<table>
<thead>
<tr>
<th>CLASSIFICATION CHANGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO:</td>
</tr>
<tr>
<td>FROM:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LIMITATION CHANGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO:</td>
</tr>
<tr>
<td>Approved for public release, distribution unlimited</td>
</tr>
<tr>
<td>FROM:</td>
</tr>
<tr>
<td>Distribution authorized to U.S. Gov’t. agencies and their contractors; Foreign Government Information; JAN 1954. Other requests shall be referred to British Embassy, 3100 Massachusetts Avenue, NW, Washington, DC 20008.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AUTHORITY</th>
</tr>
</thead>
</table>

THIS PAGE IS UNCLASSIFIED
NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED GOVERNMENT PROCUREMENT OPERATION, THE U. S. GOVERNMENT THEREBY INCURS NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE AID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, SELL OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

Reproduced by
DOCUMENT SERVICE CENTER
KNOTT BUILDING, DAYTON, 2, OHIO

CONFIDENTIAL
THE STRESS DISTRIBUTION IN PANELS BOUNDED BY CONSTANT STRESS EDGE MEMBERS

by

E.H. MANSFIELD, M.A.

1. THE INFORMATION IS DISCLOSED ONLY FOR OFFICIAL USE BY THE RECIPIENT GOVERNMENT AND SUCH OF ITS CONTRACTORS, DELEGATES, OR AGENTS AS MAY BE EXEMPTED BY THE C.I.D. PROJECT: DISCLOSURE TO ANY OTHER GOVERNMENT OR TO THE PRESS OR IN ANY OTHER WAY WOULD BE A BREACH OF THESE CONDITIONS.

2. THE INFORMATION SHOULD BE SAFEGUARDED UNDER THE SAME STANDARDS OF SECURITY AS MAINTAINED BY THE MAJESTY'S GOVERNMENT IN THE UNITED KINGDOM.

3. THE RECIPIENT IS WARNED THAT INFORMATION CONTAINED IN THIS DOCUMENT MAY BE SUBJECT TO PRIVATELY-OWNED RIGHTS.

MINISTRY OF SUPPLY

THE DOCUMENT IS THE PROPERTY OF H.M. GOVERNMENT AND IT IS PROTECTED BY THE RIGHTS ATTACHED TO IT UNDER THE COPYRIGHT ACT, 1956.

The document is also protected by the rights attached to it under the Data Protection Act, 1988.

The recipient is warned that information contained in this document may be subject to private ownership rights.

CONFIDENTIAL

54A4-28264
NOTICE: THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 and 794. THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.
The Stress Distribution in Panels Bounded by Constant Stress Edge Members

by

E. H. Mansfield, M.A.

R.A.E. Ref: Structures C13361/EMI

SUMMARY

Exact solutions are given for the stress distributions in long panels bounded by constant stress edge members. The influence of closely spaced stringers and ribs on the peak shear stresses is investigated.
LIST OF CONTENTS

1 Introduction 3
2 List of Symbols 3
3 Stress Distribution in a Long Panel Bounded by Constant Stress Edge Members 4
 3.1 Transverse edge free 4
 3.2 Transverse edge supported 7
4 Discussion of Results 7
5 Conclusions 8
References 8
Advance Distribution 8
Detachable Abstract Cards 8

LIST OF APPENDICES

Appendix

Stress Distribution in an Infinitely Long Panel Bounded by Constant Stress Edge Members I
Stress Distribution in a Finite Panel Bounded by Constant Stress Edge Members II
Stress Distribution in an Infinitely Long Panel Bounded by Constant Area Edge Members III

LIST OF ILLUSTRATIONS

Fig.

Figure Showing Notation 1
Contours of Constant σ_x/σ_e 2
Contours of Constant $-\sigma_y/\sigma_e$ 3
Contours of Constant τ_{xy}/σ_e 4
Peak Shear Stresses in Reinforced Sheet 5
Contours of Constant $\sigma_x/\sigma_{e,o} : F = 2bt$ 6
Contours of Constant $\sigma_x/\sigma_{e,o} : F = bt$ 7
Contours of Constant $\sigma_x/\sigma_{e,o} : F = 3bt$ 8
1 Introduction

The stress distributions in panels bounded by constant stress and constant area edge members have been considered by a number of writers1,2,3 by assuming that the transverse strains may be neglected. This assumption is justifiable in that the longitudinal direct stresses are then determined sufficiently accurately although the peak shear stresses are in error. In this report it is shown that if the longitudinal edge members are tapered so that their stress will not vary along their length it is possible to obtain simple expressions for the stresses in an unreinforced panel without recourse to more drastic simplifying assumptions. If the panel is reinforced by stringers and ribs simple expressions for the stresses are determined on the assumption that the panel has orthotropic properties.

2 List of Symbols (see Figure 1)

\[\begin{align*}
2b &= \text{width of panel} \\
t &= \text{thickness of sheet} \\
S &= \text{relative stiffness of stringers to sheet (i.e. stringer area/\(t \times \text{stringer pitch}\)} \\
R &= \text{relative stiffness of ribs to sheet (i.e. rib area/\(t \times \text{rib pitch}\)} \\
P &= \text{section area of longitudinal edge member} \\
\nu &= \text{Poisson's ratio} \\
Ox, Oy &= \text{Cartesian co-ordinates, } Ox \text{ measured longitudinally} \\
\xi &= \pi x/2b \\
\eta &= \pi y/2b \\
\sigma_x, \sigma_y, \tau_{xy} &= \text{stresses in the sheet} \\
\sigma_e &= \text{stress in the longitudinal edge members} \\
\sigma_S, \sigma_R &= \text{stresses in the stringers and ribs} \\
\sigma_x, \sigma_y &= \text{stress resultants in the reinforced panel} \\
K &= 1 + S + R + \frac{SR}{1 - \nu^2} \\
\alpha &= 1 + S \left(1 - \nu^2\right) \\
\gamma &= 1 + (1 + \nu) \left\{ S + R + \frac{SR}{1 - \nu^2} \right\} \\
\varepsilon &= 1 + R \left(1 - \nu^2\right) \\
\eta_1 &= \sqrt{\frac{\gamma + \sqrt{\gamma^2 - 4 \alpha \varepsilon}}{\varepsilon}} \\
\eta_2 &= \sqrt{\frac{\gamma - \sqrt{\gamma^2 - 4 \alpha \varepsilon}}{\varepsilon}}
\end{align*} \]
In this paragraph expressions are given in closed form for the stresses in a long panel bounded by constant stress edge members. The analysis is given in Appendix I and is based on a series expansion for the stress function; the resulting series for the stresses are shown to be summable in terms of known functions. The boundary conditions considered along the transverse edge are either that the edge is free or that it is supported by an inextensional but flexible member.

3.1 Transverse edge free

The boundary conditions considered here are that along the longitudinal edges

\[
\begin{align*}
\sigma_x - \nu \sigma_y &= \sigma_e \\
\text{and} \\
\bar{\sigma}_y &= 0
\end{align*}
\]

so that there are no transverse loads; and along the transverse edge

\[
\begin{align*}
\bar{\sigma}_x &= 0 \\
\tau_{xy} &= 0
\end{align*}
\]

so that this edge is free.

3.11 Plain sheet

It is shown in Appendix I that the stresses in the panel are given by

\[
\frac{\sigma_x}{\sigma_e} = 1 - 2 \left\{ \frac{\xi \cosh \xi \cos \eta}{\cosh^2 \xi - \sin^2 \eta} + \tan^{-1} \left(\frac{\cos \eta}{\sinh \xi} \right) \right\}
\]

\[
-4-
\]
\[
\frac{\sigma_y}{\sigma_e} = 2 \frac{\xi \cosh \xi \cos \eta}{\cosh^2 \xi - \sin^2 \eta} - \tan^{-1} \left(\frac{\cos \eta}{\sinh \xi} \right)
\]

\[
\frac{\tau_{xy}}{\sigma_e} = -2 \frac{\xi \sinh \xi \sin \eta}{\cosh^2 \xi - \sin^2 \eta}
\]

These stresses have been plotted as contours over the panel in Figures 2, 3, 4.

The maximum value of \(\sigma_y \) is \(-\sigma_0\) and it occurs along the length of the free edge. The maximum value of \(\tau_{xy} \) is \(\frac{2}{\pi} \sigma_0 \) and it occurs at the corners of the panel. The variation of \(\tau_{xy} \) along the longitudinal edges of the panel assumes a particularly simple form:

\[
\frac{(\tau_{xy})_e}{\sigma_e} = \frac{2 \xi}{\pi \sinh \xi}
\]

and this may be integrated to give the required variation of the section area of the constant stress edge members:

\[
F = F_0 - \frac{ht}{\pi^2} \int_0^\xi \frac{\xi \, d\xi}{\sinh \xi}
\]

3.12 Reinforced sheet

It is shown in Appendix I that the stress resultants* in the panel are given by

\[
\frac{\tau_{xy}}{\sigma_e} = \frac{K}{\pi \xi} \left[n_1 \tan^{-1} \left(\frac{\cos \eta}{\sinh (\xi/n_1)} \right) - n_2 \tan^{-1} \left(\frac{\cos \eta}{\sinh (\xi/n_2)} \right) \right]
\]

\[
\frac{\sigma_y}{\sigma_e} = \frac{K}{\pi \xi} \left[\frac{1}{n_1} \tan^{-1} \left(\frac{\cos \eta}{\sinh (\xi/n_1)} \right) - \frac{1}{n_2} \tan^{-1} \left(\frac{\cos \eta}{\sinh (\xi/n_2)} \right) \right]
\]

\[
\frac{\tau_{xy}}{\sigma_e} = \frac{K}{\pi \xi} \log \left[\frac{\cosh (\xi/n_1) - \sin \eta}{\cosh (\xi/n_1) + \sin \eta} \frac{\cosh (\xi/n_2) + \sin \eta}{\cosh (\xi/n_2) - \sin \eta} \right]
\]

*Stress resultants are here defined as (the resultant force in the stiffened sheet per unit length) / t. They therefore have the dimensions of a stress, and when there is no reinforcement in a particular direction the stress resultants are the actual stresses in the sheet.
The maximum value of \(\sigma_y \) occurs along the length of the free edge and is given by

\[
\frac{(\sigma_y)_{\text{max}}}{\sigma_0} = -\frac{K}{\sqrt{\delta s}}
\]

(11)

The maximum value of \(\tau_{xy} \) occurs at the corner of the panel and is given by

\[
\frac{(\tau_{xy})_{\text{max}}}{\sigma_0} = \left(\frac{2K}{\pi \gamma_g} \right) \log \left(\frac{R_1}{R_2} \right)
\]

(12)

and this has been plotted in Figure 5 for varying values of the stringer and rib stiffness. The variation of \(\tau_{xy} \) along the longitudinal edges of the panel may be written in the form:

\[
\frac{(\tau_{xy})_e}{\sigma_0} = \left(\frac{2K}{\pi \gamma_g} \right) \log \left[\frac{\tanh (\xi/2n_1)}{\tanh (\xi/2n_2)} \right]
\]

(13)

and this may be integrated to give the required variation of the section area of the constant stress edge members:

\[
P = P_0 - \left(\frac{4Kbt}{\pi^2 \gamma_g} \right) / \int_0^\xi \log \left[\frac{\tanh (\xi/2n_1)}{\tanh (\xi/2n_2)} \right] d\xi
\]

(14)

3.13 Direct stresses in the sheet, stringers and ribs

When the panel is reinforced the direct stresses in the sheet, stringers and ribs are related to the stress resultants by the equations:

\[
\sigma_x = \left(\frac{1+R}{K} \right) \tau_x + \frac{V_S}{K} \tau_y
\]

(15)

\[
\sigma_y = \left(\frac{1+S}{K} \right) \tau_y + \frac{V_R}{K} \tau_x
\]

(16)

\[
\sigma_S = \frac{S}{K} \sigma_x - \frac{R}{K} \tau_y
\]

(17)

and

\[
\sigma_R = \frac{A}{K} \tau_y - \frac{V}{K} \tau_x
\]

(18)
3.2 Transverse edge supported

If the transverse edge is supported by an inextensional but flexible member, the second part of equation (2) becomes

\[\sigma_R = 0 \]

(19)

and the other boundary conditions are unaltered.

3.21 Plain sheet

It is shown in Appendix I that the stresses in the panel are given by

\[\sigma_x = 1 - \frac{1}{\pi} \left[\frac{\xi \cosh \xi \cos \eta}{\cosh^2 \xi - \sin^2 \eta} \right] - 2 \tan^{-1} \left(\frac{\cos \eta}{\sinh \xi} \right) \]

(20)

\[\sigma_y = \frac{1}{\pi} \left[\frac{\xi \cosh \xi \cos \eta}{\cosh^2 \xi - \sin^2 \eta} \right] \]

(21)

\[\tau_{xy} = -\frac{1}{2\pi} \left[\frac{2\xi \sinh \xi \sin \eta}{\cosh^2 \xi - \sin^2 \eta} \right] + \log \left(\frac{\cosh \xi + \sin \eta}{\cosh \xi - \sin \eta} \right) \]

(22)

and the shear stress becomes infinite at the corners because of the logarithmic term.

3.22 Reinforced sheet

It is shown in Appendix I that the stress resultants in the panel are given by

\[\sigma_x = \frac{K}{e} - \frac{2K}{\pi \mu e^2} \left[\tan^{-1} \left(\frac{\cos \eta}{\sinh(\xi/n_1)} \right) \right] - \frac{2}{n_1^2} \tan^{-1} \left(\frac{\cos \eta}{\sinh(\xi/n_2)} \right) \]

(23)

\[\sigma_y = \frac{2K}{\pi \mu e^2} \left\{ \tan^{-1} \left(\frac{\cos \eta}{\sinh(\xi/n_1)} \right) - \tan^{-1} \left(\frac{\cos \eta}{\sinh(\xi/n_2)} \right) \right\} \]

(24)

\[\tau_{xy} = \frac{K}{\pi \mu e^2} \left\{ n_1 \log \left(\frac{\cosh(\xi/n_1) - \sin \eta}{\cosh(\xi/n_1) + \sin \eta} \right) - n_2 \log \left(\frac{\cosh(\xi/n_2) - \sin \eta}{\cosh(\xi/n_2) + \sin \eta} \right) \right\} \]

(25)

Discussion of Results

From the analysis in the appendices it appears that the exact solutions given in para. 3 are the only ones capable of expression in closed form. The case of a short panel is considered in Appendix II. The expressions for the stresses are complicated but are unlikely to differ significantly from those for a long panel unless the panel length is less than three times the panel width. The stress distribution in a long
panel bounded by constant area edge members loaded at their ends is considered in Appendix III. Contours of constant \(\frac{\sigma_x}{\sigma_{x,0}} \) in an unreinforced panel with a free edge have been drawn in Figures 6, 7, 8 for values of \(F/bt \) equal to \(\frac{1}{2}, 1, 2 \). These contours differ appreciably near the longitudinal edges from those shown in Figure 2 which correspond to infinite \(F/bt \). The peak value of the shear stress is independent of \(F \) and is \(\frac{2}{\pi} \sigma_{x,0} \).

5 Conclusions

The stress distributions in long panels bounded by constant stress edge members are considered theoretically using the exact equations of elasticity. The stresses in the panel are expressed in closed form, and may therefore be readily determined. Contours of stress in the panel are shown and the influence of closely spaced stringers and ribs on the peak shear stresses is investigated.

REFERENCES

<table>
<thead>
<tr>
<th>No.</th>
<th>Author</th>
<th>Title, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>J. Hadji-Arghyris</td>
<td>Diffusion of symmetrical loads into stiffened parallel panels with constant area edge members. R & M No.2038, 1944.</td>
</tr>
</tbody>
</table>

Attached: Appendices I, II, III Figs.1 to 8, Drg. Nos. SME 75379/R to 75386/R inc. Detachable Abstract Cards
Additional symbols used only in the appendices

\(\phi \) = Airy stress function

\(B, C_n, C'_n \) = constants in a summation

\[\sum_{n} \equiv \text{summation for } n = 0, 1, 2, \ldots \]

\(S_1, S_2 \) = summation introduced in equation (43)

\(\xi' = \xi/n_1 \text{ or } \xi/n_2 \)

\(S_0 = S_1 + i S_2 \)

\(S_{1,1}, S_{2,1} \) = values of \(S_1, S_2 \) with \(\xi' = \xi/n_1 \)

\(S_{1,2}, S_{2,2} \) = values of \(S_1, S_2 \) with \(\xi' = \xi/n_2 \)

\(\lambda = \pi \times \text{(length of panel)}/4b \)

\(\rho = Kbt/F_\xi \)

\(r_n \) = positive root of the equation: \(r + \rho \tan r = 0 \)
APPENDIX I

Stress distribution in an infinitely long panel bounded by constant stress edge members

In determining the stress distribution in the reinforced panel it is convenient to introduce the stress function ϕ, such that the stress resultants are given by

$$\begin{align*}
\bar{\tau}_x &= \frac{\partial^2 \phi}{\partial y^2} \\
\bar{\tau}_y &= \frac{\partial^2 \phi}{\partial x^2} \\
\tau_{xy} &= -\frac{\partial^2 \phi}{\partial x \partial y}
\end{align*}$$

(26)

The equilibrium conditions are then automatically satisfied, and the condition of compatibility is satisfied if ϕ satisfies the differential equation:

$$\alpha \frac{\partial^4 \phi}{\partial x^4} + 2\beta \frac{\partial^4 \phi}{\partial x^2 \partial y^2} + \epsilon \frac{\partial^4 \phi}{\partial y^4} = 0$$

(27)

A suitable form for the stress function, which is a solution for this equation, is

$$\phi = By^2 + \frac{4\beta L^2}{\kappa^2} \sum_n \frac{1}{(2n+1)^2} \left[C_n \exp \left(-\frac{(2n+1)\pi x}{2b n_1}\right) \\
+ C_n' \exp \left(-\frac{(2n+1)\pi x}{2b n_2}\right) \right] \cos \left(\frac{(2n+1)\pi y}{2b}\right)$$

(28)

where n_1 and n_2 are the positive roots of the equation

$$\alpha - 2\beta n^2 + \epsilon n^4 = 0$$

(29)

The stress resultants, obtained from equations (26) and (28), are written more conveniently in terms of ξ and η:

$$\bar{\tau}_x = 2B - \sum_n \left[C_n e^{-\frac{(2n+1)\xi}{n_1}} + C_n' e^{-\frac{(2n+1)\xi}{n_2}} \right] \cos (2n+1) \eta$$

(30)
\[\sigma_y = \sum_n \left(\frac{C_n}{n_1^2} e^{-(2n+1)\xi/n_1} + \frac{C_n'}{n_2^2} e^{-(2n+1)\xi/n_2} \right) \cos (2n+1)\eta \quad (31) \]

\[\tau_{xy} = -\sum_n \left(\frac{C_n}{n_1^2} e^{-(2n+1)\xi/n_1} + \frac{C_n'}{n_2^2} e^{-(2n+1)\xi/n_2} \right) \sin (2n+1)\eta \quad (32) \]

and the actual direct stresses in the sheet, stringers and ribs are given by equations (15) to (18). The constant \(B \) is determined from the condition that as \(\xi \) tends to infinity,

\[\sigma_s = \sigma_e \quad (33) \]

so that,

\[B = \frac{K\sigma}{2e} \quad (34) \]

Along the longitudinal edges \(\eta = \pm \frac{\pi}{2} \), so that \(\cos(2n+1)\eta \) vanishes and therefore the boundary conditions represented by equation (1) are satisfied. (Note that \(\sigma_s = \sigma_x - \nu\sigma_y \).)

Transverse edge free

Along the transverse edge \(\xi = 0 \) and the boundary conditions represented by equation (2) are

\[\frac{K\sigma}{e} - \sum_n \left(C_n + C_n' \right) \cos (2n+1)\eta = 0 \quad (35) \]

and

\[\sum_n \left(\frac{C_n}{n_1} + \frac{C_n'}{n_2} \right) \sin (2n+1)\eta = 0 \quad (36) \]

Now from Fourier analysis

\[\frac{K\sigma}{e} = \frac{4K\sigma_e}{\pi e} \sum_n \frac{(-1)^n}{2n+1} \cos (2n+1)\eta \quad (37) \]

so that

\[C_n + C_n' = \frac{(-1)^n}{2n+1} \frac{4K\sigma_e}{\pi e} \quad (38) \]
The solution of equations (38) and (39) is

\[
\begin{align*}
C_n &= \frac{(-1)^n}{(2n+1)} \frac{4K n_1 \sigma_x}{\pi \epsilon \psi} \\
C_n' &= \frac{(-1)^n}{(2n+1)} \frac{4K n_2 \sigma_x}{\pi \epsilon \psi}
\end{align*}
\]

Transverse edge supported

When the second part of equation (2) is replaced by equation (19), it will be found that equation (36) is replaced by

\[
\frac{\nu K \sigma_x}{\epsilon} = \sum_{n} \left(C_n \left(\nu + \frac{\alpha}{n_1} \right) + C_n' \left(\nu + \frac{\alpha}{n_2} \right) \right) \cos (2n+1) \eta = 0
\]

and \(C_n\) and \(C_n'\) are given by

\[
\begin{align*}
C_n &= \frac{(-1)^n}{(2n+1)} \frac{4K n_1^2 \sigma_x}{\pi \epsilon \mu \psi} \\
C_n' &= \frac{(-1)^n}{(2n+1)} \frac{4K n_2^2 \sigma_x}{\pi \epsilon \mu \psi}
\end{align*}
\]

Solution in closed form

It will be seen by comparing equations (28), (41) and (42) that two distinct summations occur in the stress resultants, and these may be written as

\[
\begin{align*}
S_1 &= \sum_{n} \frac{(-1)^n}{(2n+1)} \frac{e^{-(2n+1)\xi}}{\cos (2n+1) \eta} \\
S_2 &= \sum_{n} \frac{(-1)^n}{(2n+1)} \frac{e^{-(2n+1)\xi}}{\sin (2n+1) \eta}
\end{align*}
\]
and it will now be seen that S_1 and S_2 are respectively the real and imaginary parts of

$$S_0 = \sum_{n=1}^{\infty} \frac{(-1)^n e^{-(2n+1)(\xi' \cdot i \eta)}}{2n+1}$$

$$= \frac{1}{2i} \log \left(\frac{1 + ie^{-\xi' \cdot i \eta}}{1 - ie^{-\xi' \cdot i \eta}} \right)$$

$$= \frac{1}{2i} \log \left(\frac{\sinh \xi' + i \cos \eta}{\cosh \xi' + \sin \eta} \right)$$

$$= \frac{1}{2} \tan^{-1} \left(\frac{\cos \eta}{\sinh \xi'} \right) + \frac{1}{4} \log \left(\frac{\cosh \xi' + \sin \eta}{\cosh \xi' - \sin \eta} \right)$$

so that

$$S_1 = \frac{1}{2} \tan^{-1} \left(\frac{\cos \eta}{\sinh \xi'} \right)$$

(45)

and

$$S_2 = \frac{1}{2} \log \left(\frac{\cosh \xi' + \sin \eta}{\cosh \xi' - \sin \eta} \right)$$

(46)

The stress resultants are to be determined from equations (30), (31), (32) and (40), (42), (43). If the transverse edge is free:

$$\frac{F_x}{\sigma_0} = \frac{K}{c} - \frac{4K}{\pi \epsilon \psi} \left\{ n_1 S_{1,1} - n_2 S_{1,2} \right\}$$

(47)

$$\frac{F_y}{\sigma_0} = \frac{4K}{\pi \epsilon \psi} \left\{ \left(\frac{1}{n_1} \right) S_{1,1} - \left(\frac{1}{n_2} \right) S_{1,2} \right\}$$

(48)

$$\frac{\tau_{xy}}{\sigma_0} = -\frac{4K}{\pi \epsilon \psi} \left\{ S_{2,1} - S_{2,2} \right\}$$

(49)

and these equations correspond to equations (8), (9) and (10) of the main text. If the transverse edge is supported:

$$\frac{F_x}{\sigma_0} = \frac{K}{c} - \frac{4K}{\pi \epsilon \psi} \left\{ n_1^2 S_{1,1} - n_2^2 S_{1,2} \right\}$$

(50)
\[\frac{\tau_{xy}}{\sigma_e} = \frac{4K}{\pi \varepsilon \mu \psi} \left\{ S_{1,1} - S_{1,2} \right\} \quad (51) \]

\[\frac{\tau_{xy}}{\sigma_e} = \frac{-4K}{\pi \varepsilon \mu \psi} \left\{ n_1 S_{2,1} - n_2 S_{2,2} \right\} \quad (52) \]

and these equations correspond to equations (23), (24) and (25) of the main text.

Plain sheet

If the panel is unreinforced the coefficients \(n_1 \) and \(n_2 \) are each equal to unity and the expressions derived above for the stresses assume an indeterminate form. The limiting values as \(n_1 \) and \(n_2 \) tend to unity may be readily found by observing that, for example in equation (47),

\[\text{Limit } n_1 \to n_2 + 1 \left\{ \frac{n_1 S_{1,1} - n_2 S_{1,2}}{\psi} \right\} = \left[\frac{\partial}{\partial n_1} \left\{ n_1 S_{1,1} \right\} \right]_{n_1=1} \quad (53) \]

with similar relations for the indeterminate forms occurring in equations (48) to (52).

Now,

\[\frac{\partial}{\partial n_1} S_{1,1} = \frac{\xi \cosh \xi \cos \eta}{2(\cosh^2 \xi - \sin^2 \eta)} \quad (54) \]

and

\[\frac{\partial}{\partial n_1} S_{2,1} = \frac{\xi \sinh \xi \sin \eta}{2(\cosh^2 \xi - \sin^2 \eta)} \quad (55) \]

so that the derivation of equations (3), (4), (5), (20), (21) and (22) is now straightforward.
Stress distribution in a finite panel bounded by constant stress edge members

The stress function is symmetrical about the line $\xi = \lambda$, and in the expansion for ϕ (see equation (28)) the term

$$-(2n+1)\xi/n_4$$

is therefore replaced by

$$\frac{\cosh[(2n+1)(\lambda-\xi)/n_4]}{\cosh[(2n+1)\lambda/n_4]}$$

and there is a similar replacement with n_2 instead of n_4.

The stress resultants are then given by

$$\bar{\sigma}_x = 2B - \sum_n \left\{C_n \frac{\cosh[(2n+1)(\lambda-\xi)/n_4]}{\cosh[(2n+1)\lambda/n_4]} + \frac{C_n}{n^2 \cosh[(2n+1)\lambda/n_4]} \right\} \cos(2n+1)\eta$$

$$\bar{\sigma}_y = \sum_n \left\{C_n \frac{\cosh[(2n+1)(\lambda-\xi)/n_4]}{n^2 \cosh[(2n+1)\lambda/n_4]} + \frac{C_n}{n^2 \cosh[(2n+1)\lambda/n_2]} \right\} \cos(2n+1)\eta$$

$$\tau_{xy} = \sum_n \left\{C_n \frac{\sinh[(2n+1)(\lambda-\xi)/n_4]}{n_1 \cosh[(2n+1)\lambda/n_4]} + \frac{C_n}{n_2 \cosh[(2n+1)\lambda/n_2]} \right\} \sin(2n+1)\eta$$

Transverse edge free

It is found that

$$C_n = \frac{(-1)^n 4K \sigma_e}{(2n+1) \pi \varepsilon} \left(\frac{n_1 \tanh[(2n+1)\lambda/n_4]}{n_1 \tanh[(2n+1)\lambda/n_2] - n_2 \tanh[(2n+1)\lambda/n_4]} \right)$$

$$C_n' = \frac{(-1)^n 4K \sigma_e}{(2n+1) \pi \varepsilon} \left(\frac{n_2 \tanh[(2n+1)\lambda/n_4]}{n_1 \tanh[(2n+1)\lambda/n_2] - n_2 \tanh[(2n+1)\lambda/n_4]} \right)$$
Transverse edge supported

It is found that C_n and C_n' are given by equation (42).

It does not appear possible to obtain closed forms for either of these cases.
APPENDIX III

Stress distribution in an infinitely long panel bounded by constant area edge members

If the panel is bounded by constant area edge members loaded only at their ends the boundary condition along the longitudinal edges corresponding to the first part of equation (1) is replaced by the equilibrium condition

\[t \tau_{xy} + F \frac{\partial \sigma_x}{\partial x} = 0 \] (61)

This condition will be satisfied by introducing a stress function similar to that of equation (28) with \((2n + 1)\pi/2\) replaced by \(r_n\), for this gives the stress resultants in the form:

\[\tau_x = 2B - \sum_n \left\{ C_n e^{r_n x/bn_1} + C'_n e^{-r_n x/bn_2} \right\} \cos \frac{r_n y}{b} \] (62)

\[\tau_y = \sum_n \left\{ \frac{C_n}{bn_1} e^{r_n x/bn_1} + \frac{C'_n}{bn_2} e^{-r_n x/bn_2} \right\} \cos \frac{r_n y}{b} \] (63)

\[\tau_{xy} = -\sum_n \left\{ \frac{C_n}{bn_1} e^{r_n x/bn_1} + \frac{C'_n}{bn_2} e^{-r_n x/bn_2} \right\} \sin \frac{r_n y}{b} \] (64)

and equation (61) becomes, on dividing by \(\left\{ \frac{C_n}{bn_1} e^{r_n x/bn_1} + \frac{C'_n}{bn_2} e^{-r_n x/bn_2} \right\} ; \)

\[t \sin r_n + \frac{F e_{nR}}{Kb} \cos r_n = 0 \] (65)

which is satisfied because of the definition of the \(r_n \) terms. The boundary condition represented by the second part of equation (1) will not now be completely satisfied, but the effect on the stress distribution is negligible.

From generalised Fourier analysis

\[\sum_n \left(\frac{-2(1+\rho) \cos r_n}{\rho + \cos^2 r_n} \right) \cos \frac{r_n y}{b} = 1 \] (66)

so that the condition that \(\bar{\sigma}_x \) vanishes along the transverse edge is:
\[C_n + C'_n = \frac{-2K \sigma_{e,0} (1+\rho) \cos r_n}{\varepsilon (\rho + \cos^2 r_n)} \] \quad (67)

If the transverse edge is free

\[\frac{C_n}{n_1} + \frac{C'_n}{n_2} = 0 \] \quad (68)

and if the transverse edge is supported

\[\frac{C_n}{n_1} + \frac{C'_n}{n_2} = 0 \] \quad (69)

If \(C_n \) and \(C'_n \) are solved for equations (67) and (68), or (67) and (69), and substituted in equations (62)-(64) the problem is formally solved.

Plain sheet

The case when the sheet is unreinforced and the transverse edge is free is of interest. It is found that the stresses are then given by:

\[\frac{\sigma_x}{\sigma_{e,0}} = \frac{1}{1+\rho} - 2\rho \sum_{n} \frac{\sin r_n (1 + r_n x/b) e^{-r_n x/b} \cos (r_n y/b)}{r_n (\rho + \cos^2 r_n)} \] \quad (70)

\[\frac{\sigma_y}{\sigma_{e,0}} = -2\rho \sum_{n} \frac{\sin r_n (1 - r_n x/b) e^{-r_n x/b} \cos (r_n y/b)}{r_n (\rho + \cos^2 r_n)} \] \quad (71)

\[\frac{\tau_{xy}}{\sigma_{e,0}} = \frac{2\rho x}{b} \sum_{n} \frac{\sin r_n e^{-r_n x/b} \sin (r_n y/b)}{\rho + \cos^2 r_n} \] \quad (72)

Contours of constant \(\sigma_x/\sigma_{e,0} \) are plotted in Figures 6, 7, 8 for values of \(1/\rho \) equal to \(\frac{1}{2}, 1 \) and 2. The maximum value of \(\tau_{xy} \) is \(\frac{2}{\pi} \sigma_{e,0} \).
FIG. 1. FIGURE SHOWING NOTATION.
FIG. 2. CONTOURS OF CONSTANT $6x / 6e$.
FIG. 3 CONTOURS OF CONSTANT – 6x/6e

10, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
FIG. 6. CONTOURS OF CONSTANT $6x / 6x_0 : F = \frac{1}{2} \& t.$
FIG. 7. CONTOURS OF CONSTANT $\frac{6x}{6e_0} : F = 8t$.
FIG. 8. CONTOURS OF CONSTANT $6_x / 6_{e_0} : F = 28t$.

The plot shows a series of curves representing constant values of $6_x / 6_{e_0}$ normalized by $F = 28t$. The x-axis and y-axis are labeled with numerical values ranging from 0 to 0.8. The curves appear to represent wave-like patterns or distributions across the plotted area.
These detached cards are inserted in RIL Reports and Technical Notes for the convenience of librarians and others who need to maintain an Information Index. Detached cards are subject to the same security regulations as the parent document, and a record of their location should be made on the inside of the back cover of the parent document.

Abstract Cards

THE STRESS DISTRIBUTION IN PANELS BOUNDED BY CONSTANT STRESS EDGE MEMBERS

Exact solutions are given for the stress distributions in long panels bounded by constant stress edge members. The influence of closely spaced stringers and ribs on the peak shear stresses is investigated.

THE STRESS DISTRIBUTION IN PANELS BOUNDED BY CONSTANT STRESS EDGE MEMBERS

Exact solutions are given for the stress distributions in long panels bounded by constant stress edge members. The influence of closely spaced stringers and ribs on the peak shear stresses is investigated.
This document is now available at the National Archives, Kew, Surrey, United Kingdom.

DTIC has checked the National Archives Catalogue website (http://www.nationalarchives.gov.uk) and found the document is available and releasable to the public.

Access to UK public records is governed by statute, namely the Public Records Act, 1958, and the Public Records Act, 1967. The document has been released under the 30 year rule. (The vast majority of records selected for permanent preservation are made available to the public when they are 30 years old. This is commonly referred to as the 30 year rule and was established by the Public Records Act of 1967).

This document may be treated as UNLIMITED.