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The Maximum-Minimum Shift Method for Measuring Complex

Dielectric Constante and Fermeabilities

by
Ronold King

Cruft Laboratory, Harvard University

Abstract

An absolute method for measuring dielectric constants of solids
and liquids which is described in the literaturel;Zis generalized to
permit the determination of both dielectric constant and permeability
of a moderately Jow-loss solid or fluid medium. The method is abso-
lute in the sense that only measurements of length are required to de-
termine ¢ and p,.. A special feature is the fact that ¢, and B, areeach
determined under conditions of maximum sensitivity. The dztermination
of losses involving complex dielectric constants and permeabilities is
also described.

Introduction

The maximum-minimum shift method is a simple, direct pro-
cedure for the simultaneous determination of both the relative dielec-
tric constant, ¢ " and the relative permeability, B of a slab of material
of convenient thickness inseried in a coaxial or other transmissionline.

In its original form '

it was described only for measuring the rclative
dielectric constant. However, it is extended readily to include the
simultaneous determination of the reiative permeability of moderately

low-loss8 materials. These losses also may be determined.

The fundamental principle of the method i8 very simple. In effect,
it involves merely the successive measurement of theimpedance of a sec-
tion of tranémission line when immerse:d in the material under test when
*‘erminated in an open and a shert circuilt. Since the sample to be used
may be chosen to be symmetrical, it is ccnvenient to make use of the
symmetrical and anti-svmmetrical combinations involving respectively,
an open circuit and a short circuit in the plane through the center of the
slab.
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Although it mmay appear to be experimentally simpl-r to arrange
successively a short circuit and an cpen circuit at the back surface of
a slab of material rather than at its center, it turns out tiat the very
process of locating the equivalent of a short circuit and an open circuit
at the center of the sample constitutes the essential data required for the

determination of both € and mo

The principle involved in locatinig open and short circuits at the
center of a slab of material of thickness d depends upon the fact that
the effect of the slabk in modifying the condition of resonance of a section of
transmission line is extreme -- either maximum or minimum -- when
the slab is symmetrically or antisymmetrically located with respect to
the current and voltage distribution patterns. A location in which a volt-
age maximum and a current null are at the center of the slab is symmetrical
with respect to the voltage and antisymmetrical with respect to the current.
It is equivalent to an open circuit at the center. A location in which a volt-
age nulil and a current maximum are at the center of the slab is antisymmet-
rizal with respect to the voltage, symmetrical with respect to the current.
It is egquivalent to a short circuit at the center. Actually, completely syrmmet-
rical distributions of current and voltage (in which current or voltage nulls
rather than minima occur at the center of the slab) are achieved only if
the slab is itself exactly at the center of a resonart symmetrical section of
line that is driven by identical generators loosely coupled at both erds.
1f the generators are in phase, there is a voltage null at the center of the
slab; if they are 180o out of phase, there is a current null at the center of
the elab. In practice, the slab may be placed with its center at a voltage
cr current maximum with sections of low-loss line on each side. Only one
of these sections need be driven by a loosely coupled generator if the
material in the slab is not highly dissipative so that the circuit as a
whole has a modecrately high Q as indicated by the sharpness of the reso-

nance curves. The detector preferably is coupled to the same section as

the generator.

Mathematical Forrmulation

The first step in deriving the tangent relation vpon which the maximum-
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minimum shift method depends is to compare the input admittance of two
sections of highly conducting transinission line. Of these the first (Fig. la}
has only air {vacuurn) as the dielectric from the arbitrarily located input
terminals at z' = { to the reactive termination with admittance ZT = jBr at
z' = 8. The second section of line {Fig. 1b) is immersed in a medium with
complex dielectric factor ‘;_1 arnd complex perrneab’ilityg_l from z'=0 to

z' = d, and in air from z' = d to z' = d +8, where it is terminated in Y¥,. # jB

._T :'.J T.

The complex material parameters of the homogeneous isotropic medium are
P P 1 g 23

i.:: e’-j:" T F"j!‘"3 g-;. g’ ’jd‘“ (la)

These occur in the following forms:

.O—e = [ IR Y fe 0'+“‘.'
§ = ge - Jw— = Ee\l'Jﬂe’ A lle = 0‘__ = ,“i_cal (lb)
"
E = y.'(l~jhm) 4 hm‘-!’. (1lc)

The relative dielectric constants and permeabilities are obtained from the
absolute values in (1), (2), and (3) by dividing by €, and Ko respectively.
Thus, ’

e=e e 5 oe'ze e 3! e el (1d)
[ N O e T (le)
o-—r o' r E o'r

The eifective conductivity o, includes ohmic lcsses arising from actual
conduction in 0" and from time-lags in polarization in we'. Time-lags
in magnetization contribute the term in w". The conditions restricting

the medium to relatively low lorses are

h2<<1 , n2<<) (1£)
e m

In the following the subscript e, denoting an effective value, is omitted from
¢ and g with the understanding its presence is required if we' contribute
significantly to 0 , and ¢'" coniributes significantly to we in {(lb). If the
medium is a liquid, retaining walls are required. These may be ignored

if made of a material like Polyfoam that has a relative dielectric constant

and a relative permeability differing negligibly from one. If they are made

o
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of a solid dielectric, they may be sufficiently thin to permittheir analytical

representaticn as small lumped admittances Y = jB_ = -jwC_atz' =0
—w w w

and z' = d (Fig. lc). In the {ollowing the more general problem involvinga

!"quid enclosed in thin, solid retaining walis is formulated since the results

are specialized readily to the simpler and more important cases involving

liguids with Polyfoam walls or a solid dielectric withn»additional walls, by
setting B. = 0.
w

The input admittance Y' for the section of line in Fig. la is
Y'=G' +jB' =Y coth(ys'+85)=-jG_ cot(ps'+ ) (2)

The characteriestic admittance of the line is

Xc = Gc = l/Rc; the propagation
onstantis y =a + jf. 8L = coth-l(z,r/'_f_‘_) =

cax0 oz osxy s
Prtidy JéT is the

terminal function of YT. for an ideal short circuit, _9_,'1. = 0. The values
foilowing the approximately equal sign in (1) and the related definitions
apply only if the attenuation of the line is neglected and the termination

is a pure reactance.

The input admittance YZ ofthe section ofline oflengthsinFig. lcin

parallel with the lurnped admittance Xw = ij ofthe right hand retaining wall is

¥, G Z=_&_'w+zccoth(ls+e,'r)éj[3w-Gccot(;;e._; 3 \] (3a)

The input admittance Y of the entire line in Fig. lc is

2coth]_ld'PYl
Y= G+ jB = Y +Y
=2

Y, ¥ Y cothy,d (3b)

where Y ., =G _(1+jé _.)= G_is the characteristic admittance and
—<1 cl cl c

Y T %) + jpl, the propagation constant of the line whenimmersedinthg

slab of material medivm between z = 0 and z = d.

The fundamental step in the derivation of the desired equation is

to require the lengths s' and s to be so related that the input susceptances
B and B' are equal. Thus,
B=B' or ImY=ImY' (4)

with the propertieg of the dielectric material as represented by h e and

Zc 1 and its thickness d arbitrary.

P 4
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It is readily verified that, using (2) and {3b) with (3a), {4)

may be transformed into the following general equation:

Re {gl[coth (’}'_s' + Q.,’r) - COth(,YhS + _Q.'r)] + coth‘lgi + g.'r)coth(ls +g,'r) # (_;_2}:,0

(5)
where
G = Gy +IG; = Ecothy, 4 42,2 (6
C,=C, +jC,. =r>+2r Y Z cothy, d +Y22? 6b)
-2 CZ.r JCZi T = Lew et Yy —-wéc (
with Z'-c
g L
—<l

With these definitions of _C_ll and 92’ it is the real part of (5) that is derived
from the susceptance. KEquation {5) expresses the relationship between all
values of 8' and 8 for which the input susceptances of the two sections (the
one of length 8' in air; the other of length d in the dielectric or magnetic
medium and length 8 in air) are equal. In the complete absence of the
material medium (d = 0, B, = 0) the input admittances are equal when

s8' = 8. If a dielectric or magnetic mediuin is present, d4s is taken to be

less than s'.

The greatest effect on the input susceptance Bin is produced by the
material medium when it is so situated that the values of s' and s that
satisfy (5) are such that 8'-s is a rnaximum. Evidently, with this czmbi-
nation of 8' and s the circuit reaches its greatest sensitivity to the re-
active effect of a dielectric or magnetic sample so that it represents the

optimum condition for the precise measuremert of e_orm..

The particular forms of the equaticn (5) for which s'-8 has its
extreme values are obtained by setting the derivative of 8'-s with

respect to 8' equal to zero or, what is equivalent, by setting

Using standard formulas,let (5) be transformed into the following

equivalent expression:

o
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. 14, 1-32) 1 '
Re { -G mnh_Y_(s'-s)+(—-2—)coshl(s'-s) tH—>— coesh[y_(s'-m)<}Z_Q,'I.]J =0 (9)

If (9) is differentiated with respect to s' and (8) is imposed, the following

condition is obtained:
((_2_2 - 1)sinh{y(s'+ &) + 2“9"1‘] =0 (10)
Since EZ is not equal to unity in general, (10) is equivalent to the following:

sinh[a(s'+s)+2p,r] cos[B(s'+s)+2 i.’r] +jcosh[ o(s'+s)+ZpT] sin| p(s'+s)+2§,’r] =0

(11)
where only the imaginary part is relevant for the condition (4). This part

of (11) is satisfied when

B(s'+8) +2 '{,’r = kw, k=0,1,2,... (12)
Using (12) in (9), the following equation is obtained for the maximum and
minimum values of (8'-8) (indicated by the subscript m):

" e T e, 1 _ :
C,j8inp(s’ -8)  +3i1 fczr)ccs Bi{s' - 3)m_+2-(1-C2r13 = 0 (13a)
where the upper sign is for k even, the lower sign for k odd in {12),

and where Cli and C.,r are the imaginary part of _C_J1 and the real part of

92, respectively. In deriving (13a) it is assumed that the following

inequalities are good approximations:
€1 |>> |Cjats - )| _ \13b)

{a(s'+8) + pT]z<<1 (13c)

The first of these conditions implies that the distortion factor écl in the
characieristic impedance Z'ci = Rci‘-l-jécl) of the dielectric sample is
qguite small, the second that the line outside the dielectric medium has low

losses. Conditions essentially equivalent to these are imposed in (18).
‘Equation (13a) is transjormed readily intc the following two equations:

cot2A+ ZCli cot A - CZr =0 ; kevenin (12) (14a)
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tan®a - 2Ctan a- C, =0 ; kodd in (12) (14b)
where the notation
1 1,
o =Blsi-s)  =1Bid+S ) (15)

is introduced. In (15) Sm is the mmaximurmn or minimum shift in the posi-

tion of the termination when adjusted for resonance successively without
and with the material medium. The shift S is shown in Fig. 1. The solutions
of (14a) and (14bH) are

T V—_z____'
ceta =- Cp. + VCi+C, (16)
[ .2
tanA = bliil\/ Ci +¢C, (17)

where, for - A= p(s'-8) positive and less than w, only the upper signs

are relevant. The complex constants 91 = Ch_ + jCli am'l_'C_Z = CZr + jCZi
are defined in (6a,b). Although the real and imaginary parts of 91 and

92 are separable in general without restricting the properties of the
material in the slab under investigation, resonance curves are sharp enly
for materials that are not very good conductors. Accordingly, it is con-
venient to obtain the simpler formulas which apply to samples of mode-
rately low effective conductivity. This is in agreement with the conditions
(1f). Therefore, let the following restrictions be imposed on the f.ropagation

constant. Y, = a, + jB, and the characteristic impedance Z , = R ,(1-jé _,):
-1 1 1 -—) =l cl

(qd)2<< 1 (%)2<< 1 .sfl<<1 : (18)
Subject to these conditions,
coth¥,d ¢ -jcot B,d +a dcsc’pd (19)
provided the additional requirement,
tanzﬁld > afaf (20)

is satisfied. With (18) and (7) it follows that
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R(1-jé ) R, «’ €
C c . . C r :
r = = r (1 + Jé ) P TS o = | = é = ¢ -é (2])
i cll -Js cl’ & - £ Rcl \Jp'r 17

where € and p_ are the relative dielectric constant and permeability of

the material medium. Note that

B,=np i n=NTH (22)

where n is the index of refraction. In a nonmagnetic dielectric material

BT 1, r,sn= Ver; in a nondielectric magnetic material €. 1, r. = 1/ Vp.r= 1.

With (18) through (22) it foliows from (7a,b) that

Cli = Bch - rccotng.d (23)

2 2.2 N
C,. =r_t2r B.R cotnfd - ByR_ {24)

so that

+NC24GC, =-B_R_+r1_cotsngd (25)
=& li 2r T T Byt Tr L CO 2 RPC VL
c +\/—C2 +C,_=B_R_+r_tansnpd (26)

1i LT ¥2r T Pwe T Te 2 v

1£ {25) and (26) are substituted in (16) and (17) these mezy be expressed

as follows.
1 . :
cot Ai + BWRC = rccot -z-nﬁd ; kevenin(12) (27a)
_ 1 . . ‘
tan Av - Bch = rctan -z-nﬁd ; k odd in (12) (27b)

1t is readily verified that the condition (12), B(s' +8) + &'T = kmn,
k= 0,},2,. ..., assures that the extreme values Ai = -2-,3(3-5’)mi Pl
s, = %ﬁ(s-s')mv,occur when the. current and voltage distribution patterns
are symmetrical with respect to the center of the slab. With (12) the part

of the susceptance B2 in (3a) due to the line is given by
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B

2in = B, - B, = -G_ cot[ kn-(Bs' ¢ Q.’r)] = G_ cot(ps’ +Q,'I.) (23a)

Since the susceptance B' in (2) is equal to the susrceptance B in (3b),
and since BZin in (28a) is the negative of B' in ( 2), it follows that when
locate  for extreme shift,

B, =-B (28b):

2in
However, since the entire circuit is adjusted for resonance, the susceptance
B looking into the slab must be the negative of the susceptance at the same

points but looking away {roin: the slab back into the line.

By =B =By (28c)
That is, the susceptances looking into the line ir both directions from the
edges of the dielectric slab are the same. This is possible only when the
current and voltage distributicns are symmetrical with respect to the center
of the slab. In particular, the extreme value A, defined in (27) always
occurs when the largest number of current maxima consistent with the
electrical thickness n8d of the sample are contained within it. When npd
is less than w, this means a current maximum at the center of the =lab.
(When npd is between v and 2w, it means voltage maxiraum at the center
with two symmetrically placed current maxima within the slab.) Alter-
natively, the extreme value A defined in (28) occurs when the largest
number of voltage or charge maxima are contained within the sample.
For nfid less than w, this means a voltage maximum at the center 617 the
slab. The question as to which of the two extreme values A, and a, is a
maxirnum and whick a minimum depends on the relative magnitudes of € and
By If K. = 1, € > 1, Av is the maximum,Ai iie minimum. If €= 1, ;Lr>l,
Ai is the maximum, :‘v the minimum. If €T K, there is only one value of

s'-8 for all positions of the slab so that Av and Ai are equal.

,..qaat‘.c'.‘.:‘- (Z?a) and (27!’_\) maw he snlved for l'c =VZ/—I:; and n:VK_
M R Y
The product of (27a) and (27b) is
A/-——.—‘ 2.2 1/2
= = = { . T -
e fp. =T [cot A, tana + B R (tana, - cot A,) Bch] (29a)

The ratio of (28) to (27) is
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'\/’—'— 2 _1'_tanAi - BR —illa
Be€p =15 Bd s |.cotAi + BWRC (29%)

If the sample inciudes no solid retaining walls, B, = 0 and the foliowing

simpler expressions are obtained:

‘ 12

P - - .

V (rl- e =L T {cot 4 tan &v) {30a)
N oo = n = s v
[ ep =n=gytan {(tan & tan & ) {30t
it foliows that
» vz 12

=T n = ad{coi & ian &_}} jan  (land. tama ) {3la)
T T REd i L i v’ R

oy |
2tan ~ (tan 4 tax J_&v}
B, =T = {31b}
g8d{cot .&i tan Av)

If the two extreme values (s'-s)i and (s.'—s)v in &, and &v are
determined experimentally, the relative dielectric constant €, and the
relative permeability e of ke sample may be determined from {(2%a,b)
or irom {31a,b}. The only cther guantities required are the thickness
d of the sample and the wavelength X in p = 2&/X for the line in air.
Thus, since unly four length measurements are involved, an absolute

method for the determination of € and B is available.

If a liquid material is contained Sestween solid retaining walls
for which B_ is not zero, B'Rc may be determined experimentaily vsing
{27) or (28} with the cell empty. In this case r.=n= 1. 8o that

1. | . . .
= = = coi - oot Al t
Bwlc tang - tanspd = coigpd {3z2a}

1 = 1 ;
where 4 .= Eﬁ{s'-l) my 289 & = Ep{s'—s)mi for the cell empty.
Alternatively, the susceptance BW of the walls may be eliminated by
subtracting the equations for the empty cell from those for the full
cell. For {28}, for example, the reanlt iz
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Experimental Procedure

In order to measure dielectric nonstanta and permeabilities by
the extreme-shiit method, a sample of the material of thickness d must
be moved along a transmission line that has a loosely coupled generator
and a loosely coupled detector fixed near on2 end, and a movable reactive
termination {e.g., a piston) Z;r = jar at the other as shown in Fig. 2
with Y.r = 0. The first cperation is to locatethe position b' {Fig. 2a)
of the reactive termination at which the circuit without dielectric

is tuned to resonance as indicated by a maximum deflection of the detector.

The second operation is to move the slab of material (or the
cell containing the liquid) from the point b' toward the detector step
by step thus increasing the distance s' between b' and the left-hand
surface of the dielectric. For each position of the dielectric the
reactive termination is moved toward the dielectric to b where the
circuit is again tuned to resonance as indicated by a maximum deflection
of the detector. The distance between the termination at the resonant
position b and the right side of the dielectric is 8. As 8' and s are
increased step by step, but in general at different rates, a ''shift
curve' may be plotted of the difference s'-s as a function of the loca-
tion along the line of the center of the slab. The origin of the linear
scale along the line is arbitrary. Typical "shift curves' for water

solutions of ethyl alcohcl! for which er> 1 with B = 1 are in Fig. 3.

As 8' is increased by moving the sample toward the detector,

a point is reached where the reactive termination must be moved away

from rather than toward the dielectric in crder to tune the circuit to

resonance. At this point a further increase in s' results in a decreasn
in (e'-8) -- evidently theimaximum value (s;'--s)mv of {8'-8) has been
recached. For a certain range hevond this maximum (8'~-s) decreases a=s
s

2 wwiniraim (aloa) 2
N b 1°

starts increasing with continually increasing s'. As indicated in Fig. 3

8’ is increased. Then (58'-5} ra: and again

the center of the dielectric slab is at a voltage minimum when (8'-s)
is a minimum. If the reactive termination is a perfect short circuit
{e.g., a pieton), and the slab is electrically thin, the center of the

dielectric is \/2 from b' when {2'-s8) is a minimum.
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In order to determine the dielectric consiant of a material with
B = 1, it is sufficient to measure the maximum value (s'-s)mv of (8'-8);
it is not necessary to pioi a complete shift curve like those i
Several experimentally determined maximum values (without the rest of
the associated shift curves) also.are shown in Fig. 3. Note also that they
all lie on the straight line of slope 2 as required by (35b); (in Fig. 3 s' in-

creases from left to right).

With (8'-82)mv measured, and p = Zn/\ known (or measured),
n=r =N "¢ ¢ may be evaluated from (28) with B = 0 or from (34) if

there are soud retaining walls.

The Size of the Sample

The mathematical theory assumes that the sample under test
consists cf a flat siab of thickness d with its parallel sides perpendic-
ular to the axes of the conductors and completely filling the space

between and around them. For use in a coaxial or shielded-pair line

Ty

it consists of a disk that fits into the outer conductor or shield and
has a hole or holes for the inner conductor or conductors. For use
on an open-wire line the dielectric must ideally extend to infinity,
although a relatively small properly shaped sampi. may be used if its
relative dielectric constant or permeability is not too near one and

a correction is made for the firaction of the field outside the sample . *

In general, measurements are most convenient with a coaxial line.

In order to cetermine the most useful value for the thickness d
of the sample, it is necessary to consider both the magnitude of the
dielectric constant and permeability and the frequency at which it is
toc he measured. In Fig. 4 theoretical curves are shown of the index
of refraction n 'VT as a function of the argument A, ® p(s'-a)
for a range of values of f 8d as determined {rom the far.d"“ﬂ“*'—*‘

equation (28) with B = 1 and Bw = 0.

See R. King, Rev. Sci. Instr 8, &01 {June, 193%).

L
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tan A =ntan 3 nBd ; n=NE : koddin(12) (36)

With the aid cf these curves it is possible to estimate the thickness d
of the sample required to produce an adequaie maximum value of {s'-s)
if the order of magnitude of the unknovm dielectric constant is known

as well as the frequency.

if the dielectric constant of a liquid is to be measured, a
closed movable cell is required. Its parallel sides may be of Polyfoam
or very thin solid dielectric; its inner and outer nircular walls should
be metal sleeves that slide over the inner and into the outer conductor
of the coaxial line. By means of metal tubes of the same sizes as the
sleeves, the entire section of line from the front of the dielectric
sampie to the reactive termination (piston) at b may be made to have
constant inner and outer radii. The fact that thege differ from the
values hetween the detector and the front of the cell ia immaterial,

since only the distances s', s, and 4 occur in the final formula.

The determination of " for materials with € = 1 parallels the
determination of € for materials with B, = 1. With Bw = 0 and € = 1

in (27) this becomes
tana =n tangnpd ; n=NE : kevenin(l2) (39

Since this is the same as (36) except for a differently defined n and

different k in (12), the curves of Fig. 4 may be used.

Since Av = -lz p(s'-s)mv depends primarily upon € and 4, = %—B(s'as}mi
upon k. _, the curves of Fig. 4 are satisfactory for estimating the thick-
ness d even in the general case when B and € both differ irom unity.
In general, (s'-s)v is the maximum, (s'-s)i the minimum shift when ¢_ is
greater than u . (s'-s8). is the maximum and (s'-s), the minimumx when p_
is greater than €. As B and € approach each other, the maximum and
minimum flatten until the shift curve is a2 straight line when B =€

Measurement of Small Susceptances

The maximum shift method is a highly sensitive procedure for
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measuring small lumped susceptances. The apprepriate formula is obtained

directly from (28) by setting d = 0 and combining the two lumped suscep-

tances BW into the single lumped susceptance to be measured. Thus with

B = 2B_ (38)
and d = 0, (27b) becomes
1
B = mc tan 5 p(l'-s)max (39)

where Gc = lch is the characteristi: conductance of the line. For

sufficiently small susceptances,

B = G, Bls'-8)_ . (40)

The method algo may be used to determine the reactive properties of

loaded sections of line and variahle capacitive tuners. *

The extreme-shift method permita the accurate experimental deter-
mination of dielectric constants, permeabilitiea, and lumped susceptances
from measurements of length, viz., (a'-s)max, (s'-s)mi!1 and d. The
accuracy is enhanced by the fact that in measuring the dielectric constant
the sample ie located at a voltage maximum where its effect is greatest;
similarly, when measuring permeability, the sample ie located at a
current maximum where its effect is again a maximum. Incidentally,
the method also may be used to determine the reactive properties of

loaded sections of transmission line and of variable capacitive tuners.*

Determination of Losses in Dielectric and Magnetic
Materials Usiﬁg the Maximum-Shift Method.

In the preceding discussion a method is described for determining

ihe real cffactive dielectric constant ¢, = ¢ ¢ _ and the real permeabil-
A - e -

ity p = p o1, of a sample of material that could be moved along a trans-

misgsicn line, The conditions (18) that it was convenient {5 iinpose

- e = = -

*R. King, Phil. Mag. Ser. 7, 25, 339 (Feb. 1938).
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require this sample (designated as region 1) to have amall {but not necessarily
zero) atienuation constant a; and distortion {a re c1- These quaniities are

defined 28 follows for a moderately low-ioss line:

G o g c
1 . 1 1 1 1.2
—r e —_ % ....: s < | 41la
B 5o (!:'1 cl) (-B—) < (41a)
o A N g1, 2
6,2 5= _{1 - &) b, << 1 (41b)

In their usual application 2} involves only ohmic losses resulting from

imperfect conducters and g, the ohmic losses of an imperfect dielectric.

a1 T 1T £ - ]
0 2

12 — . B e A 2 AY e
LT AT FNaY Téadurl 10 iime-

L S |ER C o ) - = m VAl o
hUWCVC&, 1V =™ it '.:!3"' ERT Y § L=} pulag llddtll___ﬂ

response of a dielectric medium with a contribution to the efiective con-
ductivity and hence to g, or from time-lags in the magnetization response
of a magnetic medium with a contribuiion to the effective resistance T
Time lags in the conduction response of a medium involve contributions
to the effective dielectric constant as well as to the effective conductivity,
All these poesible effects are included in the foilowing general formulas

for moderately low-loss lines

i

1 ]
2 = +:-:—,- = o7 th, (42a)
s 2l 1 el
& - Yfe _ g twe" ;
e a r—r = h, 142b)

Note that if the conductors are perfect so that the ohmic resistance

r’ = 0, and the losses in the dielectric medium are nct from conduction
o' = oY = 0, but exclusively from time iags in polarization and magnetiza-
oI WSS £ AN\ A d HAMUN i Ddiemn bm o falVmceedaa e mecmmn e bl ma) Cmman ~
Llull, \’xho’ LS 7YV \’xuu’ A TCUUMLE bW WMIT AViAAW & 55 E’SAL.‘D&&A\'!DA AV AL 222D
L £ =& =y a3)
o T T Pm b oue T T P ¢

It is assumed :in the following that the imaginary parts of the

complex permeability, complex dielectric constant, and complex conductivity
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are small compared with *he real parts so that the following formulasa

are good approximations:

goERF T = R it 5 op= N (w4 e 2 (44a)
€ =€ t je" = ¢ +je" ;e ='\/7<')2 + k")zée' (44Lt)
g=2d * jo"' = otic" i o= V(o')z + (o”')z-"‘ ¢! (44c)

1t follows that
I T~

e
By adding subscripts 1 and substituting appropriate quantities in
{(4la,b), the attenuation constant and distortion factor of the dielectric

and magnetic medium-are

o) , g N2

-a-; = m + hm + he -('BT) << 1 (463)
- 2

6c1 =g + hm -h, ¢c1<< 1 (46b)

For the same line in air (vacuum), the corresponding quantities are

(K3
2]

“‘
a d 1,2
T RS (47)
B e b B;
With these preliminary definitions summarized, attention can he
directed to the evaluaticn of the effective terminal function p of the

section of line to the right of B (Fig. 5) including the dielectric and

magnetic sample and the reactive section of length s.

The admittznce looking to the right at A in Fig. 5is Y, as
defined in (3a). The admittance looking to the right at B is Y as
given in (3b). Since the effect of solid retaining walls (if the material

under study is 2 liquid) is agssumed to be purely reactive, there is

no contribution to the dissipation, and it is adequate to treat only the
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simpler case without walis. This is obtained with Y = 0 in (32) and (3b).
The resulting expressions are

Y¥,=G,+JjB, =Y coth(ys +6r) =Y [(o.scsc pa - jcotps)] (48)

ry cothllu L 98 3 |
Y=G+jB=Y, |_T‘ v 1C°thi; d_l (49)

The characteristic admittance of the line in the dielectric or magnetic

raedium is Xcl’ that with the line i- air is llc The two quantities are

given by
v -riytaidy .n:’\@ {50}
Ze L - e '1'; v
X7 G146 ) 5 G, = /- G,\/ tah)

4,

where écl and éc are given in (46b) and (47) a.nd_.ger = ‘e/‘o and
B, = p/p.o are the relative values of the real effective dielectric constant
and the real permeability.

When the dielectric cr magnetic sample is in a pesition of

extreme shift, the susceptance BZ is the negative of B as shown in
{28b). That is
B,=-B (52)

so that (49) becomes -
(G, +jB,) cotlry \d + X |

- By =Xy, G,+JB7 Y ,co.‘xyltr (53)

Let the admittances bée normalized by dividing by X., the characteristic

admittance of the air-filled line. As in (21) let

Y R (1-§6 )
—cl (4 C . .
r sy— = = r (14j6) (54a)
L S U § BT 'ty
where n
=€ - €l L4 4 - h -h : die<
Te " T((; - a_: : 'l'_écl ’sc = By ® ('I‘< ! (=ah)
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With (54a,b), (53) becomes

(‘gz-!-jbz) cothy_ld + T
B - by Ic| g, ¥I6, ¥r_cothy,d (55)
where
(8-3b,} = (G-iB) Y. i g,tib, = (G,4B,)/X, (56}

The real and imaginary parts may be separated using (54a) and (19).

For convenience let

. 2
C,, +iCj; = r cothy,d = r (adcec™pd + ércotpld) - jr_cotB,d
(57a)

G Sri(1ej28) (57b)

2r 4"iC‘Zi =t

With this short-hand notation introduced in (55), the following fundamnental

equéations are obtained:
2 C =
(g-gz)(bz+ Cy1-2b,C, - C,. = 0 (58b)
The conditions (18) imply the following inequaliiy
C2.7> | C1l8-8)) +2g,| (59)

since when {59) is satisfied, and with (15) and
cot A; k eve
1 - -~ 1 = + kﬂ =
b, =- cot(fs + @ 'I‘) = - cm(—z= -A)=
(-tan &; k odd
(60)
(58a) reduces exactly to the fundamental equations (14a.b) for the

conditions of extreme shift. By combining (14a,b) with \o0) the following

alternative expressions are obtained for bz:



i
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bz = (61)
1
l-rc '.ar.zﬁld » kodd
The remeaining equation (58b) is to te used to determine g and from

it p. Since the section of line ts the right of the dielectric siab (Fig. 5)
is essentially reactive, it may be assumed that g is negligible compared

with g. Hence

L By +C

o, +0G,.
2 1i
With {57a,b) and (61), {62) may be expressed as follows:

x 2i

(<))

(K
K
N

[ -]
"

. 4 2 1 :
2r_ [aydcscB d + 6 cetd;d)cot5pd + 6] sinp,d (63a)

k even

. 2 . 1 o .
EB= Zrc[(nldcsc'B‘ld + 6_cotp,d) tan> g,d - ¢.] sinp,d (63b)
k odd
Use has been made of the identities
tan%x = c8c X - cot x (642)
cot %- X = c8c x + cot x {64b)

The terininal attenuation function » of a moderately low-ices line
may ke determined from

p=granh’t B2 £, (65)

14b“4g°  1+b

The substitution of (23a) or (23b) in (25) together with the appropriate

formula from (20) leads to

-
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a.d
e 1 21 1
_ Zrc LT secC -zﬂl d +¢rtal’l*zﬂ1d]
p; = V) 1 ;7 keven (66a)

l‘c + tan 3 ﬂlid

a,d

Zrc[+ secz%pld -6 tan%pld] :
p. = ; Kodd (66Db)
M 1+ ré tamZ A g,d
c T Z2F]

(The subscripts i and v indicate p respectively, with current or voitage

maxim}aa at the center of the slab.) In deriving (26a,b) use has been made
of (24a) to express all arguments as —;— 2,4

Since with k even the dielectric sample has 2 current maximum
at its center (p1d< n), with k odd a voltage maximum, the values of
p in (46a) and (46b) are twice the values obtained, respectively, by
placing a slab of dielectric of thickness d/2 at &n ideai short-circuited
end and an ideal open end.

Since the circuit is alwaya adj ice in determining the
extreme shift, it is convenient to determine p, and p, using the resovance-
curve method. Once these two quantities are knocwn e, and ér may be evalu-
ated from (262) and (26b) and frem these h_ and he using {462,b) with (540j.

It is assumed that the constants of the line in air are known, as well a

]
P

and f§; which involve ¢_ and | .
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