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PLASTIG STRESS-STRAIN RELATIONS BASED ON INFINITELY 

MANY PLANE LOADING SURFACES* 

by 

J. Lyell Sanders, Jr.** 

ABSTRACT 

This paper is concerned with the development of a 
theory of plastic stress-strain relations for work hardening 
materials based on infinitely many plane loading surfaces.  The 
stress-strain relations belonging to this class are closely 
related to those the the linear incremental type but have the 
property of being integrable in a restricted sense.  They are 
also non-linear in that a corner appears in the yield surface 
at the point of loading.  A stress-strain relation of this type 
for isotropic materials is presented.  The problem of including 
a description of Bauschinger and allied effects within the 
theory is considered. 

** 
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Introduction 

Some recent ??velopments [i], [2] have made it feasible 

to investigate the possibilities of a certain class of non- 

linear incremental stress-strain relations for work hardening 

materials.  Linear incremental stress-strain relations have been 

extensively investigated and results of a quite general nature 

have been achieved [3 ] ? [!+ ] .  Studies of the behavior of metals 

from a phenomenological point of view ha^e revealed a few condi- 

tions which greatly restrict the possible forms of stress-strain 

relations, linear or not.  In particular a work hardening condi- 

tion postulated by Drucker [2] has for reaching consequences. 

Under this condition he has shown that the yield surface must be 

convex, that at any smooth point of the yield surface the strain 

increment vector must be normal to the surface for loading from 

that point, and that there are certain restrictions on the direc- 

tions of the strain increment vector for loading from a corner. 

From these last restrictions it follows that the stress-strain 

relations must be non-linear for loading from a corner. 

Before these latter results were obtained a stress- 

strain relation based on physical consideration of a crystal 

aggregrate had been proposed by Batdorf and Budiansky [ 5 ] .  It 

was later shown to satisfy Drucker' s worlr hardening condition 

and to possess a uniqueness and a variational theorem [6 ] .  This 

i 

Numbers in square brackets refer to Bibliography at the end 
of the paper. 
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theory, called the slip theory of plasticity, is non-linear in 

that a corner is always formed in the yield surface at the load- 

ing point.  Since the stress-strain relations of slip theory 

were formulated without mention of a yield surface and since 

practically all previous theories had been linear (and hence 

properly applicable only in case of a smooth yield surface) it 

was thought that slip theory stood in a class by itself. 

The wor1, done to obtain theorems regarding the nor- 

mality of the strain increment vector to the yield surface was 

partly motivated by a desire to use the corresponding yield 

function (or loading function) as a plastic potential in the 

stress-strain relations.  Recentlv .oiter [l ] showed that the 

concept of plastic potential may be retained even if the yield 

surface is singular (with corners, ridges, etc.) by the simple 

device of introducing more than one loading function.  The yield 

surface is the boundary of those points in stress space which 

represent elastic behavior with respect to all loading surfaces 

Which also satisfy the work hardening condition and the so- 
called conditions of continuity and consistency [3 ] . 

and of course the yield surface is singular whore two or more 

loading surfaces intersect. In such a theory of plasticity the 

total plastic strain increment is the sum of the contributions 

from each loading function.  The stress-strain relation is 

necessarily non-linear at corners in the yield surface but may 

possibly be non-linear only at the corners.  Certain uniqueness 

and variational theorems were extended by Koiter to cover this 

Class of non-linear theories.*  He also showed that slip theory 



where \^ and u-.» are unit vectors. The geometrical representation 

in stress space of the equation % -  constant is of course a plane. 
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belongs to this class. The loading surfaces of slip theory are 

an infinite set of planes. 

A qualitative discussion of theories of plasticity 

based on many plane loading surfaces was given in [7 ]•  It was 

shown that in certain cases the resulting stress-strain rela- 

tions are integrable in a restricted sense and thus partially 

resemble the stress-strain relations of deformation theories of 

plasticity.  The present paper is concerned with further develop- 
" 

ment of the theory. A stress-strain relation for initially 

isotropic materials is constructed and certain interesting 

special cases are discussed.  It is shown how an account of 

Bauschinger and allied effects may be included within the theory 

by postulating a relation between the displacerents of the in- 

finitely many loading planes which envelope the yield surface. 

A function depending on loading history alone is introduced 

which determines both the yield surface and the plastic strain. 

Plane Loading. Surfaces in General. 
• 

We begin by noting that at least some planes in stress 

space have a direct physical interpretation.  The shear stress 

in the direction X^ on an element of area normal to \x^  is r^iven 

by 

I 



; 

< 

All-106 ^ 

Suppose that the critical shear stress on a certain slip system 

in a single crystal is k.  In this case % =  k might be regarded 

as the initial yield condition for the slip system, the corres- 

ponding plane in stress space as the initial yield surface, and 

the function T of the stresses (1) as the loading function.  One 

may easily verify that the shear strain due to slipping is repre- 

sented by a vector normal to this plane (in nine dimensional 

stress space).  If a plane loading surface is introduced for all 

possible orientations of slip systeris in a random aggregate of 

crystals and certain othe-" assumptions are made than the result 

is the so-called slip theory of plasticity [ 5 ] .  In this paper 

the theory of stress-strain relations for work hardening materials 

based on an infinite number of plane loading surfaces is con- 

sidered as a subject in itself.  No attempt will be made to 

develop a rational theory based on the physics of crystal aggre- 

gates but some suggestions from that source will be of use. 

Suppose that an initial yield surface for a strain 

hardening material has been given.  Such a surface must be convex 

hence it can be regarded as an envelope of planes which nowhere 

intersect the surface. iror the present assume  that each plane 

behaves as though the others were not there.  As loading into the 

plastic range proceeds each nlnne is moved outward parallel to 

itself by the loading point more or loss or not at all depending 

on the loading path.  Two examples of the resulting yield bound- 

ary for biaxial loading are shown in Figs. 1(a) and 1(b).  Each 

plane remains as far out as it has ever been pushed by the 

- 
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loading point during the course of loading and ordinarily there 

is a corner in the yield surface at the final load point.  At 

each stage of loading the yield surface is convex, as it must be 

for a work hardening material according to a theorem of Drucker 

[ 2 ]. 

The plastic strain is assumed to be the sum of con- 

tributions from each loading plane.  The contribution from a 

single plane is assumed to be given by a linear stress-strain 

relation of the Prager-Drucker type in which the loading function 

f is linear and homogeneous in the stresses and where f = c > 0 

is the equation of the loading plane. The contribution of a 

group of planes whose normals lie within a snail solid angle is 

given by: 

5 e P = G(f,oo) n.. f 6w  f > 0 
ij 1J 

(2) 
= 0 f < 0 

or» 

where nn = ~  is a constant normal vector to one of the load- 

ing planes, 6w is an element of solid angle, and G > 0 if f 

exceeds a certain value which is the yield point for this plane 

but vanishes otherwise. The possible dependence of G upon the 

orientation of the loading plane is indicated by writing it as 

a function of w . Equation (2) may be integrated with respect 

to Lime to give: 

i 
. 

See [8 ] for recent experimental evidence of corners. 



All-106 

& E,^ = H(f,w) n., 6w (3) 

(where US = G) as may easily be verified by differentiating (3). 
8f 

The total plastic strain is obtained by integrating over all 

orientations of loading planes: 

The value of f appearing in (3) is the largest value attained 

during loading and is a measure of the distance the loading 

plane has been pushed out.  As a result of the integrability of 

(2) the strain contributed by each loading plane depends on the 

loading path only in so far as it depends on the distance the 

loading plane has been pushed out during the course of loading. 

As a consequence of this integrability the following statement 

may be made concerning the stress-strain relation (U-)s  "The 

total plastic strain is the same for any two loading paths which 

result in the same yield surface."  In this sense the stress- 

strain relation is path independent.* This of course is not the 

same as saying that the total plastic strain is the same for any 

two loading paths which reach the same final load point. 

Any loading path resulting in a yield surface which 

could also be produced by a radial loading path will be called 

a "nearly radial loading path."  In Fig. 2 the nearly radial 

loading path OPQ results in the same yield surface as the radial 

path OF'Q.  Note that a path which is not nearly radial (OP"P') 

5 

In the case of slip theory this theorem was known to its authors, 
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may possibly be made so by further loading (0P"P'Q).  In Fig. 3 

the loading point has reached P by a nearly radial loading path. 

If the loading path proceeds into the shaded region then all 

planes previously loaded continue to load.  This region will be 

called the region of total loading.  Any loading path which 

always proceeds into the region of total loading is nearly radial. 

So far it has been assumed that each plane acts in- 

dependently of the others and that no plane moves unless the 

loading point moves it.  Under such an assumption the yield point 

in compression is unaltered by loading into the plastic range in 

tension. This however is not in accord with experiment.  Often 

hardening in tension produces a softening in compression known 

as the Bauschinger effect.  The yield points in tension and com- 

pression at right angles to the original direction of leading 

may also be affected (cross effect).  In theory at least the 

whole yield surface can expand uniformly.  In general of coarse 

the whole yield surface is affected in some way or other by any 

hind of loading and not just part of the yield surface as was 

indicated in Fig. 1,  In order to produce these effects it is 

necessary to assume some sort of interdependence among the load- 

ing planes. 

The number associated with a plane, which completely 

determines its position, is the distance of the plane from the 

origin (exactly how distance is to be defined in stress space 

will be discussed later).  It seems best to abandon the use of a 

loading function as such and to concentrate attention upon the 
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changes in distance* of the planes from the origin as loading 

proceeds.  The desired interdependence between the loading planes 

may be achieved by postulating a relation between the motions of 

the various planes.  It will be assumed that the loading of a 

given plane induces a motion in any other plane according to 

some rule which involves the orientations of the two planes and 

the measure of loading of the given plane.  Only those planes in 

contact with the loading point ray be said to be loading, thus 

the motion of the loading point completely determines the total 

motion of the planes being loaded.  However, the planes being 

loaded induce a motion in each other which when subtracted from 

their total motion leaves a reiurinder to be accounted for.  This 

remainder which is called the direct motion will be taken to be 

the measure of loading. At this time the reader is asked to 

accept the following statement on faith.  If a suitable relation 

between the direct and induced motions is given, and the loading 

path is given, then the requirement that the direct motion shall 

always be in the loading (outward) sense results in a determinate 

system.  A partial justification of this statement is made later 

in the paper.  The situation is a little clearer where the in- 

duced motion is very small for then the yield surface is almost 

the same as though the Planes moved independently. 

There is at least an intuitive connection between these 

notions and the behavior of crystal aggregates.  During plastic 

* 
Distance in stress space is defined later. 

H 
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straining the inactive slip systems are hardened as well as the 

active ones, a phenomenon known as latent strain hardening. 

This suggests the induced motion of loading planes. That it is 

possible to obtain reasonable results based on the above assump- 

tions has been shown by actually constructing a few examples. 

In these examples the type of behavior exhibited by 

some known stress-strain relations possessing a Dauschinger 

effect [ 9 1 , [ 10] , [ 11 ] has been duplicated.  The yield bound- 

ary after biaxial loading according to a typical theory of this 

kind is shown in Fig. h.       The initial yield boundary might be 

the J2 ellipse.  After loading in tension to P this ellipse is 

enlarged and displaced to the right.  In an example constructed 

using plane loading surfaces acting interdependently the be- 

havior illustrated in Fig. 5 was obtained.  The greater part of 

the yield boundary is modified in the same way as before but 

now a corner appears at the loading point P.  By varying certain 

parameters involved the corner at P may be made as blunt as we 

please. The behavior shown in Fig. 1 and in Fig. K  may be 

obtained as limiting cases.  The yield boundary according to 

simple J2 flow theory is also obtainable as a limiting case. 

In the stress-strain relations for this theory the 

direct motion of a loading plane is taken as the measure of its 

contribution to the plastic strain rather than the total motion 

so thai- for a small group of planess 

* 
Drucker's [2] definition of a work hardening material does not 
require the origin to be inside the yield surface. 
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. 
& e^ = H(r1,w) rij- 6u (5) 

where r, is the direct motion.  The integrated form of (5) 

naturally raises the question of path independence.  About the 

best that can be said at present is that if the yield surface 

determines the direct motion then the total plastic strain is 

the same for any two loading paths which result in the same yield 

surface.  This amounts almost to a tautology.  The difficulty 

is that although the direct motion determines the yield surface 

the converse is not true unconditionally.  Certainly any un- 

qualified assertion concerning path independence must be false 

in some of the limiting cases.  However there are cases in which 

path independence is possible. 

Figure 6 illustrates a case based on the examples 

constructed in a later section in which two different loading 

paths OPQ and OP'Q result in the same yield surface and total 

plastic strain.  There is a region of total loading beyond Q 

into which a nearly radial loading path may proceed; it is shown 

bounded by the dashed lines.  In the limiting cases in which the 

corner becomes blunted the region of total loading narrows down 

to a line so that nearly radial loading becomes strictly radial 

loading. 

The mathematical formulation of the problem of finding 

the yield surface according to the present theory involves an 

integral equation.  The conditions under which the problem has 

a unique solution have not yet been found.  There is no doubt 
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about uniqueness in the example solutions given but only nearly- 

radial loading paths have been considered.  Even if suitable 

conditions are imposed to insure the unique determination of 

the direct motion it remains to be shown that the corresponding 

stress-strain relations lead to unique solutions of boundary 

value problems.  In order to extend the uniqueness theorem to 

cover the case of interdependent motion* it may be that some 

additional restrictions must be placed on the rule governing the 

relation between the direct motion and the induced motion. 

The problem of determining the yield surface for 

loading paths which are not nearly radial is considerably more 

complicated than in the- case in which the loading planes move 

independently.  The yield surface resulting from such a loading 

path might loo1^ something like Fig. 7 in which OPQ is a broken 

line with a sufficiently large turning angle at P.  A corner 

previously formed at P has been rounded off and a new corner 

formed at Q. 

The present theory affords a means of taking 

Bauschinger and allied effects into account without explicitly 

introducing strain into the loading functions as has been the 

usual practice to date.  However the attendent complications in 

determining the yield surface have not been avoided.  Although 

it is still convenient to speak of loading planes there doesn't 

seer- to be anything left which could strictly be called a loading 

function.  The direct motion is sort of an intermediate variable 

determined by the loading history and which in turn determines 

* 
Koitcr's theorem [1] is applicable in the case of independent 
motion. 

! 
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both the yield surface and the plastic strain. 

Stress-Strain Relation for Isotropie Materials. 

In this section the loading planes are assumed to 

move independently,  A general stress-strain relation for iso- 

tropic materials is constructed.  The stress-strain relations 

for slip theory and for a theory which agrees with J2 deformation 

theory for nearly radial loading are written down as special cases, 

In dealing with plane loading surfaces a certain 

amount of mathematical machinery of a geometrical nature is 

almost indispensable for concise expression of the ideas involved. 

Once a suitable stress space has been constructed, and some 

appropriate coordinate system has been defined in this space, 

writing down a stress-strain relation for* isotropic materials 

based on infinitely many plane  loading surfaces is almost a 

trivial matter.  Since plastic strain is assumed to depend only 

on the stress deviator, which has five independent components, 

a stress space of five dimensions is indicated. For the five 

cartesian coordinate members it is possible to choose linear 

combinations of the stress deviator such that a "stress vector" 

in stress space transforms like a vector when the corresponding 

stress tensor is transformed by a rotation of the physical co- 

ordinates.  The length of the stress vector, being an invariant, 

is not changed by the transformation.  This inevitably leads to 

*    h 
a distance function in stress space proportional to  (Jo) •  In 

such a stress space any quantity such as distance, angle, area, 

- .   ; 
J2 = 2 S 

iö 3 ij * 
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etc. defined in terms of the metric may be used consistently 

because it is an invariant v/ith respect to changes of coordinates 

in physical space.  A stress space of this kind is constructed 

in appendix A.  Several systems of coordinates for this stress 

space are defined in the appendix which also contains other de- 

tails of a geometrical nature.  Only a brief description of these 

results will be given in this section as the need arises. 

The contribution to the total plastic strain of a 

group of planes which were initially tangent to the initial yield 

surface over an element of area da is assumed to be given by: 

6 ea = H(f,na) na da  (a = 1,2,..,5) (6) 

where ea is the plastic strain vector, and na is the unit normal 

vector to the element of area directed in the loading sense.  The 

stress vector is denoted by y^.  and f is given by f = n_ x , 

or rather the maximum value of this quantity attained during the 

course of loading.  H > 0 if f > r^ Ra where R is the vector 

from the origin to a point within the element of area da on the 

initial yield surface, otherwise H vanishes.  The contributions 

of all planes are summed to get the total plastic strain: 

n 
ea = 

•ys 
II n da (7) 

S is the initial yield surface which is the envelope of the 

initial positions of all the loading planes.  The stress-strain 

relation (7) is in general anisotropic, further specialization 

is necessary to arrive at a relation applicable to initially 

i 
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isotropic materials. 

In appendix A a special spherical coordinate system 

is defined in which 

and 

J2 = P 

3 " -j45 ^ cos ^ 

(8) 

= —^5 p-5 cos 3 

Three other coordinate angles 0-^, 02, 0-, are introduced and the 

transformation of coordinates is given by equations of the form: 

(0 )  (p = 1,2,3,k) (9) 

where KaKa  = 1.  The equation of the initial yield surface of 

an isotropic material in these coordinates is given by: 

p= P(O^) (10) 

Isotropy requires that all planes be treated equally 

which are initially tangent to the initial yield surface along 

its intersection with a coordinate surface 0^ = constant.  The 

special form of the stress-strain relation (7) for initially 

isotronic materials is thus; 

e  = H (fjO^.) nQ da (11) 

or more explicitly: 

l  H«.V«a 
- |1 -ZT^)^  sin 9?   sin 3©L 

d©-,   £©o  dO    dO. P     3% k X (12) 
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where H = 0, f < P n„ Ka  •  Sometimes some other coordinate 

system is more convenient than the one used in (11); in a 

general system of coordinates this relation may be written: 

a H(f,J\ ) na da (13) 

where Jo  is the value of Jo at the point of tangency to the 

yield surface of the loading plane in its initial position. 

The simplest special case of the stress-strain relation 

constructed above is that in which the initial yield surface is 

p = k and all planes are treated equally, in this case; 

i 

8a = H(f) £a da   (H = 0, f < k) (1*0 

The initial yield surface is of course the Mises yield surface 

which is a sphere in the present stress space.  For radial 

loading (or nearly radial loading for that matter) the strain 

vector must have the same direction as the stress vector because 

of the perfect symmetry of the configuration of loading planes. 

Again because of symmetry the length of the strain vector can 

only depend on the length of the stress vector and not upon its 

direction.  The stress-strain relation for nearly radial leading 

must be: 

eQ = F(x?xß) xa 

In the more usual notation this is 

(15) 

e.P=F(J2) Slj (16) 
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which is immediately recognized as the stress-strain relation 

of J2 deformation theory.  The form of the stress-strain rela- 

tion for a broken line loading path with a lar^e turning angle 

is given in appendix B. 

Another interesting special case is slip theory.  The 

loading planes of slip theory in their initial positions are 

given by: 

f = Ö X, = k  s,< (\, 13 Ai ^ = 7  sij KKi ^  + X3 ^i ) - k (17) 

where \^  and \i*   are all possible pairs of orthogonal unit vectors 

in physical space [l ] .  It is easy to verify that the vector: 

Sij " k(Xi ^ + Xj •ai) 
(13) 

drawn from the origin, is normal to the corresponding plane 

(in 9 dimensional stress space) and moreover terminates in the 

plane.  Also £ s^-t s... = k and - s^ s., s,? = 0. Therefore 

the planes of slip theory are all those planes tangent to the 
2 

surface J2 = k" where JT = 0 and no others.  The same holds 

in x stress space.  All these planes are to be treated equally 

because slip theory applies to an initially isotropic material. 

Here is a case in which not all planes available in stress space 

are put to use.  Even though all the planes used are initially 

tangent to the sphere p = k the initial yield surface, as is 

well known, is the Tresca yield surface.  The stress-strain 

relation is obtained from (12) by omitting the integration with 

respect to 0^. 
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e« = (19) a = I   H(f) Ka  sin 02 d©1 d©2 d©.  (H = 0,f < k) 

where S' is the intersection of J2 = k with J->  = 0. The 

paramebers ©2,©2,©o involved in the original formulation of 

slip theory [51 were somewhat different. 

In both of the preceding cases the function H(f) may- 

be obtained from a stress-strain curve by solving (in closed 

form) a simple type of integral equation.  In the general case 

more experimental information than a stress-strain curve would 

be needed to determine H(f,©i ), and solving the corresponding 

integral equation would not be a simple matter.  Of course a 

form for H could be assumed involving a number of arbitrary 

parameters and then one could attempt to match the data by 

adjusting the parameters, but at present it doesn't seem to be 

worth while to pursue the matter any further. 

If the loading path is such that the principal axes 

of stress do not rotate then the loading path is confined to 

the X-,, x2 plane provided the physical coordinates are referred 

to the principal axes.  Again if the only stresses imposed are 

say ö-j.1 an^ öx2 'then the loading path is confined to the x-, , x^ 

plane.  In these cases the stress-strain relations based on 

loading planes in stress space can be reduced to a form having 

the appearance of a stress-strain relation based on "loading 

lines" in a "stress plane".  The reduction can always be made, 

at least in theory.  For simplicity the argument will be pre- 

sented only for the case in which the initial yield surface is 
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p = k and for the sake of being definite suppose the loading 

path is confined to the x-i,Xp plane. 

Consider a plane which has the trace t in the x^,Xp 

plane before loading begins (see Fig. 8).  Let OP be the 

perpendicular from 0 to t and let 6.. be the angle between OP 

and the x-, axis.  Let OQ be the perpendicular from 0 to the 

plane in question and let Op be the angle POQ.  Suppose that 

during the course of loading this plane is pushed out so that 

its trace is now t'. The distance of the plane from the origin 

which was Ö~Q = k is now OQ1 = OP7 cos Op = f.  Consider now a 

spherical coordinate system in which the x, and Xp coordinates 

of Q are given by: 

xn = k cos Op cos 0.. 

(20) 
Xp = k cos Op sin 0-, 

and XOJX^JX^ are given in terms of 0-,,©p and two more parameters 

eV®Li. (see for example appendix A Eq. A-28).  Now since there 

is a two parameter set of points Q on the sphere, all with the 

same 0-^ and ©p coordinates, there is a two parameter family of 

planes tangent to the sphere with the same trace t in the Xn,Xp 

plane as the plane considered above.  The contribution of these 

planes to the plastic strain is 'riven by: 

62eg =        H(f,J3 ) Z     sin2 202 sin ©^ dO^ d©lf d© dO 

= H (f,01,02) Cß sin
2 20, dO^^ d©2  (ß « 1,2)   (21) 
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where Xj_ = cos 01 , X2  =  sin ei and H = 0, f < k. For values 

of 02 between 0 and TC/2 there is a continuous distribution of 

parallel traces each representing a two parameter family of 

planes.* To obtain the strain due to moving out all those 

planes whose traces fall between the one tangent to the circle 

and the one at t1 requires the integration of &^SQ with respect 

to 02 between the limits 0 and cos"
1 (k/OP7").  Let ÖP7" = f, then 

pcos-^k/f)  pS  _ P 

6eß = <= \- H(f cos 92>Gl»92^fi sin 292  d02 dei 

= I (f,©1) I" d©1 ;  H = 0, f < k ; ( ß= 1,2)    (22) 

6ea may be interpreted as the strain due to moving out a 

"loading line" initially tangent to the yield boundary, moreover 

&eft is normal to this loading line.  So long as the loading is 

in the x-^,X2 plane be..  = 6e^ = be,-. = 0 for an isotropic material, 

otherwise the remaining strains may be expressed as single 

integrals if so desired.  Note that up to this point the exact 

shape of the (plane) loading path has not entered into the 

calculations.  To complete the analogy the plastic strain eg 

is given as the sum of the contributions from all the loading 

lines. 

P2%- 
eß = \  H (f,01) d©1 f Ti = 0, f < k ; (ß = 1,2)     (23) 

In appendix B the foregoing reduction is carred out for the 

case in which all planes arc treated equally.  A similar reduc- 

tion to two dimensional loading planes in a three dimensional 

stress space could be made. 

i 

The trace tangent to the circle represents one plane only. 
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Induced Motion. 

In the first section it was pointed out that a 

realistic theory of stress-strain relations based on" plane 

loading surfaces should provide for some sort of interdependent 

motion of planes to properly account for the changes in shape 

of the yield surface as loading proceeds.  A few assumptions 

regarding the nature of this interdependence were made.  Loading 

of any given plane was assumed to cause an induced motion in all 

other planes.  It was proposed to separate the motion of a plane 

into two parts, namely direct and induced, where the direct 

motion is associated with the loading of a given plane and the 

induced motion represents the effects on the given plane of 

loading on all other planes.  In this section enough analytical 

detail is supplied to apply the theory to a few simple cases. 

The contribution to the induced motion of a given 

plane due to the direct motion of an arbitrary small group of 

planes is assumed to be: 

6 r2(9) = F [r1(0'), 0, 9« ] da (r1  > 0) 

(210 
=0 (rx = 0) 

where 9 and 9' denote the orientations of the given and arbitrary 

planes respectively.  The total induced motion of the given 

plane is obtained by summing the contributions from all planes: 

-J 
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The total distance of any loading plane from the origin is 

given by: 

r = rQ + r1 + r2 (26) 

where r is the initial distance from the origin.  In the first 

section certain other assumptions were made concerning the 

direct motion.  These were that only those planes moving in 

contact with the loading point could receive any direct motion 

and that direct motion is a non-decreasing function of time as 

loading proceeds.  In symbols these are: 

r-naxa>0==*> rx = 0 (27) 

rx > 0 (28) 

It is understood that: 

r - r^ ^ > 0 (29) 

Note that: 

r-naxa=0^r1>0 (30) 

In addition to these assumptions it is expected that certain 

restrictions must be placed upon F in order to obtain a con- 

sistent theory. 

Two examples are constructed in the following to 

check the general reasonableness of the assumptions so far and 

to gain some insight into the nature of the problem of deter- 

mining the yield surface according to the present scheme.  To 

1 
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keep the calculations as simple as possible the initial yield 

surface is taven to be p = 1 and the form of (25) is taken to 

be: 

To = rn (X + (i cos r|0 da (3D 

where X and \i  are constants and i|> is the angle between the 

normals to the planes whose orientations were denoted by 0 and 

9' . 

In the first example take \i  = 0, X > 0 and let the 

loading path be coincident with the positive x-j_ axis.  From 

(3D To is a non-decreasing function of time alone.  Thus the 

yield surface expands uniformly except for the portion of the 

surface affected by direct motion.  As soon as the loading point 

reaches x-, = 1 some planes begin to lead.  Assume for the moment 

that once a plane begins to load it does not subsequently unload. 

Then at any instant all planes which have been loaded pass through 

the loading point and all planes which have not been loaded are 

tangent to the expanding spherical part of the yield surface; 

the planes just beginning to load do both.  The picture is as 

in Fig. 9.  A corner in the yield surface appears at the loading 

point P.  The radius of the spherical part of the yield surface 

as a function of the  load is calculated in appendix G.  As 

X -*? co the corner at P becomes blunter and vanishes in the limit. 

In the appendix it is shown that for X finite the loading path may 

turn through a certain angle without unloading any planes which 

have already been loaded.  Suppose the loading point follows 
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such a bent path, then at any instant the situation is exactly 

the same as before except that P lies a little ways off the x-^ 

axis. The same configuration of loading planes would have been 

produced had the loading point reached P by a radial path so 

the direct motion of any Diane is the same in either case.  As 

X —$ co the allowable turning angle goes to zero so there is no 

path independence in that case.  If \ = 0 then there is no in- 

duced motion end we have the case of the last section.  If \ 

is negative; there is the possibility of two configurations of 

loading planes for a .^iven value of the load.  Proper restric- 

tions on F should rule out negative values of \, at least when 

H = 0. 

For the second example take X = 0 and [i  > 0; (3D be- 

comes 

r2 = n| r 2 cos \|J da = p. na n( da 

TJL n a' da = ncc Aa (32) 

where Aa are constants.  There is a simple geometrical inter- 

pretation of the induced motion in this case.  SupDose the 

yield surface has attained some irregular shape through loading 

and then additional loading takes nlace.  What is the change in 

shape of the yield surface due to the additional induced motion 

alone?  Consider a plane tangent to the yield surface at some 

arbitrary point P.  .Cuppose P is displaced to P' by the displace- 

ment vector A_ carrying the plane along with it (see Fig. 10). 
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The distance the plane has been displaced parallel to itself is 

na Aa .  Thus the induced motion given by (32) has the effect 

of displacing the whole yield surface like a rigid body. For 

\x  positive the displacement is in the same general direction as 

the additional leading.  Of course the direct motion further 

distorts the yield surface in the vicinity of the loading point. 

The behavior for radial loading is similar to that of the first 

example, that is for \i  finite a corner appears at the loading 

point and again nearly radial loading paths exist.  In this 

case also the corner disappears for [i  = oo and nearly radial 

becomes strictly radial.  The calculations are given in appendix 

C.  For sufficiently large negative values of [i  there is the 

possibility of two configurations of loading planes for a given 

value of the load.  The reader may notice other inconsistencies 

for negative values of X and y.; at any rate these examples show 

that there is a definite need for restrictions on F. 

A combination of these two examples gives the type of 

behavior referred to in the fir-st section.  Here again the stress- 

strain relation would agree with Jo deformation theory for 

nearly radial loading paths. 

Observations and Conclusions. 

The plane loading surface has been used as the funda- 

mental building bloc1^ so to speak, in the construction of stress- 

strain relations of a quite general type.  Considerable flexi- 

bility has been gained by assuming the displacements of the 

> -> 



All-106 25 

r, 

• 

various planes to be interrelated.  In many special cases of the 

present theory the plastic strains are path independent to a 

certain extent and a special class of loading paths exist, called 

nearly radial, for which the stress-strain relations reduce to 

those of ä deformation theory.  Nearly radial loading paths were 

shown to exist in all cases not involving induced motion and 

even in some cases where induced motion of the loading planes is 

allowed.  It is quite probable that nearly radial loading paths 

exist whenever the function F is bounded. Further theoretical 

investigations should be made to settle the question.  Certainly 

the validity of the theory should bo tested by comparison with 

experiment. 

It was remarked in an earlier section that the 

yield surfaces of some known theories could be duplicated 

by limiting cases of the present theory.   It is extremely 

interesting to look into the corresponding question con- 

cerning the two stress-strain relations.  Only a cursory 

examination is necessary to show that the known stress- 

strain relations cannot be obtained as limiting cases of 

the present theory.  Consider the case of the first example 

discussed in the text and let  X. be very large; then the 

yield surface is very nearly that according to simple Jp 

flow theory.  Suppose loading in tension has proceeded up 

to a certain point and then the load is removed.  Now 

compare the stress-strain curves for loading in com- 

pression according to J2 flow theory and according to the 

present theory.  According to J2 flow theory there will be 

a sharp break in the stress-strain curve at the yield point, 

h 
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but according to the present theory the stress-strain curve will 

be smooth because the planes tangent to the sphere on the com- 

pression side have not been previously loaded.  At first sight 

this may seem distressing, one might have hoped that the present 

theory would be general enough to include such a classic example 

as Jp flow theory as a limiting case.  However, the experimental 

facts are in favor of the present theory, qualitatively at least. 

Stress-strain curves in compression following stressing in tension 

are always found to be quite smooth [ 12] .  Even those linear 

incremental stress-strain relations which exhibit a Bauschinger 

effect predict a sharply defined yield point for such an experi- 

ment as that described above. 

More complicated experiments have been performed in 

which the material is first stressed in tension and then loaded 

in some way other than mere compression.  The experiments of 

Taylor and Quinney [13 ] and of Klingler and Sachs [ l^f] were of 

this type.  In all cases the reported stress-strain curves for 

the second loading are quite smooth as would be predicted by a 

stress-strain relation of the type considered in this paper.  On 

the other hand it is a well known fact that the stress-strain 

curve for a second loading in tension does have a rather sharply 

defined yield point.  This singular behavior at a point on the 

yield surface where loading has recently occured may be regarded 

as evidence for corners in the yield surface.  The fact that any I 

intermediate loading (before the second tension test) is likely 

to destroy the sharpness of the yield point is also evidence in 
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support of a theory of the present type. For some reason 

(possibly creep) the stress-strain curve for reloading in tension 

does not always have a perfectly sharp break at the yield pointy 

the same reason may explain why corners have not always been 

found by those experimenters who have looked for them [8] , [ 15 ]• 

Certainly the present theory is far from being well 

developed and much remains to be done before it can even claim to 

be acceptable.  Even so fundamental a condition as the work 

hardening condition is not automatically satisfied unless re- 

strictions are placed on the rule governing the induced motion. 

These restrictions, and possibly others necessary to insure 

uniqueness, are yet to be discovered. n 
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Appendix A 

1 

Five-dimensional stress space. 

If plastic strains are assumed to be incompressible 

then the stress-strain relations and the yield surface depend 

only on the stress deviator and not upon J-, = d.^ .  This means 

that in the usual nine-dimensional stress space the yield sur- 

face is a cylinder normal to the plane 0^  = 0.  Rather than 

represent stress in this nine-dimensional space in which each 

component of stress acts as a coordinate it is more convenient 

for present purposes to choose some other system of coordinates 

which better fits the yield surface.  Since the stress deviator 

has only five independent components it is possible to represent 

it geometrically in a suitably chosen space of five dimensions. 

Methods similar to the one given below for constructing a stress 

space exist in the literature [16 ] , [17 ] but they are usually 

not given in much detail so the one used in this paper will be 

discussed in this appendix. 

The stress space chosen here is a subspace of the 

usual nine-dimensional stress space.  The coordinates in this 

subspace are chosen in the following way.  The x^ axis (which will 

later be ignored) is taken normal to the plane d ^ = 0.  The 

x-]_ axis is the projection of the d-Q axis on the plane 0.. = 0 

and the Xp axis is taken normal to the x-j_ and x/ axes so that 

x,, Xp, X/- forms a right-handed system of coordinates.  The 

scale of measurement on the x-^, Xp, x,- axes is distorted by a 

"I. 
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factor of -JT for a reason which will be given later.  The equa- 

tions of transformation between the two systems of coordinate are: 

xl = 

x2 = 

x6 = 

_i_ (2du - d2j - 033) 

1 (d22 - ö33) 

JL. (dn + d22 + d33) 

(A-l) 

Three more axes x_, x, , and x^ are added to accommodate shears: 
3'  *+'     5 

X3 ~ x12 

xk  ~  T23 
(A-2) 

x5 = T13 

so that x-p Xp ..., x/ is a rect?ngular cartesian system cf co- 

ordinates.  The reason for the factor \/~2 is the following:  under 

a rotation of physical coordinates 0 .- *  behaves like a second 

order cartesian tensor, the factor ^f? j_g necessary in order that 

xa , (a = 1,2,...6), should transform like a cartesian vector. 

The relations (1) and (2) may be compactly written as 

follows: 

xa - Ba*i;3 dij (A-3) 

in which 3a,^ are a set of 3x3 matrices whose definitions are: 
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B if ii 

0 0    0 

1 

2f3 
0 

"0 

-1     0 

0  -1 

0     0 

5   B2>1j _ 1 
~ 2" 

1 
2 

0 

0 

0 1 

1 0 

_ 1 
- 2" 

0 0 0 0 1     0 

0 1 0 • 
B3'ij   'I 

1 0     0 

0 0 -1 _ 0 0    0 

0 0 1 "1 0     0 

0 

1 

0 

0 

0 

0 
- 

• 
1 B,, .. =-i 0    10 

0     0     1 — 

Since all formulas concerning plastic strains do not involve the 

x/ coordinate this coordinate A-/ill be dropped and the range of 

summation on the Greek indices will hereafter be understood to 

run from 1 to 5.  The quantities Ba,.. satisfy the following 

identities which are easily verified. 

Ba'ii " Ba'ji 

Ba'ij Bß>i;j = * 6aß (A-5) 

a» il 

Ba'ij   Ba>ki   = t  (6ik  V +  6i^k  ~ ! 6ij   \l }' 

The  components  of xa depend  only on  the  stress  deviator as   is 

shown directly by the following: 

"ij   uij   ^ °a»lj   (sij  + s  bip  = Ba'ij   sij X a   ~   B et» •; .;  Ö, . = B 

+ sBa'ii = Ba»i;3 *„ (A-6) 

Equation 6 may be solved for the components of the deviator in 
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terms  of x, ;   the  result  is: 

sij   « 2  3a'ij   xa (A"7) 

From  (7)   and   (5)   it  follows; 

J2  =  * sijsij   = 2  Bcc>ijBß>ij   Xaxß = öaßxaxß - xaxa (A"8) 

that is the length of a stress vector xa is \Jj~^. 

Analogous to the stress vector a plastic strain vector 

is defined as follows: 

!a = 2 Ba>ij e13 
P (A-9) 

The stress-strain relation for a linear stress theory of plas- 

ticity reads as follows in the present notation: 

de_ =  G(f) ||- df (A-10) 
oxa 

as may easily be verified.  The tensor character of this relation 

is preserved in the present representation and as before the 

plastic strain increment is normal to the loading surface. 

A coordinate system for isotronic materials. 

The geometrical representation of J? as given in the 

last section is quite simple but what about J\? Explicitly Jo is: 

o 
X-,(.XQ^ + XL."".) +  ~ X-, (X. J3   = ^ijsJkski   -   ^Z xl3   - jl xl^x22   + O   + ^ X1<X

3" 

+  x^2)   +  x^(x 2   -  x^-)   + 2x^xLxc 

(A-ll) 

. 
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which is a rather awkward expression. There is a simple repre- 

sentation of J-^ in case si;j = 0, 1 4  j, in which case x^ = x^ 

= XK = 0»  If polar coordinates are introduced into the 1,2 plane 

letting: 

x-, = p cos 9 

%2  = p sin 9 
(A-12) 

then we find; 

j  = p2 • J = Z£  cos 39 
2        3  3/1 

(A-13) 

The corresponding values of s.. are; 

sll Sfi. cos e 
•3 

s22 = - i£ cos (9 + ?) 
N/3 3 

S.,, = - E£ cos (Q _ 5.) 
33    ^        3 

(A-lM.) 

The reason for introducing Jg and J, is of course that they are 

invariant under rotations of the physical coordinates and hence 

play a prominent role in the description of initially isotropic 

materials.  V.'e would like to construct a coordinate system in 

stress space convenient for such a description.  In order to gain 

a little insight into the problem we consider the effect on the 

vector xa of subjecting the corresponding tensor Sj* to a  rotation 

in physical space.  As is easily checked using (5) the new vector 
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x ' corresponding to the new tensor s^ is related to the vector 

x„ by a rigid body rotation in stress space.  That is to say 

V = A aß xß (A-15) 

where Aaß is an orthogonal matrix.  If a^ is the rotati 

tensor in physical space then Aaß is given by: 

on 

Accß = 2 a ik ai-t Ba'ij Bß'kt (A-16) 

Thus to every rotation in physical space there corresponds a 

rotation in stress space.  The correspondence between rotations 

however is not one to one.  There is a L«n parameter group of 

rotations in the five dimensional stress space but only a three 

parameter sub-group of them corresponds to the three parameter 

group of rotations in physical space. The somewhat messy 

expression (11) is of course an invariant of this sub-group. 

The correspondence between rotations in physical space 

and a certain group of rotations in stress space suggests at 

least one way in which a coordinate system especially adapted 

to the description of isotropic materials may be defined.  We 

first note that for a given stress tensor the coordinate system 

in physical space can always be rotated into a system of princi- 

pal axes for that stress tensor.  This means that in stress 

space an arbitrary vector x can always be rotated into the 1,2 

plane by a rotation belonging to the above mentioned sub-group. 

This can be accomplished in six different ways corresponding to 

the six choices of right handed principal axes in physical space, 
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This means that in stress space an arbitrary vector xQ can be 

rotated into any one of six equal sectors in the 1,2 plane by a 

rotation belonging to our sub-group.  Thus the stress veccors 

x_ in the sector of the 1,2 plane 0 < 0 < 1 are representative 
"3 

of all vectors in stress space through these rotations.  The 

coordinate system is constructed as follows.  Jhoose a vector 

in the 1,2 plane given by its length p and the angle 9K it makes 

with the x-^ axis where 0 < 9^ < 2. .  Next apply an arbitrary 

rotation belonging to our sub-group which will involve three 

parameters, call them Q-p 92 and 9^.  The resulting vector; 

ca • xa CP» 9l> e
2' 

e
3' V (A-17) 

can be any vector in stress space so (16) can be regarded as the 

equations defining a transformation from x coordinates to p, 0 

coordinates. With suitable restrictions on the range of 9-,, 9~ 

and 0T the new coordinate system covers stress space once and 

only once.  Obviously the values of J~ and J-,  are the same for 

any two stress states which have the same p and 9K coordinates 

because these quantities are unaffected by rotations. Expres- 

sions for these invariants aro still given by (13) where we take 

9 to be ©h.  The principal deviatoric stresses in the order 

sl 2  s? 2 s~>  are given by (l'+) when 9^ is restricted to the 

range 0 <,  9^ < 5 .  As an example of the use of this coordinate 

system note that the equation of the initial yield surface of 

an isotropic material must bo of the form: 

*! 

» 
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p = P (Qh) (A-18) 

The explicit form of (17) may be obtained straight- 

forwardly but the calculations are somewhat tedious so only 

the results will be given here. First let: 

% = P Ka (A-19) 

then £a = £a (op), (p = 1,2,3,'+), defines a system of coordinates 

on the unit sphere in stress space.  Expressions for £a are as 

follows: 

5  = 1  (1+3 cos 202) cos 0^ + ^S (1-cos 202) cos 29-^ sin 9^ 

^2 = ^2(l-cos 292) cos 29-j^ cos 9^ + j3L(3 

+cos 2© ) cos 29, cos 29^ sin 9, 

- cos 90 sin 29.. sin 29~ sin 9, 

^3 = 2 sin 2e? cos °1 cos %•  " \  sin 262 cos öl C0S 2®3 sin ÖU. 

+ sin 92 sin 9-, sin 29-, sin 9, 

*>h ~ ^ (1-oos  292)sin 20x  cos  9^ + J(3 

+cos 29  )sin 29-,   cos  29o   sin 9. 

+  cos  92  cos  29,   sin 29^   sin 9» 

K* * ^4 sin 292  sin 9-^  cos  0.    - i sin 292  sin 9-^  cos 2Q-,   sin 9^ 

- sin 92  cos  9,   sin 29^  sin 9^       (A-20) 
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The ranges of the angles 0 are as follows: 

0 < 01 < 2% 0 < © < % 

0<02<TI 0 < ©^ < I (A-21) 

The angles 0 are suitable as a. system of coordinates on the 

initial yield surface of an isotropic material which is given 

by: 

^ = P(Ö^) £a (0p) (A-22) 

The element of area on this surface is given by: 

da = 2P*+ [1 + (P'/P)2]" sin 02 sin 3©^. d©1 d©2 d©3 d©^ (A-23) 

The unit normal vector to the surface is given by: 

r  - £1 ££QL 

%  • 7 ; =3TX (A"2^ 
[1 + (P'/P)2]*" 

Yield surfaces. 

In this section a few well known facts concerning the 

initial yield surface for an isotropic material are restated in 

terms of the system of coordinates given in the last section. 

Such a yield surface is of course invariant, under those rotations 

in stress space which correspond to rotations in physical space. 

Obviously the yield boundary in the 1,2 plane determines the 

whole surface, in fact the arc of the boundary which lies in 

the sector 0 £ ©^ £ «• is sufficient to determine the whole sur- 

face.  Three of the axes of the permissable rotations lie in 

* 

*, 
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the 1,2 plane; one is the x.. axis and the other two make angles 

of - with the x. axis. These three lines must therefore be axes 
3 l 

of symmetry of the yield boundary.•*• 
p 

The yield surface must also be convex,  it is easy to 

|2 show that if the yield boundary in the 1,2 plane is convex then 

TC 

7 

this condition is satisfied. Let us assume that P(9jL+) has two 

continuous derivatives. The condition of convexity is explic- 

itly: 

P2 + 2P»2 - PP" > 0  0 < 9^ < 5- 

% (A"2^ P'(0) < 0 < P'(|) 

The equality sign holds in the first inequality for a straight 

line.  The Tresca yield surface is a special case of this latter       "" 

possibility.  If the yield surface is to be smooth the yield 

boundary in the 1,2 plane must meet the rays 9, = 0 and 9^ = ^ 

at right angles, this will be true if: 

P = R(cos 39^) (A-26) 

where R is regular for 0 £ 9% £ «• .  If in addition we are to 

have point symmetry about the origin then 

P = R(cos2 39^) (A-27) 

l All members of the sub-group except the identity have one 
fixed axis. 

2 
By this we mean that no part of a straight line segment join- 
ing any two points of the yield surface falls outside the 
yield surface. 

- 

_- 
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The fact that the yield surfaces (initial or subsequent) 

considered in this paper are always convex is intuitively 

obvious considering the fact that they are all the "innermost" 

envelope of a set of planes. 

Some additional spherical coordinate systems. 

Several orthogonal systems of coordinates on the unit 

sphere in five dimensions may be manufactured as in the follow- 

ing example.  Let the projection of an arbitrary unit vector on 

the (x1,X2) subspace be of length cos ©2 so that the length of 

the projection on the orthogonal complement (x-^,XK,x^y is 

sin Op.  Let the projections on the x-, and Xg axes be: 

£, = cos Op cos ©, 

^2 = cos &2  s^n ©] 

CA-28) 

as in plane polar coordinates.  In the (x^jX. ,x^) subspace the 

projections on the axes are made as in ordinary spherical polar 

coordinates to give: 

'! 

S  - sin ©2 sin 0^ cos 0^ 

5lj. = sin ©2 cos ©3 

Kx  = sin ©2 sin ©^ sin ©^ 

The ranges of the variables are: 

(A-28V 

I 
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0<01<2TI 0 _< ©.,   < n 

0  < ©2   < f 0  < \   < 2% 

The element of area on the unit sphere is given by: 

Ifl 

(A-29) 

da  = cos  Q0  sin2  0o   sin 0.  d©,   d©_  do-,  dS, £ d 3       1       2       j       t 

J-,   is given by: 

JL J_.   = _?_ co 
P3    3      3f3 

(A-30) 

3  ©_  cos 3©T   --—    cos  Q,   cos  ©~   sin2  ©0   (1  - 
<Z l    9.PT 1 <= <= 2l3 

- 3 cos 2© ) + sin2 ©2 sin 9,(sin ©-, cos ©2 cos 2©^ 

+ sin © cos Q- sin 2©^)    (A-3D 

Another system of coordinates is: 

£•,   = cos  ©-, 

^2   =  sin ©-^  sin ©2  cos  ©^ 0   < 9-,   < it 

5o   =  sin ©-,   cos  ©2  cos  ©^ o .< e2 < | 

0   < ©^   < 2% 

Iß. 
2p3 "3 

S^ =  sin ©,   sin ©2  sin ©^ 

%~ =  sin ©1  cos  ©2  sin ©^ 0   < ©^<    2% 

da  =  sin3  ©^  sin GP  cos  ©?  d©-,   d©2  d©-,   d©r 

J    = cos  3©-,   + 4 sin2  ©-,   cos    ©2   [3  cos  3-^ 

+ \/3  sin ©1  sin ©2  
cos   (2%  -  e:>)]  •       (A-32) 
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Appendix B 

Solving for Hff). 

Make the x coordinates dimensionlcss by letting: 

where k is the yield stress in pure shear.  Let the yield 

surface be p = 1 and treat all planes equally, then the stress- 

strain relation is: 

n 

ea H(f) I     da (B-2) 
s 

The function H has to bo determined in terms of experimental 

information, say a stress-strain curve in tension. Let this 

be given by: 

öx = Es ex (B-3> 

where E is the secant modulus. The plastic part of the strain 

is ^iven by: 

e P = ( 1 - 1) d (BJf) 
x    Es  E  x 

For a simple tension tost dx = V~3 Xn = 73" p and e, = >|~3 e P 
 "X  * ~"  "1 -V-* r   —•~ ~i • *->  ^ 

so (h)   becomes: 

el = 3(jT" " F} P = 2F(p) (B"5) 

In the polar coordinate system defined by eqs. (A-32) the 

distance of a plane from the origin for the present path is: 
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f  =  p  cos  ©^ 

»»3 

(B-6) 

(see  fig.   11)   and   (2)   becomes: 

2F(p) 

r>©\   p£  P2-jcp2rc n*   '2-icpzn 
\ \       H(p  cos ©-^cos  ©-j^sin-Je-Lsin 92cos ©2d©i+d©2d©2d©1 
Jo Jo uo 

'1   '2" 
o     Jo Ü 

(B-7) 

(B-8) = 2TC
2
  I        H(p  cos  ©,)   cos  ©x  sin^ex d^ 

Let  r\  = p   cos  on,   then  (8)   becomes: 

p^FCp)   = n2  \      H(n)  r)   (p2   - n
2)   <in (3-9) 

This  may be  solved for H by mere differentiation to give: 

H(p)   = [(pl+F)'/p],/2ii2p (B-10) 

Reduction to loading lines. 

For loading in the x-,,X2 plane it is convenient to 

reformulate the problem in terms of loading lines in that plane. 

In the present case of course, because of symmetry, exactly the 

same analysis applies to say the x,,x. plane or any other flat 

two dimensional subspacc of stress space which includes the 

origin.  The solution in these other cases may be obtained from 

that in the x-pX2 plane by a transformation of coordinates or 

even by merely relabeling the axes. 

In the coordinate system (A-28) (2) becomes: 

. 
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p2%__ _ 
c, = \     H(f) cos 0n dOn (B-ll) 

1  J0 
X  X 

2* 

whore: 

H(f) 

e2 = \   H(f) sin Q±  d01 (B-12) 

7t 

it p H(f cos 02) sin
2 2©2 dQ2       (B-13) 

and where f is the distance of a loading line from the origin 

in the x, ,x2 plane.  By using (10) and after considerable reduc- 

tion (13) becomes: 
K 

H(p ) = - I2 [p cos Q F» ( p cos 9) + F(p cos 0) ] dO  (B-l^-) 71 Jo 

Formula (1M-) may also be obtained directly using (11) and the 

loading line approach without resorting to (10) and then if so 

dosired H may be obtained by inverting (13), in other words it 

is possible to return to loading planes after having determined 

H by the use of loading lines.  However if one is only interested 

in loading in the x-, ,x2 plane this is unnecessary. 

In terms of loading lines the plastic strain resulting 

from a simple tension test is given by (11): 

2F(p) = 
9 
_ H(p cos 0) cos 0 de (B-15) 

Ü-0 

where p cos 0=1,  Figure 11 serves as an illustration in this 

case also but with a different interpretation than before. 

Equation (15) may as well be written: 

1 ? 
F(p) = p H (p cos 0) cos © dO (B-l6) 
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because H(p) = 0 for p < 1. Equation (16) is not quite as 

simple an integral equation to solve as (8).  (See [l8 ] ) 

However equations like (1?,) and (16) may be solved by first 

making a change of variable.  Let 

o ?    2 
r = p1-   5 s = p cos 0 

then (16) becomes: 

Jo (i7- s)* 

This is the familiar Abel's eq. and the solution is: 

(B-17) 

r 4-   L 
H(rT) = 2 _d_   s2 F(sg)xds 

'-' do (r - s)«" 

" * Jo (r - s)* 

Transforming back again gives (l^f). 

(B-18) 

Broken line loading path. 

The plastic strain resulting from any loading path in 

the x.pX2 plane may now be written down in closed form in terms 

of H, the function H having been computed from the stress-strain 

curve using (1*+).  If however one wished to compute the strain 

for a large number of broken line loading paths it would be 

more economical to have a specific formula for that case.  This 

formula has been worked out.  Suppose the resulting yield 

boundary is as shown in fig. 12 (whatever the loading path), 

then the plastic strains are given by: 

I 
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el = F^po) + cos<a+ß)F (Pi) - siSn a[C(a,y) - F(pQ)] 

- sign p [C(ß,Y) - F(PX) ]cos (a+ß) (B-l?) 

e2 = sin (a+ß) F(p1) - sign ß [C(ß,y) - F(p1)] sin (a+ß)(B-20) 

where: „u 

C(a,Y) «£ sin |a|   F(cos Q/cos Y? dQ       (B_21) 
71 d o 1 - cos^acos^O 

Note: 

lim C(a,Y) - F(l/cos Y) (B-22) 
a-* o 
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Appendix C 

Uniform expansion. 

In the  coordinate  system  (A-32)   eq.(3D  with (1 = 0 

becomes: 

r2 = M       |\       1      (p  cos  e1-r2-l)sin-301sln02Cos02döitdÖ2dÖ9dö 

(C-l) 

(see Fig.9).  Carrying out the integrations on öp'^v^U. anc^ 

dropping the subscript on G-^ gives: 

v0  = ?.\v/-  \      (p cos Q - 1 - r2) sin^O dO     (c-2) 
J o 

where p cos 0=1+ r~. Equation (2) may be written: 

p  cos  0  - 1 = 2\7t2p   \      (cos  0  - cos  9)   sin^O dO       (C-3) 
>0 

o 

One more integration gives: 

p cos 5-1=1 Xit2p (3-8 cos 0 + 6 cos2© - cos^"©) (C-k) 

The r.h.s. of (h)  has the same sign as X and is a monotone 

function of 0 for 0 £ 0 £ 5- as is evident from (3).  Solving 

(*+) for p gives: 

p = [ cos Ö - J >v^2(3 - 8 cos 0 + 6 cos2© - cos^O ]    (c-5) 

For 0 < X < oo , p increases steadily with 0 and becomes infinite 

sometime before © reaches n/2.  However for X < 0 no matter how 

small in absolute value the denominator in (5) is always positive 

• 

r 
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for 0 < 6 <; 3 . Thus p does not become infinite as 0 increases 

from 0 but reaches some maximum value arid then decreases until 

0 reaches x/2  at which time the elastic region disappears al- 

together.  The non-existence of solutions for arbitrarily large 

p and the possibility of two solutions for some values of p is 

untenable, therefore negative values of \ must be excluded* For 

p fixed and X—••> CD it is evident from (5) that 9-^0, in other 

words the corner disappears as X—=> oo . 

It is possible to depart  from a radial loading path 

by turning the path through a sufficiently small angle without 

unloading any planes which have already been loaded.  Obviously 

all planes which are continuing to load must pass through the 

loading point and if no plane which has ever been loaded has 

subsequently unloaded then all planes which have been loaded 

pass through the loading point.  In this case the solution is 

that just given for radial loading which is unique for X J> 0. 

It follows that the solutions for nearly radial loading are also 

unique.  The question of whether or not there is a unique solu- 

tion for non-nearly-radial loading paths is left open.  The 

permissable angle of turning for a nearly radial loading path 

is determined in the following. 

Suppose the loading has been along the m.   axis up to 

some point P and then a small increment of load is added to 

reach the point P' off the x., axis (see fig. 13).  As shown in 

the figure, y ^as been the angle of turning..  The line marked t 

is the trace of a single plane and this plane before all others 

" - 
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will begin to unload ify is too large,  In the figure t1 is the 

trace of this same plane after the increment of load has been 

added. As shown this plane has remained in contact with both 

the loading point and the expanding spherical portion of the 

yield surface; therefore it has been neutrally loaded and y is 

the maximum permissablo angle of turning. From the figure half 

the angle of the cornor at P1 is given in two ways: 

TC._Q_dQ=5.-Q-da 
? 2 

.*.  dQ = da (C-6) 

Also dp = ds cos Y (0-7) 

and pda = ds sin y (C-8) 

From (6-8) it follows cot Y = i ä£ (C-9) 
P do 

Using (5)» after some manipulation (9) becomes: 

cot y =-- p sin Ö + h  cot \  Ö (p cos 0 - 1) 2+cos 1  (C-10) 
2 3+cos 0 

For fixed p as \—>co, 0—>0 .". y—?0 and the permissible angle 

of turning vanishes.  As \-^ 0, p cos 0-^1 and cot y —} tan 0 

as it should.  The permissablo angle of turning decreases as p 

increases for fixed X > 0 and is always less than half the angle 

of the corner.  Of course no part of the nearly radial path need 

be radial as was assumed at the beginning of the argument, what 

is essential is that the loading path proceed into the cone 
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beyond P with apex angle 2y and axis 0P„ 

: 

!' 

Translation. 

A procedure similar to that in the last section gives 

p as a function of 0 (see fig. l'-O.  The result is; 

p cos © = 1 + it \in2  sin6 i ©(3 cos2© + 9 cos © + 8) (C-ll) 

If [i <  - 15An there is the same sort of objectionable behavior 

as in the last section fur \ < 0.  In the present case also it 

is evident from (11) that © -* 0 as p, -> co for fixed p .  The 

solutions for nearly radial loading paths will be unique if it 

•   .        can be shown that there is a unique solution for the case in 

which all planes that have ever been loaded pass through a given 

point, say P.  When the path is exactly radial and p. > 0 as in 

fig. 1^ there is not much doubt about the uniqueness of the 

solution because of the symmetry of tho situation.  But what if 

the loading path had reached P by a curve slightly above the x-, 

axis — might not the yield surface look something like fig. 15 

while still all planes that had ever been loaded pass through P? 

This can not be case for p > 0 according to the following 

argument.  In the case shown in fig. 15 the configuration of 

loading planes is perfectly symmetrical about the axis O'P and 

thus so is the distribution of direct motion.  The displacement 

vector A discussed in the text must be in the direction O'P for 

p > 0, but this would have displaced the spherical part of the 

yield surface downward instead of upward as it is shown in the 
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figure.  The only possible position for 0' is on the line OP. 

The argument does not hold of course if u. < 0, nor would it 

hold for other initial yield surfaces than spherical ones.  How- 

ever in the present case it is certain that the center of the 

spherical part of the yield surface must lie on the line OP if 

all planes which have over been loaded pass through P.  The 

half apex angle of the cone of total loading is given by the 

same formula as (9). 
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fingt yield boundary 

initial yield 
boondory 

ina path 

(a) (b) 

Fig. I. Corners  appear in the yield boundary 

Fig. 2.    Limited   path independence 
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Fig. 3.   Region of totol   loading 

Fig. 4.  Bauschinger effect 

Fig. 5.  Yield surface *ith a 

Bauschinger effect as envelope 

of plane  loading surfaces 

i 

i 
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Fig. 6.   Limited path independence with Bouschinger effect 

Fig. 7 Yield boundary after non nearly radial   loading 
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Fig. 8. 

Motion of a   plane   related   to the   motion  of its troce 

Fig. 9.    Cross section   of   exponding   yield   surface 

;' 
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. 

r 

si 
Fig. 10.   Port of  the yield surface displaced  as a rigid body 

Fig. II.     Simple   tension 

) 
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Fig. 12.    Broken   line  loading   path 

f^T-r 

Fig. 13.    Critical turning  angle 
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i   i 

V i.y.s. 
\ 
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Fig. 14.    Yield surface translated by   radial ioadir.« 

H-     /loading path   N. 

•! 

Fiy. IS.   Impossible case for nearly radial loading to P 
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