

0(xlYl) nondimensionalized velocity potential

Subscripts:

F flexible wing

R rigid wing

a airloads due to aileron deflection

r airloads due to roll

s airloads due to structural deformation

rev aileron reversal

p aerodynamic coefficients due to unit pb/2V

PO aerodynamic coefficients due to a unit rate of roll about
the x-axis

.aerodynamic coefficients due to a unit angle of attack of
the entire wing

5 6aerodynamic coefficients due to a unit aileron deflection

9 indicial aerodynamic coefficients due to a unit-step angle-
of-attack distribution

I, II,...VI regions on surface of wing

1 nondimensional quantities used in appendix B

Superscript:

aerodynamic coefficients due to a unit-step angle-of-attack
distribution on one wing only

. Jk.:J" : . ....
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ANALYSIS

Structural Deformations

In this report the treatment of the structural deformations is
based on the assumption that there is no chordwise bending of the wing.
The effect of the structural distortion on the aerodynamic loads is
then determined entirely by the angle of twist 6(y), the contribution
of the spanwise bending being negligible. (See fig. 1.) Consequently,
only the determination of 9(y) will be included in this analysis.

If the section lift L(y) and the section moment about the mid-
chord M(y) are known, the angle of twist can be obtained from

6(y) = . GL(yA) L(n) d+ GM(y,71) M(n) dn (1)

In this equation, GL(y,I) and GM(y,n) are influence functions which

define the twist at y caused by the application of a unit concentrated
load at the midchord and a unit concentrated torque, respectively, at
the station n. For many structures these influence functions may be
obtained analytically as is done in appendix A for a uniform flat-plate
wing; other structures may be handled analytically by methods such as
those described in references 2, 3, and 4, for instance. For some
structures, it may be more convenient or even necessary to resort to
the use of experimental influence coefficients. The analysis proceeds
hereinafter on the assumption that the influence functions are known.

In general, the two influence functions are needed in order to
specify completely the twist of the wing. For many rectangular wings,
however, sufficient accuracy can be obtained by expressing the twist
solely in terms of the moment about some "elastic axis." This elastic
axis is herein defined as a line along which loads can be placed without
producing significant twist anywhere.

If an elastic axis does exist, it is no longer necessary to know
the influence function associated with load; only GM(yA) need be
determined. The twist, in this case, is given by

0(y) = GM(yn) Q(n) di (2)t0

4, 1.
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In this equation, Q(y) is the section torque about the elastic
axis and can be expressed in terms of L(y) and M(y) by means of the
simple moment-transfer relation

Q(y) = M(y) - e(y) c L(y) (3)

where e(y) is the distance measured forward from the midchord to the
elastic axis, expressed as a fraction of the chord.

Aerodynamic Loads

The section lift L(y) and moment M(y) may be expressed in coef-
ficient form as

L(y) = qc Oc1(y)

(4)
M(y) = qc2  I(y)

For convenience, the products of 1 = -- and the coefficients are
considered herein rather than the coefficients themselves.

It is assumed that the aircraft is undergoing a steady roll about
the axis of the body and that this axis is in line with the direction
of flight. Consequently, the resulting loads are due solely to struc-
tural twist of the wing, the rolling velocity itself, and the deflection
of the ailerons. Since linear aerodynamic theory is to be used, the
coefficients resulting from this steady rolling maneuver can be expressed
as

O =(OO + (Ocz~r + (OcI). 5
Cm = (Ocm) s + (Ocm)r + (Ocm)a

where s, r, and a refer, respectively, to structural deformation,
roll, and aileron deflection.

In the determination of the coefficients on the right-hand side of
equations (5) the wing and body must be treated as a unit. In view of
the fact that in this problem the pressures resulting from the presence
of the body are important only in the neighborhood of the wing root and
therefore contribute only slightly to the structural distortions and

N
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rolling moment, a rather simple idealization is made regarding the
body; that is, the body is replaced by a rigid plate Joining the two
wing roots together. The width of this plate is the same as the body
diameter. (See fig. 2(a).) While it is not argued that this ideali-
zation is the most nearly correct one, the resulting aeroelastic model
does have the advantage of simplicity and allows aerodynamic interaction
between the two wings. The presence of the cylindrical body is further
taken into account by neglecting the effects upon the rolling moment of
the pressures acting on the rigid plate, since the pressures acting on
the actual cylindrical body would produce no rolling moment.

Although the details of the calculations of the aerodynamic loads
have been relegated to appendix B, a short discussion of the loads due
to each of the three causes - structural deformation, roll, and aileron
deflection - is included in the subsequent portions of this section.

Loads due to structural deformation.- As a consequence of the pre-
viously assumed linearity of chordwise deformation, the local angle of
attack of the wing is completely defined by the twist of the wing. Since
the twist is not defined explicitly, the deformations being dependent on
loads which are, in turn, dependent on the twist itself, it is necessary
to be able to perform the rather difficult task of calculating the aero-
dynamic loads caused by an arbitrary angle-of-attack distribution. This
task is considerably simplified for the rolling problem by superposing
loads caused by an antisymmetrical unit-step angle-of-attack distribution
obtained by imposing a positive unit angle of attack outboard of any
spanwise station n on the right wing and a negative unit angle of
attack over the corresponding portion of the left wing as shown in fig-
ure 2(b). These basic load distributions, which have the nature of aero-
dynamic influence functions, are hereinafter called "indicial" loads for
the sake of brevity. Superposition of the indicial section coefficients
of lift and twisting moment, designated Ocle(y,n) and oCme(y, ),

respectively, which result from such basic angle-of-attack distributions,

yields the section coefficients EPcI(y)]s and Ecm(y)s due to struc-

tural deformation. The required superposition integrals are given by

Scz(yy, = L )

(6)

PC (yon~) -A dlEo f M0 e d0j

where the twist at the root is assumed to be zero.

!f
-----~-,zoo"
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The indicial section coefficients are dependent not only on the
spanwise coordinate y and the position of the step 71 but also on
two additional parameters. These parameters are the modified aspect-
ratio parameter 01/c, which usually appears in theoretical supersonic
aerodynamic calculations, and the nondimensional body radius a. The
dependency on the body radius is undesirable since it restricts the
application of these indicial section coefficients to a particular value
of a. Fortunately the dependency can be eliminated by making use of
the fact that the loads due to the antisymmetrical unit-step angle-of-
attack distribution can be separated into two parts: the first is the
loads due to a unit-step angle of attack on the right wing only (see
fig. 2(c)); the second is the loads due to a negative unit-step angle
of attack on the left wing only. It can be seen that the second part
is merely the negative mirror image of the first and, consequently,
only the first case need be considered in detail. The total indicial
section coefficients can be written in terms of these partial indicial
section coefficients, designated Pcj.' and pCmc', as follows:

Ocje(y, ) = Oc18'(yq) - Pcze'(-2a-y,n)

Ocme(yi) = Ocme'(y,) - Ocme'(-2a1-y,n)

The first term on the right-hand side in equations (7) gives the contri-
bution of the right-hand step angle of attack; the second term gives the
contribution of the negative left-hand step.

The advantage of the foregoing separation is that Oc. 6' and Pcme

are independent of the body radius and are functions of only the modi-
fied aspect-ratio parameter, provided that this parameter is greater

than that is, when the Mach number is great enough so that
1 + 2a

there is no point on either wing that is influenced by both wing tips
simultaneously. Thus, if the restriction 1 1 I

-c- >-2 is imposed, a

single parameter remains - 01/c itself - and it is feasible to compute
tables applicable for any body radius. Numerical values of Oc,
and 0Cm,' for - X5_ 1 and 0 !_ 1 in steps of 0.1 are pre-

sented in table I for several values of 01/c. These numerical values
were obtained from expressions derived in appendix B.
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Loads due to roll.- The section loading coefficients resulting
from roll can be written in the form

(~3c2) = pbv

(8)

The olli g Qcm), = Oc pb

The rolling derivatives Ocip and OCmp are given in appendix B.

Here again the derivatives are dependent on both 01/c and a. Inspec-
tion of the resulting expressions (eqs. (B13) and (B14)), however,
reveals that the dependence on a is quite simple; the expressions
for OCp and OCmp can each be separated into two parts - one with

the coefficient a the other with 1 - both of which parts
l+a l+a

are independent of a. It is possible to show that in each case the
first part is merely the derivative which results from a unit angle of
attack of the entire wing and the second part is the rolling derivative
which would result if the wing were rolling about the x-axis. There-
fore, these expressions become

_ a 1Cp i + a O iM+1 -- a OCIP o

(9)
1 + a OCm + i +---

In order for this simplification to be correct, it is again neces-

sary to impose the restriction .A .> 1
C i+ 2a'

The quantities Oc 1 , pcc O Cpo, and Ocmp° have been calcu-

lated for values of 01 S 1 in steps of 0.1 and are presented in
table II for several values of 01/c.
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Loads due to aileron deflection.- The section coefficients of lift
and twisting moment,

(13CI) = PC, 5 5

and 1>(10)
(Ocm)a = cM55 J

respectively, are found for constant-chord trailing-edge ailerons of
arbitrary length. All gaps between the wing and aileron are considered
to be sealed. The calculation of the aileron derivatives Oc1 5 and

Ocnj is very similar to that of the indicial structural loads and is

included in appendix B. For most reasonable aileron configurations, if
the aircraft is flying at supersonic speeds sufficiently high to satisfy

the Mach number limitation previously imposed that is, Lc 1

an aileron deflection on the left wing produces no loads on the right
wing. For this reason, only the case is considered wherein the loads
on one wing are independent of the aileron deflection on the other. In
this case, the limitation on the modified aspect-ratio parameter 01/c
for the analysis of aileron loadings in appendix B is that 0z/c must

be greater than ca/c- b Numerical values are given in table III

I + 2a

for 0 = y _ 1 in intervals of 0.1 for several values of 01/c; the

computations have been made for ba/Z = 1.0 and Ca/c = 0.2.

Significance of Mach number limitations.- Although the restrictions
that have been placed upon the modified aspect-ratio parameter limit the
utility of the aerodynamic results contained herein, these restrictions.,

in reality, are not serious. This fact is substantiated by considering
a typical configuration such as that used for the example contained in a
subsequent section. For this wing, which has an aspect ratio of 3.6,

the pertinent parameters are 1/c = 1.5, a = 0.2, ca/C = 0.2, and

ba/1 = 1. The restriction imposed upon the expressions for the loads

due to structural deformation and roll, -L > 1
c 1 + 2a' and that for the

loads caused by aileron deflection, f--.> ca/c , become M> 1.108
c 1 + 2a -ba

and M > 1.054, respectively. Since the validity of linear aerodynamic
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theory is questionable near a Mach number of 1, these limitations are
of little consequence.

Aeroelastic Solution

Structural and rolling-moment equations.- In the solution of the
aeroelastic rolling problem, not only must structural equilibrium
(eq. (1)) be satisfied but also the equilibrium of moments about the
rolling axis. If the loads in equation (1) are replaced by the loads
arising from the various causes as derived in the preceding section,
the equation specifying structural equilibrium becomes

qc F ' [ I dof' d

I(y) - EL(Yt O c1 Nc(,) dt +

c GM(y,1j) PcmO(N,) do j +

qcp rb o r C1p() '' ) rj~1~ 2 ~0  d ct
- f sy,) p(I) + c GM(y,,n) cm( 11)

- 1 G (y,n) Ic j,() + c CM(Y I) OCM 5( d11( l

Rolling-moment equilibrium is attained by setting the total rolling
moment equal to zero. This condition can be written as

f" (al + n) L(qI) dij = 0

Again, the results of the preceding section can be used to give

36- (az + )[ jc 0(,t) d d pV Ocp('I) + 8 Oc1 (nd) = 0

(12)

-I.i

, 
(L )
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Alternate structural equation.- Equations (11) and (12) completely
express the necessary conditions for this aeroelastic problem. It is

to be noted that the quantities 5 and qc/3 are, in general, known,
the structural twist 9(y) is unknown, and the aeroelastic rolling
rate pb/2V is the quantity that is desired. The simultaneous solu-

tion of these equations in closed form is, in actuality, extremely

difficult if not impossible to obtain. Some sort of numerical solution

is therefore inevitable. One type of numerical solution, which utilizes

a collocation technique in the solution of equations (11) and (12), is

derived in a subsequent section.

The numerical methods with which the indicated integrations in

equations (11) and (12) are performed can be expected to be accurate

when applied to reasonably well-behaved functions. In addition to

numerical integration, however, numerical differentiation must be used

in order to express the rate of twist de/dy, upon which the loads due

to structural deformation depend, in terms of the twist 6. As is well

known, the process of numerical differentiation is not as accurate as

that of numerical integration and therefore should be avoided if possible.

The numerical differentiation can be eliminated by differentiating equa-

tion (11) with respect to y, which operation yields

dO qc I FGa(y,n) 10 de +

aG,(y,1) ro ded 7
dy J 10c1 r(1, ) -To d, d +

c pb rA I(Cy, ( c d8 71 dy +
6y I I1

2 y c s() + - 6y( "Md n (13)

In this manner, equilibrium equation (11) is replaced by equation (13)
and the twist 0 no longer appears in the problem. The rate of twist

becomes the unknown and can be used directly in the numerical solution.

The use of equations (12) and (13) is particularly desirable when
6GL(YTB) 6My

the functions and , which are merely the rates of

Ty ;3Y

VPt
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twist due to concentrated loads and torques, respectively, can be found
accurately. The example considered in a subsequent section is one for
which it was possible to obtain these functions analytically. When
complicated structures are to be dealt with, however, recourse must
usually be made to experiment or to approximate theories in obtaining
the structural properties. For these structures, probably only discrete
influence coefficients for twist can be found; the determination of the
rate-of-twist influence functions would be subject to at least the same
inherent inaccuracies as the numerical differentiation discussed pre-
viously. In such cases, therefore, the use of equation (13) instead of
equation (11) would not be advantageous.

Aileron reversal.- If the rolling-moment equation (12) is solved
for 8, the result is substituted into equation (11) or equation (13),
and pb/2V is set equal to zero, the following equations result:

For equation (11),

e(y) - %rev--- y,'I) P ce(1, O) d +

of (az + ci) Gc(yn) an ×

°0 (a t + n) OC(n) dl

I(a + n) Ic 10 (jot) do dt d()

0 01d

17-~
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For equation (13),

d9(y) qrev c  Z (Y,) r d dt +

c -CMO(T, dtd -

o1 L6Gy 1  l~ + G~y cTI)--~m(Tjjh + pcz u dUY On]

f (al + ) ) je(n) dn0

(aZ + 1)Oj)%) 'd(5

Either of these homogeneous integral equations expresses the condition
for aileron reversal, where the dynamic pressure at reversal qrev

appears as an eigenvalue.

Rolling effectiveness.- The effect of the elasticity of the wing
on the rolling behavior may be determined by examining the ratio between
the rate of roll of the flexible wing and the rate of roll which would
occur if the wing were rigid. This ratio, the "rolling effectiveness,"
is designated as 0, where

(pb/2V)F

(pb/2V)R

In this equation (pb/2V)F is the rate of roll determined directly

from the aeroelastic equations. The quantity (pb/2V)R, the rate of roll

kl7i
.! ,,



NACA TN 3067 15

for the rigid wing, is found by setting the twist per unit length equal
to zero in equation (12):

( p R f o ( a z + y ) 0 c 5(y ) d y(V)R= -8 (16)

f, (az + y) Oc1p(y)

Simplifications for wings with an elastic axis.- If the wing is
constructed in such a manner that an elastic axis does exist as previ-
ously described, the expression for structural equilibrium is given by
equation (2) instead of equation (1). It is to be remembered that, in
this case, the twists are dependent only on Q(y), the torque about the
elastic axis, and not on the load L(y). The aeroelastic structural-
equilibrium equation which results from using equation (2) instead of
equation (1) can be obtained by merely deleting the terms in equa-
tion (ii) that involve %L(y,n) and replacing the section moment coef-
ficients about the midchord by the section moment coefficients about the
elastic axis. Thus, the derivatives Ocm9, PCmp, and 0cmc should be

replaced by . cq,, Ocqp., and oCq respectively, where

3Cq9  eCm - e oc1 0

ocqp = Pcmp e Cp (17)

3cq = -, e clc ,

In these equations, as before, e is the distance measured forward from
the midchord to the elastic axis, expressed as a fraction of the chord.

The equations analogous to equations (13), (lI), and (15) are
obtained in exactly the same manner.

NUMERICAL METHOD

Since an exact solution of the aeroelastic equations is not feasible,
even for the simplest configuration, this section is devoted to the
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presentation of a numerical method of solution. The method is based on
satisfying the equations at a number of discrete spanwise stations.
Matrix notation is used as an aid in organizing the numerical procedure.
A step-by-step outline of the procedure is included at the end of this
section in order to aid the reader.

The accuracy of the numerical method is directly dependent upon the
number of stations used. Experience has shown that for this particular
problem 11 stations, defined by the end points of 10 equal spanwise
intervals, are sufficient. The derivation that follows is therefore
based on 10 equal intervals, the extension to other numbers of intervals
being evident. Simpson's rule is used to perform the integrations and
parabolic difference equivalents are used to replace any necessary
derivatives.

Matrix Operations

Two distinct types of integration appear in the aeroelastic equa-
tion. The first is of the form

fdn

and the second is of the form

h(y,n) g(TI) dj

The integrands in these equations are evaluated at each of the spanwise
stations nO, 1I, n2, . . i . .lO, where, for equal intervals of

width c, ni = ic. In a similar manner this subscript notation is used
to denote evaluation of the integrands at each spanwise station. Thus,
fi = f(i) = f(ic), gi = g( i) = g(iE), and hij = h(yi,Tj) = h(ie,jc).

For 10 intervals, e = 1/10 and Simpson's rule becomes, for each of the
integrals, respectively,

f(j) g(n) dn = (f 0 go + 4flg I + 2f2 g2 +

4f393 + • + f9  + flOglO)

.44r
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and (for any single Yi)

0h(yiOTj) g(TI) din = (hicgo + 4hilgi hi8

4hi3.g3  + +4hig9  + hilOgl0)

In matrix form these integrals can be written as, respectively,

co f(n) g('n) din Lf 1tS]I gi I

and (for all Yi)

( h(yTI) g(ni) d [hi] [S ] IjI

The row matrix is given by

Lf ii = Lfo ~ 2~ * 9£0

and a typical column matrix by

gl

g3

glo

9

% -



18 NACA TN 3067

where the subscripts denote the position of each element. The square
matrix is given by

boo ho1  h0 2  ... ,1

hlo hll hl2 ... hl'lO

hij = h20  h21  h2 2  ... h2,10

hloO h1 ,l hlo,2 .. hlo. 0

where the first subscript designates the row and the second subscript
designates the column in which an element appears. This subscript nota-
tion is used throughout this section. The integrating matrix is given
by

1
4

2
4

2

[S]3 2
4

2
4

1

All derivatives which appear in the aeroelastic equation are of
first order; difference equivalents based on passing a parabola through
three adjacent points are used herein to approximate the derivatives.
For the points i = 1, 2, . . . 9 the standard difference equivalent
derived by finding the slope at the center of the three ordinates is
used:

%)T fi - f-

i 2e



NAA TN3o67 19

For the end point. i - 0 and 1 10, the slope at the exterior of
the three ordinates must be used:

-3f 0 + 4fl - f

(0 f - 4fg + 3f1

In matrix form with c = 1/10, these expressions become

where the differentiating matrix

-3 4-i
-1 0 1
-10 1
-1 0 1

-D]1 01 (19)
-1 01
-10 1
-1 0 1
-1 0 1

L ~ 1-4 35

Aeroelastic Matrix Equation

The aeroelastic equations may now be written in matrix form by
using the results of the foregoing numerical analysis of integrating
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and differentiating processes. Equations (11) and (12) become,
respectively,

ej ec(,, k +9

c~ ~ ][) j cm)][ S D ] k k+

qc pb FG~i S 0p) + cF (G', Si'cl

qc{[(GL)ij] S L) ] ( ci~ ()iii L m P

'3 (20)

and

T 1+ ]J L' Oe) jkL I O

pb La1+ yj ] (3clp)j + B~l +Y yj ] ('3c16)j}0
(21)
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If these equations are divided through by 5 and the resulting
matrix equations are combined, the following partitioned matrix equa-
tion results:

-[iJ] IBi jeId 1 cii
T - (22)

1-

LIk E 'F

where [I] is the unit matrix. The submatrices are given by

* Aik 1 G=[ ij] S ][CIGjk] S D

4D ]

c (- 4)i ][ (Os.J - D (ti] S](c

=i LGLij IL s O IH5z) + c (G), S J(c)
LDI La+ J s S ][ ~ SD]

-,r
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E - -La +Y yjI S (c'.

where

i, J, k = 0, 1, 2, . . . 10

For a given configuration flying at a given speed and altitude,

all the quantities in equation (22) are known except the twist 9 atpb#
each station and the rate of roll V ; solution of this matrix equa-

tion yields these quantities.

The rigid rate of roll, as found by expressing the integrals in
equation (16) in numerical form, is merely

E(b/5)R (23)

If the rate-of-twist influence coefficients are known, it is prefer-
able to employ equation (13) instead of equation (11). In this case, the
partitioned matrix equation analogous to equation (22) is

I E F
L IJ V-

where the submatrices are given by

IT

" j.1 b,., - ... .. . .. -- .... .....S -,
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Lik] lulL S OI8JL k S
(6GMs

-CC

~ L s G~z ~ M)][ ](rci
IGL] 16GM\i

(LS (O3cZ)j j c Mm~

and the expressions for the scalars E and F remain the same as those
given immediately after equation (22).

By applying the same numerical processes, the aileron-reversal equa-
tion (14) (or eq. (15)) can be put in matrix form. Equation (14), in
which 8 is the variable, becomes

TI su ti e a [Ak]d+f iCim LeDka J]aIte (25)

The submatrices are defined immediately after equation (22).
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Similarly, equation (15), where de/dy is the variable, becomes

, 1 Lf~] I dG\(26)

The subnatrices are defined immediately after equation (24).

A solution to equation (25) (or eq. (26)) is easily found by using
matrix iteration. The process converges to give the lowest eigenvalue
from which the dynamic pressure at aileron reversal may be obtained.

Reduced Matrix Equations

Up to this point, the numerical analysis has been based on the use
of 11 spanwise stations, a number that was deemed necessary in order to
obtain the desired accuracy because of the ill-behaved nature of some
of the aerodynamic loading functions. In most cases, however, the twist
(or rate of twist) is well behaved and, therefore, requires fewer sta-
tions for adequate specification. Utilization of this fact allows a
considerable saving in the amount of work necessary to solve the matrix
equations because of the fewer degrees of freedom involved.

If either the twist or the rate of twist is specified at the even-
numbered stations, an interpolation procedure can be used to determine
the values at all 11 stations. The particular type of interpolation
used herein is obtained by passing a fifth-degree polynomial through
the even-numbered stations and then evaluating this polynomial at the
odd-numbered stations. This interpolating procedure can be written in
matrix form as

leki [Tka]I()Z I
or

=dG [Thi] I(t)j

where k= O, 1, 2,. .10 and 1 =02, 4, .... 10 and the inter-

polating matrix [Tki] is given by

1*7I) ~
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1 0 0 0 0 0

0.246094 1.230468 -0.820312 0.492187 -0.175781 0.027344

0 1 0 0 0 0

-0.027344 o.41o16 0.820312 -0.273437 0.082031 -0.011718

0 0 1 0 0 0

[Tk] = 0.011718 -0.097656 0.585938 0.585938 -0.097656 0.011718 (27)

0 0 0 1 0 0

-0.011718 0.082031 -0.273437 0.820312 0.410156 -0.027344

0 0 0 0 1 0

0.027544 -0.175781 0.492187 -0.820312 1.230468 0.246094

0 0 0 0 0 1

The twist (or rate of twist) now needs to be known only at the
even-numbered stations, the quantities at the odd-numbered stations
being obtained by interpolation. Therefore, only the even rows of the
influence-function matrices are necessary; these matrices become rec-
tangular with 11 columns and 6 rows. When these simplifications are
used to write the matrix equations for equations (ii) and (12) and the
resulting equations are combined, the following partitioned matrix equa-
tion results:

L' I --LAi 1* jZo JCm*j

= (28)

I

-- I

Dj p4 V
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where the submatrices are given by

[A I *1 [(GL)] [ S ]OI ()czk - D[GM~ [ k + Ic

= [(G)][ (0cme) +c(c)k S ] (Ik )
LDLI={Y[ ][o7f

E=La+YL ], ( I~
S. E Lai +yjL S Ppj

Note that the subscripts j and k assume all values, both even and
odd, and the subscripts m and Z assume only the even values.

N,

/

i-li$ -, .-.. , ,-~ *46*~
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The analogous partitioned matrix equation to be used when the rate-
of-twist influence functions are known is

d8

(29)

L IE T/8 F

where the submatrices are given by

_ L _Fc-

S kk

S E --,"

c [.. .

S\
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The scalars E and F are given after equation (28). Here again the
subscripts J and k take on all values, whereas m and I assume
only even values.

The aileron-reversal equations may also be expressed in this
reduced-order form. Thus, equation (14), in matrix form, is

Sk~ =rv ~ 4 + cm*j LD,*j 1 , (30)

The submatrices are defined after equation (28). Similarly, equation (15)
becomes

The submatrices in this case are given immediately after equation (29).
Again, standard matrix iteration procedure may be used to solve equa-
tion (30) or (31), the amount of work being approximately one-fourth as
much as is involved in the iteration of equation (25) or (26).

Simplifications for Wings With an Elastic Axis

Two operations are required to modify the aeroelastic matrix equa-

tions when an elastic axis exists. First, all terms involving the

matrices rGL] or [GL] are deleted. Second, the section-moment-

coefficient matrices F0c.l, P3cnp , and I Cin5I are replaced by

[cq%, Icqpl, and 10cI in accordance with equation (17).
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Computational Procedure

As has been previously mentioned, the task of calculating the
rolling effectiveness for the given configuration flying at a given
altitude and speed is straightforward; only the solution of a set of
simultaneous equations is necessary. If a complete knowledge of the
aeroelastic behavior over large ranges of speed and altitude is desired,
however, the manner in which the various parameters are involved should
be taken into account in determining the sequence of calculations. It
should be noted that the Mach number enters the problem in a complicated
manner, whereas the dependence on altitude is rather simple; that is,
the Mach number affects the aerodynamic matrices and the altitude affects
only the dynamic pressure q. It is therefore obvious that the most
economical way to perform the computations is to calculate the variation
of rolling effectiveness with dynamic pressure for several constant values
of Mach number. In addition, since the rolling effectiveness is of little
interest when the controls are reversed, the range of dynamic pressures
should be restricted to values less than qrev. The dynamic pressure at
reversal should, therefore, be determined for each value of Mach number
before proceeding with the calculation of rolling effectiveness.

An outline of the steps required in the determination of the aero-
elastic effect on roll for a range of altitude and Mach number is
included herein. For simplicity, only one of the several numerical
approaches derived in this section - that is, the one wherein the twist
influence functions GL and GM and the interpolation procedure are
utilized - is illustrated; the others follow the same outline, differing
only in detail.

(1) Evallate, either analytically or experimentally, the twist
influence functions GL(yn) and GM(y,n) at stations y/z = 0, 0.2,

0.4, . . . 1.0 due to loads and torques applied at stations 1/I = 0,

0.1, 0.2, . . . 1.0. From these values, form the ll-by-6 matrices

[(GL)] and [(GM1M,] .

(2) For a given Mach number (one should be chosen which results in
a value of 0Z/c which appears in the tables) determine the indicial
section lift and moment coefficients Ocl, and OC. These coeffi-

cients, which are found by applying equation (7) to the values of Oc .

and pcm.' in table I, can then be used to form the square matrices

and [pc k]

~18K -me-.
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4 Ii
(3) In a similar manner, form the column matrices and

(I(Cm), making use of equation (9) in conjunction with the values of

OClp °  and ocl. in table II.

(4) Determine the section loading coefficients due to a unit aileron
deflection. Use these coefficients to construct the column matrices

1(ocl5)jI and j(0Cmc)j . (These coefficients are listed for one

aileron configuration in table III. Equations for the coefficients for
a rather general aileron configuration are included in appendix B.)

(5) Compute the matrices [Aj*], jBm*j, Cm*I, and L D1*j and

the scalars E and F defined immediately after equation (28). The

integrating and differentiating matrices [S] and [D] in these defi-

nitions are given by equations (18) and (19); the interpolating matrix

[Tkl] is given by equation (27); the row matrix Laz + yj] is made up

of the moment arms about the rolling axis.

(6) Form the matrix + lC LDZ*j .

(7) Obtain qrev by iterating this matrix (see eq. (30)).

(8) For each of several values of q between zero and %ev' form

the matrix equation (28). Solution of this equation yields

for each value of q. Obtain the rolling effectiveness 0 by dividing
by (,Iy)pb (R b ) .

(9) Repeat steps (2) to (8) for several other values of Mach number.

SAMPLE APPLICATION

In this section, aileron effectiveness and reversal speed are found
for a specific aircraft by the approach set forth in this paper, which is
termed "lifting surface theory," and by two simplified methods. Each half

k. 7
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of the exposed wine consists of a uniformly thick aluminum ;Afte with
an aspect ratio i/c of 3/2 and a thickness ratio t/c ol0...02. The
full-span aileron is formed by bending the plate along the Q1.-chord
line; therefore ba/Z = 1.0 and Ca/C = 0.2. The wings areaimounted
rigidly on the body, which has a radius of one-fifth the exsased wing
semispan; therefore a = 0.2. These ratios are sufficient tW &efine
completely the configuration, since, as is seen later, the moau.Jlts are
independent of absolute dimensions.

Although the plate is considered to be bent in order t roorm the
aileron, the plate is assumed to behave structurally as if N bend had
been made. On the basis of this assumption the necessary strab1Lctural
influence coefficients are determined in appendix A by mean8r-cf a sim-
plified flat-plate theory. In this case, as could be expected , not only
does an elastic axis exist but also this elastic axis coincidents with the
midchord.

Calculation by Lifting-Surface Theory

Since the influence functions are obtained analyticall , it the rate-
of-twist influence function rather than the twist influence W. ction has
been determined in order that no numerical differentiation Nrl inecessary.
In addition, the wing structure being free of discontinuitie, the inter-
polation procedure developed in the preceding section may besvi.ccessfully
employed. Equations (29) and (31), modified as outlined in tmec preceding

section, are therefore used to compute b and

Before proceeding with the solution of equations (29) ag (31), the
dimensional character of the structural, aerodynamic, integrtd---rig, and
interpolating matrices involved in these equations should beca=risidered.
The aerodynamic and interpolating matrices are clearly dimensioIrxless.

The integrating matrix [S] and the rolling-moment-arm matrix )c Lai + Y
are proportional to the exposed semispan 1. The influence-n.b1ction
matrix for the example configuration, which is presented in tab-Cle IV, is

written as the product of the quantity 1/ and a nondimmtaiCnal

matrix.

The aforementioned independence of absolute dimensions cm a now be
demonstrated. Equations (29) and (31) can be written in the f0or1T

1'4,f
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qc/ [ L1 2t -d-°ti 3

S(32)

137 pb/ F

and

Gt' [31 m -23 I
3

where the multiplication of the various submatrices by the indicated
quantities yields nondimensional results. Inspection of equations (32)
and (33) shows that only ratios of the dimensions are involved, and that
the quantity

qc 2

Gt 3

3

is an important nondimensional parameter for this particular configuration.'I
The step-by-step procedure previously outlined has been followed

for the example configuration and the results are included in figure 3.
Since the dynamic pressure in this case is essentially an altitude param-
eter, the results in figure 3 are shown plotted against the pressure ratio
Ph/Po, where PO is the standard pressure at sea level, as obtained from
reference 5, and Ph is the free-stream static pressure at altitude and

is related to q by the equation

=2q

Ph = -M2

in which 7 is the ratio of specific heats of air.

Ox
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Simplified Methods

Two simplified methods of analysis have also been used to solve
for qrev and 0 for the example. They differ from the method pre-
viously described only in that the airloads are determined by simplified
means. In the first method, lifting-surface theory is modified in a
manner similar to that used in reference 6, wherein it is assumed that
the chordwise center of pressure due to structural deformation and roll
coincides with the elastic axis of the wing. Thus, the total twisting
moment about the elastic axis is equal to the twisting moment due to
only the aileron, and equation (15) becomes

dO = qc2 8 O __(Yd()

The rolling-moment equation, equation (12), is unchanged. A solutionto the problem has been obtained by using matrices in a manner similarto that employed previously. In this case, however, do/dy is given

explicitly by equation (34) and, therefore, V can be calculated

directly, the solution of a set of simultaneous equations being
unnecessary.

In the second method of analysis, the aerodynamic terms are derived
on the basis of two-dimensional (strip) theory. For the case wherein
the elastic axis lies on the midchord, the center of pressure due to
structural deformation and roll coincides with the elastic axis of the
wing and the only twisting moment about the elastic axis is that produced
by the aileron. Therefore, equation (34) expresses do/dy exactly, and
the rolling rate obtained by solving equations (12) and (34) is exact.
Because of the simplicity of the strip theory, these calculations can be
performed analytically.

The results obtained by using these methods, termed, respectively,
"modified lifting-surface theory" and "strip theory," are also shown in
figure 3 for comparison with the results obtained by using lifting-surface
theory.

RESULTS AND DISCUSSION

The results shown in figure 3 indicate that the variation of rolling
effectiveness 0 with the pressure ratio Ph/PO is, for practical pur-

poses, linear. This linearity suggests the possibility that, for configu-
ations of the type considered, only the computation of pressure ratio at

k_ _1
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reversal (Ph/PO)rev would be required; the rolling effectiveness for

smaller values of Ph/Po could then be obtained by linear interpolation.

In this way the computation time could be greatly reduced, the calcu-
lation of (Ph/PO)rev being a relatively simple process. Some care

should be taken, however, in making use of this linearity, since it
appears to depend on the proximity of the elastic axis to the chordwise
center of pressure due to angle of attack. For wings wherein the elastic
axis is distant from this center of pressure, considerable curvature of
the rolling-effectiveness curves could result. At the other extreme,
the results in figure 3 obtained by using the two simplified methods are
exactly linear, since, in both cases, the elastic axis and the center of
pressure are coincident.

An additional consequence of this linearity is that the accuracy
with which a particular method predicts (Ph/PO)rev is a direct measure

of its ability to predict rolling effectiveness. A comparison of the
values of (Ph/PO)rev obtained by the two simplified methods with those

obtained by the method presented in this paper is therefore shown in fig-
ure 4, wherein (Ph/PO)rev is plotted against Mach number. Although the

results show very little difference in the values of (Ph/PO)rev as

obtained by the three methods at high values of M, considerable differ-
ence exists at low values of M. The results obtained by the use of the
modified lifting-surface theory are consistently unconservative; the
results obtained by the use of strip theory are consistently conserva-
tive. Modified lifting-surface theory neglects the twisting moments
arising from the twist of the wing; only the torques caused by aileron
deflection are considered. Neglect of the twisting moments due to angle-
of-attack changes evidently reduces the resultant angle of twist and
therefore reduces the adverse rolling moments caused by the deformation.
When strip theory is used, the elastic twist is again lower than that
obtained by lifting-surface theory because, again, only the twisting
moments caused by the aileron deflection are present. Here, however,I the absence of the finite-span effects actually results in a greater
adverse rolling moment, even though the twist causing the adverse rolling
moment is in itself smaller.

Further mention should be made of the behavior at large Mach numbers.
Actually all three methods should yield the same results as M approaches
infinity because, as M increases indefinitely, lifting-surface theory
approaches strip theory. As an illustration of this fact, the rate of

roll for a rigid wing 2V/5) is shown as a function of M in figure 5.

The values of '/5) obtained by using lifting-surface theory rapidly

*4\
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approach the values obtained by using strip theory as the Mach number
increases. Thus, at high values of M the use of strip theory should
yield aeroelastic solutions of an accuracy comparable to that obtained
by using lifting-surface theory.

In actual application it may be convenient to have rolling effec-
tiveness given as a plot of pressure ratio against Mach number for con-
stant values of rolling effectiveness. A graph of this type may be made
by cross-plotting the information contained in figure 3 and is included
in figure 6. Also included in figure 6 is an additional ordinate that
gives the altitude as obtained from the standard-atmosphere table in
reference 5.

The rolling effectiveness 0 at any time during a particular flight
may be determined as a function of Mach number if a history of the flight
is known in the form of a plot of standard altitude against Mach number.
For example, consider two constant-altitude flights, one at 30,000 feet
and the other at 20,000 feet. The resulting variation of the rolling
effectiveness of the example configuration with Mach number is shown in
figure 7.

The indicial-solution (aerodynamic-influence-function) approach used
herein in the calculation of the aerodynamic loads exhibits considerable
promise of being applicable to plan forms other than rectangular. The
delta wing and the low-aspect-ratio swept wing at supersonic speeds can
be handled in the same way as the rectangular wing; care should be taken
in these cases, however, to account for chordwise bending where necessary.
Other static aeroelastic problems such as center-of-pressure shift (which
has been considered by Frick and Chubb in ref. 1 for high-aspect-ratio
swept wings) and load distribution seem to be amenable to analysis by the
methods contained herein. It might even be possible to extend the
approach to take into account unsteady aerodynamic effects and thereby
to obtain accurate solutions to flutter problems. The calculations in
the last case would undoubtedly be arduous and the main usefulness of
the approach would be to establish a basis for the evaluation of more
practical but necessarily less accurate solutions of the flutter problem.

Problems involving configurations about which the flow is not sub-
stantially potential are generally not amenable to this type of approach.
More specifically, the success of the approach depends on the applica-
bility of linearization to the aerodynamics and on the ability to calcu-
late the necessary indicial load distributions.

CONCLUDING REMARKS

A method has been developed for the prediction of the aeroelastic
effects on the roll of rectangular wings in supersonic flow. The method
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is based on the use of influence functions, either analytically or
experimentally obtained, to calculate the structural distortion due to
airloads. The airloads, themselves, are calculated on the basis of line-
arized lifting-surface theory by superposing basic airloads resulting
from elementary angle-of-attack distributions. The solution of the aero-
elastic equations has been obtained by means of a numerical procedure
suitable for use with desk-type calculators.

Results for an example configuration indicate that the variation of
rolling effectiveness with the free-stream static pressure at a constant
Mach number is almost linear; a good approximation may be made by assuming
a linear variation. Thus, in any other cases wherein this linearity can
be expected - that is, when the elastic axis is near the center of pres-
sure due to angle of attack - the calculations may be greatly simplified
in that it is necessary to compute only the free-stream static pressure
at aileron reversal.

The results obtained by using the method of analysis presented in
this paper are compared with the results obtained by using simplified
methods of analysis. Although aerodynamic strip theory is valid at high
Mach numbers, too conservative results are obtained at low supersonic
Mach numbers because of neglect of finite-span effects. A modified
lifting-surface theory, in which twisting moments due to structural
deformation and roll have been neglected, yields results which are
unconservative at low supersonic Mach numbers.

jLangley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

Langley Field, Va., December 2, 1953.
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APPENDIX A

STRUCTURAL ANALYSIS OF THE EXAMPLE CONFIGURATION

The deformations of the wing of' the example configuration are ana-
lyzed herein by using the approximate plate theory presented in refer-
ences 4 and 7. This method expresses the deflection w of a plate at
any point (x,y) in the form w(x,y) = W(y) - x 0(y) where W(y) is the
deflection of the wing at the midchord and e(y) is the twist of the
wing. (See fig. 1.) An energy solution of the problem is used wherein
the expression for the potential energy of the plate is written in terms
of the approximate deflection function. Minimization of this potential-
energy expression yields two ordinary differential equations in W(y)
and e(y). Since the deflection W(y) has no effect on the airload, it
is eliminated from the two equations; the process yields a single equa-
tion in e(y). This equation has been derived in reference 7 (eq. (A22)
of that paper) and for a rectangular cantilever plate of constant thick-
ness t becomes, in the notation of the present paper,

Dc3 d38 z._ 2(1 - ip)Dc !L- M( ) d (Al)
1 dy3  

d y

with the boundary conditions

( dO(O) d( 2  9 0

dy2

In equation (Al), D is the plate stiffness:

D Et3
D=

12(1 _ 42)

where E is Young's modulus and p is Poisson's ratio. As could be
expected for this structure, the twists are seen to be dependent solely
on the twisting moment about the midchord M(y).

The solution to equation (Al) for a general M(y) can be obtained
*by superposing indicial solutions found by considering the moment to be

I.j
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concentrated at any spanwise station n. Thus, let

M(y) = 5 (y -0

where 8(y - n) is the Dirac delta function.

Equation (Al) now becomes

Oc3 6 3 G(y,TI) 2( - G) (Yn) =_( )(
12 Y3 , ( Oc- y- ( )A2

where 1( - y) is the unit step function:

1h Y) 0(y >i0

The rate-of-twist influence function 6 y is the quantity required

in order to obtain the rate of twist by superposition. This quantity is

6GM(Y.,T) 12 2 1 _cosh ? -cosh X(1- -

6y Dc3X2 cosh ?% L

sinh ( sinh Y (Y 0 (A3)

GM(y, )  1212 cosh (l (-l + csh

6y DJ32 cosh ?>T

where

c 2(
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With regard to this solution, it should be noted that the quantity

1212/Dc3A2 can be written in the form 1/2Gc, where G is the shear
/.,3

modulus of elasticity of the material.

Superposition of the rate-of-twist influence function yields

dO(y) =  GM(Y) M(l) dn (A4)
dy a

Values of 6GM/6y for I/c = 3/2 and ± = 1/3 (which yields

= 6) have been computed for 0 - y _ 1 in intervals of 0.2 and

0 9 -n ! 1 in intervals of 0.1; the results are included in matrix form
I -

in table IV.

I
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APPENDIX B

DERIVATION OF AERODYNAMIC COEFFICIENTS

In this appendix the aerodynamic loads necessary for computing
rolling effectiveness are derived. The loads are found in the form of
section lift and moment coefficients by applying linearized supersonic
lifting-surface theory to the rectangular wing with three different
angle-of-attack distributions: the unit-step angle-of-attack distri-
bution shown in figure 2(c), the angle-of-attack distribution caused by
rolling, and the angle-of-attack distribution resulting from aileron
deflection.

Analyses of each of these problems are contained in the literature.
The unit-step problem is essentially the same as the problem of finding
the loads due to deflection of an outboard aileron, which has already
been solved (see, for example, ref. 8); the rolling problem has been
treated by many investigators (see, for example, ref. 9). There does
not seem to be any report, however, that gives the desired coefficients
in a form sufficiently complete for the purposes of this paper. For
this reason and also for convenience, the necessary aerodynamic quan-
tities are derived completely herein.

When linearized lifting-surface theory is used, the lift per unit
area of a thin wing is given by

p(xy) = (Bl)
V 6x

where x is positive in the direction of the airstream. The poten-
tial 9, evaluated at the surface of the wing, is

p(xy) - ff a(gt) dt dt (B2)S V(q _ x)2 _ p2(q _ y)2

where o(t,t) is the local angle of attack of the wing. In general, for
. - a rectangular wing, the region of integration S includes the entire area

on the wing within the forward Mach cone from the point (x,y). However,
in order to obtain the potential at a point near a wing tip, the proper
region of integration S is determined by using Evvard's method (ref.lO).

I- -
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The spanwise loading and twisting moment about the midchord are
given by

L(y) 1 c2 P(xy) dx

L~)=-C/2

(B3)

M(y) = c/2 x p(x,y) dx

If the expression for p(xy) is substituted into equations (B3), and
the results are integrated, the lift and moment become:

V icY

__r2 (B4)
M(y) = _ q'\c,y; (P(X,y) dx

S c_(2)

where the fact that the potential is zero at the leading edge has been
taken into account.

The foregoing equations can be nondimensionalized by letting

PC LP
I qc

P e m  = M O. _

qc
2

1 x

Y'l

VI

Xl-- +

YI I-

N a
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The resulting equations are

Oct(y 1) =T 11i~i

Ocm(yl) y - 4 O(xl,yl) ](B
where

s (xl- l)2 - m2 (yl - t)2

and m is the modified aspect-ratio parameter 31/c.

Derivation of OCte' and PCm8'

The equations for the spanwise loading Ocs' and the twisting

moment about the midchord Ocm9' due to the unit-step angle-of-attack

distribution shown in figure 2(c) become, from equations (B5),

O c f i ~ 4mBcze(Yl, n ) 0-4 (" Y, 11)D

(B7)

Cm(yl,n) =-'E 0( l,l,'l) -fl 0(x 1 yl'l ) dx]

where the potential 0 is found for an angle-of-attack distribution
defined by the unit step function:

a(yl,inl) = Z(nl - Yi)

or

= 1 (q > yl)

=(yl,ql) 0 (nl < Yl)

K7T. . 277 Ji1~ j\
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Equation (B6) becomes

o(xlll) - ff d1  l (B8)
E l- gl)2 - m2 (yl -

2

The region of integration E includes only that portion of S which
lies within the region of the wing between the wing tip and the position
of the unit step in angle of attack at il"

The plan form and angle-of-attack distribution considered are those
shown in figure 2(c). From this figure it can be seen that the position
of the unit step is restricted to the range 0 _ n, 1- 1. If, in addi-

tion, the modified aspect-ratio parameter m is restricted to values

greater than + ' the potentials 0 for the finite wing in fig-

ure 2(c) are exactly the same as the potentials on the finite wing por-
tion of the following semi-infinite plan form which has been obtained by
allowing the left tip and the trailing edge of the finite wing to

approach infinity:

.POO

b' no l"(b) -) 10 0TO

Thus, attention is confined to the derivation of the potentials on this
semi-infinite plan form. With the potentials known, the loading coeffi-
cients on the finite wing are given by equations (B7).

The M~ch lines shown in the above sketch bound a number of distinct
regions. These regions are significant because the area of integration
in equation (B8) takes a different geometric form in each; it is to be
expected, therefore, that the potential 0 is given by a different
equation in each region. The proper area of integration Z (shown

~ 4 1

% , . | •l
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shaded) and the potential 0 for the various regional as found fromn
equation (B8), are:

In region I:

- - .,

-0

In region II:

Y., .00.

oo,~XI lo, o,.

oI o
+ o, -l "

X, ttan-L n'4 '



NACA TN 3o67 4

In region 111(A):

.00, '0. xO ,y)
100 .1,00,.0 

100

-. o oo -.0-

- -
-ol

Xle

2-

0111(A) m x tan 1 
1 + -y) m~ i

X1 7 In 
-1 

+ 
, yl)tanh- 

X M7In region I11(B):

.0e4
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Notice that the only difference in the equations for OIII(A) and

OIII(B) is that the radical in the inverse-hyperbolic-tangent term in
the equation for III(A) is the reciprocal of the radical in tie

corresponding term in the equation for OIII(B)" Thus, the following
form holds for both regions:

2 + m + m(nl - Yl) +l1
tan- 1  xi - m(T) - Yl) + (1 -YWanhk],

where

k - - M(0 " Yl) (Yl < Tl)X l+ m(nl " Yl)

kl1 j l- m(nl -yl) (yl - n)
X1 + m(n 1 - Ya.)

A similar situation occurs in the derivation of OIV(A) and DIV(B)
and of OV(A) and OV(B)" Therefore, the equations for OV and OV
may be derived for either the subregion (A) or (B) and applied through-
out the entire region.

In region IV:

.......................... .:. . ... '.....f".Z..,

- - - y) "
(XI1 I YO)

xT+m(r1 - Y) 1fx1  V nwil, jtj-k
. { !FMWI~ F"7-AW + x1[tan -1 - tan- - 1ta

"°~~ ~ ~ x 2 1 tnlX+m(111 " Yi) 1

1P 0
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In region V:

I: ---- '----- --.- -% Co-

-0oo

-1 0

- 00.0.

(XISC

F7I
=v +yl 1~i yl)tanh lkj

where

k2 = J1i1Y

In region VI:

(Xjyg - v' - o- -

lo

oo olo o.
(x- ) o

-oo
.0 0 0

Ow ol o

-b~
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Since the spanwise loading OC1 e, is determined by the value of 0
at the trailing edge (see eq. (B7)), the equation for Ocj.' is

dependent only on the region that the trailing edge is in. For example,
if for a given value of Yi the trailing edge is in region III, the

value of IcZCe is

E z8 f(ylnjjJ 4m 0fn 0111 (Y1 0l1%)

Thus, the equations for Pc 8' are:

(pCe')II = 4 mn l
("-C, -' F + tan " I

Oce- 1 + M(1 1 - y1 )

([tan- lyLa11 + m(Til yl) tanhlk]1- ( T1 - y'l)

( c ze) I + m(n - yl)tanh)

1an + M( 1 y1  ) tan~1
-

1 -Mi m( 1 ) -y1 ) 'WWJ. ]
(,CI')V + m(o, - yl)tanh 1k2 ]

(Oc101) =I

and the particular form to use for Oc19 ' is determined by the region
in which the trailing edge falls.

.~b 4-'r.! 4
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The determination of Ocme, requires evaluation of the integral
of the potential along the chord of the wing. However, the indefiniteintegrals of the expressions for the potentials valid within each regionhappen to be continuous across the boundaries of each region. Further-more, the indefinite integral of the potential that is valid in theneighborhood of the leading edge is zero at the leading edge. Thus, theintegral of the potential along the chord may be found by evaluating atthe trailing edge the indefinite integral of the potential that is validwithin the region in which the trailing edge is located. When thetrailing edge falls successively in each of the regions I to VI, theresulting equations for OCm, I are, therefore,

(ICM = 0

8

(Icme') - -( "

m2(21

(0cOIjV m 2n ll + (BlO)

(- m  )Q -l

( a c m e ' ) O { ( l - y ) a n h l fl k l 2 B o

4 [ 4 + m(qj yl) tahlk]
(-c3) F, 0 

2

,* 4 i ' 7  ( *' -- 0

vI4
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where

1- . M0i1 - yi)k

- m(0 - Yl)

As before, the particular form to use for Ocm.' is determined by the

region in which the trailing edge falls.

Equations (B9) and (BlO) may now be used to obtain the spanwise
loading and twisting moment about the midchord due to a unit-step angle-
of-attack distribution for particular values of Ti and m. In summa-
rizing the information, it is convenient to separate m and n, into
various ranges. Sketches of the Mach lines and sumnaries of the par-
ticular forms to use in each range follow:

For m 2 and 0 O i' 1:

2(1+o) 1+2a 0

/ !

I / E

+~

/ / / /

/ m

for region V when 0 Y

for region IV when i . <

Use the coefficients

for region IIl when i ; +

for region VI when + 1 1  Y 2(1+ a)

[m

4$'

43A
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For m>=2 and n 2.

/ \

/ \
/\

Y, X
I I )\fl

___/____l___ /\

for region II when 0 y Yl -

for region IV when ql - -

Use the coefficients
for region III when = Yl = E + T1

for region VI when + q1 
< yl j 2(1 + a)m=

2<

For m>2 and i= = i:

I/
ME I f

/ /

'1-,/\1

m 4 m

/ ; 7 44
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for region II when 0 y Yl

for region I when Y <11

Use the coefficients

for region III when n, - n +

for region VI when n, + 5 yl - 2(1 + a)

For I m < 2 and 0! < nI < :
1 + 2a m

/ /

* M7 I

m m

for region V when 0 y< 
< - i

for region IV when ,- - m
Use the coefficients

for region III when .5 - + 91

m 1 m 1

for region VI when + Yij 1 2(1+ a)

ii

4I
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For 1 <m 2 and
1 + 2a m

/ \/I

: \ /

I IsI ~/ \

for region,,"hen 05y i ,,"

for region IV when il mYlm

Use the coefficients

for region III when m 7 +
m 11 m

r for region VI when l+ <yl = 2(l + a)

Derivation of Oct. and OC:

The local angle of attack due to a unit rate of roll (pb/2V = 1)
is given by

+I 
(BIl)

The potential is therefore given by

* (xlyl) dt jfQ3 - d .1 - (B12)

8 V~xi ti)2 -2y

kz
,'44
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In this section, the potential t is derived for a finite rectan-
gular wing with a nondimensional span of 2(1 + a). In order to simplify
the derivation, it is assumed that no point on the wing is influenced by
both wing tips; this assumption is valid provided that m> 1 a.

1 +a

The Mach lines originating at the intersections of the leading edge
and the tips divide the wing into two distinct regions (see the following
sketches) and the potential 0 for these two regions is given by equa-
tion (B12) as follows:

In region I:

ysI I to

..................;-'.:.......,,:.j,.,.

\ ( Ky) //

+\ /\ /\I / 1U
_ _ _ _ _ _ _/

= + a

In region II:

S. ., ,U '.. , ;.- .,"

X,,

i Tlk.. '
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OnY 2 WF X1\r. + xl~1-ytan-1 F 1 MLlm 3 mu'v-mi

2 a -a + x i n -1 _

m =l+a 1 x n

The equations for the spanwise loading Oc p and the twisting moment

about the midehord Ocmp are found in a manner similar to that used to

determine the equations for Oc' and OCme'e Thus,

(Oc P) (1 - yl)+ -E+E( -13)my +

(1 - yl)tanl U71j 8 a W7F -+
- I

x 1 +/'F ~

The equations for O , obtained in a manner similar to that used pre-

viously, are

(O, ) -

A A
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In order to conform to the assumption made in the aerodynamic
analysis, the airloads over the rigid plate in the center section of
the wing are to be neglected. Therefore, the limit of the modified

aspect-ratio parameter can be lowered from m, to m 1
l+ a 1+ 2a"

Summaries of the particular forms to use and illustrative sketches
follow:

For m ? l:

- /
\ /

fo ego I whe 1 j;

\ /
\ /

r </ I

m

for regionlIIwhen 0~ l

Use the coefficients{1r

Forrein 1e =

i+ 2a

Use the coefficients for region II when 0 j y ' 1

- 4
"" + , ',J
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It should be noted that each expression for pcjp and pCmp can

be separated into two parts - one with the coefficient 1 and the
1+ a

other with the coefficient + - each of which is independent of a.1+ a

The first part is the result that would be obtained on the right wing if
the wing were rolling about the x-axis (see fig. 2(a)); it is therefore
designated OC3p°  or 0c o . The second part can be shown to be the

section lift or moment coefficient which results from a uniform angle
of attack; it is therefore designated Ocl or Pcm. Thus, the quan-

tities PcZ and O can be written as

=C i Oczp °  a O a1 + a + a

cp = +-- cm o  i + a .

where the coefficients in the various regions are:

(8ciPO) =-4(1 -yl)

=I%) 0

I

Ocop

3- 1 - ) n j

O+ tanL 1

-rw,

Owl:
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Derivation of Ocl, and N.,

In this section, the aerodynamic loads due to aileron deflection
are derived for a trailing-edge aileron of constant chord ca and
span ba. The spanwise location of the inboard end of the aileron is
left general; the outboard end of the aileron coincides with the wing
tip. It is assumed that there are no gaps between the aileron and the
wing. Furthermore, the portion of the wing forward of the hinge line
may be assumed to be absent because the wing is considered to be at zero
angle of attack, the aileron hinge line is unswept, and only supersonic
speeds are considered. The resulting configuration is exactly the same
as that encountered in the derivation of Ocl, and Ocme. In addition,

since, for most reasonable aileron configurations, the pressures on the
right wing are unaffected by the deflection of the left aileron, the
total spanwise loading Ocl5 and the total twisting moment about the
midchord Oc, can be found by properly substituting the ailerui. dimen-

sions for the wing dimensions in the results already obtained for OcI.'

and OCme'. In order that the foregoing be true, the restrictioi.

m - cal is necessary.
i + 2a - bal

If ca is substituted for c and ba, = ba/I for n, in the

expressions for the loads due to structural deformation, the load due
to a unit aileron deflection will result. Several more steps are neces-
sary, however, in order to produce the desired results Ocl, and OCm5.
In the first place, the reduced aspect-ratio parameter which was II/c
becomes 01/ca = m/Cal, where cal = Ca/C. In addition to the subati-

tutions mentioned in the preceding paragraph, therefore, the subst.tu-
tion of m/cal for m must be made, both in the expressions for OcI.'

and OCmc' and in the expressions which define the limits of applica-

bility of these terms. Furthermore, in the nondimensionalization of the
moment expression the quantity c is involved. In order to preserve the
nondimensionalizing coefficient qc/0 for the aileron loads and jc2/p

for the aileron moments, the expressions for pce i Yl,bal) and

Pm \Yl~bal) must be multiplied by cal and ca 1
2 , respectively.

Lastly, since the moments are taken about the midchord in the case of
pressures due to the structural deformation, direct substitution yields
the moment about the aileron midchord; thus, the moment must be trens-
ferred back to the wing midchord.

____
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Th~e proper forms to use in determining PCand p bare

sunarized as follows for values of m greater than both and
bal

Cala

For ba 1 -al

C Ca
M -

CcCa

for region II when Ca1  Ca5 a

for region II when b 1 - ~ Y.-~

for region VI when ba + Calyi 1
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For bal 1--:

Y,7

cO, CO,

ifor region II when 0 5 Yl < Ca lmm

=y- -

Ca C

1a < '5 b Cal

Use the coefficients for region I when C- Yl -

Cal < <

for region III when bal - - = 1

The expressions for the coefficients in the various ranges are:

(C C )II = + Cal tan - Cai -_l l)

(Pci 8) = ~Fa tan1 Cal + m(bal - yl) +mb 1 -Y~~l~~

Cal = 0

\( Ca )al-,
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(l3c.), - -2cj( 1 - Cal)

c -4 5ca1  D 1\

( C - Cac tan1

(alcC) = a m(ba - Y 1 ) +

m(bal Yl~) ~i-2catanh ki' +(Cal)2 m2 (bal -y)]

where

-i Cal + m(bal - Yl) (y, ea bal)

ki Cal + m(bal - yl) (, bl

Ca 1 + m(bal - l

= Ca1 - ~1) ~ Nil
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TABLE I.- PARTIAL 8ECTION LIM AND MOMENT COETFICIENTS c' AND PC

f0R A LIIIT-STEP ANDLE OF ATTACK

(a) Al/c - 5/7

For q/1 equal to -

0 0.1 0o.2 0.3 . 0.8 10.9 1.0, 1

-1.3 0.023339 0 0 0 0 0 0 0 0 0 0
-1.2 .067298 .0233390 0 0 0 0 0 0 0 0
-1.1 .126173 .o67298 .0233390 0 0 0 0 0 0 0
-1l. .198493 .126173 .o67298 .023339 0 0 0 0 0 0 0

-. 9 .283854 .198493 .126173 .067298 .023339 0 0 0 0 0 0

-. 8 .3821447 .283854 .198493 .126173 .067298 .023339 0 0 0 0 0
-. 7 .494931 .382447 .283854 .198493 .126 T3 .067298 .023339 0 0 0 0
-. 6 .,2469 .494931 .382447 .283854 .198493 .126173 .o67298 .023339 0 0 0
-. 5 .7,:5859 .622469 .494931 .382447 .283854 .198493 .126173 .o67298 .023339 0 0
-. 4 .93 0849 .766859 .622469 .494931 .382447 .283854 .198493 .126173 .067298 .023339 0

-. 3 1.04930 .897717 .733726 .589337 .461799 .349315 .250723 .-165362 .093041 .034167 0S-.2 1.2427 1.o2886 .83923 .670937 .526543 .399010 .286521 .187932 .ioM72 .0356.11 0

-. 1 1.42537 1.157726 .938137 .750178 .586189 .441798 .314260 .201778 .107498 .037253 0
0 1.71432 1.320358 1.052711 .833126 .645163 .481175 .336785 .213062 .113216 .039149 0

,1 1.98315 1.589087 1.195130 .927484 .707896 .519936 .359491 .22650o4 .119961 .o14365 o

.2 2.10430 1.836762 1.442695 i.o487o .781092 .5649oo .387676 .242g93 .128o81 .o44oo o

.3 2.15443 1.934844 1.667305 1.23240 .882613 .625377 .424091 .263557 .138125 .0147229 0

.14 2.114681 1.958854 1.739267 1.474968 1.091348 .715331 .14714109 .290757 .151004 .051285 0

.5 2.08438 1.920391 1-735864 1.526792 1.277190 .909457 .550858 .329142 .168392 .056609 0

.6 1.96398 1.823206 1.670192 1.5oo869 1.30"859 1.o76o3 .727565 .390548 .193838 .o64 4i o

.7 1.77946 1.663767 1.539261 1.4o35o6 1.252644 1.o79785 .869634 .545674 .237o54 .07552 0

.8 1.51367 1.423440 1.327050 1.223027 1.109179 .981991 .835o96 .654029 .363783 .096919 0
•9 1.11123 1.049983 .984929 .915250 .839798 .756835 .66525 .554592 .41.758 .181891 01.0 0 0 0 0 0 0 0 0 0 0 0

-1.3 -0.010999 0 0 0 0 0 0 0 0 0 0
-1.21 -.029761 -. oo999 o 0 0 0 0 0 0 0 0
-1.11 -. 05285 -. o29761 -. oo999 o ) 0 0 0 0 0 0
-1 0 -. 0o6012 -. 052085 -. 029764 -. 010999 0 0 0 0 0 0 0

-. 9 -. 100087 -. 0760o1 -. 052085 -. 029761 -. 010999 0 0 0 0 0 0

-.8 -. 123018 -. 100087 -. 076o12 -. 052o85 -.0 29761 -. 01o999 0 0 0 0 0
-. 7 -. 143537 -. 123l018 -. o100087 -.07602 -. 052085 -. 029761 -. 010999 0 0 0 0
-. 6 -. 160289 -. 143537 -. 123018 -. 100087 -. 076o12 -. o52o85 -. oe9761 -.o109990 0 0
-. 5 -. 171703 -. 16o289 -. 143537 -. 123018 -. 100087 -. 076012 -. 052085 -. 029761 -. OLO999 o 0
-. 4 -. 175801 -. 171703 -. 16o289 -. 143537 -. 123018 -. 100087 -.0760l2 -. 52085 -. 029761 -.010999 0

-. 3 -. 154246 -. 16090 -. 156087 -. 144674 -. 127922 -. 0740 -. 0472 -. o6O397 -.036470 -. 014145 0
-. 2 -. 107098 -. 127428 -. 133372 -. 129270 -. 11787 -. OllO4 -,080584 -. 057654 -. 033579 -.012198 0
-. 1 -. o 475 -. o7489o5 -. o95225 -. on7o -o097o67 - W5 -. 68o2 -. 48381 -.027503 -. 010100 0
0 •109560 .003450 -. 039971 -. 060299 -. 066244 -. 062141 -.00727 -. 035792 -. o20662 -007815 0

.1 .251367 .1145258 .039147 -. 004272 -.02460o2 -.030546 -. 028130 -.021767 -. 013514 -.005301 0

.2 .329556 .286136 .180025 .073915 .03a95 .008549 .002149 .00585 .005251 .0495 0
3 3 .3e866 .61737 .318317 .212207 . 10o59 .03480 .028715 .012702 .004245 .000698 0

.4 .4158 8 .1o9894 .389565 .34455 .23386 .12461 .o67324 .035135 .015493 .o0e6 0

.5 .433166 .437268 .429691 .4O47O .353949 .238191 .12c487 .o63932 .029415 .008936 0

.6 .434189 .443882 .443121 .4296o .-399434 .344338 .225199 .1o5261 .o47922 .o4697 o

7 .415320 .42682 .430171 .423910 .405W .372163 .314800 .194884 .0760941 .022b8 0
.8 .369481 .380991 .386357 .384655 .374563 .354ok5 .319554 .2666 .147246 .036210 o
.9 .281716 .291131 .296477 .297212 .2926o .281579 .262471 .232288 .184276 .oo284 0

1.00 0 0 0 0 0 0 0 0
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TABIZ I. - PARTIAL SECTION LIFT AD b COEFFICIENTS OC1 . AND 0=eI

FOR A tUIT-STEP ANILE OF ATTACK - Continued

(b) 01/c - 1

For q/1 equal to -

0 0.1 0.2 0.3 o.4 10.5 1 o.6 0.7 0.8

; o le'(Y/1,10)

-o.9 o.o38956 o 0 0 0 0 0 0 0 0 0
-. 8 .113297 .o38956 o 0 0 0 0 0 0 0 0
-. 7 .214524 .113297 .038956 0 0 0 0 0 0 0 0
-. 6 .341391 .214524 .113297 .038956 0 0 0 0 0 0 0
-. 5 .494934 .341391 .214524 .113297 .0,8956 0 0 0 0 0 0

-. 4 .678079 .494934 .341391 .214524 .11 3297 .o38956 o 0 0 0 0
-. 3 .896307 .67879 .494934 .341391 .214524 .113297 .038956 0 0 0 0
-. 2 1.159858 .8963o7 .678o79 .494934 .341391 .214524 .113297 .038956 0 0 0
-. 1 1.491353 1.159858 .8963o7 .678079 .494934 .341391 .214524 .113297 .038956 0 0
0 2.000000 1.491351 1.159860 .896307 .678076 .494934 .341389 .214524 .113298 .0o38956 0

.1 2.453263 1.944614 1.435965 1.104472 .840921 .622691 .439545 .286005 .159137 .057904 0
.2 2.678063 2.346570 1.837924 1.329272 .997784 .734229 .516001 .332855 .179313 .061607 0
.3 2.794595 2.531045 2.199552 1.690903 1.182254 .850761 .587210 .368980 .193375 o66116 0
.4 2.825815 2.6o7584 2.34034 2.012541 1.503895 .995243 .663753 .4o7o62 .2114o6 .071799 o
.5 2.778311 2.595163 2.376932 2.113382 1.781889 1.27324o .771201 .460798 .235749 .079250 0

.6 2.649749 2.496209 2.313o64 2.094830 1.831283 1.5o6k 1.o18592 .546767 .271373 .089656 o

.7 2.42863 2.301597 2.148057 1.964909 1.753704 1.511699 1.217489 .763944 .331875 .105701 0

.8 2.o85961 1.984736 1.857870 1.712237 1.552851 1.374788 1.169134 .9156&0 .509296 .135688 0

.9 1.544320 1.469978 1.378901 1.281350 1.175722 1.059575 .928935 .776427 .584570 .254648 o
1.0 0 0 0 O 0 0 0 0 0 0 0

-0.9 -. 0179080 0 0 0 0 0 0 0 0 0
-. 8 -. 047438 -. 0178080 0 0 0 0 0 0 0 0
-. 7 -. o8o858-.o47438-.o7 o 0 0 0 0 0 0 0 0
-. 6 -. 114061 -.080858 -. 4743 -. o198o o 0 0 0 0 0 0
-. 5 -. 143536 -. U46 -. o8o8 -. c47438 -. 0179080 0 0 0 0 0

-. 4 -. 16550 -. 143536 -.1106-.o8858 -. o47438 -.. 1708 o o 0 0 0 0
-. 3 -. 175684 -. 1655 A -. 143536 -. 1146 -.080858 -.o47438 -. 0179080 0 0 0
-. 2 -. 167131 -. 17%.&, -. 165594 -. 143536 -. , -6 -. 0oo58 -. 047438 -.017908 0 0 0
.1 -. 127212 -. 167131 -. 17%&84-.165594 -. 143536 -. 11061 -. 8858 -. 047438 -. 017908o0 0

0 0 -. 127212-.167131-.1"5r68-.16559-.143536-.1u4062-.0o0858-.047438-.017908 0

.1 -.152677 .o25464 -.. o074 -. 141666 -. 15o219 -. 1 4o29 -.. 18o7. -. o88596 -. 05393 -.-21977 0

.2 .235037 .195U9 .067905 -. 059306 -.099224 -. 107778 -. 097688 -. o75629 -. o46156 -. 017213 0

.3 .292379 .285825 .243 .116694 -. o 58 -. o5436 -. 058989 -. 048899 -. 030353 -. 011 57 0
.4 .331928 .342019 .33%67 .293547 .166336 .039122 -. 000794 -.012545 -.011913 -.oo& 0
.5 .355743 .377801 .387891 .379338 . ,9419 .212207 .081914 .033149 .0105 .001664 0

.6 .36565 .393o59 .415o98 .425187 .416635 .373614 .237672 .096958 .039652 .010875 0

.7 .3"3146 .386348 .415823 .437881 .444699 .427101 .373510 .229183 .o82769 .o23446 o

.8 .319064 .35248 .8 6 .411475 .423574 .418971 .392499 .3 6 .1867 2 .o438 5 0
•9 .247o91..276623 .305315 .326265 ."8357 9 .32865 .3Ooooo .244267 .1o37

1.0 0 0 0 0 0 0 0 0 0 0 0

- J - \
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TABLE I.- PARTIAL SECTION LIMT AND M C E C07ICIETU AND O:me'

FOR A UNIT-STEP AILE OF AIVACK - Continued

(c) 01/c "4/3

For vj/1 equal to-

0 10.1 o0.2 .3 10.5 1o.6 0.7 o.8 0.9 1.0

-0.7 0o.016 0 0 0 0 0 0 0 0 0 0
-. 6 .113298 .o21016 0 0 0 0 0 0 0 0 0
-. 5 .253952 .113298 .o21016 0 0 0 0 0 0 0 0
-.4 .440646 .253952 .113298 .021016 0 0 0 0 0 0 0
-. 3 .678o76 .4o646 .253952 .. 13298 .021016 o 0 0 0 0 0

-. 2 .978405 .678076 .440646 .253952 .113298 .0o21016 0 0 0 0 0
-. 1 1.370753 .978405 .678076 .40646 .253952 .113298 .ol1016 0 0 0 0
0 2.000000 1.370753 .978405 .678076 .440646 .253952 .113298 .021016 0 0 0

.1 2.629246 2.000000 1.370753 .978405 .678076 .440646 .253952 .113298 .0o21016 0 0

.2 .021605 2.629246 2.000000 1.370753 .978395 .678076 .44o646 .253952 .113298 .0o2016 0

.3 3 .292095 2.991777 2.599419 1.970174 1.30925 .918567 .648249 .10818 .224124 .083470 0

.4 3.397278 3.159848 2.89530 2.467172 1.837926 1.208678 .816320 .516002 .278571 .095730 0

.5 3.379164 3.192470 2.955040 2.654721 2.262363 1.633118 1.003870 .611522 .314331 .1o5669 0

.6 3.242058 3.11ol41 2.914707 2.677276 2.376958 1.9846oo 1.355355 .729023 .361851 .119542 0

.7 2.970118 2.877841 2.737187 2.550492 2.313o62 2.012737 1.623319 1.o18592 .4425oo .14o936

.8 2.507915 2.507915 2.394621 2.253963 2.067269 1.833051 1.558846 1.22o853 .679061 .180917 0

.9 1.817493 1.817493 1.817493 1.704192 1.567623 1.412759 1.238580 1.035232 .779423 .339531 0
1.0 0 0 0 0 0 0 0 0 0 0 0

-0.7 -o.oo9946 o 0 0 0 0 0 0 0 0 0
-. 6 -. o47439 -. oo9946 o 0 0 0 0 0 0 0 0
-. 5 -. 092126 -. 047439 -. 0099460 0 0 0 0 0 0 0
n.4 -. 134344 -. o92126 -. 047439 -. 009946 0 0 0 0 0 0 0
-. 3 .165594 -. 134344 -. 092126 -. 047439 -. 009946 o 0 0 0 0 0

-. 2 -. 175340 -. 165594 -. 134344 -. 092126 -. 047439 -. 009946 0 0 0 0 0
-,1 -. 145363 -. 17534o -. 165594 -. 134344 -. o92126 -. 047439 -.0o9946 o 0 0 0
. 0 -. 145363 -. 175340 -. 16550-.134344 -.092126 -.047439 -.009946 0 0 0
.1 .145363 o -. 145363 -. 175340 -. 165594 -. 13,344 -. 092126 -. 047439 -. oo9946 0 0
.2 .1753o .145363 o -. 145363 -. 175340 -. 165594 -. 134%4 -. o9219 -. 047439 -. oo9946 o

.' .179710 .189456 .159479 .141157 -. 131247 -. 161224 -. 151478 -. 120229 -. 078010 -. 033323 0

.4 .202250 .233500 .243246 .213269 .067906 -. 077456 -. 107343 -. 097687 -. 066A7 -. 026062 0
"- "% .5 .225508 .267723 .298974 .308722 .278743 .133380 .011982 -. 04196o -. 033713 -. 014 6 0

.6 .245o58 .289745 .3 1962 .363213 .372959 .342982 .197619 .o05866 .010187 -. 0005W0 0

.7 .25951 .296943 .341631 .383848 .415098 .424844 .39345 .237671 .073396 .018193 0

.8 .275268 .275268 .322707 .367394 .09611 .439329 .437969 .388647 .2188o .047776 0
9 .250073 .2 7 .250073 297512 .340250 .36851 .-3778647 .36o794 .04348 .139585 0

1.0 0 0 0 0 0 0 0 0 0 0 0

N

4\
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TABLE I.- PARTIAL SECTION L3T AND MOMEN COEFFICITS Pig' AND O e

FOR A tMIT-STEP ANLE OF ATTACK - Continued

(d) 01/c - 2

For 1/1/ equal to -

0 0.1 10.2 0.3 o0.4 0.5 o.6 0.7 0.8 1 0.9 1.0

-0.4 0.1132980 0 0 0 0 0 0 0 0 0
-. 3 .341391 .1132980 0 0 0 0 0 0 0 0
-. 2 .678076 .341391 .113298 o 0 0 0 0 0 0 0
-. 1 1.159860 .678076 .3141391 .113298 0 0 0 0 0 0 0
0 2.000000 1.159860 .678076 .341391 .113298 0 0 0 0 0 0

.1 2.840139 2.000000 1.159860 .678076 .341391 .113298 0 0 0 0 0

.2 3.321923 2.840139 2.000000 1.159860 .678076 .341391 .113298 0 0 0 0

.3 3.658608 3.321923 2.840139 2.000000 1.159860 .678076 .341391 .113298 0 0 0

.4 3.886701 3.6586o8 3.321923 2.840139 2.000000 1.15986o .678076 .341391 .113298 0 0

.5 4.000000 3.886701 3.658608 3.321923 2.840139 2.000000 1.159860 .678076 .341391 .113298 o

.6 3.387921 3.837921 3.724623 3.496530 3.159844 2.678061 1.837921 .997782 .515998 .179513 0
•7 3.503889 3.503889 3 .5o889 3.390596 3.162503 2.825813 2.314029 1.503889 .663755 .211409 0
.8 2.991140 2.991140 2.99,140 2.991140 2.877837 2.649749 2.313059 1.831270 1.018592 .271373 0

1.9 2.199262 2.199262 2.199262 2.199262 2.199262 2.085964 1.857870 1.552848 1.1691310.5092961 0
1.0 C 0 0 0 0 0 0 0 0 0

-o. -.o.ok74380 0 0 0 0 0 0 0 0 0
- -. uo62 -. o47438 o 0 0 0 0 0 0 0 0
-. 2 -. 165592 -. 114062 -. 047438 0 0 0 0 0 0 0 0
-. 1 -. 167131 -. 165592 -. 11062 -. 47438 0 0 0 0 0 0 0
0 0 -. 167131 -. 165595 -. 11o062 -. 047438 0 0 0 0 0 0

.1 .167131 0 -. 167131 -. 165592 -. 11o062 -. o47438 0 0 0 0 0

.2 .165M .167131 0 -. 167131 -. 165565 -. 114062 -. 047438 0 0 0 0

.3 .1 14 62 .165592 .167131 0 -. 167131 -. 165592 -. 114o62 -. o47438 o 0 0

.4 .047438 .114o62 .165595 .167131 0 -. 167131 -. 165595 -. u4062 -. 47438 0 0

.5 0 .0471438 ..114062 .165592 .167131 0 -. 167131 -. 165592 -.. 114062 -.047438 0

.6 .067907 .067907 .115345 .181969 .2335M .235035 .067907 -. 099223 -. 097688 -. 046154 0

.7 .166336 .166336 .166336 .213774 .280398 .331928 .333467 .166336 -. 00079 -. 011912 0

.8 .27950 .24r .249504 .249504 .296942 .363566 .415099 .116652 .237672 .039653 0

.9 .271625 .27165 .271625 .271625 .271625 .319064 .38-85 .423574 .3929 .186741 0
1.0 0 0 0 0 0 0 0 0 0 0 0

.N,

" "
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TABLE I.- PARTIAL SECTION L33T AND IMM COMVFICIfZ I.' AND Pemel

FOR A UIIIT-T!P ANGLE 07 ATTACK - Concluded

(e) 01/c - 4

For I/I equal to -

0 0.1 0.2 T .3 1 0.4 0. 06 0.7 0.8 0. 10

-0.2 0.113298 0 0 0 0 0 0 0 0 0 0
-. 1 .678o75 .1132980 0 0 0 0 0 0 0 0
o 2.000000 .678o75 .1.13298 0 0 0 0 0 0 0 0
.1 3.321923 2.000000 .678m7 .113298 o 0 0 0 0 0 0
.2 3.886711 3.321923 2.000000 .678075 .113298 0 0 0 0 0 0

.3 4.ooooo0 3.886701 3.321923 2.000000 .678076 .113298 0 0 0 0 0

.4 4.o000o 4.000000 3.886711 3.321923 2.000000 .678075 .113298 0 0 0 0

.5 4-.oooooo .oo0o00 4.ooooo 3.886701 3.321923 2.0o00O0 .678076 .113298 0 0 0

.6 4.000000 4.000000 4.00000o 4.oooo0 3.886711 3.321923 2.000000 .678075 .113298 o

.7 4.oooooo 4.oooooo 4.oooooo 4.oooooo 4.0000 3.886701 3.321923 2.000000 .678076 .113298 o

.8 3.837920 3.837920 3.837920 3.837920 3.837920 3.837900 3.724633 3.159844 1.837926 .515998 0
•9 2.991145 2.991145 2.99.145 2.99n145 2.991145 2.991145 2.991145 2.877837 2.313059 1.018592 0

10 0 0 0 0 0 0 0 0 0 0 0

-0.2 -0-474380 0 0 0 0 0 0 0 0 0
-. 1 -. 165594 -. o47438 o 0 0 0 0 0 0 0 0
0 0 -. 165594 -. o47438 o 0 0 0 0 0 0 0

1 .165594 .165594 -. o47438 o 0 0 0 0 0 0
.2 .o4743 .16550 o -. 165594 -. 47438 o 0 0 0 0 0

.3 0 .o47438 .165594 o -. 165594 -. o47438 0 0 0 0 0

.4 o 0 .o47438 .165594 o -. 165594 -. k7438 o 0 0 0

.5 0 0 0 .47438 .165594 o -. 1659 -. C47438 o 0 0

.6 o 0 0 0 .047438 .165594 o -. 165594 -. c47438 o 0

.70 0 0 0 0 .047438 .165594 0 -. 165594-.o47438 o

.8 .679044 .0679C4 .067904 .067904 .067904 .067904 .115356 .233502 .067905 -. 097688 0

.9 .249504 . g (0 .249504 .2495 4 .2495c4 .2495o4 .249504 .29694o .414 .237672 0
1.0 0 0 0 0 0 0 0 0 0

f~ N

S\
- .- .... I .-- _. .. .. .i ,

• " " :-:,-.' . -/ f- . ' '
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TABLE II. - SECTION LIFT AND MOMENT COEF"ICIEWIS Pc1 AND Omp

FOR A UNIT RATE OF ROLL

a 1

PC+- a Oq + a e p

(a) 01/c = 5/7

0 3.714314 o.306768 o.109560 -o.118325
.1 3.589100 .047812 .145258 -. 159784
.2 3.442694 -. 184467 .180o26 -. 201629
.3 3.273239 -. 387793 .212207 -. 241915
.14 3.077662 -. 558969 .24OOlO -. 278412
.5 2.851240 -. 693521 .261463 -. 308527
.6 2.586448 -. 784948 .273900 -. 32868o
.7 2.270441 -. 823060 .273661 -. 333866
.8 1.878086 -. 789604 .254594 -. 315697
.9 1.344769 -. 641916 .202991 -. 255769

1.0 0 0 0 0

(b) ol/c =1 0

0 4. oooooo 0 0 0
.1 3.944613 -. 343532 .025464 -.025974
.2 3.837918 -. 631772 .067905 -.070621
.3 3.690902 -. 873882 .116694 -. 123696
.14 3.503889 -1.o68886 .16634 -. 179641
.5 3.273240 -1.2122o6 .212207 -. 233427
.6 2.991135 -1.295676 .249503 -. 2794,43
.7 2.642985 -1.305516 .272287 -. 310407
.8 2.199256 -1.216158 .271624 -. 315084
.9 1.583274 -. 966580 .229183 -. 27o436

1.0 0 0 0 0

(c) zI/c - 4/3

0 4. 000000 0 0 0
.1 .oooooo -. 4ooooo 0 0
.2 4. 000000 -. 800000 0 0
.3 3.970171 -1.169877 .014115 -.014256
.4 3.837919 -1.433309 .067906 -. 069943
.5 3.63331.6 -1.616485 .133380 -. 1400o49
.6 3.355351 -1.716783 •197619 -.211452
.7 2.99132 -1.719543 .249502 -. 271957
.8 2.507913 -1.593429 .275267 -. 305547
.9 1.817491 -1.260633 .250073 -. 282582

1.0 0 0 0 0

I # -___________ ___

14. - - +

7.
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TABLI II.- SECTION L AND MO 1 C0EFICUIS NIP AND

FOR A UNIT RATE OF ROLL - Concluded

NI Ncla + NIP

+ B + a 0o

"la N% + +aCmp

Y/1 OCIM(Y/A) NIPo(Y/1) Nw(Y/1) ocmo(y/z)"

z/I - 2 ! ' '

(d) 01/c

.1 0.oooooo -. 4ooooo 0 0

.2 4.000000 -.800000 0 0

.3 4.oooooo -1.200000 0 0

.4 4.000000 -1.6ooooo 0 0
.5 4.oo00o0 -2.000000 0 0
.6 3.837921 -2.234846 .067906 -. 06926
.7 3.505723 -2.28627o .166336 -. 172989
.8 2.991137 -2.143407 .24950 -. 264474
.9 2.199M74 -1.707722 .271624 -. 293354

1.0 0 0 0 0

(e) /c - 4

0 4.oooooo 0 0 0
.1 4.oooooo -. 4ooooo 0 0
.2 4.oooooo -. 8ooooo 0 0
.3 4.oooooo -1.200000 0 0
.4 4.oooooo -1.6ooooo 0 0
.5 4.oooooo -2.000000 0 0
.6 4.oooooo -2.4ooooo 0 0
.7 4.000000 -2.8ooooo 0 0
.8 3.837920 -3.036384 .067906 -. 068585
.9 2.993135 -2.67274 .2495 3 -. 256987

1.0 0 0 0 0
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TABLE III. - SECTIONAL LIFT AND MJMMIT COEFFICITS ct AND OCMB

FOR A UIT AILERON DEFLECTION

a 0. 14]
ba/ I- 1.0

c./ - 0.2

(a) OI/c 5/7 (c) Z/c - 4/3

0 -o.4ooooo -o.16oooo 0 -0.400000 -o.16oooo
.1 -. 646627 -. 251783 .1 -. 749212 -. 295998
.2 -. 760302 -. 301080 .2 -. 800000 -. 320000
•3 -.800000 -.320000 .3 -.800000 -.320000
.4 -.800000 -.320000 .4 -.800000 -.320000
.5 -. 8ooooo -.320000 .5 -.800000 -.320000
.6 -. 8000o0 -.320000 .6 -. 8000o0 -.320000
.7 -. 800000 .-.320000 .7 -.800000 -.320000
.8 -. 742863 -,292771 .8 -.800000 -.320000
.9 -. 570248 -. 217640 .9 -. 726623 -. 285314

1.0 0 0 1.0 0 0

(b) l/c 1 (d) l/c 2

0 -0.400000 -0.160000 0 -0.4o00000 -0.160000
.1 -. 701015 -. 274665 .1 -. 800000 -.320000
.2 -. 80000 -. 320000 .2 -. 800ooo -.320000
.3 -. 8ooooo -. 320000 .3 -. 800000 -. 320000
.4 -. 800000 -. 320000 .4 -. 8ooooo -.320000
•5 -. 800000 -. 320000 .5 -. 800000 -. 320000
.6 -. 8ooooo -. 320000 .6 -. 8ooooo -. 320oo
•7 -. 800000 -. 320000 .7 -. 800000 -. 320000
.8 -. 800000 -. 32o000 .8 -. 800000 -.320000
.9 -. 654649 -. 253370 .9 -. 800000 -.320000

1.0 0 0 1.0 0 0

C_ _
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p

/C

-7 -T

COC

Figure 1.- Configuration considered in the aeroelastic analtysis. Positive
directions of displaceme~nts and velocities are indicated by arrows.
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(a) Wing with rigid-plate center section.
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1.0
Modified lifting-surface

.8 Lifting-surfoce theory-

Rolling .6trphey
ef f eCtiveness,

.4

.2

M. .08

0 .2 .4 .6 .8 1.0

Pressure ratio ,-p

(a) M 1.108.

1.0 lwModified lifting-surface
t heory II

.8 Lifting-surface theory

Str ip theory

Rolling
ef fectiveness,

.4

.2

0 .2 .4 .6 Ph8 1.0
Pressure ratio,

(b) M - 1.202.

Figure 3.- Variation of rolling effectiveness with pressure ratio for
constant values of Much number.
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1.0
SModified lifting- surface

. the ry
.8

Litg-surface the ory

-Strip theory

.6
Rolling

effectiveness,

.4

0 .2 .4 .6 .8 1.0
Pressure ratio , Ph

(c) M 1.338.

1.0 I
Modified lifting-surface

\\/- theory
.8 _+

Lifting-surfoce theory
1 1

Strip theory.6
Rolling

effectiveness,

.4__ _

.2

0 .2 .4 .6 .8 1.0

Pressure ratio,

(d) M- 1.667.

Figure 3.- Continued.
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1.0 -

-Modified lifting- surface
theory

.8 I
Lifting-surface theory

Strip theory

Rolling .
e f fectiveness,

A

.2_

M -2.84 8L

0 .2 .4 .6 .8 1.0

Pressure ratio ,

(e) M = 2.848.

Figure 3.- Concluded.
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( : I~~~.0____ _ __ _

Pressure .6
ratio at
reversal,

Modified lifting-surface theory

Lifting-surface theory

Strip theory-

0 1 23

Mach number, M

Figure i. Variation of pressure ratio at reversal with Mach numiber.

1.0

Lif ting- surface theory

Rigid rate .6Sti 
ler

of roll1,

.2 -

0 I23
Mach number, M

Figure 5.- Variation with Mach number of the rate of roll for the rigid
wing.
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1.0 0

Rolling
ef fectivene s s,-

0 o 5,000

,I • Region of
___.__ aileron

.2 1 reversal 10,000

.6

Pressure 
15,000

ratio, Standard
a ltitude,

Ph -20000 oo ft

.4.
25,000

.2.

_____-50,000

70,000

0 I 2 3
Mach number, M

Figure 6.- Variation of pressure ratio with Mach number for constant
values of rolling effectiveness.
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I.0

.8

.6
Rolling

4' .4

.2

0 1 2 3
Mach number, M

Figure 7.- Variation of rolling effectiveness with Mach number at
constant altitude.
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