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The Gollinear Antenna Array. 

Theory and Measurements 

by 

Howard W.   Andrews 

Ci  <fi. '>     .»oratory, Harvard University 

Cambridge,  Massachusetts 

Abstract 

The antenna array considered herein is an arrangement of a simple 
driven dipole and two parasitic elements with axes collinear to that of the 
driven element.    A theoretical solution to the problem is obtained by con- 
sidering the air gap between the elements to be a simple lumped capaci- 
tancerof a size depending upon the spacing between the elements.    In this 
way the array is considered to be a reactively-loaded center-driven dipole 
of overall length equal to the total length of the array.    The reactances are 
replaced by equivalent generators and then, through superposition, the array 
is separated into the sum of two dipoles, one driven at its center and the 
other by two off-center generators. 

The current distribution and the driving point impedance are computed 
for a variety of length as a function of the gap spacing.    Measurements are 
given to check the validity of the theory and its range of practical application. 

I 

INTRODUCTION 

The collinear antenna array is an arrangements of driven and para- 

sitic elements all of whose axes are located on the same straight line.    The 

parameters needed to describe the array are themuraber äii£ spacing of the 

elements, their diameters and lengths, and the nature of the driving voltages. 

The coupling between the elements may be the free-space coupling, a lumped 

reactance, or a two-wire line.    It is, of course, necessary to limit the para- 

meters to be varied since, even in the simplest case of a three-element array. 

there are about twelve such variables.    The use of an image screen reduces 

1- 
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t-hc variable parameters considerably since the array must then be symmetrical. 

The configuration actually discussed here is a three element array with a 

slice generator in the center element at the pJane of symmetry of the array. 

The elements are all of the sr.me radius.     The parameters to be varied are 

the lengths of the central and outer elements and the air-gap spacing between 

them.    The quantities measured in the array are the current distribution and 

the driving-point impedance as a function of the three variable parameters. 

1-4 This array has been previously investigated by a number of people. 

Carter in 19 32 included it in a paper considering the impedance character- 

istic s of several types of pairs of linear radiators. He determined the FP.IJ 

and mutual impedances after assuming a sinusoidal current distribution on 

radiators of length equal to multiples of haif-w&vejengths. The expressions 

consisted of sum* of sine and cosine integrals and natural logarithms. The 

computed results were fairly good since he had restricted himself to arrays 

in which the even current distributions were resonant, 

Harrison    in 1945 considered an array of two identical elements driven 

u by identical slice generators at their centers.     This is the configuration that « 

1 results from a vertically polarized dipole erected over a conducting earth. | 

His procedure was entirely different from that of Carter's in that an expres- 

sion is derived in whi«_h the current is the unknown quantity satisfying an in- 

tegral equation; that is,the current distribution is defined implicitly by the 

expression and must be obtained from it.    The mathematical technique used 

is that of Hallen    for solving a similar integral equation for the current on a 

simple dipoie.    The integral equation is obtained by first writing the trigono- 

metric  solution of the simple differential equation for the vector potential on 

the antenna surface.     The vector potential is also available in the form of the 

Helmhoitz integial of the current distribution on the antenna.    Equating this 

integral to the solutions of the differential equation results in an integral 

equation for the current.     Two of these are obtained, one on each half of one 

of the identical elements.    Hallen's method of successive approximations is 

then used to arrive at a.r. expression for the current distribution for both 

symmetrical and antisymmetrical driving generators.,    The two integral equa- 

tions are not immediately solvable.    The boundary conditions are introduced 

as well as some assumptions and approximations concerning the current. 
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Finally explicit expressions for the currents are obtained in the form of a 

complicated infinite series.    The computation of this series would be difficult 

and Harrison in the same paper presented a more approximate, but more 

tractable, procedure for handling the integral equation.    He assumed some 

additional  symmetries in the current distributions that led to  computationally 

more convenient results. 
3 

R.   W.   P.  King   in 19 50 chose to consider the three element case with 

only the center element driven on the basis that this array,  symmetrical 

about the generator, is the only practically useful arrangement.    His procedure 

was similar to Hallen"s in that solutions to differential equations for the vector 

potential were equated to integrals of the current.    A series of assumptions 

was then made concerning the current distribution among which was neglecting 

the charging current at the ends of the elements.    Considerable use was made 

of the fact that the vector potential at a point is primarily determined by the 

current in the immediate vicinity of that point.    The distribution on the center 

element was obtained by driving the outer elements so that the currents at the 

centers of all elements were the same; this was done for symmetrical and 

antisymmetrical currents.    The distribution on the outer elements was obtained 

by considering even and odd distributions as well as symmetrical and anti- 

symmetrical currents.    With these various» conditions, a series solution to 

the integral equation was obtained using successive approximations.    From 

this followed expressions fpr the self^and mutual impedances of the various 

elements. 

The major limitations in this theory are two.    The first is that the effect 

of chargeable end surfaces is not considered, that is, the model best repre- 

senting the theory is one that has ends upon which no charge may accumulate 

and has, as chargeable areas, only the longitudinal surfaces  if the conductor. 

The second limitation is that no large odd currents should exist in the para- 

site; that is the parasite should not be of such length that odd currents are 

resonant. 

At the beginning of the present study a. series of preliminary  measure- 

ments were taken to check the impedances computed by King.    The driving 

point impedance of several combinations of length was measured as a function 

of the spacing between the elements.     The spacing was varied between zero-- 
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that is, actual contact between the elements  -» and a large fraction of a wave - 

length.    For this case of contact between the elements, or of zero gap distance, 

the array degenerates into a simple center driven dipole of length equal to that 

of the array.    At the other end point of infinite spacing the array is only the 

driven element by itself.    The plot of the driving-point impedance is often an 

arc of a circle between these two points.    It may also be a spiral. 

It was immediately noticed that the driving-point impedance changed 

very rapidly with gap spacing, in fact the complete variation in impedance often 

took place in less than 1/100 of a wavelength and always in less than 1/10 of 

a wavelength.    The most rapid, and also the greatest,, change occurs when the, 

gap i» at a high current point for the dipole that results when the elements are 

in actual contact.    The action of the gap is to reduce very rapidly this current 

at the gap position to a comparatively low value.    This large change with gap 

size of the magnitude of the current at this point is reflected as a correspond- 

ingly rapid change in the driving-point impedance as well as a similarly rapid 

change in the magnitude and shape of the current distribution,    A comparatively 

slow and small change in the driving-point impedance occurs when the gap is 

at a low current point of the dipole resulting from direct contact of the elements. 

Then the current is already comparatively sma'l and reducing it to zero does 

net have a profound effect on the driving-point impedance or on the current 

distribution.    For this case, that is a minimum in the current distribution at 

the g.ip point, a spacing of as much as 1/10 of a wavelength is necessary foi. 

a complete variation in the driving-point impedance. 

A comparison of these experimental results with the zero-order case 

computed by King is plotted in Fig.   18.    It may be noted that the shapes of 

the curves are essentially similar over the sections for the larger spacings. 

The displacement of the curves is no doubt due to the tact that only the zerotVi- 

order computation has been carried out.     The agreement and trend is quite 

poor for the small (less than. 1/20X.)   spacings.    This disagreement is probably 

due to the presence, in the physically existing array, of end surface upon which 

charge may accumulate in addition to the chargeable cylindrical surfaces of 

the antenna elements.    The existence of such end conditions is not considered 

in the quasi-one-dimensional theory which determines the surface effects using 

a line current distribution at the center of the antenna cylinders and   considers 
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only the coupling between the cylindrical surfaces.    For small spacings in 

the actual array, the chargeable end areas are sufficiently close that there 

is an appreciable capacitative coupling between them as well as between the 

cylindrical surfaces.    Hence such a configuration requires that in addition 

to the coupling between the cylindrical surfaces adequately treated by King, 

there be further introduced the effects due to the end coupling, 

The above two  effects, namely, the very rapid variation of driving- 

point impedance with spacing and the poor agreement of the King theory for 

small spacing; supposedly due to end capacitance, leads to the thought tnat 

a theory for the collinear array should include capacitative effects in the 

region of the gaps as an essential part of its character.    For close spacings 

the gap is actually so small that the end coupling not included in the King 

theory could be well approximated by an additional near-zone lumped capaci- 

tance.    This would then permit the charging current of the lumped capacitance 

to be treated as a displacement current across the gap.    It would attempt to 

explain the poor agreement for small spacing as being due to neglecting the 

y end capacitances. 1 I 
With the premise that the gap is a simple lumped capacitance, the ' 

collinear array then becomes a simple dipole with a capacitance of var- 

iable si*e in series with its current at the appropriate point.    The half 

length of the dipole is equal to the overall length of the array; the points 

of insertion of the lumped capacitance are at the positions of the g^ps in 

the array.    This configuration will be assumed to represent completely the 

collinear array.    See Fig.   1 for this and the following succession of events. 

The use of a capacitance in the array introduces the possibility of 

using the compensation theorem of network theory.    This states that an 

impedance in which a current I is flowing may be replaced by a constant- 

voltage generator with an external potential difference equal to -IZ with- 

out changing the current conditions in the network.    Performing such a 

substitution as this causes the array to become a triply driven dipole.    The 

generator at its plane of symmetry still exists and there are, in addition, 

two generators to replace the two gap capacitances.    The array is otherwise 

a continuous dipole and the problem could be solved as such.    The generators 

would be introduced as the energy producing boundary conditions on the scalar 
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potential in an approach similar to Hallen1 s iteration technique or as done by 

Storer using a variational principle.    The linearity of Maxwell's equations, 

however, allows the use of the superposition theorem and poses the possibility 

of solving the problem by using at one time only those of the three, generators 

that are found to be convenient.    The results are then superimposed to give 

the final results. 

The choice of solutions found to be most convenient is to break the 

triply driven dipole into two symmetrical arrangements.    One of these 

is the doubly driven one of Fig.   2, in which the dipole is   excited by two 

identical generators equidistant from the center.    The other is the classic 

sipgly driven case with a slice generator at the dipole eerier.    The first of 
6 7 these has been considered by Taylor    in an extension of S    rer's    variational 

iechnique and by King    using the iteration of an integral equation.    The singly 

driven case is a degenerate form of the other and is obtained when the spacing 

between the two generators becomes zero.    It has been considered by Taylor 
7 

and Storer    in a variational approach, and King and others using various 

techniques.    The approach used in this thesis will be that of the variational 

principle in which the driving-point impedance is an extremized function of 

the parameters of a trial current distribution.    Having the two  solutions, they 

will be combined in such phase and amplitude that the doubly driving generators 

will appear to be a capacitative reactance of the proper magnitude. 

In conclusion, the purpose of this research is to develop a theory of 

the coiiinear array based on the series loading of a simple dipole by lumped 

capacitances.    Computations will be then made of the   results and measurements 

taken to verify them.    The use of a two-wire line as a coupling between driver 

and parasite will be investigated experimentally.    This coupling is not simply 

represented by a lumped reactance and its corresponding voltage generator, 

but rather, because of its ability to support an unbalanced mode, a current 

generator is also required. 
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Chapter II 

A THEORY OF THE ARRAY 

1.    The Array as the Superposition of Two Separate Dipoles 

The closely spacer) three-element collinear array will now be investi- 

gated on the basis that it is well approximated by a cylindrical dipole series 

loaded by a purely reactive impedance.    The reactance will be that associated 

with the capacitive coupling between the ends of the driven and parasitic ele- 

ments.     The reasons for considering this approach have been presented in the 

previous chapter.    Only the center element will be driven and the spacing 

between the center element and the two parasites will be the same. 

It will first be necessary to discuss in more detail the transition from 

the array itself to its representation as the superposition of a doubly and a 

singly driven dipole.    The series of steps are  shown graphically in Fig.   1. 

In Fig     la is ehe array itself.    From this follows (Fig.   lb) the u«e of a 

u lumped capacitance as the complete gap effect, then the substitution of an 

1 equivalent generator for the lumped capacitance, next the separation (Fig.   Id 

and Fig.   le) into the two dipoles, and finally (Figs.   If and lg) the phasing and 

amplitude adjustment of the generators <?o that the desired equivalence is 

obtained. 

The voltage generator substituted for the reactance has a potential V, 

equal to -IZ where I is the current in the impedance Z and V , is the potential 

rise of the generator in the direction of the current flow.    The separation cf 

the triply driven dipole into one that is singly driven and another that is doubly 

driven is possible because of the linearity of the applicable field equations. 

Now consider the phasing and amplitude adjustment of the doubly-driving 

generators so that they will, when superimposed with the singly driving gen- 

erator, be ninety degrees out of phase with the total current through them. 

The symbolism will follow that used in Fig.   1.    I  (z) is the total current on 

the collinear array,  its value at the gap position as = +  g is I  (j^g) and, as is 

true of ail currents used here, I  (-a) =1  (z).    The current distribution on the 
c.       '        c 

simple dipole of height h due to the single generator V      at its center (Fig.   le) 

is I  (z),   its value at the gap it I  (+g).    The current distribution on the dipole 

-7- 
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of height h due to the doxibly-driving off-center generators V, (Fig.   Id) at 

z = +g is I .(a); its value at the center is I ,(0). 

It will be foxjnd useful later to use current distributions that have been 

normalized to a unity driving current at the generator.    For such a unity 

current at the center of the wingiy driven dipole, S(z) is the resulting current 

distribution.    Then S(0) = 1 and 

V 
I8{=} --2^-S(z) (2-1) 

s 

where Z    is the driving-point impedance for the center slice generator by 

itself.    Similarly for the off-center generator of Fig.   Id the normalized 

current distribution is denoted by D(z);  then D(+g) = 1 and 

V. 
Id(z) =2TD(Z> 

where Z , is the driving-point impedance presented to the off-center generators. 

The desired phase and amplitude relation at z = + g when the two are super- 

imposed is 

- ic(+*>z - vd 

or (2-2) 
ic(±g).-vd/z 

where Z is the impedance placed in series with the current on the loaded 

dipole and, in this problem, will be the apparent reactance of the gap.    At 

the gap position (the + and - signs will be omitted from this point on) 

Ic(g) = Id(g) + Is(g) 

I8(g) = I   (g) -Id(g) 

Substituting (2-1) and (2-2) above 

V        V 

s    Z TT     Z , s a 

v «-I -4-1 

I 

d'    Z 'd 
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Solving for Vj 
u. 

_o_ 

8 z  z\ 
and for a unity driving voltage V 

s    z+z 

N ow with this value ot V, the total current 1  (z) at any point on the array is 

I  (z) = I  (z) + I,(z) 
c    '       ß d 

= I8(0)S(z)  V Id(g)D(z) 

Vs Vd -m- S(z)   -r 2~D(Z) 
s d 

8 d s     2 + T", 
I 

for V    -  1/0 
8   

IC(Z)    =^ 
S 

5(z)" ~+ zd/z 

IC(Z)^ 
Sf*l       D(z)S(g) (2-3) 

The driving-point impedance is the reciprocal of this evaluated at the driving 

point of z = 0, thus 

1 
Zc ~1 (z = 0) 

cx ' 

But S(p) = 1 so that 

= Z 

Z    = Z 

*•>-•?¥» 

P(0)_S(g) 
1 -r tfc (2-4) 
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There remains now the evaluation of the current distribution D{s) 

on a dipole of height h driven by identical voltage slice generators at z = +_g 

such that unity current flows in them.    The arrangement of the single alice 

generator at the center will be obtained by setting g equal to 0      The above 

algebra will be used to superimpose the two currents in order to obtain the 

total current distribution and the driving-point impedance of the array. 

2.    The Stationary Expression for the Impedance 

The technique to be used to determine the driving-»point  impedance and 

the current distribution will employ a variational principle    for the impedance. 

From this will be obtained the current distribution by means of the Ritz method 

applied to the stationary integral. 

In general, the variational method depends upon obtaining a functional 

expression for the driving-point impedance.    This functional expression of 

a trial current distribution is so formulated that its value, the impedance, is 

stationary with respect to small deviations of the trial current from the true 

current distribution.    The dependence of the impedance on the trial current 

is, in fact, only of second-order,  that is, errors in the impedance vary as the 

square of errors in the assumed current distribution.    This can be shown by 

introducing into the expression for the impedance a small deviation 51 in the 

current distribution.    It is found that the coefficient of the resulting error 6Z 

in the impedance is zero but. that the coefficient of (5Z)    is not.    Alternatively, 

the Euler-Lagrange equations for the expression could be evaluated and it 

would be found that they would be satisfied by known expressions containing the 

Helmholtz integral for the vector potential and the definition of the impedance. 

Once a stationary expression for the impedance has been found, a 

trial current distribution containing a number of parameters» is subaiiiuted 

into it.    Sinc~ the expression for Z is stationary, the Ritz method for evaluating 

the parameters may be used to obtain an expression for the current. 

Throughout the following discussion all instantaneous electromagnetic 

quantities that vary in time are understood to be the real parts of complex 

quantities,  for example, H is the real part of He      .    The time dependence 

e        and the superscript ba;r denoting a complex quantity are omitted throughout. 
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To obtain the physically existing quantity corresponding to any equation or 

expression, multiply through by eJ      and take the real part of the result. 

Rationalised MKS units will be used throughout this discussion. 

The mathematical model to be considered is that drawn in Fig.   2a.    The 

antenna is assumed to possess infinite conductivity and to have only currents 

in the z direction.    This treatment will assume no currents on the end caps-, 

this condition arises from the approximate one-dimensional manner in which 

the vector potential is calculated on the longitudinal surfaces of the antenna. 

Such an approach ia justified since the experimental realization is an antenna 

of identical axial length but with hemispherical end caps of the same total 

chargeable area as the corresponding region    of the mathematical model.    In 

the experimental model, ?B in the mathematical one, the currents at z = + h 

are zero.    If the desired boundary condition is approximated experimentally 

in this way, the effective height can differ from h by, at most, a distance of 

the order of the conductor radius and probably only by something much less 

than this. 

The boundary conditions resulting from the application of Maxwell's 

equations to the surface between a perfect conductor and free space are 

nxH = -t (2-5) 

a x E = 0 (2-6) 

The first equation (25) with n* = -r for the free space region gives 

Hg = f.z(a,z) 

where  0  (a,z) is the surface current density in the z direction.    Note that 

a    2TT 

zl,(z) =  /      /       z l (r,Ö,z)rdrd9 ldx 

= 2 2*a 6(a,z) (2-7) *» 

and hence 

I,(z) = 2ffaH0(a,z) -h^zf^h 

The second boundary condition (2-6) yields 

Ez(a,z) * EQ(a,z) = 0 (2-8) 
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Equation (2-8) does not hold at the slice generators assumed to drive the 

antenna.    At these points there are discontinuities in the slope of the scalar 

potentials.    These slopes will be assumed to give a delta-function discontinuity 

in the electric field such that in the limit of a discontinuity of infinitesimal thick- 

ness 

I Ez(a.z)dz =    / Ez(a,z)dz = - Vd (2 9) 

Let the following integral definition of the delta function, which is zero every- 

where except at z = g and there takes on a value such that 

g+ 

f      f(z)6(z-g)dz = f(g)    , (2-10) 

be introduced.    Then 

Eja.z) = - V,5(z+g)     -hSz<h (2-11) 
Z Q • 

Note that (2-9) has E (a,z) = 0 along the conductor as it should and has 

localized the generator at slices at z = + g. 

The free-space equation for the electric field in terms of the scalar 

and vector potential is 

E = -Ü-V.4   • <2"12) 

Using a periodic time dependence and considering only the ^-component of 

E at a distance from the axis equal to the radius a of the conductor (2-12) 

becomes 

Ez(a,z) = -jwAz(a.z) - Whz)„ (2-13) 

The vector potential A is defined by 

V x A = B 

the Lorentz condition 

V.  A+J4yU = 0   , (2-14) 
c 

and the Helmholtz integral 

I 
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A(a,6,z)=^     I I ^z(a,0',z')e —  adO'dz', 
^-h   °b ir-r I (2-15) 

where 

Ir-r'l = Y(z-z')2+r2+aZ -2ra coa(O-O') 

tz(a,0«,z»)  = aEz(a,0«,z')    . 

For the case considered here, where the antenna is cylindrically symmetrical 
12-14 and of sufficiently small radius that ßa « 1, it has been shown that  a 

good approximation,for A, even at the radius a and z near to zf, is obtained 

by assuming all of the current to be located at the axis of the conductor.    Then, 

using (2-7), A at the radius a is 

/-jßR 
r,U') e to       dz« (2-16) 4TT     /      V       ' R 

= SÄ" /     Id(z,)K(z,z')d3 

where 

„2.   2 R =   Vlz-z'r+a' 

K(z.z') = e"jpB/R    • 

Note what has taken place in this last step,    Ir\ (2-15) the vector potential 

was defined exactly as the integral over a tube of current on the antenna surface. 

In (2-16) this was replaced by an approximation using a one-dimensional current 

at the center as has been shown reasonable by King and Oseen.    As a result, 

the electric field (which is given by (2-1$) and {2-19) below) is precisely that 

at  a radius a due to a current at r = 0. 

Since A has onlv a z component  (as seen from the integral) then 

9A (a,z) 
V- A(a,z) = 

Substituting this in the Lorentz condition (2-14) gives 
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9A (a,z) 

8 z c 

and hence, ? 

aal       v .        9 A (a,z) 8f6(a,z) im z* 
:.   • - - f —r~2—   • dz c 9 z 

Then (2-12) for the electric field at the radius a becomes 

.      9ZA (a,z) 
1(J z* 

E  (a,z) = - juAla.z) - «^- ^ (2-17) 
<* 9 z 

where ß = w/c.    Rearranging (2-17) leads to 

•> 

2 
E  (a,z) = H^(-V  +  ß   )A_ia,z) (2-18) 

ß2   9zZ 

= L(z)Az(a,z) (2-19) 

By equating (2-1?) for the electric field at a distance a from the one 

dimensional current Ij(z) and (2-11) for the field on the surface of a perfect 

conductor, there is obtained 

- Vd6(z + g) = L(z)Az(a,z) (2  20) 

Multiplying (2-2U) through by lj(z) and integrating from  -h to h gives an 

equality relating the complex power supplied by the generator to the complex 

power radiated by the current Ij(z) as evaluated at r = a. 

h h 

/     Id(»)Vd6{z + g)dz = /     Id(z)L(z)Az(a,z)dz 
y-h. ^h 

Performing the integration on the left using (2-10) and substituting (2-16) 

on the right gives 

h h 

-y-S>Vd-Id<g)Vd=^L    f   dzId(z)L(z)        f   Id(z')K(z.z')dz« 

~h ^ (2  21) 

Substituting the definition of the impedance, 
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V    = I  (+ -*iZ Vd      V-*'   d    ' 

into  (2-21) and making xise of the symmetry of the current. I  (-g) = I   (g)- z z 
leads to 

h h 

-2I*(g)Zd=£    f  dzId(z)L(z)      f   Id(z')K(z,z')dz' (2-22) 

-h -h 

The presence of a minus sign on the left locates the power source in the 

generator;  the right side is the power radiated.    The solution of (2-22) for 

Z , is. a 

h h 
ZA = ¥     /      dz I,(z)L(z)      /      I,(z')K(z,z')dz' <2~23) 

Siring)     Jh + 

This expression for Z , is stationary;  that is, small deviations of 

the values of I,(z)  from the true value will result in only second-order 

variations in Z ,.    This can be shown by obtaining the first variation 5Z, 

of Z , due to a small variation 51 in I,(z).    The vclue of SZ , is found to be d d d 
zero. 

The expression (2-23) can be simplified using the symmetry of I,(z) 

and Li(z)A (a,z).    Using these properties (2-23) becomes z 

h h 

Zd= £ I     dzId(z)L(z)      I     Id(z')K(z,z')dz« (2-24) 
4<M Jo 4 

In (2-24) JL(z) operates on the kernel of the integral.    Since 

2 „2 
-^   Kfz.z1) = -^-^Kiz.z')     , 
Öz 3z' 

Id(h) - 0 = Id(-h)   , 

and I  (z) and JL(z)I  (z) are even fxmctions about z - 0, it is possible to simplify 

the L(z)A(z) part of (2-24).    The result is 

I 
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f    h h 

ZJ m £ !    I     dzl,(z)    /   FKIz.e'J  +   K(z,~z!j] L{z»)I ,!z!)dz' 

dBf   I   o ° 

dl  (z) £ 
+ ^ ~~) /  IJKjltKCa^i + K(z,~L)]dz 

|32     dz z= 
(2-25) 

3.    The Trial Current Distribution 

The selection cf a trial function to be used in (2-25) is goverited as much 

by the necessity of obtaining results in terms of tabulated functions as by 

employing an excellent approximation to the c uirent distribution.    With a 

kernel of the type occurring in (2-25), trial functions including sinßz, cosßz, 

z sinßz, zcosßz and constants yield the tabulated generalised sine and cosine 

integrals.    The distribution is known to be continuous, even about z - 0    zero 

at T h. and to have a discontinuous slope at z = + a .    All of these conditions 
"7 should be approximated as closely as possible.    Storer    found that a combination 

of sinßz, cosßz, and a constant quite accurately represented the simple dipole 

current.    Such functions should also be suitable for section of the antenna 

defined by  |zj>g.    A constant and cosßz should be satisfactory for !z|fCg. 

With these conditions in^mind suitable trial currents are 

I,(SB) = C.   +C, cosBz lz!<g 

Id(z) - D} sinß(h-z) + D2[i  - cosßfh-z)]    |z| > g 

where the C's and D's are complex coefficients.    Note that Z in (2-23) is 

independent of. the absolute value of the current levels.    Hence, letlJ+jg) = 1. 

The trial currents then become 

Id(z) =  1 + C [a + cosßz]        jz| <g (2-26) 

Id(z) = 6[1 - cosß(h-z)]  + Dfsinß(h-z) + « [ 1   - cos ß(h-z)] 1   |z|>g 

(2-27) 

where 
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Q   =    -   C O H ßg 

1  - cosß(h-g) 

£   = - 
sinß(h  g) 

1 - cos p(h-g) 

The lengths for which these may be considered reasonable are ßg <ir 

for (2-26) and ß(h~g) < 2IT for (2-27),    Equation (2-26) with a constant term 

would be expected to fail  for g near   a half-wavelength.    Equation (2-2?J 

actually has. a singularity at (h-g) equal to a wavelength and probably is not 

too accurate for (h-g) larger than about three -quarters of a wavelength. 

4.    Evaluation of the Impedance and the Current Distribution 

Substituting (2-26) and (2-27)  into (2-25) yields6 

Zd=irW0+ vcC+vDD+   YCCC2 + ^DDD2+^DCD] I 

(2-28) 

where 

[l-C08ß(h-g)]2 
[1+ cos2ß(h-g)] ainßa-cos2ß(h-g)sinßy<2g)*+ 2 a 

- 2co8ß(h-g)[sinß|A(h-g)2+a2 - ainß^h+g^+I2]   - sinßV(2h)2+a2 

+ [2ßgcoS
2ß(h-g) + sin2ß(h-g)]   C(ßa,2ßg) 

I  [ 2ß(h-g)coa ß(h-g) - 2 sinß(h-g)]  C(ßa,ß(h-g)) + 2ßhC(ßa,2ßh) 

- [ 2ß(hTg)cos ß(h-g) T 2sinß(h-g)]  C*ßa,ß(h+g)) +  2Cs(ßa,ß(h-g)) 

+ «in2ßh[ 2Cc.(ßa,ß(h+g)) - C  lßa,2ßhi  - C <ßa,2ßg)] 
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- cos 2ßh[ 2C  (ßa,ß(h+g)) - C  (ßa,2ßh) -  C  (ßa.2ßg>| 

- j(cos   ß(h~g)coapy (ZK 
„4/,-   .?.,    2      f cos"p(h-g)]   cos ßa 

+ 2cocß(h-g)[cospA/ (h-g)2+a2 - cosßY (h+g)2+a2]  + eosßy(2h)2+ 

+ [2ßcos2ß(h-g) + sin2ß(h-g)'}  S(ßa,2ßg) 

2     2 a 

+ [2ß(h-g)cosf.(h-g) - 2 sinß(h-g) S(|5a,ß{h-g)) + 2ßhS(ßa,2ßh) 

- [2ß«h+g)coSß(h-g)  + 2sinßth-g)]  S(ßa,ß(h+g))  + 2S <ßa,ß(h-g)) 

+ sin2ßh[2S   (ßa,S(h+g)>)- S (ßa,2ßh) - S (ßa,2ßg)] 

cos 2ßhf 2S (ßa,ß(b+g)) - S(ßa,2ßh)   - S (ßa,2ßg)]   •    , 

l-cosß(h-g) 
oaßgcosß(h-g)[ sinßa -  ßinß\/ (?.g

2) + a
2 ] 

:osßg[ sinßV (h-g)  +a    - ainffy (h+g)  +a  J 

+ [2ßgcosßgcosß(h-g) + sinß  (h-2g)]   C(ßa,2ßg) 

+ [sinßg + ß(h-g)cosßg]  C(ßa,ß(h-g)) 

i [sinßg - ß(h+g)co8ßg]  C(ßa;ß(h+g)> 

+ sinßh[Cc(ßa,ß(h+g)| - ^c(ßa,ß{h-g)) - Cc(ßa,2ßg)] 

- cosßh[Cs<ßa,ß(h+g)) - Cg(ßa,ß(h-g)) - Cs(ßa,2&g)] 

- j(cosßg cos ß(h-g)[  ccsp^y   (2g)  +a    - cos 3a] 

- coapg[co8ß\/(h+g)2Ta2 - cosßy (h-g)2+a2] 
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+ [ 2ßgcosßgeosß(h-g) + sinß(h-2g)]   S(ßa,2ßs) 

+ [sinßg + ß(h-g)cosßg]  S(ßa.ß(h-g)) 

+ [sinßg - ß(h+g)co8ßg]  S(ßa,ß(h+g)) 

+ 6inßh[Sc{ßa,ß(h+g)) - Sc(ßa,ß(h-g» - Sc£ßa,2ßg)l 

- coaßh[Ss(ßa,ß(h+g)) - Sg(ßa„ßCh-g)) - S8(ßa,2ßg)j) 1 
J 

r 

V 
D [l-cosß(h-g)]2 

-| sin2ß(h-g)sinßy<2g)2+a2 + sinß(h-g)sinßY(2h)2+a 2.    2 

+ [ sinß(h-g) + j   Ln2ß(h-g)][sinßVih-g)2+a2 -  sinß\/(h+g)2+a2 - sinßa] 

- [ 2ßhsinß(h-g) + cosß(h-g) -  1]  Qßa,2ßh) -   2 sin ß(h-g)C  (ßa,ß(h-g)) 
3 

- [ßgsin2ß(h-g) - cos2ß(h-g)   + co»ß(h-g)] C(ßa,2ßg) 

+ [ß(h+g)(8inß(h-g) +isin2ß(h-g)H2 - 2cosß(h-g)]   C(ßa,ß{h+g» 

- [ß(h-g)isinßih-g) +1 sin2ß(h-g)) - 2sin2ß{h-g)]  C£ßa,ß(h-g)) 

[cosß(h+g) - cos2ßh][2Cc(ßa(ß{h+g)) - Cc(ßa,2ßh) -"ÜJßa^ßg)] 

[sinß(h-tg) - sm2ßh][2C Cßa,ß(h+g)) - C (ßas2ßh? - C  (ßa,2ßg)] 
S SS 

j(- ± sin2ß(h-g)cosßV (2g)2+a2 - sin ß(h-g) cos ß V^h)2^/ 

- [sinßfh-g) +j sin2ß(h-g)"|[cosß,\/{h-g)2+a2 - cos ß]f (h+g)2+a2 - cosßa] 

- [2ßh sinßlh-g) + cosß(h-g) - l]S(ßa,2ßh)  - 2 sinß(h-g)Ss(ßa>ß(h-g)) 

- [ßgsin2ß(h-g) - cos2ß(h-g) + co8ß(h-gaS{ßa,2ßg) 
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1 ?• [p(h+g)fsinß(h-g) + ^ sin2ß(h-g)) + 2 - 2coaß(h-g)]  S(ßa,ß(h+g)) 

1 - Lß(h-g)(sinß(h-g) + isin2ß(h-gl) - 2 ain"ß(h-g)] S(ßa.ß(h~g)) 

- [cos(h+g) - co82ßh][2Scißa,ß(h+g)) - Sc(ßa,2ßh) - Sc(ßa,2ßg|] 

- [äinß(h+g) - sin2ßh][2Ss(ßa,ß(h+g)) - Ss(ßa,2ßh) - S8(ßa,2ßg)]) 

CC 
= cos2ßg[ sinßa -  sinßV(2g)2 + a2]  + C  (ßa.2ßg) 

+ 2cosßg[ ßg cos ßg - ßinßgj   C(ßa,2ß8) 

j(cos2ßg[co8ßY{2g)2+a2 - cosßal   + S (ßa.Zßg) 

+ 2cosßgf ßgcosßg  - sinßg]  S(ßa,2ßg))     , 

DD 1 - cosß(h-g) 
(1 + cosß(h-g))[ sinßa - >yf. 2     2 sinßi/(h-g)   +a 

»Vt + sinß|/(h+g)2+a2 - j sinßV(2h)2+a2 

- i sinßVUgJ^+a2]   + 2Cs(ßa,ß(h-g)) 

+ [ßg(l + cosß(h-g)) + sinß(h-g)]   C(ßa,2ßg) 

+ [ßh(l + ro8ß(h-g» - sinß(h-g)]   C(ßa,2ßh) 

+ [ß(h-g)(l + co8ß(h-g)) -  2sinß(h-g)]   C(ßa,ß(h-g) 

ß(h+g)(i + cosß(h-g)) C(ßa,ß(n+g)) 

+ sinß(hTg)[2Cc(ßa,ß(hhg)) - ^(ßa.Zph) - Üc(ßa,2ßg)j 

cosß(h+g)[2C  (ßa.8(h-t-g)) - C   (ßa.Zßh)  - C   (ßa,2ßg)] 
ci SS 
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j((l + cosp(h-g))[cospy (h-g)2+a2 - cos pa - cos py (h+g)2-K 

icosß/|/uh)2+ä^+ Uo8pl/(2g)2+a2]  + 2S  (pa,p(h-g)) 

+ [pgil+cos p(h-g»+ sinp(h-g)] S(ßa,2ßg) 

+ [ßh(l + cosß(h-g)) - sinß(h-g)]  S(ßa,2ßh) 

+ [p(h-g)(l  ¥ cosp(h-g» - 2 sinß(h-g)]  S(pa,p(h-g)) 

- P(h+g)(l + cosp(h-g)) S(pa.p(h+g)) 

+ sinp(h+g)[2Sc(pa,p(h+g)) - Sc(pa,2ph) - Sc?ßa,2ßg)] 

\l \ i c.oBp(h+g)[2Sg(pa,p(h+g)» - Sg(pa,2ph) - Sg(pa,2pg)]) 

and 

CD       l-cosp(h-g) 

+ sinß|/(h-g)2+a2 - sinpyih+gT^+a2] 

(2g)  +a     - sin pa I 

[Zßgcospg    sinß(h-g) + cosßg - cosß(h-2g)]  C(ßa,2ßg) 

+ [ ß(h+g) cosßg sin p{h-g) + cosßh - cosßg]   C(ßa,ß(h+g)) 

[ßth-g) cosßg sinp(h-g)  - cosßg + cosß«h-2g)]  Qßa,ß{h-g)) 

+ [cosßh - cosßg][Cc(ßa,ß(h+g)) - Gc'ßa,ß(h-g))  -  CM.pa.2Pg)] 
t 

+ [sinßh - 8inpg][Ca(pa,p(h+g)> - CMpa,ß{h-g)) - CMßa,2ßg)] 

- M cosßg 8inß(h-g)[ cos ßa - cosßy (2g)  +a    + cosßL'(h+g)   +a 

- cosßl/fh-g)2 T a2] 
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-| 2ßgcosßg sinß(h-g) + cosßg - cosß(h-2g)]  S(ßa,2ßg) 

+ [p(*+g> cosßg sinß(h-g) + cos ßh - cos ßg] S(ßa,ß{h+g)) 

- [ß(h-g)cosßg sinß(h-g) - cosßg + cos(J(h-2g)]  S(ßa,ß(h-g)) 

+ [cosßh - co8ßg][Sc(pa,p(h+g)) - Sc(ßa,ß(h-g)) - Sc(ßa,2ßg)] 

+ [sinßh - sinpg][S8(ßa,ß(h+g))   - Ss(ßa,ß(h-g)) - Ss(ßa,2pg}])     . 

See Appendix A for the evaluation of the various y*& 

This expression (2-28) is known to be stationary;   that is, it is an extre- 

mum of the function IJ(
Z

)-    More exactly 8Z/9I = 0 or 

az       az     n 
9C  "    8D 

After carrying out these operations and solving the resulting simultaneous •     , 

equations for C and D the following results are obtained: 

YCC^DD " ^CD 

A 2 
YCCVDD   " YCD 

5.     The Single-Driven.D pole 

The singly-driven dipole is a degenerate case of the doubly-driven 

one; see Fig.   2!~Zb.    Allowing g to equal zero causes the two slice gener 

ators to become but one at z= 0.     This causes  v „ = v = v „     = 0 and 

Y =  1 „_  (sinßa - sinßV(2h)2+a2 - 4 sinßh C(ßa.ßh) 
° (1-cosßhr     l 

.+ 2ßh C(ßa,2ßh) + sin 2ßh[ 2C  (ßa,ßh) -t  2CJßa,2ßh)j 
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cos 2ßh[ 2C (ßa,ßh)  - CJßa,2ßh)]  + 2C  (ßa,2ßh) 

j{cospy (2h)*" + aZ - cosßa - 4 sinßh S(ßa,ßh) 

+ 2ßh S(ßa,2ßh) + sin 2ßh[ 2S (ßa.ßh) - S (ßa,2ßh)] 

- cos 2ßh[ 2S (ßa.ph) - S (ßa,2ßh)]  + 2S Jßa,2ßh))      , 

D (1-cos ßl 
-~T-     s|nßh[ sinßl/(2h)Sa2 - sinßa]    - 2sinßh C  (ßa.ßh) 
i)*   l ' 8 

•   2. - [2ßhsinßh + cosßh -  1]  C(ßa,2ßh) + 2[ 1 + sin  ßh - cosßh]   C(ßa,ßh) 

[cosßh - coa2ßh][2C  (ßa.ßh)  - C  (ßa,2ßh)]   - [sinßh - sin 2ßhj 

[2C  (ßa.ßh) - C  (|ßa,2ßh)] 
9 o 

j(sinßh[cosßa - cos«y(2h)2 + a2]- 2sinßhS (ßa,ßh) 

[ 2ßh sinßh + cosßh -  1]  S(ßa,2ßh) + 2[ 1 + sin ßh - cosßh]   S(ßa,ßh) 

- [cosßh - cos2ßh][2S (ßa.ßh) - S  (ßa,2ßh)]   - [sinßh - sin 2ßh] 

[2S (ßa.ßh) - S  (ßa,2ßh)]) ]• 
and 

DD 1-cos ßh 
|(1 + cos ßh)[ sinßa - sin ßj/(2h)2+a2]   -  2sinßh C(ßa,ßh) 

+ 2Cs(ßa,ßh). 

+ [ßh(l + cosßh)   - sinßh]   C(ßa,2ßh) + sinßh[ 2Cc(ßa,ßh) - Cc(ßa,2ßh)] 

cosßh[ 2C<Jßa,ßh) - C  (ßa,2ßh)] 
o S 
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Chapter III 

METHOD OF IMPEDANCE MEASUREMENTS 

AND AUXILLIARY MEASUREMENTS 

1.    Line Theory 

The impedances presented in this paper were measured on the coaxial 

transmission line with a characteristic impedance Z    equal to 123.6 ohms, 

a phase constant p* of 12. 775 radians per meter, and a theoretical attenua- 

tion constant o of 0. 003 nepers/meter. 

The differential equations describing the current and voltage at points 

remote from the ends of the line are 

(r + jo>fc)I(z) (3-1) 

~Bl{z)     = <g   + juc)V(z) (3-2) 
dz 

where r,t?,g and c are the series resistance and inductance, shunt cor. due - 

tance and capacitance per meter of line.    The time dependence and tre 

complex nature of the current and voltage have been suppressed.    A  solu- 

tion for the current containing the boundary conditions indicated in the 

diagram above is, 

I(z) = V 
r Z   sinby-w + Z   coshy w 

(Z    +Z   Z   )sinh\s + Z   (Z    +Z   )coshvS 
L      c        os ' <       o        s ' 

-25- 
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where 

y    =  a + jp = [(r+j«t)(g+jwc)] 

Using the form 

Z = Z.cothO = Z   coth{p+j$)    , 

an expression containing only hyperbolic function*' is obtained. 

(3-3) 

IU) 

,r   r sinhO    sinhivw+Q   ) 
V _o • T s- 
"Z   I sinh(vs+e   +0   S c: [ '* O      s 

This formvila describes the current completely, but is in complex 

form.     A detector,  sensitive only to the magnitude of this current, will 

measure the quantity. 

I'M • \l 
r 2 2 2 2 
(sinh   p   + sin   i>  ){sinh  (auj+p   ) + sin (Bw+p  I) 

sinh  (as+p+p   ) + sin  {Ssi-6   +jS  ) 1        ro     s •os-' 

1/2 

The position of the minimum of this current distribution may be conveniently 

located, and for a lossless line this position is solely a function of the phase 

i>    of the load.    Taking the derivative of the square of the magnitude and 

equating to zero results in the equation 

asinh(aw+p   )cosh(aw+p   ) =   -ßsin(ßw + .^   )cc3(pwt(J  ) 
S S 3 S 

Squaring both sides and using the double angle trigonometric identitie: 

gives, 

a 7 2 
-» sinh 2(aw+p   ) = 1  - cos *2\ßw+(6  ) 
p^ s s 

and therefore,  

Assuming 

cos 2(ßw+^ )~ + /  1 *  sinh   2iaw+p   } 

a —j   sinh   2{ <iw+p   ) <^ 1 

P 

(3-4) 
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then 

'md hence 

27- 

cos 2(ßw + i  ) = ±  1 

rnr ßw + p    = +i£L     ,        n   = 0,1,2,3,. 

determines the positions of the maxima and minima.    The minima occur 

for n even.    For the first minimum from the end (w = 0), n = 2, w - w 

of the current distribution and 
mm 

p    = IT - Bw s r   mm 
(3-5) 

The other parameter characterizing the load impedance is p   .    It 

may be determined from the currpnt distribution in Lhe vinicity of the 

minimum normalized to the value of this minimum current.  There  are two 

points, one either side of the minimum, having the same value of current. 
2      1 For a lossless line ((a6w)  <C<-Q)   these points are located svmme trie ally 

o 
at a distance 6w either side of the minimum.    Ir. the vicinity of the minimum 

I p(w) • 
sinh(vw + p     + a6w) 

sinhlvw      + 9   ) *'    m s' 

The squared magnitude of this quantity is 

2 
*(w> = 

2 2 sinh  (aw     + p     + afcw) + sin  (ßw      + p    + ß5w) 
 2 2  
sinh  (aw     + p   > + sin (ßw     + p ) m s m s 

Substituting in the value jäw + »5    = IT at the first minimum, 

2 2 2 2 p  (w) sinh  (aw     + p   ) = «sinh  (aw      + p     +  a.5    ) + sin  65w r  *    ' *      m      ps' *      m      ^ s —       m' r 

2 2 2 Assuming that a6w«^aw      + p   , then (p"(w) -  1) sinh  (aw    + p   ) = sin  ß6w. 

The point of maximum «lop« of p  (w) occurs at p    =2, and it is the point 

where the current squared on the line is twice that at the minimum.    For 

p  (w) = Z 

p     = sinh"   (sinß&w) -aw (3-6) 

Thus the two quantities needed in (3-3) to describe an arbitrary load impedance 
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can be determined from the position of the minimum and the width 

of the distribution curve at the double-power points. 

Three approximations have been ma4e here, other than those in 

(3-1) and (3-2), in locating the minimum;  (3- 5) and w      = (w-|4  )/ß 

are true to the extent that (3-4) is satisfied.    For the experimental 

line used, and for example with an unusually lew standing-wave ratio 

cf 1,1, then (^y) sinh22(aw     + Ö  ) = 5. 54 x lO-6 and ( *-4) is certainly 
P . /•      m        s 

well satisfied.     Using       the formula Q = 6/2a = 4580, the condition 
2 1 2 ;a6w)   <V -s becomes Q  >>> 1, and o5w « aw     +  p      requires Q»l.    AJ] 

of the conditions on thp approximation are easily met and the line 

losses do not contribute to the error in (3-5) or (3-6). 

The limiting accuracy thus rests on the accuracy with which the 
2 position of the double power points may be located.    The choice of p    =2 

is optimum for a square law detector in that the points for w      + 6w fall 

on the steepest par* of the measured distribution.    Attempts to average 

a few points about the minimum as compared to averaging the position 

of the two double power points resulted in no improvement in the accuracy 

with which the minimum was located.    The error in measuring the double 

power width increases at lower standing-wave ratio«, but will be less 

important since the impedance corresponding to a small standing  wave 

ratio is then less sensitive to errors in the determination of  p   .    Since r s 
only a 6 db  range of the detector calibration curve is used, it is possible 

to restrict the measurement to that portion found to have a constant slope 

and be nearly snup^-e law. 

2.    Computation of Impedances 

A desk calculator used in conjunction with a large scale Smith 

chart provides a convenient technique for processing the data from the 

slotted line measurements      T\     sum aj d average of the positions of the 

two double-power points are quickly computed to give the positions of the 

minimum, and thus 6   .    Their difference gives 8w and thus p   .    Tables 
., 1 s 8 

of sinh     (smß6w) for 0<Cß6w<C 1. 500 in steps of 0.0005 radians were 

prepared to facilitate the computation of p   .    The correction due to 

GW     in (3-6) was of the order of 0.001 radians and usually negligible. 
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A 15 inch diameter Smith chart was covered with a rotatable transparent 

d- sk carrying a radial p     scale.    Knowing p     and 4>     the normalized 
S So 

impedance on the line was calculated with about 1 percent Accuracy. 

17 Some of the data were corrected for the end effect      on a coaxial 

line.    The admittance corresponding to the measured impedance, was 

obta>ned graphically from the Smith chart by rotating the measured 

p     A    point by 180 degrees about the center of the chart.    The end 

correction, a negative capacitive susceptance, of 0. 144 mhos, normalized 

at   600   MC   on this line, is added and the new p  and & point rotated another 

180 degrees to give the corrected measured load -mpedance.    See Fig. 3 

and Figs.    15      to    18     for examples of the importance of this correction. 
' 18 A more complicated correction has been considered by Whinnery       and 

19 also by Zeoli,       but it was decided that the general accuracy of the problem 

is rot great enough to make such correction necessary.    The total capacity 

of their tr network is nearly equal to that of the Hartig correction if the 

inductance is neglected. 

3. General Check on System using Half Dipole Impedance Measurements. ;i 

The general accuracy of the measurements was checked by measuring 

the impedance of the simple half dipole of constant radius as a function 

of length, (. orrecting it for end effects and then comparing the results 

with the King • Middle ton second-order impedance for a constant radius 

dipole, obtained recently by cross plotting from constant Q data. See 

Fig.    3     for a comparison of these results. 

4. Comparison of Probes. 

The accuracy of the auxiliary probe as used on the polyfoam 

supporting colum was investigated by measuring the current distribu- 

tion on a half  wavelength dipole with both probes.    The resulting curves 

were plotted and normalized to have the samp maximum.    (See Fig. 4 

Also plotted in this diagram are the King-Middle ton   ~ f'rst-ordeir dis- 

tribution and th«= current obtained using the equation for I  (z) on page 2   24. 
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5„    Measurement of Gap Capacitance, 

Experimentally, the gap between the end of the driven antenna 

and its parasite is the parameter varied in any particular array.    A 

varying capacitive reactance is assumed to be the equivalent of this in 

the theory of the array.    Hence the magnitude of the lumped capacitance 

between the hemispherical end caps is needed in order to compare the 

theory with data using the gap reactance as a parameter. 

Since the theory applies precisely only for small (0 <C gap <^ X /10) 

gaps, it seems reasonable that the capacitance of such a gap could be 

measured by constructing it in the center conductor of a shorted coaxial 

line.    Such a measurement was set up with a variable gap placed a half 

wavelength from the shorted end of the line.    The apparent series 

reactance and capacitance of thegap was so determined and plotted in 

Fig. 5      .    For spacings less than 0. 01 cm the curve was extrapolated 

linearly from its measured values at larger spacings.    The results 

agree qualitatively with those found by Jeans       for the capacitance 

between two identical spheres.     For very small gaps in the actual array, •     I 

a  small piece of dielectric tape was used to separate the ends of the [ 

antenna elements.    The tape was 0.006 cm thick, and, assuming a dielectric 

constant of 2 or 3. the equivalent air gap is about 0.003 cm with a 

corresponding gap reactance of approximately 250 ohms. 
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Chapter IV 

EXPERIMENTAL DATA AND COMPUTATIONS 

1.    Extent of Parameter Variation 

The parameters selected to be varied i*> the measurements are the 

lengths of the driven and parasitic, elements and th<   spacing between 

them.     Since one of the purposes for making the measurements is to 

check the theory over its complete range of applicability   these parameters 

must be varied over a range which includes poor a«3 well a« good agreement 

between theory and experiment.    The trial functions used are such that 

the current distribution is well represented on the portion of the antenna 

for which  |z| < g where g is less than V/2.    Likewise the trial current 

on the section with   |z| >g is a good approximation!, for h  g less than about 

3X./4.    Hence half lengths ranging up to a half wavelength fc^* the driven 

antenna and overall lengths up to 3\ /4 for the parasite  should be investigated 

experimentally.    The impedance and current distribution for similar lengths 

should be calculated from the theory.    Longer lengths should be investigated 

experimentally, but there is little point to computing theory for them.    The 

theory should be in good agreement with measurements for short lengths, 

g < \ /4 and h-g less than X./2, and should become progressively less 

applicable at greater lengths.    The theoretical impedance should be in 

better agreement with the measured impedance over a greater range of 

lengths than that over which the theoretical current distribution is in 

agreement with the experimental distribution.     This is a consequence of 

the use of a variational principle to improve the impedance approxima- 

tion. 

The gap should be varied experimentally from zero (i.e.   actual 

contact of the elements) to as large a spacing as is possible in the 

existing experimental equipment.    The theory however ., considers the 

gap to be well represented by a variable lumped capacitance and assumes 

the coupling between the cylindrical surfaces of the  array elements to 

be constant.    Hence the limit of applicability of the theory is at 

the point where ihe coupling between the cylindrical surfaces has 

M 
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changed appreciably.    Note also that the coupling between the end 

surfaces changes very rapidly with spacing, and as soon as this change 

is essentially complete, then there will be no further appreciable 

effects due to actually reducing it to zero.    With this in mind, the 

theory is limited to the maximum gap size required to reduce the end 

cap coupling effect to essentially zero.    As the gap  is increased 

beyond either of the above limits, whatever effects result will not be 

predicted by theory. 

The importance of these limits and the rapidity with which they 

occur are difficult, to predict.    A 1/10 wavelength gap should make a 

very large change in the coupling between the cylindrical surfaces, 

so the theory should certainly not be used beyond this point.    Probably i / 20 

to 1/50 wavelength would be a reasonable limit.    As far as the gap 

coupling is concerned, consideration of Fig.   5 shows that the gap 

capacitance varies only very slowly lor gaps greater than 1 cm, or about 

1/50 of a wavelength.    Beyond this point the gap reactance does not 

change appreciably and the theory is no longer applicable.    Hence the 

gaps to be investigated by computation from the theory, and experimentally, | 

should range at least over separations of zero to 1 cm.    Larger gaps may 

be investigated experimentally as far beyond as is convenient. 

2. Measured Impedance Data. 

The impedances measured are shown in Figs 6 through   18 »long 

with the corresponding arrays on which the measurements weis made. 

Smith charts were chosen, in Figs.   6 through 11 for example, rather 

than rectangular plots since the curve of the collinear impedance between 

the two end points would be more obvious.    When the circle was too small 

to be convenient the impedances were denormalized and plotted in rectan- 

gular resistance and reactance coordinates, 

3. Computational Procedure. 

The choosing of cases for computation must bo done with care, 

for the calculations are complicated and time consuming.    On this basis, 

it is convenient to consider cases for which as mai.y terms as possible 
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are zero in the expressions for the y's used in the impedance expres- 

sion.    The trigonometric functions contained therein are zero for combina- 

tions of h and g equal to multiples of a quarter '/•wavelength.    The other 

important aspect is to choose a series of lengths that will check the 

theory over at least its expected range of usefulness.    As described 

in section,JV    1 such lengths are for g up to X / 2 and h-g up to 3V /4, 

Such a aeries of combinations are listed in the table on page M     In addition 

are listed the. end  point dipoles into which the array degenerates for gaps 

equal to zero and infinity; the pertinent figures are also given.    Figure 39 

is a plot of the measured half  dipole impedances on the line with a few of 

the array impedance spirals. 

The current distribution for a particular configuration is computed 

using Eq.   (2-3) after first evaluating (2   26) and (2- 23) for I_,(z);  I  (z) is 

obtained using the equations on p.   24 The phase and amplitude of the 

current distribution have been plotted as listed on page $4.    The experimental 

data have been plotted by adjusting the experimental amplitude at the peaks 

to be the same as for the theoretical curves with the exception of Fig.  41 

which has been plotted so the amplitude at v. - 0 mrresponds to the measured 

driving-point impedance for this case.    The position of the current relative 

to the distance scale has been occasionally adjusted to account for errors in 

knowing the position of the auxiliary probe on the polyfoam column supporting 

the array. 

Equation (2-4) for the theoretical array impedance requires the 

use of the current distribution at z = 0 and at z = g.    The impedance 

Z is the apparent reactance X of the gap.     Z    may be computed directly, 

but there is occasionally some additional information which may be either 

directly incorporated into the computations or merely used as a check 

on the infinite gap.     The value of Z    for the infinite gap point is occasionally 

known from another computation; for example, for configuration 4 of the 

table Z_(gap = oo) iy that for a dipole of half  height equal to X./2.     This 

impedance is known since it is a necessary part of the computation of 

Z    for configuration 2.    It may be used as follows      Equation (2-4) is 

zc = Zg<h> ,      D(0j)S(g) 
1 " l + Z*/ d'z 
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Evaluating this for the experimentally infinite gap point cr for Z = oo 

in (2-4) there results 

Zc(gap = oo) = Zg(h)/|[l  - D(0)S(g) (4   1) 

However this Z   (gap = oo) is that of a sixigly driven dipole of half height 

equal to the gap position g, that is, 

Zc(gap   = oo) = Zs(half height = g) (4-2) 

The symbol  Z   (half-height = g) is used to avoid any confusion resulting s 
from using the letter h in a description of this dipole.     Substituting (4-2) 

in (4- 1) yields 

Z   (h) 
D(0)S(g) =  1  -  -   -    p£  (4-3) 

Z  (nail heignt - g) 

Equation (4-3) was used in the computation for Fig.   1? and considerably 

improved the theoretical agreement with experiment.    It was also used in 

Fig.   16 and Fig.   18 but had very little effect since the agreement was 

already quite good.    It was not u&ed in Fig.   15.    Note that Z    (half-height = g) 

is obtained theoretically by evaluation of 2-29 for the neight of interest. 

4.     Conclusions 

The agreement between theoretical computations and experimental 

measurements is as considered in Section IV-1.    When g< (h-g) and both 

are short,  the measurements are in best agreement.     The agreement is 

generally good for configuration 1 (see table on page 34) for a . 2X, 

driving element and a   . 3\  parasite.    It is less so for configuration 

2 in which both elements are X. /4 long, and it is least good for the 4th 

case.    The impedances generally agree quite well for all except configura- 

tion 4 for which the conditions on the trial current distributions are 

pot m:;t.    This is to be expected since the vanational principle technique 

allows the use of a rather  poor current approximation in obtaining 

comparatively good impedance values.    Note that the agreement (see Fig,  i8) 

of the theory of King is good for large spacings if the theoretical curve were 

displaced such that the infinite gap point was superimposed onto a better 

end  point impedance than that obtained in his zero   order theory.     The 
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discrepancy for small spacings is to be expected since his theory is based 

entirely on varying the coupling between the cylindrical surfaces of the 

antenna elements and will be in error when the end-cap coupling is appreciable. 

On the Smith Chart of Fig.   39 is plotted a curve for the measured half- 

dipole impedance and a few of the impedance arcs for coliinear arrays.    This 

makes the relation of the end-point impedance of the array to thnse of the half 

dipole quite obvious.    It also makes it possible to guess roughly where an im- 

pedance would fall for some other configurations than those considered here. 

In conclusion, a theory for the close-spaced coliinear array has 

been formulated on the basis that the array is the superposition of a 

doubly and a singly driven dipole.    The theory h.~3 been evaluated for a 

series of specific configurations that are typical of the applicable 

range of the theory.    These same configurations have been investigated 

experimentally as a check on the basic assumptions in the theory and 

also as a check that, the region of usefulness of the theory has been properly 

estimated, 

5.    A Two  Wire Line as a Coupling Reactance between Elements 

This type of coupling has been very briefly considered experimentally. 

The devices pictured in Fig.  40 have been used to couple the ends of the 

driven element and the parasitic elem-uts.    These permit the coupling 

reactance between the elements to be varied without changing their spacing. 

The experimental setup is similar to that used elsewhere except small two- 

wire line is used at the gap.    It has a characteristic impedance of 135 ohms 

and a spacing nf 0. 2 inches.    Two arrangements were used.   One of these 

is a line whose overall length is constant and upon which a shorting bar is 

moved.    The other is one the overall length of which is varied.    Both are 

needed for a complete study of the problem.    Tn:  iirst vnii have a constant 

length for the unbalanced mode on the open-wire line; the other will present 

a variable length to the unbalanced mode.    Plots are given in the last figure 

showing the measured driving-point impedance using both of the line types. 

The points labeled constant   overall-length line are those for the line using 

the shorting bar« 

I 
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Appendix A 

EVALUATION OF THE y-INTEGRALS 

The substitution of (2-26)   and  (2-27)  into   (2- 25) yields * 

~^   I - jw(l+aC)   /      dz[ 1+C(a + cosßz)]/       [K(z,z')+ K(z,-z')] 

Jo Jo 

dz' 

+ dz[  1+C(a+cospz)] / [K(z.z') +K(z,-z,)]L(z,)Id(z,)dz' 

-j(4b + tD)l       dz [1+C(a+cosßz)J [K(z,z')   ; K( z,-z')]  dz ' 

u   . -ju)(l +aC)   /      dz (h-z)J   + 6 jl-cosp(h-z) \   + D(sinß(h-z) + 6 l-C03($(h-z) ) 

r1 

I [K(z.z') + K(z,-z')]   dz' 

/     dz 

g 

(l-cosß(h-z)j 
r 

+ D(sinß(h-z) + e ] 1 -cosß(h-z) + <l 
.8+ 

[K(z,z') +K(z,-z')]   L(z')I  (z')dz' 

-Most of the following expressions are taken from reference 6 
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n 

jw(6 + tD) I    dz[ß{l-cQ«ß(h-z)} + D(sinß(h-z) + « f l-cosß(h-z)] )] 

h 

y        [K(z,z') + K(z,-z')]dz' 

g 
^DT   [l + C(o + cospz)]  [K(z,h) + Kls.-h)) dz 

h 
.J^L ^- D   /^ [ 6|i-cosß(h-z)j   + D(sinß(h-z) + € [l-cos ß(h-z)} )] 

) 
[K(z,h) + K(z,-h)] dz j   . (A-l) 

Note that the integral in the variable z! may be simplified by 

j       [K(z,z') +• K(z.-z')]  M^)Id(*')di i - lz' a 
/ •   "     ' cr    • 

g- 

g+ 2 
-i^[K(z,g) + K(z,-g)]      f   -*     (i ia.))d«« = 

ß ^      dz« 

- Jf [K(z,g> + K(z,-g)]  [e+D + Csinßg] 
P 

Using this in (A-l) yields 

Zä~-& f^o   + *CC +YDD •'CD00 +^CCC2 +^DDD"l 

where 
g g 

Y„ = P   I     dz P [K( z.z') + K(z,-z')]    dz' 

-to ^o 
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g 

+ €   l" [K{z,&) +K(z,-g)]  dz 

g h 
+ pö f dz  /    [K{z,z'> + K(z,-z')]   dz' 

4>    */g 
h g 

+ ß6    /    dz[i-cosß(h-z)j /* [K(z,3')   + K(z,-3')]  dz' 

h 

+ 6e      /      {l-cosß(h-z)}    [K(z,   g)    + K(z.   g)]   dz 

^g 

h h 

+ ß62     /   dz(l   cosß(h• z)} I    [K(z,z^)  + K{z,-z')]    dz' 

g g 
r YG = ß     j     dz(2a + cosßz)  j     [K(z.z') + K(z,   z")]  dz' | 

^O '-'O 

g 

+   €     f (a + cosßz)[K(z,g) + K(z,-g)j  dz 
Jo 

S 
+ sinßg    f   [K(z,g) vK(z,-g)]  dz 

g h 
+   ß6   I    dz(o + cosßz)   /      [K(z.z') + K(z,-z»)]  dz' 

^O JB 

+ aßb   I    dz(l-cosßCh-z)[ /   [K(z.z') + K(z,  z')) dz' 

Ja Jn -a o 

h 

+ .6 sinßg    /     (l-co3ft(h  z)>   [K(z,g) + K(z,-g>]    dz 
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ß 

r 
i y   CD /       (a-r cospzJ[K{£,g) + K(z,-g)3    dz 

g r 
+ eß    r dz(« tcospz)    /   [K(z.z') + KU,-z')]  dz' 

JQ -g 

fc g r 
1 

+ aß   /      dzsmß(h-z)    /     [ K{z,z<) + K(z,-z')]  dz» 
•Ja 

h 

+ aeß   /    dz[l-cosß(b.-z)} r [K(z.z')  , K(z,-.z')] dz' 

n 

+ sinßg   /      sinß(h-z)[K(z,g) t K(z,-g)]  d: 

4 
h 

+ €8in«gr   {l-cosß{h   z)}[K(z,g) + K(z,   g)]  dz | 

^g 

g 

+ C   {a + cosßz)[K(z,h) + K(z,-h)]  dz 

g g 
•y   rc   =  aß   /dz(a + cosßz)   J    [ K(z.z') + K(z;-z')]  dz' 

g 

+ sinßg    /     (a + cosßz)[K(z,  g) + K(z;g)]  dz 

g h 

VD     =   r [K(z,g) + K(z,-g)]  dz +    /[K(z,h) +K(z,-h)]    dz 

h g 
+ *ß    /   dz(2-cosß{h-z)j   f    I K(z,z!) + K(z, -z*)]  dz' 

Jo v'O 
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8 
r     r + ß   /     dzsinß(h-z)       [K(z.z') + K(z,-z')] dz' 

g 

h 

+ c     f   smß(h-z)[K(z,g) + K(z,-g)]    dz 

1 g 

h 
2V r T(6 + «

Z
)   j      {l-co8{J(h-z)) [K{s,g) + K(z,-g)] dz 

h h 

+ 6f3    /     dzsinß(h-z)   /    [ K(z ,zs) + K(z,-z')]  dz' 

^g ^g 

h h 

+ 26«ß   /    dz{l-cose(h-z)l     /     [ K( z,z«) + K(z,-z')]  dz» 
I ' I 

Jg ^g 

h 

+ 6   /   {l-cosß(h-z)][K(z,h) + K(z,-h)] dz 

°g 
h 

V DD = f    sinfJ(h-z)[K(z;g) + K(z,-g)]    dz 
Jg 

h 

+ €    f   {l-cos{J(h z)}(K(z,g)   r K(z,-g)]   dz 

h h r r 
+ €ß d2sinß(h-z)   /    [Kiz.zVKIr.-z-ijd» 

4 
•? e 

h h 

'p   f   dz[l-cosß(h-z))     / [K(z,z») +K(z,-z')]    dz' 

+ sinph(h-z)^K(z,h) + K(z, hg dx 
yg 
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h 
r 

+     €       /    fl-C08ß(h-x)][K(Z,h)   +  K(2,-h)]      dz 

'g 

The above y expressions contain integrals of six different forms. 
Three may be evaluated as follows: 

eg c 
f dz   I   K(z,z')dz< = p I 

Ju        Je Ju 

\l.           2     2 

F(b,c,f.g) = p dz   /    K(z,z')dz' = p /    dz /    - '     dz 

b   4 4  si yu-z-)^ 
Since 

AK(z,z') = .--^KCz,z') 

an integration by parts yields 

F(b.e.f.g) = ßc /Klc^.'ld«' - ßb /K(b,z')dz« 

C C 

+ Pg   /   K(z,g)dz - pf /   K(z,f)dz 

r                    -J^z-g)2+a2                /*                   ~jßV{s-f>2+a2 

+ /    P(z-g)       • dz -       ß(z-f) —      dz 

^ l/(^g)2+a2 ^b V(z-f)2+a2 

Flb.c.f.g) = pCf-^^pa.ptf-r)) - p(g-c)C(pa,p(g-c)) 

- p(f-b)C{pa.pif-b)) + p(g-b)^"(pa,p(g-b)) 

1 f~        2     2 1 / 2"      2 + sinpy'(g-c)"+a    -sinp^ig-b)    +a 

- sinpy(f-c)2+a2 + sinp^(f-b)2+a2 

- j{p(f-c)S{ßa,p(f-c)]l= ß(g-c)S(pa>p(g-c)) 

- p(f-b)S(pa,p(f-b)) + p<g-b)S(pa,p(g-b&) 

- cospy (g-cf+a"4EC*ßy|g-b)2+a2 

+ cospy (f-c)2+a2 - cosp|/(f-b)2+a2) 
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Another form is 
c g r r G(b.c,f,g) = ß  /    dzsinßz   /    K(z,z')dz' /    dzsinßz   / 

Jb Ji 

and an integration by parts yields 

* g 

G(b,c,f,g) = cosßb   f   K(b,z')dz' - cosßc   /   K(c,z')dz' 

Ji Ji 
c c 

-/      coaßz K(z,g) dz +   /     co? ßz K(z,£) dz 
vb Jb 

G(b.c.f.g) = cosßb[C(ßa,ß(g-b) - C(ßa,ß<f-b)t] 

- cü3ßc[C(ßa,ß(g-c) - C(ßa,ß(f-c))] 

- cosßg[Cc(ßa,ß(c-g) - C"c(ßa(ß(b-g))] 

y 
|      * + sinßg[C6(ßa,ß(c-g)) - Ca(ßa,ßic-g))] 

+ co8ß£[Cc(ßa,ß(c-f» - Cc(ßa,ß(c-f))] 

- sinßf[Cs(ßa,ß(c-f)) - Cs(ßa,ß(b-.f))] 

-j      f coSRb[S(ßa,ß(g-b)) - S{ßa,ß(f-b))] 

- cosßc[S(ßa,ß(g-c)) - S(ßa,p(f-c))] 

- coSßgfSr(ßa,ß(c-g)) - Sc(ßa,ß(b-g»3 

+ 8inßg[Sa(ßa,ß(c-g)) - Ss(ßa,ß(b-g))] 

i cosßf[Sc(ßa?ß{c-f» - Sc(ßa,ß(b-f))] 

- Binßf[S (ßa.ß(c-f)) - 3 {«a.ß(b-f))] ]     . 

By a similar process 

H(b,c,f,g) = ß /     dzcosßz   /   K(z,z») dz 

c g 

>,c,f,g)=ß   I     dzcosßz    /   K(z,z'] 
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H(b,c,f,g)  = sinßc[C(ßa,ß(g-c)) - Ü(ßa,ß(f-c))] 

- 8mßb[C(ßa,ß(g-b)> - C(ßa,ß{f-b))] 

+ co8pglG8(ßa;p(c-g)) - Cs(pa,ß(b-gJ)] 

+ sinßg[Cc(ßa,fHc-g» - Cc(ßa,ß(b-g)>] 

- co6ßf[C8(ßa,ß(c-f)) - Cs(ßa,ß{b-n)] 

3inßf[Ccißa,ß{c-f)> - Cc(ßa,ß(b-f))i 

-j      { sinßc[S(ßa,ß(g-c)) - S(ßa,ß(f-c))] 

- sinßb[S(ßa,ß(g-b)) - S(ßa,ß(f-b))] 

+ cosßg[Ss(ßa,ß(c-g)) - Ss(ßa,ß(b-g))] 

+ 8inßg[Sc(ßa,ß(c-g)) - Sc(ßa,ß(b-g))j 

- cosßf[Ss(ßa,ß(c-f)) - Ss(ßa,ß(b-f))] 

- 8inßf[Sc(ßa,ß(c-f)) - Sc(ßa,ß(b-f))]   ] 

Three single integrals are immediately expressable in terms of the 

tabulated function?.     These integrals are 

c 

I(b,c,g)    =   /      cosßz K(-s,g) dz 

'b 

c 

«ZK 

= cosßg[Ccvßa,ß(c-g)) - Cc{ßa,ß(b-g))] 

- sinßg[C8(ßa,ß(c-g)) - Cg(ßa,ß(b-g))] 

-j       [ eosßg[Sc(ßa,ß(c-g)) - Sc(ßa,ß(b-g))] 

ßg[Ss(ßa,ß(c-g)) - S8(ßa,ß(b-g))]} 

v 

I 

- sin 
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r 

J(b,c,g|   =/    ampg K(z,g) ds 

^b 

= cospg[Gs{pa,p{c-g|D - CB(pa,p{b-g»] 

+ sinpg[Cc{pa^{c-g)) - CcCßa,p!b~g}$)] 

j  cospg[SsCpa,ßic-g)) - Saiipa,pCb-g|)D| 

+ 8inpg[Sc(pa,p(c-g)) - ScCßa,p(b- 

c 

M{b,c,g) =  f K(zig)   dz 1 b 

= Ü(pa,p(c-g))     ü(ßa,p(b-g)> 

- j(s(pa,p(c-g))     S(pa,p{b-g))] 

The following symmetries are applicable throughout 

p   /     dz   f   K(z,-z')dz- = -F(b,c,~f,-g} Sri 
r g 

P  j     dz sinpz   I    K(z,-z')dz' = -G(b,c,-f,-g) 

Jb Jt 

r g 

p/    dzcoapzf   Ktz.-z'Jdz's-HCb.c-f.-g) 

Vb Jf 

The functions S, S   , S  , C   , C~   are defined and tabulated very completely 
S C 8 C 7 f j 

in the reference.    All are odd about the origin except S    and C 
s s 

Note that in evaluating the various integral» that there is a 

definite relationship between the tabulated functions appearing in real 

parts of F,Gt etc.   and those that appe»^ in the imaginary parts of the 

integrals.    One of these for example, is 

H = f [Cs(w), "C"c(x). C(y». sinz]   - jffS^w), S^x), S(y),  -cos z] 

I 
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The real parts of th.3 integrals contain only C   , C   , C, and sine functions 

while the imaginary parts contain as. identical arrangement of S  , S  , S, 

and minus cosine functions. 
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