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The Collinear Antenna Array:

Theory and Measurements

by
Howard W. Andrews
Cu :f. 7 - soratory, Harvard University

Cambridge, Massachuseciis

Abstract

The antenna array consideared herein is an arrangement of a simple
driven dipole and two parasitic elemenis with axes collinear to that of the
driven element. A theoretical solution to the problem is obtained by con-
sidering the air gap between the elements to be a simple lumped capaci-
tancewf a size depending upon the spacing beiween the elements. In this
way the array is considered to be a reactively--loaded center-driven dipole
of overall length equal to the total length of the array. The reactances are
replaced by equivalent generators and then, through superposition, the array
is separated into the sum of two dipoles, one driven at its center and the
other by two off-center generators.

The current distribution and the driving point impedance are computed
for a variety of length as a function of the gap spacing. Measurements are
given to check the validity of the theory and its range of practical application.

I
INTRODUCTION

The collinear antenna array is an arrangements of driven and para-
sitic elements all of whose axes are located on thie same straight line. The
parameters needed to describe the array are theinumber anfdl spacing of the
elements, their diameiers and lengths, and the nature of the driving voltages.
The coupling beiween the elements may be the free-space coupling, a lumped
reactance, or a two~vwire line. It is, of course, necessary to limit the para-
meters to be varied since, even in the simplest case of a three-element array,
there are about tweive such variables. The use of an image scresn reduces

.w‘—
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the wariable parameters coneiderably since the array must then be symmetrical.

The configuration actually discussed here is a three element array with a
slice generatsi in the center element at the plane of symmetry of the array.
The elements are all of the szme radius. The parameters to be varied are
the lengths of the central and outer elements and the air-gap spacing between
them. The quantities measured in the array are the current distr:buticn and
the driving-point impedance as a function of the three variable parameters.

This array has been previcusly investigated by a number of people. 1=4

Ca.rter1 in 1932 inciuded it in a paper considering the impeadance character-
istics of several types of pairs of linear radiators. He determined the self
and mutual impedances after assuming a sinusoidal current digtributicn on

radiators of lerngth equal to multiples of haii-waveiengths. Tre expressions
consisted of sums of sine and cosine integrals and natural logarithme. The
computed results were fairly good since he had restricted himself to arrays

in which the even current distributions were resonant.

I-Iarrison2 in 1945 considered an array of two identical elements driven
by identical slice generators at their centers. This is the configuration that
results from a vertirally polarized dipole erected over a conducting earth.
His procedure was entirely different from that of Carter's in that an expres-
sion is derived in which the current is the unknown quantity satisfying an in-
tegral equation; thatis,the current distribution is defined implicitly by the
expression and must be obtained from it. The mathematical technique used
1s that of Hallén5 for solving a sirniiar integral equation for the current on a
simple dipole. The integral equation is obtained by first writing the trigono-
metric solution of the simple differential equation jor the vector potential on
the antenna surface. The vector potential is also available 1n the form of the
Helmhoitz integial of the current distribution on the antenna. Xquating this
integral to the solutions of the differential equation results in an integral
equation for the current. Two of these are obtained, one on each half of one
of the identical elements. Hallén's method of successive approximations is
then used to arrive at an expression for the current distribution for both
symmetrical and antisymmetrical driving generators. The two integral equa-
tions are not iramediately sclvable. The boundary conditions are introduced

as well 25 some assumpiions ard approximations concermng the current,

——
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Finally explicit expressions for the currents are obtained in the form of a
complicated infinite series. The computation of this series would be difficult
and Harriegon in the same paper presented a more approximate, but more
tractable, procedure for handling the integral equation. He assumed some
additional symmeiries in the current distributions that led to computationally

more convenient results,

R. W. P. King3in 1950 chose to consider the three element case with
only the center element driven on the basis that this array, syrnmetrical
about the generator,is the only practically useful arrangement. His procedure
was similar to Hallén's in that solutions io differential equations for the vector
potential were eguated to integrals of the current. A series of assumptions
was then made concerning the current distribution among which was neglecting
the charging current at the ends of the elements. Considerable use was made
of the fact that the vector potential at a point is primarily determined by the
current in the immediate vicinity of that point. The distribution on the center
element was obtained by driving the outer elements so that the currents at the
centers of all elements were the same; this was done for symmetrical and
antisymmetrical currents. The distribution on the outer eiements was obtained
by considering even and odd distributions as well as symmetrical and anti-
symmetrical currents. With these various conditions, a series solution to
the integral equation was obtained using successive approximations. From
this followed expressions fpr the selfvand mutual impedances of the various

elements.

The major limitations in this taeory are two. The first is that the effect
of chargeuable end gurfaces is not considered; that is, the model best vepre-
senting the thecry is one that has ends upon which no charge may accumulate
and has, as chargeable areas, only the longitudinal surfaces »f the conductor.
The second limitation is that no large odd currents should exist in the para-
site; that is the parasite should not be of such length that odd currents are

resonant.

At the beginning of the present study a series of preliminary inecasure-
ments were taken to check the impedances computed by King. The driving
point impedance of several combinations of length was measured as 2 function

of the spacing between the elements. The spacing war varied between zero--
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that is, actual contact between the elements -- and a large fraction of a wave-
length. For this case of contact between the elements, or of zero gap distance,
the array degenerates into a simple center driven dipole of length equal to that
of the array. At the other end point of infinite spacing the array is only the
driven element by itself. The plot of the deiving-point impedance is often an

arc of a circle between these two points. It may also be a spiral.

It was immediately noticed that the driving-point impedance changed
very rapidly with gap spacing, in fact the complete variation in impedance often
took place 1in less than 1/100 of a wavelength and always in less than 1/10 of
a wavelength. The most rapid, and also the greatest, change occurs when the
gap is ai a high current point for the dipole that results when the elements are
in actual contact. The action of the gap is to reduce very rapidly this current
at the gap position to a comparatively low value. This large change with gap
size of the magnitude of the current at this point is reflected as a correspond-
ingiy rapid change in the driving-point impedance as well as a sirnilarly rapid
change in the magnitude and shape of the current distribution. A comparatively
slow and small change in the driving-point impedance occurs when the gap is
at a low current point of the dipole resulting from direct contact of the elements.
Then the current is already comparatively ama’l and reducing it to zero does
not have a profound effect on the driving-point impedance or on the current
distribution. For this case, that is a minimum in the current distribution at
the gnp point, a spacing of as much as 1/10 of a wavelength is necessary foz

a complete variation in the driving-point impedance.

A comparison of these experimental results with the zero-order case
computed by King is plotted in Fig. 18. It may be noted that the shapes of
the curves are css.ntially similar over the sections for the larger spacings.
The displacement of the curves is no doubt due to the tact that only the zeroth-
order computation has been carried out. The agreement and trend is quite
poor for the small (less than 1/20\) spacings. This disagreement is probably
due to the presence, in the phyeically existing array, of end surface upon whicl
charge may accumulate in addition to the chavgeable cylindrical surfaces of
the antenna elements. The existence of such end conditions is not considered
in the quasi-one-dimensional theory which determines the surface cffects using

a line current distribution at the center of the antenna cylinders and cornsiders
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only the coupling between the cylindrical surfaces. For small spacings in
the actual array, the chargeable end areas are sufficiently close that theve
s an appreciable capacitative coupling between them as well as between the
cylindrical surfaces. Hence such a configuration requires that in addition
to the coupling between the cylindrical surfaces adequately treated by King,

there be further introduced the effects due to the end coupling.

The above two effects, namely, the very rapid variation of driving-
point impedance with spacing and the poor agreement of the King theory for
smallspacing, supposedly daue to end capacitance, leads to the thought tnat
a theory for the collinear array should include capacitative effects in the
region of the gaps as an essential part of its character. For close spacings
the gap is actually so small that the end coupling not included in the King
theory could be well approximated by an additional near-zone lumped capaci-
tance. This would then permit the charging current of the lumped capacitance
to be treated as a displacement current across the gap. It weculd attempt to
explain the poor agreement for small spacing as being due to neglecting the

end capacitances.

With the premise that the gap is a simple lumped capacitance, the
collinear array then becomes a simple dipole with a capacitance of var-
iable size in series with its current at the appropriate point. The half
iength of the dipole is equal to the overall length of the array; the points
of insertion of the lumped capacitance are at the positions of the gaps in
the array. This configuration will be assumed to represent completely the

collinear array. See Fig. 1 for this and the following succession of events.

The use of a capacitance in the array introduces the possibility of
using the compensaticn theorem of network theory. This states that an
impedance in which a current I is flowing may be replaced by a constant-
voltage generator with an external potential difference equal to -IZ with-
out changing the current conditions in the network. Performing such a
substitution as this causes the array to become a triply driven dipole. The
generator at its plane of symmetry still exists and there are, in addition,
two generators to replace the two gap capacitances. The array is otherwise
a continuous dipole and the problem could be solved as such. The generators

would be introduced as the energy producing boundary conditions on the scalar

oz -
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potential in an approach similar to Hallén's iteration technigiie or as done by
Storer using a variational principle. The iinearity of Maxwell's equations,
however, allows the u:se of the superposition theorem and poses the possibility
of solving the problem by using at one time only those oi the three generators
that are found to be convenient. The results are then superimposed to give
the final results.

The choice of solutions found to be most convenient is to break the
triply drivea dipole into two symmetrical arrangements. One of these
is the doubly driven one of Fig. 2, in which the dipole is excited by two
ideniical generators equidistant from the center. The other is the classic
sipngly driven case with a slice generator at the dipole certer. The first of
these has been considered by Taylor™ in an extension of S rer's7 variational
iechnique and by King6 using the iteration of an integral equation. The singly
driven case is a degenerate form of the other and is obtained when the spacing
between the two generators becomes zero. It has been considered by Taylor
and Storer7 in a variational approach, and King and others using various
techniques. The approach used in this thesis will be that of the variaticnal
principle in which the driving-point impedance is an extremized function of
the parameiers of a trial current distribution. Having the two solutions, they
will be combined in such phase and amplitude that the doubly driving generators

will appear to be a capacitative reactance of the proper magnitude.

In conclusion, the purpose ot this research is to develop a theory of
the collinear array based on the series loading of a simple dipole by lIwmped
capacitances. Computations will be then mz.lde of the results and measurements
taken to verify them. The use of a two-wire line as a coupling between driver
and parasite will be investigated experimentally. This coupling is not simply
represented by a lumped reactance and its corresponding voltage generator,
but rather, because of its ability tc support an unbalanced mecede, a curreat

oe,

generator is also required.
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Chapter II

A THF.ORY OF THE ARRAY

1. The Array as the Superposition of Two Separate Dipoles

The closely spaced three-element collinear array will now be investi-
gated on the basis that it is well approximated by a cylindrical dipole series
loaded by a purely reactive impedance. The reactance will be that associated
with the capacitive coupling between the ends of the driven and parasitic ele-
ments. The reasons for considering this approach have been presented in the
previous chapter. Only the center elecment will be driven and the spacing

between the center element and the two parasites will be the same.

It wili firsi be necessary to discuss in more detail the transition from
the array itself to its representation as the superposition of a doubly and a
singly driven dipole, The series of steps are shown graphically in Fig, 1.
In Fig.  la is ithe array itself. From this follows (Fig. 1b) the use of a
lumped capacitance as tke complete gap effect, then the substitution of an
equivalent generator for the lumped capacitance, next the separation (Fig. 1d
and Fig. le) into the two dipoles, and finally (Figs. 1f and 1g) the phasing and
amplitude adjustment of the generators =20 that the desired equivalence is

obtained.

The voltage generator substituted for the reactance has a potential Vd
equal to -IZ where I is the current in the impedance Z and Vd is the potential
rise of the generator in the direction of the current flow. The separation cf
the triply driven dipole into one that is singly driven and another that is doubly

driven is posgsible because of the linearity of the applicable field equaiions.

Now consider the phasing and amplitude adjustment of the doubly-driving
generators so that they will, when superimposed with the singly driving gen-
erator, be ninety degrees out of phase with the total current through them.

The symbolism will follow that used in Fig. 1. iC(z) is the total current on
the collinear array; its value at the gap position z = + g iz Ic(ig) and, as i3
true of all currents used here, IC(-z) = Ic(z). The current distribution on the
simple dipole of height h due to the single generator V g af its center (Fig. 1e)
is Is(z); its value at the gap is Is(j_g). The current distribution on the dipole

S e
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of height h due to the doubly-driving off-center generators Vd (Fig. 13) at

z = +g is Id(z); its value at the center is Id(O).

It will be found useful later to use curxvent distributions that have been
normalized to a unity driving current at the generaior. For such a unity
current at the center of the wsingly driven dipole, S{z) is the resulting current
distribution. Then $(0) = 1 and

Vs
1,85) = 5—8(2) (2-1)
s
where Z_is the driving-point impedance for the center slice generator by
g ,
itself. Simailarly for the off-center generator of Fig. ld the normalized
current distribution is denoted by D(z); then Di+g) = 1 and

Vd
Id( Z) = z—;D( Z)

where Zd is the driving-point impedance presented to the off-center generators.
The desired phase and amplitude relation at z = +g when the two are super-

)

imposed is
- Ic(ig)z = Vd
or (2-2)
I (+g) =-V,/Z

where Z is the impedance placed in series with the current on the loaded
dipecle and, in this problem, will be the apparent reactance of the gap. At

the gap position (the + and - signs will be omitted from this point on)

I.(g)=14(g) +1.1g}

s

Ilgr=1 (g} -1,(g)

Substituting (2-1) and (2-2) above

v S Va Va
s T T Z,
s d
) 11

Vat=z ~ 2>
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Solving for V,
u

| =
Ve = V(Hh (1)
=77

and for a unity driving voltage V

S(
%L_+_
Za

Now with this value ot Vd the tctal current lc(z) at any point on the array is

I(2) = I (2) + Iy(z)

= 1,(0)S(=} + 14(g)D(z)

<

v
= 2 S(2) + 72 D(z)
s d

" Ve s )
= z78(2) + 720te) 2 (-2
8 d -z Zd
—— D{zS(g)
Go1 = 2[5t - REste),
for v_ = 1/0° i
_d D(z)S(g)
1 (z) = ZPS(z) ‘TTZ‘Z(%ZJ (2-3)

The driving-point impedance is the reciprocal of this evaluated at the driving

point of z = 0, thus

1
Zc = z=0
€
_ D(0)S(g)
- 2| o - P
But 5(p) = 1 so that
Ir D(0)S(a) |
2. z,f) - PR | (24
4
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There remains now the evaluation of the currert distribution D{z)
on a dipole of height h driven by identical voltage rlice generators at z = +g
such that unity current flows in thein. The arrangement of the singie slice
generator at the center will be obtained by setting g equai to  The above
algebra will be used to superimpose the two currents in order io obtain the

total current distribution and the driving-point impedance of the array.

2. The Stationary Expression for the Impedancea

The technigue to be used to determine the driving~point impedance and
the current distribution will employ a variational principle for the impedance.
From this will be gbtainzd the current distribution by means of the Ritz method

applied to the stationary integral.

In general, the variational miethod depends upon obtaining a functional
expression for the driving-point impedance. This functional expression of
a trial current distribution is so formulated that i1ts vaiue, the impedance, is
stationary with respect to small deviations of the trial current from the true
current distribution. The dependence of the impedance on the trial current
is, in fact, only of second-order; that is, errors in the impedance vary as the
square of errors in the assumed current distribution. This can be shown by
introducing into the expression {or the impedance a small deviation 81 in the
current distribution. It is found that the coefficient of the resulting error 62
in the impedance is zero bui that the coefficient of (62)2 is not. Alternatively,
the Euler-lagrange equations for the expression could be evaluated and it
would be found that they wculd be satisfied by known expressions containing the

Helmholtz integral for the vector potential ard the definition of the impedance.

Once a stationary expression for the impedance has been found, a
tr:zal current distribution containing a number of parameiers i» substituted
into it. Since the expression for Z is stationary, the Ritz method for evaluating

the parameters may be used to obtain an expression for the current,

Throughout the fcllowing discussion all instantaneous electromagnetic
quantities ithat vary in time are understood to be the real parts of complex
quantities, for exzmple H is the real part of ﬁe‘]wt. The time dependence

Jut ; g . ’
e and the superscript bar denoting & complex quantity are omitted throughout.
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To obtain the physically existing quantity corresponding to any equation or

expression, multiply through by e?®" and take the real part of the result.
Rationalized MKS units will be used throughout this dtscussion.

The mathematical moedel to ke considered is that drawn in Fig. 2a. The
antennza is assumed to possess infinite conductivity and to have only currents
in the z direction. This treatment will assume no currents on the end caps;
this condition arises from the approximate one-dimensional manner in which
the vector potential is calculated on the longitudinal surfaces of the antenna.
Such an approach is justified since the experimental realization is an antenna
of identical axial length but with hemispherical end caps of the same total
chargeable area as the corresponding region of the mathematical model. In
the experimental rnodel, #8 in the mathematical one, the currents at z = ih
are zero. If the desired boundary condition is approximated experimentally
in this way, the effective height can differ from h by, at most, a distance of
the order of the conductor radius and probably only by something much less
than this.

The boundary conditions resulting irom the application of Maxwell's

equations to the surface between a perfect conductor and free space are

>
eof

X

=-7 (2-5)

5>
&

x

=0 (2-6)

3 . 24t A . .
The first equation {25) with f = -T for the free space region gives

Hy = €, (a,2)

where ez(a,z) is the surface current density in the Z direction. Note that

a 2w
21 4(2) =[[ ﬁﬁz(r,o,z)rdrdo
- o
= 2 2na Bz(a,z) (2-7)
and hence
1,(z) = 2raHg(a,z) -h<€z<h

The second boundary condition (2-6) yields

Ez(a,z) = Eg(a,z) = ¢ {2-8)
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Equation (2-8) does not hoid at the slice generators assumed to drive the
antenna. At these points there are discontinuities in the slope of the scalar
potentials, Thegre slopes will be assumed to give a delta-function discontinuity
in the electric field such that in the limit of a discontinuity of infinitesimal thick-
ness
+e Sghe
Ez(a.z)dz = Ez(a,z)dz == ¥ {2-9)

~€ -g-€

Let the following integral definition of the delta function, which is zero every-

where except at z = g and there takes on a value such that

gt
f f(z)8(z-g)dz = f(g) |, {2-10)
g -
be introduced. Then
Ez(a,z) = - Vdﬁ(zig) -h<€z<h (2-11)

Note that (2-9) has Ez(a,z} = 0 along the conductor as it should and has

localized the generator at slices at z = + g.

The free-space equation for the electric field in terms of the scalar
and vector potential is
% 8A
) D s =
E TR C {2-12)

Using a periodic time dependence and considering only the Z-component of

E at a distance from the axis equal to the radius a of the conductor (2-12)

becomes
E (2,2) = -jwA_(a,z) - 88(2:7) (2-13)
Z z 92
The vector potential A is defined by
v x K = _ﬁ
the Lorentz condition
v. A+L“z"6=0 , (2-14)
c

and the Helmholtz integral
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h Y% iT-7l {2-15)

where

5
r-'f'| = '\/(z-z')2+r2+a" -2ra cos{@ -0') ;

—

¢ a0,z =28 (2,6',21

For the case considered here, where the antenna is cylirndrically symmetrical
and of sufficiently small radius that Ba << 1, it has been aliomnt s that a
good approximationfor A, even at the radius a and z near to z', is obtained

by assuming all of the current to be located at the axis of the conductor. Then,

using {2-7), A at the radius a is

o} .
N -iBR
A ) = 2B 1 -_f;_.JE_.. 12! ARl TR
{a,z 24" d(z) ] dz {2 )
Zh
h

Id(z')K(z.z')dz' i

1"
[S ]
3t
D

where

—_—
R = Viz-2)%+a®

K(z,z') = e PR/ R

Note what has taken place in this last atep. In {2-15) the vector potential

was defined exactly as the integral over a tube of current on the antenna surface.
In (2-16) this was replaced by an approxirnation using a one-dimensional current
at the center as has been shown reasonable ty King and Oseen. As a resuii,

the electric field (which is given by (2-19) and (2-19) kelow) is precisely that

at a radius a due to a current at r = 0,
—
Since A has onlv a Z component {as seen from the integral) then

= 9A (2,z)
Voo Rla2) B~ e

02z

Substituting this in the Lorentz condition {2-14) gives
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aAz(a,z) -
+ 2!-(i-é(a.,z) =0
az c
and bhence, 2
9"A (a,z)
86!a,z) N z
dz ::—2— 0z

Then {2-12) for the electric field at the radius a becomes
2

% 0 Az(a,z)
E_(2,2) = - juA _(a,2) - 55 ——p (2-17)
[ 2z
where p = w/c. Rearranging (2-17) leads to
: -2 2
E (2,2) = (5 (F5 + 814 (a,2) (2-18)
B~ o8z
= L(z)A (a,z) (2-19)

By equating (2-19) for the electric field at a distance a from the one
dimensional current Id(z) and (2-11) {or the field on the surface of a perfect

conductor, there is obiained

- Vd6(z<_l—_ g) = L(z)Az(a,z) (2-20)

Multiplying (2-20) through by Id( z) and integraiing from -h to h gives an
equality relating the complex power supplied by the generator to the complex

power radiated by the current Id(z) as evaluatced at r = a.

h h

-/ Id(z)'\/dS(zi g)dz = / Id(z)L(z)Az(a,z)dz
‘h % h

Performing the integration on the left using {2-10) and substituting (2-16)

on the right gives

h h
- L(-g)V4-1(g)V, = 41;? Jf dzI{z)L(z) [ I,(z")K(z,z')dz’
G - (2--21)

Suhstituting the definition of the impedance,
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V,=1,(+2)2

d a d °’

into {2-21) and making use of the symimetry of the current, Iz(-g) = Iz(g},.

leads to

h

4
: Zli(g)Zd = f dz I (z)L(z) / I (2 )K(z, 2" )dz! (2-22)
“h *h

The presence of a minus sign on the left locates the power source in the
generator; the right side is the power radiated. The solution of (2-22) for

Zd is

h h
A dz 1,(z)L(z) Jf 14(z')K(z,z")dz" (2-23)
81rld(g) “h

AL

This expression for Zd is stationary; that is, small deviations of
the values of Id(z) from the true value will result in only second-order
variations in Zd' This can be shown by obtaining the first variation 6Zd
of Zd due to a small variation 81 in Id( z). The volue of 6Zd is found to be

zero,
The expression (2-23) can be simplified using the symmetry of iy(2)
and L(z)Ay(a,z). Using these properties (2-23) becomes

h b
z = -—% dzl 4(z)L(2) [ 1,(2")K(z,2")dz’ (2-24)
4rli(g) v,

In (2-24) L(z) orerates on the kernel of tae integral. Since
_8; K{(z,z") = 82 K(z,z%) ,
oz az'
Id(h) =0 = Id(—h) ;

and Id(z) and L(z)Id( z) are even functions about z = 0, it is possible to simplify
the L(z)A(z) part of (2-24). The result is

e
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IT' h h
= - LA Al Al t '
Z.d = - —%—-———2 Jf dzld(ﬂ) f[K(z,z'» + K(z.-z")] Liz N.d(_z ¥dz
4’ﬂd(g) l,o (o]
g dlz(z) h
+ L‘g-z —) I6= Kizb) + Kiz,-bjldz| (2-25)
i3 dz z=h A i
2

3. The Trial Current Distribution

The selection of a trial function to be used in {2-25) is goverued as much
by the necessity of obtaining results in terms of tabuiated functions as by
employing an excellent approximation to the current distributior. With a
kernel of the type occurring in (2-25), trial functions including sinfz, cospz,

z sinfz, zcos Bz and constants yield the tabulated generaliiied sine and cosine
integrals. The distribution is known to be continuous, even about z = 0. zero

at + h, and to have a discontinuous slope at z =+ g. All of these conditions
should be approximated as clpsely az possible. Stcorer7 found that a combination
of sinBz, cos Bz, and a constant quite accurstely represented the simple dipole
current. Such functions should also be suitable for section of the antenna
defined by |z/>>g. A constant and cos Pz should be satisfactory for lz|< g.

With these conditions ingmind suitable trial currents are
Id(z)=C1 + C, cos Bz lz]< g

Id(z) =Dy sinp{h-z) + DZ[ 1 - cospth-z)] |z|>8g

where the C's and D's are complex coefficients. Note that Z in (2-23) is
independent of the absolute value of the current levels. Hence, let Id(_+g) = i.

The trial curronts then become

I,(z)=1+C [a + cosBz] |zl <& (2-26)

-~

I2) = [ 1 - cosPih-z)] + D{sinfs(h-z) +e[l - cos Mh-z)]} |z| >g

(2-27}

where
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a = - cosfg

o 1
® ST Cos B(h-g)

sin @{h-g)
1-cosB{h-g)

€=~

The lerngihs for which these may be considered reasonable are gg <w

for (2-26) and plh-g) < 2w for (2-27). Equation (2-26) with a constant term
would be expected to fail for g near a half-wavelength. Equation (2-2§;
actually has:a singularity at (h-g) equal to a wavelength and probably is not

too accurate for (h-g) larger than about three-quarters of a wavelength.

4. Evaluation of the Impedance and the Current Distribution

Substituting (2-26) and /2-27) into {2-25) yield56

= 3% 2 2
Z.d—z::r‘;-[yo+ycc +YDD+ YCCC +YDDD +YCDCD]

(2-28)

where

Y, :-.[ l_coslp(h_g)] 3 [1+ coszﬁ(h-—g)] sinﬁa«-coszﬂ(h—g)sinﬁ \/(Zg)2+a2

2cos B(h-g)[ sinp‘\/ (h-g)z-ra2 - 3inf (h+g)2+32] - sinﬁ‘/(Zh)Zi*aZ

[ 2pg coszﬁ(h--g) + sin 28(k-g}} C(pa,2pg)}

-+

[ 2B{h-glcos 8(h-g) - 2 sinB(h-g)] C(Pa,B8(h-g)) + 28hT(Pa,28h)

[ 28(h+gices glh-g} + 2sinBih-g)] Tipa,p(h+g)) + ZCS(ﬂa,ﬁ(h-g))

+

ain 28h[ 2C _ipa,plhtg)) - C_(pa,2pn; - C_(pa.2pg)]
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- cos 2ph[ 2C _{pa,B(htg)) - C_{Ba,28h) - C_(pa.2pg)

’ 2
" j(coszﬁ(h-g)m’u ;SAV {Zg)?'-i-az -1+ cos“p{h-g)] cospa

+ 2coc 3(h-g)[ cosﬁ\/ (h-g)2+aZ - cos \/ (h+g)2+a2] + cos ﬁ\/ (Z.h)z—fa

+ [ 2B cos”B(h-g) + sin 2p(h-g)] S(Ba,2Pg)

+ [ 2p(h-g)cos A(h-g) - 2 sinp(h-g) S(Ba,B(h-g)) + 2BhS(pa,2ph)

- [ 2plntg)cos B(h-g) + 2sinpih-g)] S(Ba,B(htg)) + 25 (pa,B(h-g))
+ sin 28h( 25_(pa,Bh+g))- S_(Ba,2ph) - S.{Ba,2Bg)]

3
- cos 2Bh[ 25 _(Pa,p(b+g)) - S_(pa,2ph) - S_(Ba,2pg)] j '

2 : i 1/
Yo = ——{cos pgcosf(h-g} sinBa . ging {Zgz) +at ]

1-cospB(h-g)

- cos pg[ sin ﬂv (h--g)zv;a..;i - sin ﬁA\/ (h+g)2+azj

+ [2BgcosBgcosP(n-g) + sinp (h-2g)] C(pa,2pg)

t+ [ sing + B(h-g)cospg] C(Ba,p(h-g))

-+

[siupg - Blhtg) cospg] TURa,plh+g))

+ sinBh[C_(pa.,p(htg)) - T_(Ba.p(h-g}) - T _(Ba,26g)]

cos Bh[ C_(8a Blhtg)) - C_(Ba.p(h-g)) - C_(Ba,28g)]

i{cos pg cosB(h-g)| ccz iﬂ"v (Zg)2+a2 - cos Ba]

cos 8g[ cos ﬁ\(/ (h+g)2-=.-aZ - cosf {h-g)2+32]

2z
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+ [ 2Bg cos Bg cos Bih-g) + sinP(h-2¢g)] S(Ba,2ps)

o}

[ sinBg + p(h-g)cos Bg] S(Ba.p(h-g))

-+

[ sinpg - Blhtg) cospg] Sipa.p{h+g))

+

sin Bh[ §_(Ba,B(h+g)) - S_(Ba,p(h-g)) - S_{Ba.2Bg)}

cos Bh[ Ss(ﬁa,p(h+g)) = Ss(ﬁayﬁ(h-g)) - Ss(ﬁa,Zﬂg)])-}o
J

D - 2 % sin 2B{h-g)sin ﬁ'\/Wi- sinﬁ(h-g)smp’\/m

[ 1-cos A(h-g)]

+[sinB(h-g) + 3 ‘n 28(h-g)] [ sinpVin-g)2+a? - sinpl/(h+g)2sa’ - sinpa]
- [ 2Bh sinp{h-g) + cos Blh-g) - 1] CiBa,2ph) - 2 sinp{h-g)C_(pa,p(h-g))

- [Bgsin 2B(h-g) - cos 2fth-g) + cospih-g)] C(Ba,2pg)

+ [ Blh+g)(sinp(h-g) + 3 sin 2B(h-g)H2 - 2cosP(h-g)] C(pa,plh+g))

- [ Blh-g)isinp(h-g) + 5 sin 2p(h-g)) - 2sin” p(h-g)] T(Pa,p(h-g))

~ [cosBlh+g) - cos 2ph][ 2C_(pa,p(h+g)) - T_(Ba,2ph) - T _(pa,2pg)]

- [ sinB{htg) - sin 2h]| 2C _(pa,p(htg)) - C_{Ba,2ph} - Cs(ﬁa,Zﬁg)]

- j(- % sin 2B(h-g)cos ﬁ\/TZg)2+a2 - sinfB(h-g)cosP \/ (Zh)z-i»az

- [ sinBth-g) + -}2- sin 2B(h-g)|[ cos p/\//(h-g)2+a2 - cosP \/ (h+g)2+a2 - cospaj

- [ 2h sinp(h-g) + cos p(h-g) - 1]S(Ba,2ph) - 2 sinp(h-g)S_(pa,plh-g))

- [Bg sin2plh-g) - cos 2B(h-g) + cos Bih-g)] S{Ba,28g)
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+ [B(htg)(sinB(h-g) + 3 in 2B(h-g)) + 2 - 2cos P(h-g)] S(Ba,p(h+g))
- [ B(h-g)(sinB(h-g) + 3 sin 2p(h-g)) - 28in"p(h-g)] S(B2,B(h-g))
- [cos (htg) - cos 2h][ 25_(Ba.B(hig)) - S_(Pa,2ph) - S_(Ba,2Be)]

- [ sinp(h+g) - sin2ph][ 2S_(Ba,p(h+g)) - S_(Ba,2ph) - Ss(fia,?.ﬁg)])} ;

coszﬁg[ sinffa - sinf {_Zg)2 + az] + Cs(pa,Zﬁg)

+ 2cosfg[PBgcosBg - sinpg] CT(pa.2ps)

il cos2 Bgl cos (2g)2+a.2 - cospal + 88(53,25g)

4

2cosPglpgcospg - sinBg] S(Pa,2Bg)) .

DD ° : [ (1 + cosB(h-g)){ sinpa - sinB}/(h-g)’+a’

1 - cosp(h-g) l

'Y
sin B\/(h+g)2+az - % sinﬁ\/(Zh)Z-'ra2

- 3 sinp}/ (2g)%4a%] + zC_(pa.pth-2)

> m‘— e r
<

+

+ [Bg(}! + cosp(h-g)) + sinBih-g)] C(Ba,2Bg)

+

[Bh{1 + cosp(h-g)} - sinp(h-g)] TlBa,2ph)

+

[B(h-g)(1 + cos p(k-g)) - 2sinP(h-g)] T(Pa,plh-g)

B(k+gi{l + cosPih-g)) C(pa,B(n+g))

+

sin pthtg)] 2C_(Ba,B(htg)) - C_(Ba,2gh) - T _(Ba,2pg}]

cos Blh+g)| 2C_(pa.B(h+g)) - C_(Ba,2ph) - CS(Ba,Zﬁg)}
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- {1l + cos ﬁ(h-g))[ cos ﬁ/‘/(h-g)2+a‘,& - cosfa - cosfP (h+g)2+a2
+ 2 cosplizn)®a’ + Scosf) (2g)%+a”] + 25 (Ba.Bih-g))

+ [pgil+cos p{h-ght sinp(k-g)] S(pa,28g)

+ [8h{1 + cos (h-g)) - sinp{h-g)] S(pa,2ph)

+ [Blh-g)(1 + cos B{h-g}) - 2 sinB(h-g)] S(Ba,p(h-g))

Blh+g)(l + cospP(h-g)) S(Ba.plhtg))

+

sinB(h+g)[ ZSC(Ba,[S(.}H-g)) - Sc(ﬁa,Zﬁh\ - Sc.f_ﬁa,Zﬁg)]

cos B(h+g){ 25 (pa,Blhtg)) - S_(Ba,2Bh) - sscpa,zagm} :

2 o . Bl
Y = cos sinB({h-g)| sin (2g) +a~ - sinpa
GDF = { g sinp(h-g)[ fiV g p

= :
+ sinﬁ|/(h-g)2+a" - sinﬁ‘/(h+g)&+a2]

- [2BgcosPBg sinPlh-g) + cosPg - cosPih-2g)] Cipa,2pg)

+ [Blhtg) cosPg sin B{h-g) + cosBh - cospg] Clpa,plh+y))
- [pth-g)cosBg sinPlh-g) - cospg + cos Blh-2g)] Ci{pa,p{h-g))
+ [cosBh - cos Bg][(fc(ﬁa,ﬁ(h*Fg)) = gcﬂﬁa,ﬂ(h-g)) = —C-C(ﬁa,zﬁg)]

+ [sinph - sinpglf C_(Ba.pibig}) - C (Ba,plr-g)} - CS!Sa,ijg}]

-1t cosPg sinfplh-g)f cosPa - cosP ‘/ (2g)2+az + cos ‘;V (h+g)2+az
- cos B'\'/(h-g)z + aZ]
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-| 2Bg cos Bg sinP(h-g) + cosPg - cosP(h-2g}] £(Ba,2pg)
+ [ B(h+g) cos g sinB(h-g) + cos Bh - cos Bg] S(Ba,B{h+g))
- [B(h-g)cos Bg sinP(h-g) - cos fg + cos B(h-2g)] S(Ba,p(h-g})
+ [cos Bh - cos Bg]l S _(Ba.B(k+g)) - S_(Ba,B(h-g)) - S_(Ba,2Bg)]
+ [ sinph - sinpg][S_(Ba,p(htg)) - S (Pa,p(h-g)) - Ss(ﬂa,lﬁg)])}

See Appendix A for the evaluation of the various y's.

This expression (2-28) is known to be stationary; that is, it is an extre-

mum cf the functlion Id(z). More exactly 8Z2/81 = 0 or

9Z _ 8Z _ 0
} 9C = 8D
Q After carrving out these operations and solving the repulting simultaneous <
i

equations for C and D the following results are obtained:

YpYep "¢ YDD

” 2
YceYpp T Yeb

YcYep PbpYcc
i 2
*YecYpp ~ Yeb

5. The Single-Driven.D:polie

The singly-driven dipole is a degenerate case of the doubly-driven

one; see Fig. 2-2b. Allowing g to equal zero causes the two slice gener-
ators to become but one at z= 0. This causes V. = ¥y~ = v_.. = 0 and 6
¢ ‘CC *C
Y = J sinBa - sinp (2H)sa” - 4 sinBh C(pa,ph)
) o ) ’
(1- cosph)

+ 28h Ctpa,28hj + sin 2phf 2C {82,Bh} + 2C_(Ba,2ph)]

[4
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- cos 2Bh[ 2G_(Ba,ph) - C_(Ba,2ph)] + 2C_(pa,2ph)
. j(cosﬂm- cosPa - 4 sinph S(Ba,ph)
+ 2ph S(Ba,2Bh) + sin 2ph[ 25_(Ba,ph) - S_(pa,2ph)]

- cos 2Bh[ 25 _(Ba.Bh) - ss(pa,zph)] + ZSS(pa,Zﬁh))] :

Yp - m {sinph[ sinp{/(2z0)24aZ - sinpa] - 2sinph C,(Ba.Bh)
- [2Bh sinBh + cosBh - 1] CT{pa,2ph) + 2[1 + sinzph - cos Bh] C(Ba,Bh)
- [cosBh - cos 2Bh]| z'(':'c(pa,ph) - 'Cc(sa,zph)] - [ sinph - sin 2@h]
[ 2C_ipa,ph) - C_(Ba,2ph)]
- j{sinph[cospa - cos 8Y/(2n}% + 2®)- 2sinph S (Ba,ph)
- [2Bhsinph + cosph - 1] S(Ba,2fh) + 2[ 1 + sin’Bh - cos ph] S(pa,ph)
- [cosBh - cos zph}[zsc(pa,ph) - §_(Ba,2ph)] - [ sinBh - sin 2gh]
[25_(p=.ph) - Ss(ﬁa,zph)])} ,
and "

g —_2 l-é—(l + cos ph)[ sinpa - sinﬁ‘|/(2h)2+a.z] - 2sinBh T(pa.ph)

l-cosfh

+ ZCs(ﬁa,ah),

+ [Bh{l + cos Bh) ~ sinph] T(pa,28h) + sinph[ zﬁcgaa,ah) - “c‘c(,sa,zph)]

cos Bh{ 2C (B8a,Bh) - Cs(ﬁa,zph)]

S
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Chapter III
METHOD OF IMPEDANCE MEASUREMENTS

AND AUXILLIARY MEASUREMENTS

1. Line Theory

The impedances presented in this paper were measured on the coaxial
transmission line with a characteristic impedance ZC egual to 123. 6 ohms,
a phase constant § of 12. 775 radians per meter, and a theoretical attenua-

tion constant a of 0. 003 nepers/meter.

-

| b—z -+——w=s-z———-|

z=0 z LA~ |

The differential equations describing the current and voltage at points

remote from the ends of the line are

2N - (4 jeb)(a) (3-1)
B2 4 juViz) (3-2)
3z

where r,[ ,g and ¢ are the series resistance and inductance, shunt corduc-
tance and capacitance per meter cf line. The time dependence and tke
complex nature of the current and voltage have been suppregsed. A :olu-

tion for the current containing the boundary conditions indicated in the

diagram above is,ls

]' Z_sinkyw+Z coshyw
I{z) =V i 5 = - ——
L(Zc + AOZS)SlnhyS + Z(,(,A0 + Zs)cosh ySs

e —e——

-25-
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where
v = a4 3P = [(reiebigriea)] 8
Using the form
Z = Z coth® = Z coth(p+jp) , 13-3)

an expression containing only hyperbclic functions is obtained.

' sin ho_ sinh(yw+0 )

{z) = y ;
Z L31nh(ys+9 +0 )
c o 8’
This formula describes the current completely, but is in complex
form. A detector, sensitive only to the magnitude of this current, will

measure the quantity.

r, ._,2

i ifsuzh i‘;0+ sin Zéo)(sinhz(cw+p S) + sinz’;ﬁwhﬁq)) 172

| = ¥

- . & .
& sinh (as+ po+psl + sin (3s+éo+ps)

The position of the minimum of ihis current distribution may be conveniently
iocated, and for a lossless line this position is solely a function of the phase
¢ of the load. Taking the derivative of the square of the magnitude and

equating to zero results in the eguation
a sinh{aw+p s)cosh(ow+p s) = -Bsin(fw+ és)ccs(ﬁw + és)

Squaring both sides and using the double angle trigonometric identities
gives,

02 2 2

5 sinh 2leaw+p ) = 1 - cos 2(pw+é_)

B 8 s

and therefcre,

i 2 S
' a 3 PAT
cos8 Z(ﬁw+¢>s)= i\/ 1 - E;E sinh Z\guw+ps)
Assuming

(8 3 2 N . ;
—; sinh72( awtp ) gl (3-4)
P
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then
cos2(pw +é_ )=+ 1
and hence
Bw+é =t3- . n =0,1,23 ...

determines the positions of the maxima and minima. The minima occur
for n even. For the first minimum from the end (w=0), n= 2, w = W e
of the current distribution and

6_=m - Bw

N {3-5)

min

The other parameter characterizing the load impedance is Pg- It
may bhe determined from the current distribution in ihe vinicity of the
minimum normalized to the value of this minimum current. There are two
points, one either side of the rninimum, having the same value of current.
For a lossless line ((abw)2(<%) these points are located svmmetrically

at a distance §w either side of the minimum. Iz the vicinity of the minimum

Lz sinh(yw + Pyt adw)
I{z_ . s ke )
I rmnj } sin h(ywm + QS)

The squared magnitude of this quantity is,

. L2 .2
pz(w\ ) sinh(aw__ + p_ t aéw) + sin {(Bw és + Bsw)

., 4 .2
sinh (a.wm + ps) + sin (ﬁwm + és)

Substituting in the value w + és = n at the first minimum,
pz(w) sinhz(;tw +p )= cin hz(aw +p +ab )+ $in25$w
m ] m s — m =

Assuming that a&w((owm + Py then {pz(w) - 1) sinhz(awm+ps) = sinzﬁbw.
The point of maximum slope of p (w) occurs at pz = 2, and it is the point
where the current squared on the line is twice that at the minimum. For
piw) = 2

by = sinh Hsin BEw) =aw (56}

m

Thus the two quantities needed in {3-3) to describe an arbitrary lcad impedance
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can be determined from the position of the minimum and the width

of the distribution curve at the double-power points. G

Three approximations have been made here, other than thoce in
{3-1) and (3-2), in locating the minimum; {(3-5) and W = (:r~~¢s),’p
are true to the extent that (3-4) is satisfied. For the experimental
Jine used., and for example with an unusually lcw standing-wave ratio
cf 1,1, then (97) sinhZZ(awm +Pg) =5 54x 107 e and {2-4) is certainly
well satisfied. Usir‘.g1 the formula Q = B/2a = 4580, the condiiion
g’n&w_)2<< %becomes QZ>>1, and adpw<{aw_ + p_ requires Q>>1. Al
of the conditions on the approximations are easily met and the line

losses do not contribute to the error in {(3-5) or {3-6).

The limiting accuracy thus rests on the accuracy with which the
position of the double power points may be located. The choice of p2 = 2
18 optimum for a square law detector in that the points for Wi 1 6w fall
on the steepest part nf the measured distripution. Attempts to average
2 few points about the minimum as compared to averaging the position
of the two double power points resulted in no improvement in the accuracy -
with which the minimum was located. The error in meacuring the double *
power width increases at lower standing-wave ratios, but will be less
important since the impedance corresponding to a small standing-wave
ratio is then less sensitive to errors in the determination of p ' S:nce
only A & db range of the detector calibration curve is used, it irg possible
to restrict the measurement to that portion found to have a constant slope

and be nearly sousve law,

2. Computation of Impedances

A desk calculator used in conjunction with a large scale Sm:th
ckart provides a convenient technique for processing the data from the
slotied line measurements. 7Tl sumi 4.4 average of the poritions of the
twe double-power points are quickiy computed to give the positions of the
rn*;ni.muLn?_° and thus és. Their difference gives dw and thus p . Tables
of sinh ‘{sin pow) for 0 < Bdw < 1. 500 in steps of 0.0005 radzans were
prepared to facilitate the computation of [ The correct:on due to

ow _ in {3-6) was of the order of 0. 001 radians and usually neglipible,
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A 18 inch draraeter Smith chart was covered with a rotatable transparent
d:sk carrying a radial p _ scale. Knowing p _ and ¢ . the normalized

impedance on the line was calculated with about 1 percent sccuracy.

Some of the data were corrected for the end effect17 on a coaxial
lIine, The admittance corresponding to the measured impedance was
obtained graphically from the Smith chart by rotating the measured
. és point by 180 degrees about the center of the chart. The end-
correction. a negative capacitive susceptance, of 0. 144 mhos, normalized
at 600 MC on th's line, 18 added and the new p and é point rotated another
180 degrees to give the corrected measured load :mpedance. See Fig. 3
and Figs. 15 to i8 for examples of the importance of this correction.
A more complicated correction has been cons:dered by Whinnery18 and
also by Zeoli,19 but it was decided that the general accuracy of the problem
is not great enough to make such correction necessary. The total capacity
of the'r 7 nertwork 18 nearly equal to that of the Hartig correction if the
inductance 8 neglected.

3. Gereral Check on System using Half. Dipole Impedance Me¢asurements.

The general accuracy of the measuremenis was checked by measuring
the :mpedance of the aimple half dipole of constant radiue as a function
of length, correcting it for end effects and then comparing the results
with the King Middleton second-order impedance for a constant radius
dipole, obtained recently by cross plotting from constant  data. A See

Fig. 3 for a comparison of these results.

4. Comparison of Probes.

The accuracy of the auxiliary probe as used on the polyfoam
supporting colum was investigated by measuring the current distribu-
tion on a half wavelength dipole with both probes. The resulting curves
were plotted and normalized to have the same maximum. {See Fig. 4
Also plotted 12 this diagram are the K:ng-~MiddletonZl frst-order dis-

tribution and the current obtained using the equation for Isﬂz.) on page 2- 24.
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5. Measurement of Gap Capacitance.

Experimentally, the gap between the end of the driven antenna
and its parasite is the parameter variecd in any particular array. A
varying capacitive reaciance ig assumed to be the equivalent of this in
the theory of the array. Hence the magnitude of the lumped capacitance
between the hemispherical end caps is needed in order to compare the

theory with data using the gap reactance as a parameter.

Since the theory applies precisely only for small {0 < gap < X /10)
gaps, it seems re2scnablie that the capacitance of such a gap could be
measured by constructing it in the center conductor of a shorted coaxial
ime. Such a measurement was set up with a variable gap placed a half
wavelength from the shorted end of the line. The apparent series
reactance and capacitance of thegap was so determined and plotted in
Fig. 5 . For spacings less than 0. 01 cm the curve was extrapolated
linearly from its measured values at larger spacings. The results
agree qualitatively with those found by Jt?.ams22 for the capacitance
between two identical spheres. For very small gaps in the actual array,
a small piece of dielectric tape was used to separate the ends of the
antenna elements. The tape was 0.006 cm thick, and, assuming a dielectric
constant of 2 or 3, the equivalent air gap is about 0.003 cm with a

corresponding gap reactance of approximately 250 ohms.

o



6 o MEASURED IMPEDANCE k .'
a J__l

®—e0 MEASURED IMPEDANCE R
CORRECTED FOR END I
EFFECT IN LINE I

O—O THEORETICAL KING- =

MIDDLETON SECOND Z,=123868 [~
ORDER IMPEDANCE FOR
CONSTANT RADIUS

— Y U

FRACTIONS X .= \\

i
N

) .>’l. '\

il i’ VNN
LN

! e */ e «

-
£
<
;M
-
m
2
-
hat
=

!/

PR S Y et !
AN ) e (V- S R S W iy Sy
$ “ /o 4.2662 XA --ffy_ e U l{_
; SRR AB0 0 g 3288 .
7 Pl T /\( S X e :1
'M"\, o5y 33446 \f")‘\ \ \\ LJ)
q"'/'V\‘( P i e

i s L& '
SN N\
3604\ 3, . 4
et {1 T IR 2760,
/ -.".‘-'7J'/7\I\1~ by

\- '2026¢

T g [
- po@20.

FiG. 3 MEASURED AND THEORET:CAL !MPEDANCE OF
A HALF-CIPOLE



$3I1403HL YNNILNY 370410 HLIM SIE0Hd LNINGINOS 40 NOSIMV4NOD t Old

0z

8l

9i

wa !
i

V4

ol

0l

]
L

™
O

€0

———~—2808d A¥YITIXNY
— — — 38044 Y3NN!

O1=U ¥3AYO 1St
—— --—NOLTNGAIN-ONIM
AYNCILVINVA

370410 TVOIYANITAD
NO SNOILNBIYLSIO IN3XYND

W TWLINIAIHIIX3

% IvOIL3803HL

0

_
m_
_

_
|
|
|

G0

90

40

60

40 JCNLINOVW 3AILVYIIY

IN3ZYND



dV9 ZHL 40 3ONVLOV3IY ANV 3ONVLIIOVAVYD N3 VddV G 95
ws NI a¥9
o1 ol = 10 100
0
00z }- |
. Lt
RO 130NVIOV3Y A " B
adw /w\
009 L A7
I = n\
U/lUII _ w \\\\ |
Oom lﬂ[ _ P4
™ ~f
s ;
000l / Ve !
g |
1~ |
002I ) // !
\‘\\ /./._
00v! o //
g, | /
o ! A
009! B S _ <
Hem | AN
PeE SWHO 2N JONVLIOVIY d¥9
\ G9z :
0002 = wlv f
_
dv9- | L :
J_ T _xl | IONVLISVAYD
qu = ; h dvo
18 /ﬁ |
! //
| i
|

€0

+0

S0

30

20

80

P 7T NI IDONVLIOVAYD dV9O



rﬂl’&wv

TR178

Chapter 1V

EXPERIMENTAL DATA AND COMPUTATIONS

1. Extent of Parameter Variation

The parameters selected to be varind in the measurements zre the
lengths of the driven and parasitic elements ard the spacing between
them. Since cne of the purposes for making the measurements is to
check the theory over its complete range of applicability. these parameters
must be varied over a range which includes poor a2 well as good agreement
between theory and experiment. The trial functiors used are such that
the current distributicn is well represented on the portior of the anterna
for which |z| < g where g 15 less than A /2. Likew:se the trial current
on the section with |2| > g is a good approx:mation for h-g less than about
3x /4. Hence haif lengths ranging up to a half wavelength fc: the driven
antenna and overall lengths up tc 3A /4 for the parasite should be investigated
experimentally. The impedance and current distribution for similar lengths
should be calculated from the theory. Longer lengths should be investigated
experimentally, but there is little point to computing theory for them. The
theory should be i1n good agreement with measurements for short lengths,
g<\/4 and h-g less than \ /2, and should become progressively less
appl:cable at greater lengths. The theoretical impedance should be in
better agreement with the measured impedance over a greater range of
lengthse than that over which the theoretical current distribution is in
agreement with the experimental distribution. This is a consequence of
the use of a variational principle to improve the ‘mpedance approxima -

tion.

The gap should be varied experimertally from zero {i.e. actual
contact of the elements) to as large a spacing as s pcesible in the
existing experimental equipment. The theory howewver, considers the
gap to be well represented by a var:able Jumped capac:itance and assumes
the coupling between the cylindrical surfaces of the array elements to
Le constgnt. Hence the limit of applicability of the theory is at
the point where the coupling between the cylindrical surfaces has

1
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changed appreciably. Note also that the coupling between the end
surfaces changes very rapidly with spacing, and as soon as this change
is essentially complete, then there will be no further appreciable
eifects due to actually reducing it to zero. With this in mind, the
theory is limited to the maximum gap size requirzsd to reduce the end
cap coupling effect to essentially zero. As thz gap is increased
bevond either of the above limits, whatever effects result will not be

predicted by theory.

The importance of these lirnits and the rapidity with which they
occur are difficult to predict. A 1/10 wavelength gap should make a
very large change 1n the coupling between the cylindrical surfaces,
so the theory should certainly not be used beyond this point. Probably 1/20
to 1/50 wavelength would be a reasonable limit. As far as the gap
coupling is concerned, consideration of Fig. 5 shows that the g&p
capacitance varies only very slowly for gaps greater than 1 cm, or about
1/50 of 2 wavelength. Beyond this point the gap reactance does not
change appreciably and the theory is no longer applicable. Hence the
gaps to be investigated by computation from the theory, and experimentally,
should range at least over separations of zero to 1 ¢cm. Larger gaps may

be investigated experimentally as far beyond as is convenicnt.

2. Measured Impedance Data.

The impedances mecagurced are shown in Figs § throu
with the cerresponding arrays on which the measurements wer= made.
Smith charts were chosen, in Figs. 6 through 11 for example, rather
than rectangular plots since the curve of the collinear impedance between
the two end points would be more obvicus. When the circle was too smail
to be convenient the impedances were denormalized and plotted in rectan-

gular resistance and reactance coordinates.

3. Computational Procedure.

The choosing of cases for computaticn must bc done w:th care,
for the calculations are complicated and time consuming. On this basis,

it is convenient to consider cases for whicih as mauny ierms as possible

P
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are zero in the expressions for the y's used in the :mpedance expres-

sion. 7The trigonometric functions contained therein are zero for combina-
tions of h and g equal to muitiples of a quarter wavelength. The othes
important aspect is to choose a series of iengths that will check the

theory over at least its expected range of usefullness. As described

in sectionV 1 such lengths are for g up to A /2 and h-g up to 31\ /4,

Such a series of combinations are listed in the table on page 34 In addition
are listed the end-point dipoles into which the array degenerates for gaps
equal to zero and infinity; the pertinent figures are aiso given, Figure 39
is a plot of the measured half-dipole iinpedances on the lige with a few of

the array impedance spirals.

The current distribution for a particular configuration is computed
using Eq. (2-3) after first evaluating (2. 26) and {2. 23) for Id(z); Is(z) is
obtained using the equaiions on p. 24 The phase and amplitude of the
current distribution have been plotted as listed on page 34. The experimental
data have been plotted by adjusting the experimental amplitude at the peaks
to be the same as for the theorctical curves with the exception of Fig. 41
which has been plotted so the amplitude 3¢+ = = N ~arresponds to the measured
driving -point impedance for this case. The position of the current relative
to the distance scale has been occasionally adjusted to account for errors in
knowing the position of the auxiliary probe on the polyfoam column supporting

the array.

Equation (2-4) for the theoretical array impedance requires the
use of the current distribution at z = 0 and at 2z = g. The impedance
Z is the apparent recactance X of the gap. Zc may be computed directly,
but there is occasionally some additiorial inform=ation which may be either
directly incorporated into the computations or merely used as a check
on the infinite gap. The value of ZC for the inf:inite gap point is occasionally
known from another computation; for example, for configuration 4 of the
tabie Zc(gap = oo} is {hat for a dipole of half heignt equal to \ /2. This
impedance i8 known sinuce it i8 a necessary part of the computation cf

Zc for configuration 2. It may be used as fellows. Equation (2-4) is

D(0)Sig)
Z = i et N Al 8 Y.
e Zs"h) l:l 1+ Zd7Z:|

~—rm—
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Evaluating this for the experimentally infinite gap point cr for Z = @
in {2-4) there resulits
Z (gap = @) = Z _(h) /ir[l - Dio,‘,ség)j' {(4-1)
c st/ J
However this Zc(gap = oo ) is that of a singly driven dipole of half height
equal to the gap position g; that is,

Zc(gap = oo) = Zq(half neight = g) (4-2)

The symbeol Zs(half~height = g) is used to avoid any confusion resulting
from using the letter h in a description of this dipole. Substituting (4-2)
in (4-1) yields

Z (h)
D(0)S(g) = 1 - = (4-3)

Z _{haif height = g)
o

Equation (4-3) was used in the computation for Fig. 17 and considerably
improved the theoretical agreement wiih experiment. It was also used in
Fig. 16 and Fig. 18 but had very littie effect since the agreement was
already quitz good. It was not used in Fig. 15. Note that Zs (half-height = g)

is obtained theoretically by evaluation of 2-29 for the ieight of interest.

4. Conclusions

The agreement between theoretical computations and experimental
measurements is as considered in Section IV-1. When g < (h-g) and both
are shert, the measurements are in best agreement. The agreement is
generally good for configuration 1 {see table on page 34) for a .2\
driving element and a .3\ parasite. It is less so for configuration
2 in which both elements are X\ /4 long, and it is least good for the 4th
case. The impedances generally agree quite well for all except configura-
tion 4 for which the conditions on the trial current distributions are
pot mat, This is to be axpected since the variational principie iechnique
allows the use of a rather poor current approximation in obtaining
comparatively good impedance values. Note that the agreement {see Fig. 18)
of the theory of King is good for large spacings if the theoretical curve were
displaced such that the infinite gap point was superimpossd onto a better

end- point impedance than that obtained in his zero-order theory. 'The
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discrepancy for small spacings is to be expected since his theory is based
entirely on varying the coupling between the cylindrical surfaces of the

antenna elements and will be in error when the end-cap coupling is appreciable.

On the Smith Chart of Fig. 39 is plotted a curve for the measured half-
dipole impedance and a few of the impedance arcs for collinear arrays. This
makes the relation of the end-point impedance of the array to thaose of the half
dipole quite obvious. It aiso rnakes it possible to guess roughly where an im-

pedance would fall for some other configurations than those considered her

o

In conclusion, a theory for the close-gpaced collinear array has
been formulated on the basis that tha array is the superposition of a
doubly and a singly driven dipole. The theory has been evaluated for a
series of specific configurations that arc typical of the applicable
range of the theory. These same corfigurations have been investigated
experimentally as a check on the basic assumptions in the theory and
also as a check that the region of usefulness of the theory has been properly

estimated.

5. A Two-Wire Line as a Coupling Reactance between Elements

This type of coupling has been very briefly considered experimentally.
The devices pictured in Fig. 40 have been used to couple the ends of the
driven element and the parasitic elem<nts. These permit the coupling
reactance between the elements to he varied without changing their spacing.
The experimental setup is similar to that used elsewhere except small two-
wire line is used at the gap. It has a characteristic impedance of 135 ohms
and a spacing of 0. 2 inches. Two arrangements were used. One of thess
is a line whose overall length is constant and upon which a shorting bar is
moved. The other is one the overall length of which is varied. Both are
needed for a complete study of the problem. Tuno {irst wiil have a constant
length for the unbalanced mode on the open-wire line; the other will present
a variable length to the unbalanced mode. Plots are given in the last figure
showing the measured driving-point impedance using both of the line types.
The points labeled constant-overall-length line are those for the line using

trke shorting bar,
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on

Appendix A

EVALUATION OF THE . INTEGRALS

The substitution of (2-26} and (2-27) into (2-25) yields*

g 14
{- jw(l+aC)/ dz[ 1+ C(a +cos ﬁz)]/ [K(z,z') + K(z,-2')] dz'
o )

g gt
+[ dz[ 1+ C(a +cos ﬁz)'{/ [K(z,2') +K(z,-2')] L(z')Id(z‘)dz'
g

Vo =
8 h

-judd+e Di/ dz [1+C(a +cospz)] J‘ [K{z,z') + K{z,-2")} d=z"
O g

h
~jwll +o.C)/ dz [ 6{1-coe ﬁ(h-z)} + D(sinB(h-z) + ¢ {l-cos ﬁ(h-z)} ):l
g 1’

g
L//\ [K(z,z') + K(z,-2")] dz'
o

h p
+/ dzli& {1-cosp(h-z)} + D(sinp(h-2z) + ¢ il-cosﬂ(h-z)} ﬂ
g

A8t
/ [K(z,2') + K(z,-2"})] L(z')4(z")dz'

[} g -

“Most of the following expressions are taken from reference 6.
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h
s ju(6+eD)/ dz[ 5{1-cos p(h-2)} + D(sinp(h-z) + <[ l-cosp(h-z)} ]
g

h

f [K(z,z') + K{z,-2')]dz'
g

) g
. %inf [1+Cla+cos@z}] [K(z,h) + K(z,-h)] dz
(o]

n
- Jg& D[ [6{1—cos p(h-z)} + D(sinp(h-z) + ¢ {1-cos p(h-r.)} 1]

)
[ K(z,h) + K(z,-h)] dz } .

J

Note that the integral in the variable z' may be simplified by
+
f [K(z,2') + K(z,-2")] L(z')ld(z')dz' =
g-

. 85 a2
- l%’-{K(z,g) + K(z;-g)] /‘ —-z-(ld(z'))dz'
] g/ dz'

& l‘f[K(z.g) + K(z,-g})] [¢ +D +C sinpg]
B
Using this in {A-1) yields
-6 . 2 2
Zg = gw Yo *YC+YRD #YpCD +7 o C7 +y DT

where

g &
Y, = ﬂjf dzf [K(z,2') + K(z,-2')] dz'
(o} (e}

(A-1)
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g
+ € [ {K(z,s) + K(z,-g)] dz
“o

g h
+ ﬁ&f dzf [K(z,2') + K(z,-2')] dz'
C g
a 8
+ 86 [ dz{i—cosﬂ(h—z)v [K(z,2') + K(z,-2')] dz’
Jg A
3
+ be / {l—cosp(h-z)} [K(z, g) +Kl(z, g}] dz
g

h h
+ﬁ62 / dz{l-cosﬁ(huz)}/‘ [K(z,2') + K{z,-2'}] dz'
\/g \/g

B

g
Y= B / dz(2a+cos_ﬂz)f [K{z,2'} + K(z,- 2")] dz’

vo (o]

g
+ € f (a+cosBz)[ K(z,g) + K(z. g)] d=z
o

g
+ sinfg [ [K(z,g) + K(z,-g)] dz
(o}
a
dz{a +cos Pz) / [K{z,z') + K(z,-2')] dz'
v

+ Bé

g
l
b g
+ apb /\ dz{l-cos p(h-z)‘;‘ /p[K(Z,Z') + K{z, z')] dz'
J

4 (»]

h
+ 58infg f {l—cnsﬁ(h-'z)\} [K(z,g) + K{z,-g;, =z
g
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o
Y cp JF (a + cosPzj K{z,g) + K(=z,-g)] d=z
o
g h
+ €p /dz(q +cos Bz) /[K(z,z') + K(z,-2'}] dz'
o g
h g
+ nﬁ/ﬂ dzsinp{h-2z) /\ [K(z,z") + K(z,-2"}] dz'
; o
h g
+ a:ﬁ/ dz {l-cos fs(b.-z)}f[l((z,z') v K(z,-2")] dz'
g (o]
h
+ sinﬁgf sinBlh-z)[ K{z,g) + K(z,-g)] d=z
g
\ h
i +e sinﬁg/ {1-cosp(h z)} [K(z,g) + K(z,-g)] dz
g
g
+/ {a + cospz) K{z,h) + K(z,-h)] dz
Yo

g g
v cC =) aﬂf dZ(O. + cos ﬂZ)f[K(z:z') + K(Z;-Z')} daz'
o (o}
[+4

+ sinﬁgf (a + cosBz)[ Klz,-g) + K(z.g)] dz
0o

g h
Y p =/ [K{z,g) + K(z,-g)) dz + / [ K(z,h) + K(z,-h}] dz
5 5

h g
+ ¢ dz{z-cosﬁ(h-z)}/ ' K(z,2') + K(z,-2'}! d=z!

f24 0
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g
dz sinf{h-z} r [K(z,z') + K(z,-2'})] dz'

[o]

tB

+ ¢ sinf(h-z)[ K(z,g) + K(z,-g)] dz

WQ'\"S.—: m%:r

h
+ (6 + (2)/ {l-cos ﬁ(h-z)} [K(z.g) + K{z, -g)] dz
B

h h
+ 6B [ dzs'mﬁ(h—z)f [K{z,z') + K(z,-2')] dz’
J,
g

g
h h
+ 258 | dz{1-cosB(h-z)} [\ [K(z,z') + K{z,-z")] dz’
Jg Jlg

h
+ 6f {l-cos ﬁ(h-z)l[K(z,h) + K(z,-h)] dz
g

h
Y DD =Jf sin p(h—z)[ K(Z;g} + K(z,—g)] dz
8

h
+e/ {l-cosﬁ(h-'z)}{K(z,g) + K(z,-g})] dz
g

h h
+eﬁf dzsinp(h-z)LF[K(z,z‘) + Kl7,-2%5] 4z
g

h h
* € Zﬁf dz{1~cos p(h—z)j [K(z,z2') + K(z,-2')] &z
g

h
+f sin'ph(h-z)LK(z,h) + K{z,-h)] de
24
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h
A
+ ¢ j [1-cosp(h-z)}[x(z,h)+K(z,-h)] dz
g

The above y expressions contain integrals of six different forms.

Three may be evaluated as follows:

e e
’JﬁV(Z z') +a

. : 2, . 2 .
F(bcf,g)-ﬂ[dzﬁK(zz)dz =ﬁ[df dz’
\/(zz)+a

Since

arn integration by parts yields
F(b.c.f.g) = B¢ fK(cﬁz.'}dz' - B8b fK(b,z')dz‘
f f

C

C
+pg/ K(z,g)dz - pf/ K(z,f)dz
b b

Z=E

z - ﬁ(z-x;
(z-g)2+a’ Jb Viz-£)%+a’®
Fib,c.f,g) = p(f-~)C(Ba,p(f-c}) - B(g-c)Clpa,Blg-c})

- B(£-b)Cipa,pit-b)) + p(g-b)C(pa,.Big-b))

+ sin,sl_/(—g»c)-’“;a_i - sing) ig-b)% +a®

- singl/(£-c)%+a® + siné/W?

- §(BlE-c)S(BaBl-ch- Blg-cIS(Ba,Blg -c))
- Bi£-b)S(Ba,BlE-b)) + Plg- b)sma.ﬁ(g -b))

- cosﬁl‘ (g- cf+af+mo~g3 g - b) +a

+ cm‘b\/ if- cl +1 - cos[ﬂ/(f b)2+a2)

dz .

i
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Another form is

. £
G(b,c.f,g} =8 / dz sinfz K(z,z'})dz’

S :

and an integration by parts yields

£
G(h,c,f,g) = cos pbf K(b,z')dz' - cosfc /.K((‘.,z')dzu
f Ji
C C
_[ cos Bz K(z,g) dz +f coe Rz K(z,i) dz
¥b b

G{b,c,f,g) = cos pb][ C(pa,B(g-b) - C(Ra,B({-b))]

cos Bof{Ciga.plg-c} - C(Ba,p{f-c})]

cos pg[ T (Ba,plc-g) - T_(Ba,p(b-g))]

ool
+

- sinpg[ C(pa,plc-g)) - C_(Ba.pic-g))]

+ cosBi] C_(B2,8(c-1)} - T _{Ba,p(c-1)]

sin il C_(Ba,B(c-1)) - C_(Ba,p(b-H)]

cas 8b[ S(Ba,B(g-b)) - S(Ba.p(f-b))]
cospc[ S(Ba,p(g-c)) - S(pa.plt-c))]
cospg[S_(pa,p(c-g)) - S_(Ba,p(b-g))]

1
L 5%
1

+

sin pg[ S,(Ba,Blc-g)) - S_(Ba,B{b-g))]

+ cos pi] Sc(ﬁa,_B{c—f)) - Sc(fia;ﬁ(b—f))]

sin E[ S_(pa,plc-1)) - 5_{82,3(b-1)) }

By a similar process g

r ~
H(b,z f,g) = 8 / dzcos ﬁz/ K(z,2') dz
b f
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H(b,c,f,g) = sinpc[ C(pa.p(g-c)) - T(Ba,p(f-c))]
- sin bl C(pa,p(g-b)) - T(Pa,Llf-b))]
+ cos pg[ C_(Ba.plc-g)) - C_(Ba,B(b-g))]

+ sin Bg| (_Ic(ﬂa,ﬂ(c—g)) - E.:(Ba,ﬁ(b-g))]
- cos B[ C_(Ba.B(c-f)) - C_(pa,pib-1}i]
- sin B[ C_(Ba.plc-1)) - T_(Ba.gio-i)i]

-j { sin Bcf S(pa,B(g-c)) - S(pa,p(f-<))]
- sin Bb[ S(Ba,B(g-b)) - S(pa,p{{-b))]
+ cos ﬁg[ Ss(ﬁarp(c'g)) = Ss(ﬂas,s(b'g))]

+ sinpg{ S_(Ba,plc-g)) - S_(Ba,p(b-g))]

cos Bf S_{Ba,plc-f}) - S_(Ba,p(b-1))]

- P
]

i}
sin B[ Sc(ﬁa,ﬁ(c-f)) - Sc(ﬁa,ﬁ(b-f))] }

Three single integrals are immediately expressable in terms of the

tabulated functions. These integrals are

C

I(b,c,g) =/ cosfz X(z,g) dz
b

= cos fgl C'C("a,ii(c-g)) = C—C(ﬁaﬁ(b'g”]
- sinpg| Cs(ﬁa,ﬂ(c—-g)) - Cs(ﬂa,ﬁ(b-g”]
-j { cos Bg| S.(Ba,plc~g2)) - Sc(ﬁa.ﬁ(b-g))]

- sinpg( S (Ba.plc-g)) - S,(Ba.B(b-g))] |
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J{b,c,g} -‘/ sinpg K{z,g) d=
b

= cosBg[ C_(pa.plc-g)) - C (83,p(b-g))]
+ sinpg[ T_{Ba,Blc-g)) - C_(Ba,Bib-g))]
-j { cos fg[ S _(Ba.plc-g)) - Ssﬁﬂasﬁ(b"g»»]

+ sin Bg[ Sc(ﬁa,ﬁ(c-g)) - Sclﬁa,p(b-g»l}

C
M(b,c.g) =‘/p K(z,g) dz
b
= T(pa,plc-g)) - TUpa,p(b-g))
- i{S(pa.ple-g)) - S(Ba,pib-g))

The following symmetries are applicable throughout

c g
ﬁf dzf K(z,-z')dz' = -F(b,c,-f,-g)
b f

c g
8 [ dz singz /\ K{z,-2')dz' = -G(b,c,-f,-g)
Jb £

£ -
5/ dz cosfz './ K(z,-z'}dz'=-H(b,c,-f,-g)
b Js

The functions S, SB, Sc-, Cs’ C—c are defined and tzbulated very completely

in the reference. All are odd about the origin except S’i8 and Cs.

Note that in evaluating the various integrals that there is a
definite relationship between the tabulated functions appearing in real
parts of F,G, etc. and those that appear in the imaginary parts of the

integrals. One of these for exarmpie, is

M =if [Cs(w';, 'Cc(x). Clvh, sing] - if] SS(W), Scfix), Sly), ~cor 2]
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The real parts of th: integrals contain only Cs. Cc’ C, and sine functions

while the immaginary parts contain an identical arrangement of Ss' Sc' S,

and minus cosine functions.

10.

11.

i2.

13.
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