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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 3141

COMBINED NATURAL- AND FORCED-CONVECTION LAMINAR FLOW AND
HEAT TRANSFER OF FLUIDS WITH AND WITHOUT HEAT SOURCES IN
CHANNELS WITH LINEARLY VARYING WALL TEMPERATURES

By Simon Ostrach

SUMMARY

The flow of fluids with and without heat sources and subject to
body forces between two plane parallel surfaces which are oriented in
the direction of the generating body force is analyzed under the condi-
tion that the temperature vary linearly along these surfaces. It is
found that a modified Rayleigh number (product of the reciprocal of the
ratio of specific heats and the Prandtl number Pr and th% modified

Grashof number Grp) as well as a parameter K, = Pr Gry is of

c

significance in this problem; where B 1s the volumetric e£pansion
coefficient, fy 1s the negative of the X-component of body force per
unit mass, 4 is the characteristic length, and p is the specific
heat at constant pressure. Solutions of this problem are obtained in
terms of "universal" functions which are tabulated for simple applica-
tion to specific cases. Representative velocity and temperature dis-
tributions from which detailed study of the heat transfer is made are
then computed. When the ratio of CKj (where C is related to the mass
flow) to the Rayleigh number is of unit order of magnitude, the effects
of aerodynamic or frictional heating can be appreciable. Asymptotic
solutions (for large values of the Rayleigh number) which render the
computations simple are also presented.

Comparison of the results from the method given herein with those
obtained elsewhere in an approximate manner for a special case sim-
lating the natural-convection flow of flulds with heat sources in a com-
pletely enclosed region shows that the approximate method is suffi-
clently accurate for problems in which the modified Rayleigh number is
less than 104.
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2 NACA TN 3141

INTRODUCTION

In recent years the transfer of heat to and from enclosed or par-

; tially enclosed regions by means of natural convection or by a combina-

| tion of natural and forced convection has taken on new significance in

: the fields of aeronautics, atomic power, electronics, and chemical en-
gineering. Most of the information on these modes of heat transfer under
such conditions is of a semiempirical or specialized nature; relatively
little detalled information exists for internal natural-convection flows.
In reference 1 there appears one of the few attempts to determine theo-~
retically the velocity and temperature distributions in detail and hence
the heat transfer for an internal flow problem of this kind. In that
reference a solution was found for the fully developed flow of flulds
with and without heat sources between two long parallel plates with con-
stant wall temperatures (where one could be different from the other)
oriented in the direction of the generating body force. The information
obtained therein is of practical value in connection with fully developed
flows subject to body forces where the surfaces are maintained at uniform

| temperatures. Lighthill (ref. 2) employs integral methods to study the
natural-convection flow in tubes with either one end or both ends closed
and with constant wall temperatures, and in reference 3 approximate
superimposed free- and forced-convection flows are obtained for short
channels and pipes.

As the next step in the study of natural convection or combined
natural and forced flows in confined spaces, consideration is here given
to the configuration of reference 1 with the exception that the thermal
boundary condition specified is that the surface temperatures vary
linearly along the plates or surfaces. (One surface, however, may be at
a different local temperature from the other but the slopes of the tem-

' perature distributions on each surface are taken to be equal.) The

' analogous forced-convection problem is treated in references 4, 5, and 6.

The present problem simulates several important physical occurrences of
this phenomenon; for example, it could represent the case where the out-
side of the channel formed by the plates is cooled (or heated) by a
counterflow., In addition, the present problem represents a more general
case than was considered in reference 1, since here the temperature will
no longe: be restricted to be a function of the transverse coordinate alone

| and, hence, energy convective as well as mass convective effects will be
included.

. The solution is obtained in terms of functions which depend on only
}‘ \ one of the several assoclated dimensionless parameters, and these func-
tions are tabulated so that specific cases can be easily computed. Solu-

tions for pure natural convection and for superimposed natural and forced
convection are shown to be essentially identical. Representative velocity
and temperature distributions are also presented, and the effects of

= frictional or aerodynamic heating on the flow and heat transfer are

‘ discussed.
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A special case which similates a completely enclosed region in which
there is no net mass flow, the walls are at the same temperature, and
heat is generated uniformly by heat sources is treated, and detalled
velocity and temperature profiles are obtained from which the heat trans-
fer is determined. This special case was treated in an approximate
manner in reference 7.

Consideration 1is also given to the problem of convective inversion,
that i1s, to the cases where the modified Grashof number changes sign.
It is shown that convective inversion due to changes in the body force
direction, to changes in the sign of the volumetric expansion coeffi-
cient, or to changes in the sign of the axial temperature gradient alters
the character of the problem, because, it is believed, under these con-
ditions the flow becomes unstable because of heating from below (see
pp. 104 to 107, ref. 8).

ANALYSIS
Formulation of the Problem

The study to be made here is that of the laminar fully developed
flow of fluids with and without heat sources and subject to a body force
between two plane parallel surfaces open at both ends and orilented in
the direction of the generating body force (see fig. 1). It is further
specified that there shall be linear (with equal slopes) temperature
variaetions along the walls but that the walls need not necessarily be at
the same temperature. The flow is assumed to be parallel to the axis of
the channel (that is, the only nonvanishing velocity component is the one
in the longitudinal direction) and in addition it is assumed that the
physical properties (for example, p and ) of the fluids are constants
and that the essential influence of the density changes on the flow is
taken into account by the introduction of the volumetric expansion co-
efficient in the body force term (that is, the other influences of vari-
able density and the variation of the expansion coefficient with tempera-
ture are negligible). Discussions of the justification of the assump-
tions can be found in references 1, 9, and 10.

Under the conditions stated, the basic equations with body forces
included expressing the conservetion of mass, momentum, and energy (see
ref. 1) become, respectively,

g%ao (1)

- (B

e v i o
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g% -0 (3)
a?-r‘ 3%* ey - 3r® Ve Q
a2 aYz = _E!'U X - % (3?) "k (4)

(See appendix A for a complete list of the symbols used herein.) With
cognizance taken of equations (1) and (3) the above system reduces to

a& l(ﬂfx*'%) 5)

e
(&) -t ®

d%r* dfe _ Py art
vhere the velocity 1s a function of the transverse coordinate Y only
and the pressure 1is a function of only the longitudinal coordinate.

=

The body force term in equation (5) can be written as a buoyancy
term by introducing the volumetric expansion coefficient B in a manner
similar to that described in appendix B of reference 1. Equation (5)
then becomes

pBf
4y X (pe_ . % 2t (€
3 0 M%) = (& ¢ o) ¢
where the subscript w; refers to the surface at Y =0 (see fig. 1).

The boundary conditions associated with this problem are that the
velocity at the walls must vanish (the no-slip condition for viscous
fluids) and that the temperature must vary linearly along the walls.
(Note that the latter condition implies that the temperature gradients
along the walls and hence the axial heat flux along the walls must be
constant.) In order to satisfy the temperature conditions and equation
(7), the temperature must be of the form

7%(X,Y) = AX + T(Y) (8)
Mathematically, the boundary conditions are formulated as
U(0) = U(d) = 0 (9)

7°%(X,0) = AX + T(0) (10)

3016
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1°(X,d) = AX + T(d) (11)
Substituting equation (8) into equations (7) and (6), respectively,
yields
ay PRIy 1 (ar
Ez—-l-——u—el— d—x-+pwofx> (12)
. § and
(o]
. 2 pc A 2
\ 40 B(W)E L __
o E U+k(dx)+k'° (13)
where
6 = T(Y) - T(0)

Since the left side of equation (12) is a function of Y alone
and the right side is a function of X alone, it is clear that each
side must be equal to a constant. Thus, equation (12) can be written as

pBL: -
-d—z% +—26=¢C (14a)
. ay [
! or
1l [dP =
1 - (ﬁ + D,,,Oﬁ(> =C (141)
The temperature now appears in equations (13) and (14) as 6 which
is independent of the longitudinal coordinate X, and hence the thermal
E boundary conditions can be written as
} 6(0) =0
! 6(a) = T(d) - 7(0) = 6y, (15)
noo~ To nondimensionalize equations (14) and (13), let
- !
l' -
o'
TN
Y

e whi il
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U= =
By’ PrK,
Y =yd L (18)

4

T Ad

0 = - T
o2plryat Ky
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pfyd
X ) is the new dimensionless parameter presented

where Kp = PrGrp (

in reference 1, but here the Grashof number 1s modified because it is
based on Ad rather than on a temperature difference, thet is,

Gry = Bf’:;% Hence, equations (14), (13), (9), and (15) become
u" + T = CKp (17)
T" -Rau+ (u')? + aky =0 (18)
u(0) =u(1) =0 (19) J
T(0) = 0 (20) ‘
T(1) - A (1)

where the primes denote differentiation with respect to vy,
Ra = (1/y) PrGrp 1s-a modified Rayleigh criterion or number (see p. 105,

ref. 8) y = Qd[kA is the dimensionless heat source parameter, and

c=C /E;’?cpAKA Eliminating T Dbetween equations (17) and (18)
results in

ulV - (u')2 + Ra u - oKy = 0 (22)

PN
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with the boundary conditions

u(0) =u(l) =0 (23)

u"(0) = CK, (24)

u"(1) = (C - 6y;/Ad) Kp = mCKp (25)

wvhere m=1 - Gw/CAd. The constant C which appears as a parameter in

the boundary-value problem described by equations (22) to (25) merely
specifies the temperature level (see eq. (17)) of the problem. In order
to define completely the temperatures and velocities, this constant mist
be related in some way to the physics of the problem. From equation (14b)
it can be seen that C could be determined from the pressure gradient
along the channel; that 1s, C 15 essentially connected with the end
conditions to which the channel is subject. Since the pressure gradient
may not be known a priori, in the subsequent section dealing with the
solution of the present problem C will be related to the end conditions
by the mass flow in the channel, which remains invarient over the entire
length of the channel.

Note that solution of the preceding boundary-value problem will
yield velocity and temperature distributions for both natural-convection
and combined natural- and forced-convection flows. The forced-
convection pressure gradient merely alters the magnitude of the constant
C. A discussion of such a superimposed flow problem under special con-
ditions is given in reference 1l.

Several interesting observations can now be made concerning these
equations. First, comparison of equation (22) with the corresponding
equation in reference 1 shows that they are identical except for the
third term in equation (22), which does not appear at all in the equa-
tion in reference 1. This term stems from the convection term in the
energy equation; hence, in the present problem energy convection effects
will be included. The energy convection term vanished identically in
reference 1 because of the assumption that the velocity and temperature
profiles were independent of the axlial coordinate. Second, since the
convection term appears with a coefficlent, another dimensionless param-
eter (Ra, the modified Rayleigh number) is associated with this problem
and 1ts influence on the results must be studied. Finally, the condi-
tions of the problem require that the temperature be of the form
T* = AX + T(y) (see eq. (8)), and hence the longitudinal heat flux is
everywhere constant,
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The boundary-value problem stated in equations (22) to (25) can be
written in more convenient form by defining

v =Rau - aKy (28)
Hence
Viv-i—Ra;--Rl—a(V')Z-O (27)
v(0) = v(1) = - aKp (28)
v"(0) = + Ra CK, v'(1) = + m Ra CK, (29)

Solutions of the Boundary-Value Problem

Equation (27) is nonlinear (the nonlinear term is due to the fric-
tional or serodynamic heating) and therefore, as in reference l, a method
of successive approximations will be employed to find its solution. To
this end, equation (27) is written

v - 1 - 2
vp +BRa vy - &= (viq) =0 (30)

where n = 0, 1 denotes the particular term in the approximation
vevqg+ vy and v!] 0. Let

1 - A
V--6—4-V
n=2y -1
oKy
N ==& & (31)
Ral/ZCKA
® T 6
Ra
Raﬁ J
, ! -
N -

3016
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Equations (30), (28), and (29) become, respectively,

vV 4 Ry - %(v;‘_l)z =0 (32)

vo(-1) = vo(1) = A (33)

v5(-1) = JAR vi(1) = mJR (34a)

vg(=1) = vy(1) = vi(-1) = vi(l) = 0 n o (34b)

where the subscripts now denote differentiation with respect to 7.

Zeroth-order approximation. - In the zeroth~-order approximation,
the nonlinear term which 1s associated with the frictional heating does
not appear and the problem then consists of solving the equation

vé" + Rvy =0 (35)

subject to the boundary conditions
vo(-l) = vo(1) = A (38)

vg(-1) = In[R vg(1) = wJ\[R (37)

For simplicity of computations the solution can be obtained in terms of
symmetric and antisymmetric functions of 1, depending only on the param-
eter R (or Ra), by setting

.AVOO*‘JSm-l! Jm + 1 (38)

2 Vo1 * 2 Vo2

where the boundary conditions to be satisfied by the various Vo3 (where
J =0, 1, 2) are given in the following table:

Subseript | v(=1) | v(1) | v"(-1) | v"(1)
00 1 1 o o
01 o | 0o |-4R | WR
02 o | o AR | AR
S . e
T O
. R 4;1_:," ) - o
. 'ygf Py Aot . ‘\(" i
w—t 'ﬁjgb?? . 'g ?T%‘*df‘m
T i it ~
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The functions Voj ™ust each sstisfy equation (35), which has the general

solution for positive values of the Rayleigh number

vo = a; exp(ern) + a, exp(-ern) + az exp(grn) + ay exp(-grn) (39)

where
e= i+ 1
g=1i-1
and
1/4
r=R/7/\2
Using the boundary conditions to evaluate the constants in equation (39)

and expressing the solution in terms of real products of circular and
hyperbolic functions show that

1l
Voo ™ (cosh r cos r cosh rn cos ry
Y coshzr + cosér - 1
+ sinh r sin r sinh rq sin rn) (40)
L (cosh r sin r sinh rq cos ry
Vo = r r
0oL coszr - coshzr
- sinh r cos r cosh rn sin rn) (41)
= (cosh r cos r sinh rn sin ry
Voo = cos r rn sinr
02 coshzr + coszr -1

- sinh r sin r cosh rn cos ry) (42)

Note that v,y and vy, are symmetric functions and Vo1 is an anti-
symmetric function of 1. These "universal” functions Voj oTe glven

for various values of Ra in table I.

3016
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First-order approximation. - In order to include the effects of
frictional heating to & first order, let n = 1 in equation (32). Thus

1
v = = 2
1 + va R (vé) = £(n) (43)
vhere, in view of equation (58), f(n) is given by

J
£(n) = % [%zvéoz +AJ(m + 1)v6o Voo + -S-—Z-l- v612

2 2 2(m8 -
+.J_(E_+_lLv| 2+AJ(m- l)véo +'_I__(P;___]le' v'z]

vl
4 02 0ol 2 oL O
(44)
The boundary conditions on vy are
vi(-1) = v(1) = vi(-1) = vi(1) =0 (45)

Once again, to obtain "universal-type" functions let

2 2
J°(m - 1
v, = szlo +AJ(m + 1)Vll + _i_z_) Vip

2¢. 2
Je(m + 1)2 Je(mé - 1
+ _(T_L viz + M(m - l)vl4 + _._2_). Vig (46)
In view of the form of equations (43) to (46), the functions vior V11

V1o and Viz are symmetric; and Via and Vi are antisymmetric
functions. Each of the functions vy, (k =0, 1, . . . 5) will be a

solution of equation (43), but where the nonhomogeneous term is only
the related part of equation (44) (for example, the first term on the
right-hand side of equation (44) 1s associated with the Y10 solution

and so forth).

A particular solution of equation (43) can be constructed from

(v )p = j;" £,(8) 6(n - §)at

B VOO .
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vhere G 1s the Green's function which satisfies the homogeneous part of
equation (43) and the conditions G(0) = G'(0) = G"(0) = 0, G'''(0) = 1,
These arbitrary conditions were applied to yleld a simple form for the
Green's function. Hence

n

(v )p = - ;13 [cstmbgx(n- 1) - gstnner(n-t] r,¢)at
0

(47)

Note that if the f, is a symmetric function, (vlk)P is also symmetric;

and 1f f; is antisymmetric, so is (vix)p. From the boundary conditions,
equation (45), it can be seen that vjy mst be either symmetric or anti-
symmetric. Therefore, if fx 1s symmetric, the complementary solution
used with the particular solution must be symmetric; and if fi 1s anti-
symmetric, the complementary solution must also be antisymmetric. These
complementary solutions are, respectively,

- cosh ern cosh gr

(vlk)cs E cosh er +F cosh gr (48)
sinh ern sinh gr1

(vlk)ca =~ simh er +F sinh gr (49)

- = 8 r(1 - at 50)
E =3 [sinher (1 - ¢) fk(g) (

0
F = Bf—?f [sinh g (1 - £)] £, (b)at (51)
0

The vix solutions can be written explicitly in real form (by proper

combinations of particular and complementary solutions) and are given in
equations (Bl) to (B6) in appendix B. Values of v for several R

1k
(or Ra) are presented in table II.

Velocity and Temperature Distributions

Now that the various vix 8re known explicitly, they can be inserted
into equation (46) to yield v). The sum of v, (as given by eq. (38))

3016
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and vy then formes the solution which includes frictional heating effects

to a first order. By means of the various transformetions made, the solu-
tions of the given boundary-value problem (eqs. (22) to (25)) or the
dimensionless velocity distributions to the zeroth and first approximation
are, respectively,

K - 1/2 1/2
“o"R%['“"oo*“(m %Ra/cv01+(m+l%Ra ch2+{] (52)

910¢

K,2
1 A 1/2
U1 " R E‘*(Vo tvy)# °K] = Y0 * 5iFa [“zvlo-aﬂa /20 + 1) vy

2p.n2 25,12
g - l! RaC gm + 12 RaC 1/2
+ 2 . 7y viz - (m - 1) cRa /

Vi + Cv14

2

2 2
m~ - 1)RaC

vhere the v, (3 =0, 1, 2) are given in equations (40) to (42) and the
vigx (k=0, 1, 2, 3, 4, 5) are given in appendix B.

In principle, higher-order approximations could be obtained by con-
tinuing the procedure described. However, the results become very un-
wieldy. Therefore, beyond the range of applicability of the zeroth- and
first-order approximations (that is, in the range of large frictional
heating effects), the complete boundary-value problem should be solved
numerically; some discussion of these numerical results relative to the
zeroth- and first-order approximations will be presented subsequently.

To determine the temperature distributions, recall that they are
related to the velocity distributions by equation (17) and that

1/2 1/2
_ _Ra " Ra
voo = - r Vo2 and VOZ = T Voo 8° that

1 m+ 1)C 1/2
TO-CKA-u{')-KA{ -1;—17-2- av02+2(m-1)0v51+£—2—LRa/vo(J}

(54)

Er
¢
»~

cn e i

[
[




b ———

14 NACA TN 3141

and

2
K
T =CK, -u' =T, - —h [}?v" - aral/2 C(m + 1) i1

1 A~ "1 0 16Ra 10
2 2
gm - llzRaC Sm + llaRaC 1/2
+ " vig + " viz - (m - 1) aRa / Cvi,

+ Sm - l%zRaC2 v ] (55)

15

where the primes on the u-functions denote differentiations with respect
to y and on the v-functions denote differentiations with respect to 1,
and the explicit forms of the second derivatives appearing in equations
(54) and (55) are presented in equations (B7) to (Bl3) of appendix B.

Thus, solutions of the original boundary-value problem in terms of
u and T are known to zeroth- and first-order approximations, that is,
neglecting frictional heating and including its effects to a first order,
respectively. These solutions are, however, given in terms of the param-
eter C (recall that m is also a function of C through eq. (25)).

Therefore, to relate C to the physical problem the dimensionless mass
flow in the channel is defined as

M= uody (56)
0

Neglecting aerodynamic heating, equation (56) becomes (using the zeroth-
order approximation as given by eq. (52))

1
K
M= uody = §§ [% A2 o (:in 2r + sinh Zr)

- Ral/4 \eOSh 2r + cos 2r
0
+ pal/a C(m + 1) (sin 2r - sinh 2r> (57)
\/5 cosh 2r + cos 2r
or
6y
C 1 + 1 cosh 2r + cos 2r\| MRa .o+ 2 afsin 2r + sinh 2
2Ad > Ralﬁ in 2r - sinh 2r/| K, al/4\cO8Bh 2r + cos 2z,

(s8)

3016
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(For large Ra the expressions in parentheses in equation (58) reduce

to 1 and -1, respectively.) Substitution of C as determined into equa-
tions (52) to (55) then yields the velocity and temperature distributions
for any case if M, ewl/Ad’ Ra, o, and K, are known., Note, then, that

the mass flow 1s an independent parameter of the problem, and hence could
be due in part to a forced flow. For a given configuration and fluid the
last four of these parameters are specified, so that equation (58) re-
lates C to the mass flow M, that is, the temperature level and the
mass flow through the channel are related, as is only reasonable in flows
of this type.

Asymptotic solutions. - The solutions presented in the previous sec-
tions are valid (to the proper order of approximation) for all values of
the parameters of the boundary-value problem., However, from physical
considerations, it can be seen that in many practical occurrences of the
phenomenon under consideration, the parameter Ra may become very large
(of the order of 104 and higher). It is therefore appropriate to examine
the asymptotic character of the boundary-value problem., To this end it
is convenient to write equations (22) to (25) as

KaC
ﬁ%ﬁiv-ﬁé—'(ﬁ')z+ﬁ-(—:%—a-=o (59)
u(0) = u(1) =0 (60)
u"(0) =1 u"(1) =m (61)
where
u = CKAE (62)

For very lerge Ra, equation (59) is of the boundary layer type (see ref.
10). Therefore the velocity and temperature profiles will have very large
gradients near the walls, and thus the asymptotic solutions will yield the
velocity and thermal boundary layers with essentially constant conditions

gliven by the inviscid solution uI = a/CRa in the center of the channel

associated with large Ra flows. Hence, expanding the coordinate normal
to the wall, as 1s done in boundary layer theory, reauires that

3 = nal/dy (63)

u= Ra'l/zv (64)

© O ey, o b
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The asymptotic forms of equations (59) to (61) are
Ve 4V - A (vo)? 0 (65)
- v p— - ]
7y Re ¥ 1z
V(o) =0 (686)

1 for the wall at temperature Two (67)
67

3016

V—(0) =m =
Yy m for the other wall at temperature T"l

V(®) = Vgp(=) = 0 (68)

where the subscripts denote differentiation. Note that the conditions ;
expressed by equation (68) replace the boundary conditions at the second
wall and require that influences of one wall do not affect the other.

Thus y can be considered as the coordinate normal to the first (or left-
hand) wall (that is, the one corresponding to Y = 0) and -y will be

the coordinate normal to the other wall, which is at Y = d. Hence, use
should be made of the proper part of equation (67) in each solution.

From equation (65) it can be seen that the frictional heating effects
will be negligible for large Ra unless CKp/Ra (or Crfod/cp) is at

least of unit order of magnitude. It should perhaps be pointed out here,
in contradistinction to the qualitative discussions in references 1 and
. 12, that the frictional heating is important only if essentially the
% ratio of K (based on any appropriate temperature) to Ra is of unit
! § order of magnitude or larger, as can, in fact, be verified in general.
L Thus it should be noted that the discussions in those references hold
! } specifically only if Ra is of unit order or smaller or if Ra does not
appear as an explicit parameter of the problem (as in ref. 1, for example).
For the range of conditions and physical properties of fluids being con-
sidered, it is unlikely that CKj/Ra will be of unit order for a flow

generated in a gravitational field alone with large Ra. Therefore, un-
less the natural-convection flow is being generated by a body force con-
siderably stronger than gravity, the ratio of the volumetric expansion
coefficient to the specific heat at constant pressure is unusually large,
i or there is considerable forced flow (to increase C), the frictional
. heating effects will not be important for large Ra. (Of course, the
possibility always exists that some unusual fluid will be employed whose
physical properties are such that CKA/Ra will be of such a magnitude ;

" . that the frictional heating effects will be important for large Ra even
in a gravitational field. Liquids near their critical state may be rep-
resentative in this respect (see ref. 13)). Furthermore, it can be seen
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from the same equation that the effects of the heat sources will be im-

portant only if u/CRal/2 is of unit order of magnitude for large Ra.
This is physically reasonable.

Since the frictional heating effects are negligible for large Ra,
unless CKA is very large these effects will be neglected in this sec-

tion.. (A method of successive approximations similar to that described
in the previous sections could be applied without difficulty to eq. (65)
if these effects are of consequence.) Therefore, letting

V=V- a./CRal/z, equations (65) to (68) become, respectively,
V§§?y +V=0 (69)
V(o) = - —-“75 (70)
CRa
V75(0) = m (71)
V(@) = V5 =0 (72)

The solution satisfying equations (69) to (72) is

= -e-y/ﬁ m sin " + —=— cos —-_L (73)
'\/-2- CR&L]'/2 '\/E

To find the temperature distribution the second derivative of equation
(73) is necessary, and this is given by

VW = -e-y/l\/E ai/z sin 4~ - m cos - (74)
CRa ‘\/E ‘\/—2_

For large values of the Rayleigh number Ra, then, the dimensionless
velocity and temperature distributions are given by

—5 [T+ == (75)
u = + 75
a 1/2 ( 1 é)
Ra CRa /
and
To = CKy (1 - V) (76)
o | p -
= ;#‘Y ,‘;’ g * é’k
7 :f!b ﬁﬁi JE -

Y
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Solution of Special Case Simulating an Enclosed Channel

There is considerable interest in the natural-convection flow in a
completely enclosed rectangular region. In reference 7, the natural-
convection flow of fluids containing heat sources between two parallel
planes is considered (as is the case here also); but there, in order to
simulate an enclosed rectangular region, it is further specified that the
net mass flow be zero and that the walls be at the same temperature. This
problem is treated in an approximate manner in reference 7 in that the
velocity distribution was postulated without regard to the equations of
motion and, hence, it would be desirable for comparison purposes to obtain
a more exact solution for this special case from the solutions found
herein.

For zero net mass flow in the channel the parameter C can be deter-
mined directly from the other parameters of the problem and equation (58).
Thus

0 Y1 a (cosh 2r + cos Zr\[ NE (sin 2r + sinh Zr) _ l:l

0 zaa \/Z Ra/% \$in 2r - sinh 2r)| 172 \cosh 2r + cos er

(77a)

where the superscript denotes the zero net mass flow and the subscript
designates the order of the approximatiom. It is interesting to note
from this equation that for no internal heat sources (a = 0), zero net
mass flow in the channel can be obtained when C = Gwl/aAd. However, to

obtain the solution for the special case similating flow with heat sources
in a completely enclosed region with walls of equal temperatures from the
solutions presented in the previous sections, ewl must be zero in equa-

tion (77a), and therefore

c® = a (fosh 2r + cos 2r)| _a/2 (sin 2r + sinh 2r) _,
0 NG Ral/4 \8in 2r - sinh 2r/| _ 1/4 \cosh 2r + cos 2r
(77v)

The velocity and temperature distributions for this special case are then
obtained by replacing C in equations (52) and (54) by Cg as given by

equation (77b). Further physical significance of the zero net mass flow
case can be inferred from equation (13). Integration of this equation
over the channel cross section shows that for no net mass flow all the
heat generated internally (by heat sources and by aerodynamic heating if
the latter is significant) in a given cross section must be transferred
to the walls.

3016



g10¢

S v apevn

1 X

NACA TN 3141 ) 19

Computations made for this case including frictional heating ylelded
no appreciable devietions from the zeroth-order results.

Solutions for Case of Convective Inversion

An Interesting aspect assoclated with the natural-convection
phenomenon is that the Grashof number can change sign; this implies a
reversal in the flow direction and is referred to as convective inver-
sion (see p. 109, ref. 8). The sign of the modified Grashof number in
the present paper can be changed in one of three ways: ‘l) by a change
of the sign of the longitudinal temperature gradient OT°/dX = A, (2) by
a change in the direction of the generating body force, and (3) by a
change in the sign of the volumetric expansion coefficient as occurs
near the critical state of a liquid (see ref. 13).

Since the modified Grashof number appears in the parameters Kp

and Ra connected with the problem considered herein, the effects of
sign changes of the Grashof number in the solutions_should bg studied.
From i1ts definition, K, 1s proportional to A, fy”, and B so that

only the first will alter its sign. Note further, however, that the
modified Rayleigh number Ra is essentially the product of the Prandtl
number and a modified Grashof number, that is, a Grashof number which
depends on the product (Ad) of the longitudinal temperature gradient and
the distance between the plates. Hence, any one of (1), (2), or (3)
given in the preceding paragraph will lead to a change in the sign of
Ra. For negative Ra the solutions as given in the previous sections
do not apply, and hence the foregoing boundary-value problem (eqs. (22)
to (25)) would have to be solved with negative Ra. These solutions

can be readily obtained, but it is found that with frictional heating
neglected these solutions change character with changes in Ra and that
there exist critical negative values of Ra for which the solutions
become meaningless. In an attempt to explain these unusual results,
further interpretation of the problem must be made. Reexamination of
the meaning of negative Ra shows that not only changes in the body
force direction and sign of the volumetric expansion coefficient but
also a change in the sign of the longitudinal temperature gradient A
can lead to negative Ra. If the negative Ra 1is attributed to the
last cause, the physical interpretation of the unusual mathematical
results pointed out becomes clearer, because a negative A 1implies that
the fluid is being heated from below and this situation leads to a
"Rayleigh-type" instability of natural-convection flows due to the
"piling of heavy fluid on lighter fluid." Analogous interpretations, of
course, also follow directly for changes in the body force direction and
in the sign of the volymetric expansion coefficients. Natural-convection
flows heated from below between horizontal plates have been studied ex-
perimentally in some detail (see refs. 8, 14, and 15, for example), and
it was found that the flow does indeed change character (into cellular
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e e

A



¥
s i

20 NACA TN 3141

motion) for certain critical values of the Rayleigh number. Hence, it
is believed that the critical values of Ra found from the linearized -
analysis (in that the aerodynamic heating was neglected) for negative
Ra may be analogous to those observed in actual cases. However, since
this instability leads to these additional complications and should be
further investigated (perhaps using the true nonlinear eqs.), the case
of negative Ra will not be treated further herein. It should, how-
ever, be kept in mind that if in an actual case of the configuration
considered herein the Ra 1s negative, the flow and heat transfer will
not be as predicted in this paper but should be expected to exhibit a
behavior pertinent to the "unstable-type' flows.

3016

RESULTS AND DISCUSSION
Velocity and Temperature Distributions
The relations between the actual and dimensionless velocities and 2

temperatures as determined from the various transformations in the
analysis (see eqs. (16)) are

Um PI‘-P_KA u (78)

Ad
0 = KX T (79)

‘ where U and € denote the actual and u and T, the dimensionless
‘ quantities. For a given fluid, configuration, heat-socurce intensity,
and mass flow, the velocity and temperature distributions can be com-
puted from equations (52) to (55) (for Ra > 0); and for zero net mass
) flow and the walls of the same temperature, by applying equation (77Db)
: to equations (52) and (55). These computations will be accurate within
- ‘ the limits of the method of solution; that is, for moderate and small
values of Ra the solutions yleld results of reasonable accuracy for
small CKp, and for large Ra the zeroth-order approximations or, even

more simply, the asymptotic solutions will give answers valid for all
CKp. The range of applicability of the various solutions presented

herein will be discussed more fully subsequently.

Because the solutions were obtained in the convenient forms (egs.
‘ \ (s2) and (54), for example) wherefrom the qualitative effects of the
b various parameters associated with the problem can be studied, and since
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tabular values of the universal functions are presented to facilitate
computations for any specific case, no extensive detailed calculations
will be given covering the entire range of values taken on by the param-
eters. Representative velocity and temperature profiles were, however,
calculated for Kg = 10, m = -1, 1, and 2, « = 0, 10, and 100, and

Ra = 10, 102, 1600, and 10%. In addition, the parameter C was given
the value -1 in all the computations except those for the case simu-
lating flow in a completely enclosed region. In this way the relative
influences of the other parameters are just as apparent, but the number
of computations is greatly reduced. The results of these computations
are presented in figures 2 to 9. The contents of each specific figure
(numbers 2 to 9) are listed in the following table:

Ky = 10 g, Uy Tor T

m | « |Ra =10| 102 |1600 | 10% 10 102 | 1600 | 10%
1| © 2(a) | 3(2) | 4(a) | S(a) 6(a)| 7(a) | 8(a)| 9(a)
10 2(a) | 3(a) | 4(a) | S(a) 6(a)| 7(2) | 8(a) | 9(a)
100 2(a)| 3(a) | 4(a) | S(a) 6(a) | 7(a) | 8(a) | 9(a)

1| 0 2(v) | 3(b) | 24(b) | 5(b) 6(db) | 7(v) | @8(b) | 9(b)

10 |&P2(b) | 3(b) | 4(b) | 5(b) | ®P6(b) | 7(0) | 8(b) | 9(v)
100 2(b) | 3(db) | 4(®) | 5(v) 6()| 7(d) | 8(v)| 9(b)
2 0 a’bz(c) 3(c) | 4(c) | ®s(e) a’bs(c) 7(c) | 8(c) | 9(e)

10 2(c)| 3(c) | 4(c) | s(e) 6(c)| 7(c) | 8(c) | 9(c)

100 2(c) | 3(c) | 4(e) | ®s(c) 6(c)| 7(c) | 8(e) | ®9(c)

8Tncludes results for u ?r T.
bIncludes results for uf2) or 7(2),
CIncludes results for ug or Tg.

For each triplet of parametric values (m, a, Ra) the profiles were com-
puted with frictional heating neglected (by eqs. (52) and (54) and de-
noted by u; and Ty on the figs.), with frictional heating included

to a first approximation (by egs. (53) and (55) and denoted by uy
and Tl), and in several specific cases with frictional heating completely

accounted for (by numerical solution of egqs. (22) to (25) using a Card-
Programmed Electronic Calculator and denoted by u and T)., For

j
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Ra = 104 the asymptotic solutions (given by eqs. (75) and (76) and :
denoted by us and Tg) are also included for Kp = 10, m = 2, and .

a =0 and 100, The asymptotic solutions were computed from each in-
dividual wall to the channel center and then faired in to join smoothly.
From these computations any qualitative trends obtained by examination
of the solutions can be further substantiated and, in addition, some
definition of the range in which the frictional or aerodynamic heating
exerts a large influence can be made. Calculations were also made for
the special case simulating a completely enclosed region in which there
is no net mass flow and the walls are at the same temperature by applying
equation (77) to the appropriate solutions. These curves are given in
figures 10 and 11. The velocity and temperature profiles (particularly
for Ra € 104) are qualitatively similar to those determined experi-
mentally in reference 16.

Effect of different wall-temperature configurations (m varyin
and heat sources (a varying)}. - From equations iszs to (55) and their
related universal functions, it can be seen, as expected, that an in-
crease in the wall temperature parameter m or an increase in the heat-
source parameter a results in larger velocities and higher tempera-
tures. These trends together with that of increasing net mass flow, as
represented by the area under the u-curves, with m and a can be ob-
served on figures 2 to 9. It can also be seen from figures 6 to 9 that
if sufficient heat is generated by the heat sources, the direction of
heat transfer will be changed. In agreement with the statements made in
the section dealing with the zero net mass-flow case, note from fig-
ures 2(a), 35&), 4(2), and 5(a) that if aerodynamic heating is neglected
for m= -1 (since C = -1) and a = 0, there is no net mass flow. In
general, the velocity distributions become more symmetrical with the
larger a (see figs. 2(a), 3(a), 4(a), and 5(a), for example) because
the heat added uniformly by the heat sources counteracts any asymmetry
imposed by the wall thermal conditions.

3016

Effect of the modified Rayleigh number (Ra). - Examination of
the solutions (eqs. (52) to (55)) shows that the velocities and tem-
peratures decrease with increasing values of the modified Rayleigh
number Ra. This trend can also be seen by comparison of corresponding
curves in figures 2 to 9, and even by comparing with the curves in refer-
ence 1 which are for Ra = 0. For large Ra 1t can be seen from fig-
ures 5(b), S(c), 9(b), and 9(c) that the velocity and temperature pro-
files take on a "boundary-layer form." Asymptotiec solutions computed
for Ra = 104, Ky =10, m=2, and a =0 and 100 are also presented
on figures 5(c) and 9(c), and these very closely approximate the more
exact solutions. Hence, for large Ra <the asymptotic solutions can be
employed to yleld reasonable results much more simply. For the case




© e g

NACA TN 3141 23

i vhere m = -1 and a = 0, increasing the modified Rayleigh number changes
the temperature distribution from essentially the conduction profile

(that is, an almost linear distribution) at Ra = 10; the increased

effect of the convection is then apparent for the larger values of the
Rayleigh number. It is interesting to note that for Kj = 10, a = 10,

and m= -1, 1, and 2, changes in the Rayleigh number can so affect the
temperature distributions that the heat flow direction from one or both
the walls can be altered. (Compare corresponding parts of figs. 6

to 9.) This point will be more graphically portrayed in the subsequent
discussion of Nusselt numbers.

910

The velocity and temperature distributions (see figs. 10 and 11)
for the special case considered herein of zero net mass flow and walls
at the same temperature are not in general appreciably altered in shape
by increases in Ra although the velocity peaks vary inversely with the
Rayleigh number. The shape of the velocity and temperature profiles is
seen to be qualitatively the same as that assumed in reference 7.

Effect of frictional heating. - By comparing the profiles presented
in figures 2 to 9 computed by neglecting frictional heating (denoted by
the subscript zero) with those computed including the aserodynamic heat-
ing to a first order (denoted by the subscript unity), the effect of the
aerodynamic heating on the velocities and temperatures can be studied.
Numerical solutions obtained of the complete boundary-value problem
(eqs. (22) to (25)) in which the frictional heating was entirely taken

: . into account are also included (with no subscripts) (see preceding table)
on figures 2(b), 2(c), 4(v), 6(b), 6(c), 8(v), 10, and 11 for comparisons
with the approximate solutions.

In accord with the discussion on the asymptotic solutions, it can
o be seen that when K, 1s small compared with Ra (recall that C = -1
in these calculations) the aerodynamic heating effects are negligible.
Since no computations were made herein for K, ® 10, the computations
made for Ra = 1600 and 10¢ show no deviation between the zeroth and
first approximations, and these are also coincident with the numerical
solution (see figs. 4(b) and 8(b)). Hence, in the range Kp/Ra-<< 1,
the zeroth-order approximations will yield accurate results; if, in
addition, Ra>> 1, the asymptotic solutions provide a simple means of
obtaining the velocity and temperature profiles. Note that the param-
eter Kj serves merely as a scale factor in the zeroth-order solutioms.

In the range where K, and the Rayleigh number are of the same

"' order of magnitude, the frictional heating affects the results to greater
‘ : or lesser degree depending on the particular amount of heat addition as

! - specified essentially by the parameters m and a (figs. 2, 3, 6,

} and 7) and, hence, the first-order approximations should be employed in
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PR 2D et pgmag, \




-~ err -

-y

Yo

o A SRR W 13
% MU

24 NACA TN 3141

this range. Comparison of the first-order solutions with the several
numerical solutions of the entire boundary-value problem shows close
agreement for the cases computed., Hence, unless the conditions are
more severe than the most extreme conditions for the range of parameters
considered herein as represented by Kp/Ra = 1, m = 2, and a = 100,

the first-order solutions will yleld results which include the effect
of aerodynamic heating of reasonable accuracy. In this range where its
effects are important, this frictional heat, of course, acts just as do
the heat sources and leads to increased velocities and altered tempera-~
ture profiles and, consequently, different heat-transfer rates (figs. 2,
3, 6, and 7).

For the special case simulating flow in a completely enclosed re-
glon, the aerodynemic heating did not affect the results appreciably over
the range of parameters under consideration. A numerical solution com-
pletely including the effects of serodynamic heating was made for
Ra = 10; it can be seen in figures 10 and 11 that this solution coin-
cides with the zeroth-order solution, which neglects the effect of fric-
tional heating.

The complete consideration of frictional heating (as in the numeri-
cal solutions) for the problem discussed herein, Just as for the case
(essentially Ra = 0) reported in reference 1, leads to the two results
(a) that there exists a critical set of conditions beyond which no solu-
tions exist, and (b) that where solutions exist there are two solutions
for every set of admissible parametric values. Examples of these second
solut%ogs are presented in figures 2(b), 2(c), 6(b), and 6(c) (denoted
by ul2) and 7(2)), and it can be seen that the velocities are more
than 10 times as large as the first solutions and the temperatures are
much greater than the corresponding first solution temperatures. These
last unusual results cannot be predicted from the soluticns obtained by
successive approximations as described herein, but are found from numeri-
cal solutions obtained by means of a Card-Programmed Electronic Calcu-
lator. At present the significance of the second solutions is not ex-
plained, although it is felt that they are intimately connected with the
unique regenerative action of the frictional heating in natural convec-
tion. The existence of the critical conditions appears to be similar
to the thermal choking phenomenon.

HEAT TRANSFER
Nusselt Numbers
The heat-transfer coefficients for the natural-convection phenomenon

treated here can be expressed in terms of Nusselt numbers. The Nusselt
number is here defined as

hd 1 [or*
=2 (a'f‘)o,d

3016
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where the double subscript signifies that the temperature gradient is
to be evaluated at either Y =0 or Y = 4, depending on the wall under
consideration.

In terms of the dimensionless quantities,

1 (ar
N = o— [=— 80
. Y (56'>o, 1 (0)

The temperature gradient can be found from the zeroth-order solutions,
and the Nusselt numbers can be computed on this basis from

Nugg = 1 1/4}' 5 1 3 [;(sinh 2r + sin 2r)
2VE-Ra 1 coshr+cosr -1

1/2 1)rel/2
+ g-(Eii%ge-——-(sinh 2r - sin arﬂ + C(m-1)Ra (sinh 2r + sin Zr§

2(coszr - coshzr)
(81)

1 -1
N = (sinh 2r + sin 2r)
Yo1

2~‘[§-Ra.]'[4 {coshzr + cosr - 1 E

4 Smtl)Ra 7 m+12Ra (sinh 2r - sin ZrJ + —S(m-1)Re (sinh 2r + sin Zr}

2(coszr - coshzr)
(82)

where the first subscript denotes that zeroth-order approximation is
used, and the second denotes the wall with which the Nusselt number is
associated. (Eqs. (81) and (82) are, of course, specifically for Ra
positive.) Note that these zeroth-order Nusselt numbers are independent
of Kp. When CKp 1s of the same order of magnitude as Ra, the zeroth-

order approximation has been shown to be inaccurate; therefore improved
Nusselt numbers can be obtained by using the appropriate T (first-
order approximation) solutions and, for the same conditions as for
equations (81) and (82), the Nusselt numbers can be computed from

Muyg = Nugg + W @ - CaRal/2 (m + 1), + (m - 1)%Ra
M04 + C(m - l)aRal/%% RaQG] (83)
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Kp - a
Null = N'llo]_ - ;:J_———T [G-?{)_L - CaRal/z(m + lnz + -—‘m—ﬂzios .

» Elor 2Ry oo - ot/ + EO D rg]  (e0)

where the various &; 1in equations (83) and (84) are given by equations
(B43) to (B48) in eppendix B.

3016

Computations of the Nusselt numbers were made over a range of
values of Ra from equations (81) to (84) for K, =10, m = -1, 1, and
2, and a = 0 and 10 where again C was taken to be -1, and the re-
sults are presented in figures 12 and 13 for the wall at Y =0 and
Y = 4, respectively. The figures show that for the wall at Y = O the
Nusselt numbers decremse, in general, with increasing Ra, and for the
wall at Y = 4 the Nusselt numbers increase with the modified Rayleigh
number except for the case where m = -1. For Kj = 10 and o = 10,
the Nusselt number changes sign with increases in Ra because of the
variation of the temperature profile with Ra, as was previously noted.

Figures 12 and 13 also demonstrate clearly the effect of the aero-
dynamic or frictional heating. This effect, in accordance with all that
preceded, is extremely pronounced for low values of the Rayleigh number .
(that is, wvhen K/Ra 1is of unit order of magnitude).

Flow in an enclosed region. - For the special case simulating flow .
in a completely enclosed region (M = O, m = 1, and a # 0), the calcula-
tions for the temperature profile were extended over a larger range of
Ra and plotted in figure 14 as the ratio ¢ of the temperature differ-
ence to that for pure conduction, as was done in reference 7. The con-
duction temperature difference used in ® is the channel center-to-
wall difference subject to uniform heat generation by sources and is
equal to axh/e. The temperature profiles computed in an approximate
manner in reference 7 are compared with those computed more exactly by
the method reported in this paper, and it can be seen that the dis-
crepancy becomes quite apparent for values of Ra = lO and above.

The Np 1in reference 7 is related to Ra by Ra = 1 NI; hence, for

most liquids Ny and Ra are identical. If 1 # 1, Y 1s merely a
scale factor. It can be seen from figure 14 that for Ra < lO the
temperature gradients at the wall are all almost identical, and hence,
even if the temperature profiles themselves were not 1dentical, the
heat transfer computed by the two methods would be in reasonable agree-
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The variations of the dimensionless temperature varieble ¢

(ratio of center-to-wall temperature difference to that for pure con-
duction) as used in reference 7 with Ra as given by the two methods
are also compared in figure 15, and hence the quantitative limits of
the approximate method can be seen.

CONCLUDING REMARKS

An analysis was made of the flow subject to body forces between two
parallel plane surfaces oriented in the direction of the generating body
force along which the temperature is specifled to vary linearly. The
solutions for natural convection and those for combined natural and

forced convection were found to be essentially the same.

It was found

that a modified Rayleigh number (product of Prandtl and modified Grashof
numbers) in addition to the parameter Kp was of significance in this

problem.

glven in terms of "universal” tabulated functions.

Solutions for the velocity and temperature distributions are

Detailed velocity

and temperature profiles were computed and it was found that, in general,
the velocity and temperature differences increase with the wall tempera-

ture parameter and with additional heat due to heat sources.

The veloc-

ities and temperatures decrease with increasing values of the modified

Rayleigh number.

When the ratio of CKp to the modified Rayleigh num-

ber 1s of unit order of magnitude, the frictional or aerodynamic heating

appreciably affects the velocity and temperature distributions.

Asymptotic

solutions for large Ra are presented which make computations in this
For any given set of the parameters, complete
consideration of frictional heating implied the existence of two flow and
heat-transfer states and implied that no solution exists beyond certain

range relatively simple,

critical values.

Consideration was given to a special case simulating the natural-
convection flow of fluids with heat sources in a completely enclosed

region with the walls at the same temperature.

Computations from the

solutions for this special case demonstrated that an approximate method
developed in another paper should yield reasonably accurate results as

long as the modified Rayleigh number is less than 104

The effects of

aerodynamic heating were found to be negligible for this case,

Study of the convective inversion aspect of the present problem led
to the inference that for negative values of the Rayleigh number, addi-
tional complications arise because of an instability (due to heating from
below) of the flow which must be more thoroughly investigated.

Lewis Flight Propulsion Laboratory

National Advisory Committee for Aeronautics

Cleveland, Ohio, December 29, 1953
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APPENDIX A

SYMBOLS

The following notation 1s used in this report:

A longitudinal temperature gradient

ay constants in eq. (39); 1 =1, 2, 3, 4

By constants defined by egs. (Bl4) to (B35); 1 =1, 2, 3,...22
c constant in eq. (17)

Cy constants defined by eqs. (B36); 1 = 1, 2, 3, ...6

08 constant defined by eq. (77b)

c constant in eq. (14b)

p specific heat at constant pressure

Cy specific heat at constant volume

Dy constants defined by eqs. (B37); i = 1, 2, 3, ...10
da characteristic length (specifically distance between plates)
E constant defined by eq. (50)

Ey constants defined by eqs. (B38); . - 1, 2, 3, ...6

e constant, (1+1)

F constant defined by eq. (51)

fx negative of X-component of body force per unit mass
G Green's function

Gr,  modified Grashof number, pfy Ad*/y’

g constant, (1-1)

e 4 P2
it

£
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h heat-transfer coefficient
hy constants defined by eq. (B39); 1 =1, 2, 3, 4
J constant, Ra.l/ 2CKA/ 64
fod
KA dimensionless parameter, Pr Gry N
k thermal-conductivity coefficient
Ly constants defined by eqs. (B40); 1 =1, 2
M dimensionless mass flow
My constants defined by eqs. (B4l); i =1, 2, 3, 4
m constant defined by eq. (25)
m constant defined by eq. (64)
Nu Nusselt number, hd/k
N1 modified Rayleigh criterion as given in ref, 6, yRa
P pressure
Pr Prandtl number, cpu/k
Q heat due to heat sources
Qi constants defined by egs. (B42); 1 =1, 2, 3,...8
R constant, Ra/16
Ra modified Rayleigh number, %‘- Pr Gry
r constant, Rl/ 4/ IVE
T, T* temperature
U velocity
u dimensionless velocity
u dimensionless velocity, u/CKA

o -,
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dimensionless velocity defined by eq. (61)

dimensionless velocity, V - ——9375

CRa
dimensionless velocity, v/64
dimensionless velocity defined by eq. (26)
longitudinal coordinate
transverse coordinate
dimensionless transverse coordinate
dimensionless transverse coordinate, Ral/4y

dimensionless heat-source parameter, Qd/kA

1
coefficient of volumetric expansion, o[?iségllp

ratio of specific heats
dimensionless coordinate, 2y - 1

temperature difference, T - TwO

constant, -axh/64

absolute viscosity coefficient
kinematic viscosity coefficient
dummy variable

density

dimensionless temperature difference

dimensionless temperature difference, BT/aKA

dimensionless center-to-wall temperature difference, 8(1)y=1/a/dxh

constants in eqs. (80) and (81); 1 = 1, 2, 3,...6
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Subscripts:

a asymptotic solution

ca complementary antisymmetric solution
es complementary symmetric solution

I inviscid solution

n order of approximation

P particular solution

w0 conditions at y =0

LA conditions at y =1

0 zeroth«order approximation

1l first-order approximation
Superscript:

(2) second flow and heat-transfer state
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32 NACA TN 3141
APPENDIX B
FIRST-ORDER SOLUTIONS

The explicit forms of the first-order solutions to be used in equa~

tion (46) are:
1
vip = [Bl cosh rn cos rn + By sinh ry sinrq + Bz cosh 2rn cos 2ry
Ra.372
+ By sinh 2rn sin 2rn + Bg(cos 2rn - cosh 2rq) + 15 ngl "~ (B1)

1
= Bg cosh rn cos rq + B, sinh rn sin rn - B, cosh 2rn cos 2r

+ Bz sinh 2rn sin 2rp - 15 B‘,;l (B2)

Vig = Rﬁ%‘g[Be cosh rn cos rn + Bg sinh rn sin ry
a

+ By cosh 2 rpcos 2 rn + Bll sinh 2 rn sin 2ry

+Byy(cosh 2rn + cos 2ry) - 15 Blo] (B3)

1
Viz = B,z cosh rn cos rn + By, sinh rn sin r
13 Ras]z[ 13 1 M+ P1q n n
- BS cosh 2rn cos 2rn - B4 sinh 2rn sin 2ry

+ Bg (cos 2rq - cosh 2rn) - 15 133] (B4)

1
Vig = 1?)7?[%_5 sinh rn cos rn + B16 cosh rn sin ry

+ Bjq sinh 2rn cos 2rn + Byg cosh 2rn sin 2rn

+
Big sin 2rn + B, sinh Zrﬂ (Bs)
) : u‘
S . 3
'-g"’."‘,“"', A N
.. ‘\,ﬁf&’“‘%* 33‘6"1&4 > :
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910¢



2108

vo=J

NACA TN 3141 33

1
vl5 = 52375[?21 sinh rn cos rn + B22 cosh rn sin ry

- Byg sinh 2rn cos 2rn + Byg cosh 2ry sin 2ry
+ Bzo sin ZI‘T] - Blg sinh 21‘7]] (BG)

The constants By(i = 1, 2, ... 22) appearing in the preceding equations

are readily computed for a given Ra, In the subsequent section of this
appendix these constants are written explicitly in a form suitable for
reasonably rapid computation.

The second derivatives appearing in equations (54) and (S55) are

-Ral/z
4(cos®r - cosh®r)

Vo1 =

[cosh r sin r cosh rn sin rn

+ sinh r cos r sinh rn cos rn] (B7)

"

vip = -4%5[}32 cosh rn cos rf - By sinh rn sin rq
+ 4By cosh 2rn cos 2rn - 4Bz sinh 2rn sin 2rq

- 2Bg(cos 2rn + cosh Zrn)] (B8)

"

11 sinh rn sin ry

1
= m[B7 cosh rn cos rn - BG

+ 4Bz cosh 2rn cos 2rn + 4B; 1inh 2rn sin Zrn] (B9)

"

1
Vip = m[Bg cosh rn cos rn - Bg sinh rn sin ry
+ 4By, cosh 2rn cos 2rn - 4B;y sinh 2rn sin 2ry

+ ZBlz(cosh 2rn - cos Zrn)] (B10)

1
V;.S = ZITE[BM cosh rn cos rn - Byz sinh rn sin rq

- 4B4 cosh 2rn cos 2rn + 4Bz sinh 2rn sin 2rnq

- 2Bg(cos 2rn + cosh 2rq)] (B11)
: ) N <,‘
TS S ) ) !
. .w&;’& ;f’*tﬁw.ﬁ, ~ -
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34 NACA TN 3141

vig = 74%‘['315 cosh rn sin rn + Byg sinh rn cos rn

- 4By7 cosh 2rn sin 2rn + 4B;g sinh 2rn cos 2rq
- 2Byg sin 2rn + 2By sinh qu] (B12)

vis ZR%E -By) cosh ry sin rn + By sinh rv cos rq

it

+ 4B18 cosh 2rn sin 2rn + 4B17 sinh 2rn cos 2ry

- 2Bpy sin 2rq - 2B)g sinh Zrn] (B13)

Constants for First-Order Approximation

The constants appearing in equations (Bl) to (B13) are written in
an expeditious form for computing as follows:

B, = [( 3D 4D,)E, + (Dy-3D,)E, + 2(Dy#D,)E, + 2(D +D,)E,
hih
512 112
+ (Dg+Dy)Eg - (Dy+Dp)Eg|+ ST (B14)
1
2
12 (2n)% + np?)
- (Dy+Dp)Es - (D5+D4)E6] T (B15)
32 Bib
Bz = - T —ﬁ'i— (B16)
6 (8, = 10)
By = & —w (B17)
2 2
16 (h1® + hpe)
1
B6=L Esn -D )E +(D-3D )E +(D )E +(D )E
1
- 1236 (ng2 - hlz)] (B19)
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4 128 hyhy
By = q[(-D3+3D4)E2 + (3D1-Dp)E; - (Dy+Dy)Eg + (D3+D4)E5]+ 1o,
(B20)
By = - 15 [(D -Dg-2D,)C; + (2D;4D,-Dg)C, - 2(Dg#Dg)C5 - 2(D+Dy)C,
448 h.h, 32(M5+M )
+ (Dg-Dg+2D, )Cq + (-2D1+D7-D8)06]+ T~ o (B21)
4
Bg = - -i-é-[(ZDl+D7-DB)Cl + (-D5+Dg+2D4 )Cp - 2(D7+Dg)Cz + 2(Dg+Dg)C,
64(Ms-M, )
+ (-2D,4D;-Dg)Cs + ( -D5+D6-2D4)Cs]+ 155 (B22)
32 hyh
192
B1p = —— (B23)
107 15m;
16(Mg-M, )
By = - e, (B24)
16(Ms+M, )
By = —E (B2S)
4
By, = i (-3D,4D)E; + (Dz-3D4)E, - 2(Dz+Dy )E5 - 2(Dy+Dp)E,
512 hyh,
+ (D34D4)Eg - (Dy+Dp)Eg)- Tov, (B26)

4
Byy = i:[(1)3-31)4)El + (3D-D3)E; - 2(Dy+Dy)Ez + 2(Dz+Dy)E4 - (D1+Dg)Eg

- (D3+D4)Eé| - -lé—ﬁf [hlz + 21122] (B27)
Bys = f—z[(ZDﬁD?'DB)Ql + (D5-Dg-2D4 )@ - (DgDg)az + (Dy+Dg)Qy

- (D9 sinh 2r)Qs - (Dyg sinh 2r)Qg - (Dg sin 2r)Q; - (Dpq sin Zr)Qe]

+ 15M -20h3 + 12hy + 18 sinh 2r - 6 sin er] (B26)
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- (D1 sinh 2r)Qg + (Dg sinh 2r)Qg - (Dyq sin 2r)Qy

+ (Dg sin 2r)eg]+ Tng;[lzns - 20hy - 6 sinh 2r + 18 sin 2r)

(B29)
16h,
By7 = W, (B30)
6h
- oy
Big 15M3 (B31)
‘ 8 siph 2
| Bjg = - —_-_—-SSMS < (B32)
8 sin 2r
By = - - (B33)
4
By = -L—z-[(-ZDl-D7+D8)Q2 + (D5-Dg-2D4)Q) + (D5+Dg)Q, + (Dp+Dg)as
+ (D sinh 2r)q7 + (D1 sinh 2r)qq - (Dg sin 2r)Qg
b
- (Dyg sin 2r)Q6]+ 1%;3:[20114 + 125 + 18 sin 2r + 6 siuh 2r]
t (B34)
4
. i B,, = g (DS-D6-2D4)Q2 + (21) +D -Da)Q - (D7+D8)Q + (x>5+1>6)cq3
*+ (Dyg sinh 2r)@; - (Dg sinh 2r)qg - (D1 sin 2r)Qg
4
+ (Dg sin 2r)Qg] - Tsﬁ-g{lzm + 20h5 + 6 sin 2r + 18 sinh 2r]
N (B35)

- s.n-c .
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where

oo

3

o

5

- 3 sinh 2r sin 2r - 3

4 si

cosh 2r cos 2r - 2 + %

- 2 cos 2r - % cosh 2r +

4
- = ¢cos 2r + ﬁ cosh 2r +

5

(113

2

coshzr cos“r

sinhsr sin3r

3

cosh3r cos*“r

sinhzr sinzr

3

cosh r cos“r

coshsr cos r

sinhsr sin r

3r

coshzr sin
sinh r cos r

cosh r sinr

5

sinh 2r sin 2r + 12 sinh

S

5

sinh r sinr

cosh r cosr

sinh®r

2

sin®r

COSZI‘

sinh r

nhr sinr

cosh r cos r

cosh r cos

(&1 E3

r

2 sinh r sinr

S

r sinr

N\

cosh 2r cos 2r + 2 - 12 cosh r cos r

37
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E, = 3 cosh 2r cos 2r + 2 = § coshr cosr
173 3
2 8
E, = = sinh 2r sin 2r - - sinh r sinr
273 3
Ez = - 2 cos 2r + 2 cosh 2r - 8 sinh r sin r
5° "5 5 5
4 4 8
Ey = - T cos 2r - g cosh 2r + g coshr cosr
2 8
ES = =« = sinh 2r sin 2r + = sinh r sinr
) 5
Ep = - 2 cosh 2r cos 2r + 2 =~ 8 cosh r cos r
6~ "5 5
hl = cosh r cos r .1
h2 = sinh r sinr g
hz = cosh r sinh r(1 - 2 cosr)
hy = - sin r cos r(2 coshlr - 1)
§
' ! Iy = (cosh®r + cosér - 1)3
3 g L, = (cosh®r - cos®r)@ (cosh®r + coslr - 1)
|
3 M) = (coshzr + coslr - 1)2
My = (cosh®r - cosg?r)@
Mz = (cosh®r + cos’r - 1) (cosh®r - cos®r)
My = coshzr sinzr
M5 = sinzr coszr
4
b
LN ] T
1 " :' . .
- nv;‘: &\‘{ * f
rg o [
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2 4 3
Q = 3 cosh 2r sin 2r - 3 coshr sinr
2 4
Q2 = 3 sinh 2r cos 2r - z sinh r cos r
Qz = 2 sinh 2r cos 2r 2 hr sinr
3= F - T cos n
N
- 2 4
o Q= - T cosh 2r sin 2r + T sinh r cos r
> (B42)
Q = - % sin 2r + % sinh r cos r - T cosh r sinr
H
W = - Lsinor + % cosh r sinr + % sinh r cos r *
t

Q

3,

2
It
'

ul

£
et

Nusselt Number Constants

2 sinh 2r + % coshr sinr - % sinh r cos r

sinh 2r - g sinh r cos r - % coshr sinr

The constants appearing in equations (83) to (84) are given
explicitly as

= (Bp-By)sinh r cos r - (By+By)cosh r sin r + 8(B4-Bz)sinh 2r cos 2r

+ 8(B4-B3)cosh 2r sin 2r

= (Bg-Bg)sinh r cos r - (Bg+Bg)cosh r sin r + 8(B

8(Bz+By)cosh 2r sin 2r - 4Bs(sinh 2r - sin 2r)

ll'BlO

- 8(Blo+Bll)cosh 2r sin 2r + 4Bjp(sinh 2r + sin 2r)

(B43)

(B;-Bg)sinh r cos r - (Bg+Bg)cosh r sin r + 8(Bz+B4)sinh 2r cos 2r

(B44)
)sinh 2r cos 2r

(B45)



40 NACA TN 3141

o]
>
i

= (By4-Byz)sinh r cos r - (Byz+Byy)cosh r sinr

+

8(B3-By)sinh 2r cos 2r + 8(Bz+By)cosh 2r sin 2r

4Bg(sinh 2r - sin 2r) (B46)

= (Byg-Bys)cosh r cos r - (Byg+Byg)sinh r sin r

4]
1

+

8(Byg-By7)cosh 2r cos 2r - 8(By;+Byg)sinh 2r sin 2r

- 4Byg cos 2r + 4Bpp cosh 2r (B47)

(02]
1

(Bpp-Boy)cosh r cos r - (Bpy+Bpp)sinh r sin r

+ 8(By7+Byg)cosh 2r cos 2r - 8(By7-Byg)sinh 2r sin 2r

4Byq cos 2r - 4Byg cosh 2r {B48)
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