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SUMMARY

The "bound vortex drag" of a singls hydrofoil is ccaputed for diff-
erent, prescribed 1ift distributions. Eq. (3L4) gives the drag in the
limiting case of a very short span; Eq. (35) in the cese of a very long
span.

Subsequently, the case of an arbitrary span is considered (Eq. (39));
a numerical calculation has besn carried out for a Frouds nuzber F = 10,85
ad a rectangular 1ift distribution (Fig. 11). Eq. (39) can be greatly
simplified if the Froude mumber is either very small (Eq. (39%) for a
rectangular distribution) cr very large (Eq. (39%) for a rectengular
distribtution).

In section 7, the problem of the optirum 1lift distribution of a
hydrofoil is shortly discussed in a qualitative way.
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Introduction

1. A hydrofoil of semi-span b is considered, moving at a comsiant speed
of advance V and constant asubesrgence through weiasr of infinite depth
(Fig. 1)¢ The water is assumed to be undistourbed except by the actiom
of the hydrofoil itself.

In the jresent apprroach, for the purposa of a aimplified snalyeis,
the actual foil is replaced by a single, straizht "bound - vortex-line®
in conformity with Prandtl's airplane wipg theary. The bound « vortex-
line is talsn parallel to the (undisturbed) interface, at a distencs f
from it, and located spproximatsly at the centers of 1lift cf the wing
sections of the hydrofoil.

An grbitrary spanwise lift-distribution is pescribed. 7The proolem
is similar, therefore, to the so-called *first mroblem of airfoii theory®,
complicated here by the presence of an intsrface,

Viscous forces are neglected. Irrotatiiual fluld motion is assuwed
gverywhare ovtside the bound vortex and the trailing vorter sheet.

The coordinste system x-y-3 in Fig. 1 is comsidarad sy belng fixed

th the foil. 7hey x-y plane coincidss with ths undf2turbsd position
of the interface, Viewed in this frame, the flnideesiion is steady.
The valocity st infinity, V, shail have the direction of this positive x
axis,
2. The velocity at any given point of the {luid is designated iy iue
vector C  in the X-y~z gy2tem. It will be assumed that, for points

on ths free eurface,

o 3
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such that terme of the ordsr of magnitude of (‘;V) nyy be

neglected. The above assumption 1s the vetter fulfilled, in the case of
similar lift-distridbutiony, the smaller

fad
I anez

v §
where [ 15 Wz msximca valne SI the spanwise circulation-distri-
bution, Wumericsl cxamples in Refs. (a) and (c) indicate thetEq. (1)
Tl 5% well fulfilled in mst actual appiications of hydrofoils,

it follows from the sbove postulate that the slope of the surface
==v28 2 (5atr height wre assumed to be small. The latter siztoment
follews from an sppiication of Bernoulliia equatiom to the fres suriace.

In fact, it is fimnd that the wave height iz, Yy virtue of Eq. (1),

ascumed to be small compared with the deep~water waveleng'h 2 V'/g
(e.g. Ref. {d) § 228).

Fig.l

e~

conter-of-1ift line
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Also, it will be assumed that the wave height is small compared with
the submergence of the foil.

bue to these simplifying assumptions the boundary condition at the free
surfece is linear (section 3.3).

3. Strictly spesking, the trailing voritexes coincide with streamlines.

In the case of a wing in an infinits medium, however, it is known that a
good approximation to the induced drag is obtained, if the trailing vortex
lines are assumed to be straight and in the direction of the free stream
velocity. At least this is the case if the induced drag over 1ift ratio
is small, which in turn requires a reasonably high aspect ratio.

In the case of a hydrofoil, the mesence of the interface causes an
additional distceriion of the trailing vortexes. The vortex sheet follows
now to a certain extent the wave motion of the surface. Due to the damping
effect exerted by the depth, the amplitude of this motion is diminished
as compared with the one of the surface. It follows from the conclusions
&z in aection 1.2, that this distortion of the trailing vortexes is
small. One neglects only small teims of higher order if one assures,
for the purpose of computing the wavedrag, that the trailing vortex
lines are straight. With this assumption, the boundary condition for the
velocity at the vortex sheet Iis linear,

Concluding, ons may note that the (in-vizcous) drag is small compared
with the 1ift irn neariy sil casez of techniesl intereat, This mesna that
the downwash is small commared with the speed of aavance; -hich indicates
that the linsarization of ti:s boundary corditlon at the surface and at

vise vortex sheet iz permiszible in these cases,

T
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2.

Nomenclature

e\ N\
H

8y Aecescsscconstants (Eqs. (26M), (17%))

Decessssosesdomi-span

Bpeeereroes 1ift coefficient of foll

Da..........bound vortex drag

D'..........trailing vertex drag

feoeeecesossubmergance

FeeeosssseesFrouds mumber (Eq. (33))

gesoesesssesaccelaration dus to gravity

Lesosseceseslift

Lieeee-e. +++11ft per unit span

Neerceeessosconstant {section 7.2)

rsReceeveoooradil (Figs. 1, 6)

SescecssessawWing area

Lesesesscsooctime

Veeessessooe8peed of advance

Wessoesosoesdowmwash in y-z plane, induced by image of wing-element
X,¥ 3857, 3%s 373 3+ e-ecoO0rdinates (Fig, 1)

T, eceesescseelevation of free surface

[5 eseeeseeesSPENmEUDABTRence ratic (Eq. (38))

Y coeveesssotngle (Pig, 9)

I eeeceeesselirculation

f ..cccvereeGama function

F eeieeicscangular coordinate (Fig., 1)

8, 8' .ecev...oangular coordinates (Figs. 6, 9)
M eeecesesscconstant (Eq. (35))

@ cevecscecoDonsity
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% ..eeeceecseperturbation potential pertsining to wing element

$ «cciieoie.operturbation potential of rotationally symmetric
oroblem (zection L.l)

‘YO’YQ,}3,}3...........dimansionless functions (Eqs. (3L), (35), (36), (39))

™ ssessessssseBuperscript indiceting spanwise average.

Basic Equations

l, It is convenlent to consider the wvelocity with respect to the x-y=-2z
coordinate system, at any point below the interface, as the resultant of

the following velocities:

-—lp
(1) The free stream velocity V  in the positive x direction.
(2) The welocity induced by

(a) the bound vartex,
{b) the trailing vortexes,
(3) The velocity irduced by
(a) an image of the bound vortex, i.e2. the vortex
obtained by reflecting the btound vortex at the x-y
plane and chenging its sense of rotation (Fig. 1),
(b) the corresponding images of the trailing vortexes.
(4) The welocity darived from a perturbation potential¥(x,y,s).
This merely smounts to a definition of ¢ « the determination of which
will be the first problem considered.
At all points below the interface, items (2), (3), and (L) are of the

nature of a small perturbation added to V . The only exceptior to this

large values,
The velocily defined in (L) above is irrotational everywhere, including

points z2ituated on the bound - and trailing vortex lines. Hence, ihe
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resultant velocity obtained by addition of (1), (2), (3), and (L), is
also irrotational, as is required, except at poinis located on the bound
and trailing vortsxes of the foil, where, due to item {2), the correct
c¢irculation is obtained.

Item (3) above is introduced merely for mathematical convenience
(section 3.3). Omitting or adding it amounts only to different definitions
of 4 .
2. We considser firat the case whare the span 2b is vary small compared
with the other characteristic dimensions of the problem #). The gencral
case of a finite span is then obtained by superposition of the results

derived for the infinitesimal span.

k] ™avre {e
rYyY 23

e ] 'Y L~
Ve N Ve . Ye
ixt 63‘ e2?

the solution being subject to the boundary conditions derived in thia

w 0 (2)

section.

Neglecting terms of higher order, one m&y replace the boundary conditions
at the interface by conditions imposed at z = O, We examine first the
velocity induced at any point of the x-y plans, by items (2) and (3) of
section (3.1).

Tha WaninAd swsnwdov
(S AV ~a -

~
LRy 4 das Vwe wan

—~

2a) and ita

| e

mage (3a2) induca tegether a velocity, the
y and % components of which,vanish ##) by reason of symmetry. The x com-

ponent becomes, for 2b«<f

#) The quantity vYg , which enters the Froude mumber, has the dimension
of a length and, in geneial, must also be considersd as a characteristic
dimension of the problem. The sames applies to I/V , a quantity which
in the case where the foil is replaced by a vortex line, appears in lieu
of the chord. Actually, however, it is shown in a subsequent nart of the
analysis (section 7) that the above conditions msy be replaced by a less
stringent one: It is sufficient to require 2b«f in order that
the equaiions of the present section be valid.

*#) The fact thet the = component vanishes, is the main advantage gained by
the introduction of the image,
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fTom the analogoa to the "Law of Biot and Savart" in electrodynamics,

There is8 v = x*+y> and T denotes the average circulation, that is
b

F - ;‘t}.{r(s.) dy,
-b

The trailing vortexes (2b) and their images (3b) indice together a
velocity with vanishi.g x and z components. It will appesr that the y
components of welocities do nct enter explicitely the boundary cornditions
for the free surfzce; there is no need therefore for an expression for the
velocity induced by the trailing vortexes together with their images.

Fig. 2 depicts the resultant velocity and its components at a point

located on the x-y plane,

The preasure is constant for points on the free surface and mgy be put
aqual to zero without loss of generality. Hence, from Bernoculli'as equation,

neglecting terms of higher order in the perturbation wvelocity,

r 1 1 l'~-;/‘ : /it + =
g{vu zv[%i(uf, *(»)i.o” 9% gVt

since z = O for x & -, z¥z,(x,y) is the local elevation of the free

sur{ace from ite undisturbed position.
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Simplifying the preceding equation, one obtains
v IeFf ,a gt (e ] . 2
"'[",';‘(' £ 4 ’(%;)uo 5 bsf

= ) (3)
The constant-mressure surface s, (X,y) as defined by Eqe. (3), must be
tangent sverywhere to the velocity; aince it is at the same time a fluid
boundary. Neglecting again terme of higher order, this condition becivmss,
2, _ 1 (¥ )
IV (Jz - )
Eliminating 2, by differentiation with respect to x of Eq. (3) and
inserting into Eq. (L), one obtains the following boundary condition for
$ 5 o
Faan) . R ™
IR L(2) - B (ref)x = o (5)
Assuming infinite depth of the water, one has the additional boundary
conditions,
G- - L ©)
5incs the disturbance produced by the foil must vanish at large depth.
Finally, since we assume that the water is undisturbed except by the
sction of the foll itself,
EATE R WL ¢ P ®

Eq. (2) together with the boundary canditions (5), (6), and (7)
determine the potential ¢ N
L. Before proceeding with the equations so far derived, it is inturesting
to discuss a problem which is closely related to the present one,

vb-ﬁf ;’3/1
R

The term @ (V't*f ) in the eguation precsdirg BEq. (3)

did arise from a velocity component {Fig. 2), but it could also have
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arisen from a mressure distribution impossd on the free surface #),
This sugzpests to consider the surface wave pattern produced by an air-
plane flying at an aititude f' over calm water, at a horizontal speed V'
(sea plane at take-off). If we again first assume that the span 2b' ia

snall compared with f'. one can show (e.g. Ref. (@)) that a pressure

increment
poa o'V b‘i'f'(r'%}"/'% )
results at the surface, @' There is the density of the air. Eq. (8)
1s usually derived for a rlane, rigid boundary. Taking into account the
large difference in density of air and water, it is not difficult to show
that one nsglects only terms of higher arder if Fq. (8) is applied insiead
tc 2 free water surface. Indeed, this is also obvious intuitively.

The velocity of the water, relative to a coordinate system x, y, z,
fixed with the airplane, can be taken as the resultant of the following
velocities:

(1) The free stroam velocity A in the positive x'’
direction,
(2) The velocity derived from a perturbation potential,
$'(xyyHz),
There 1s, e ) e . 31 .
it oyt iz (9)
Bernoulli's equation, applied to the water-side cf the interface becomes
o'V EEE (e ) R % { v 2v’ —-,} . },, ¢9z. = & V*
or 2l - - : [Az' '( +(22;)' ] .
Vow'lxzo
With .

#) Compare also Rei. (f)
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this becomes,
< ) Yalld 2 'R ":/1 ’
) L) g e e,
(T&'—" z-o’ ‘—/Tt i Z=0 & s
Also
()_’.: = (!1) = ()_?.) = 0 (1)
Nigp'=-oe ),' 'z iz ]g's-o=
and
lt_') - {!t') )
()X‘ x's ~o® \‘Sl x'cee0 = (3!",,':-00 = 0 (12)

i Comparison of Eqs. (2), (5), (6), and (7) far ¢  +ith Eqs. (9),
(10), (11), snd (22) for ' shows that

g
2 ) = -l;- l (=, 'lz"

T u(v)+( s % (13)

v? v .

-f-; - 73 (i4)
and

A = _‘.. 3 .l = _._V_' : = - -5—'

f £ F o f 5 (15)
where L =2beVl and L = 2b@' VT are the 1ift of

the hydrofoil and the airplane wing respectively.

From Eq. (3) then follows

VL

<

s 000 d . S L e
!.(l.-j) = -{.—‘(%’ z, (‘I’) - T— z,(%.9) (16)

<|‘

| Since the equations determining the poteniial =rs iinesr, the case of

a finite span can be obtained by superposition of the effects of small wing

‘ elements. Wing elemsnts of rectangular lift-distribution can be chosen

and the limiting process smployed, which is schematically indicated in Fig. 3.
Since supsrposition is permissible, the results so far derived must be

7alid also for the finite span and nmxy be formlated as follows:
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Provided that a hydrofoil and an aircraft wing are geometrically

simi{lar and have the same Froude mumber (Eq. iij), the perturbation poten-

tial and the surface disturbance sz,
Y 49 Fig. 3
| |
L \
P(3049) Py Plueds) 95 dre Mlyedy)- F(3)
= g = = — (=
1 q y r(!:) GY

are similar in both cases, in the sense that Egqs. (13) and (15) hold. The
factor of proportionality in Eq. (16) being a positive quantity, depressions
of the water surface in one case are also depressions in the other, etc.
Far instance, with L' = 1300uv 1b, 2b' = 70 ft., V' = 120 m.p.h. (Gru-
mman G-73 Fiying-boat) and £' = 20 ft., the dimensions of the corres-
ponding hydrofoil craft would become, with V 2 1O imots: 2b = 10,4 It.,

£ =3 ft. Assuming L = 1000 1b, z,' 18 29% ol 1z,

L. Soluticn For The Potential ¢

1. The fact that the inhorogzencus part
= -4
br‘f Y"f }:
N
i of Eq. (3) is rotationally symmeiric with respect to the z-axis, suggests tc deal

- -v_ -
- ]

first with a modified problem #) which is entirely symmetric with respect to

| the z-axis: Assume calm water and a coordinate system at 1est relative to

#) Ths approach here is the same as used by Lamb (Ref. (d)) and in various
papers by Havelock,
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the water (Fig. 4)s An eriernal pressure P _,distrituted over the free
surface according to

-%
l‘. 3
P, = QA(rf ) a7)
shall be suddenly applied end maintained during a short interval &t 5
after which it is removed ("impulsive pressure®™). A and f above are
constants. In the process ¢f building up the solution for the submsrged
foil from the solution of the modified problem presently cinsidered, the
constant f above will be taken squzi to the sulmergence of the foil,
whereas A will be taken (a7
o VbFf
A 3
(section 3.L).
=
‘ y Wio A
| P i

free surface

- — 3 t.—v*x

The effect of the externally applied pressure 1is "felt" instantameocusly
at any point within the (incompressible) fluid. At sny such point, definsd
by coordinates r .} z a pressure P (r,s) resvlts, in addition to the hydro-
static pressure due to gravity. P (r,s) is constant during the time
interval &T and fuifiils the equation

o'P = O
together with the boundary condition Eq. (17)at % = O (e.g. Ref. (g), § 73).
At the end of the interval, the fluid has aoquired a velocity which can de

derived from a potential, which in turn is equal to - %? (Refs {g))e

Tt
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The motion which takes place after the time t = O, that is after
the external pressure has been removed at the end of the interval Jt ,

can be deacribed by a potential # (7. z, &} , which Mlfills the equation

v = ©€ (18)
Since, fhou-%-tp , one obtalns from Eq. (17) tha condition

it,: -  -A§t (r‘*f‘f% (18’)
For the elevation E,(r,t)of the free surface one has the initial condition

(z'/tzv = &
gince at the end of the time interval it Z, can be shom to

be of tie order of (St}Z and consequently is neglected. Capital letters

ars used in order to distinguish the various functions pertaining to the

resent problem from those pertaining to the case of the submerged foii.
Applying Bermoulli's equation to the free swrface, at a time &> 0

and neglecting the asquare of the wvelocity as of' higher order,
Y 4
g z. + (-)-;) | 3 0

ze0
(The arbitrery time function which is sonetimes retained in the formilation
of Bernoulii's equaticn for instationary flow can be merged into the potentizl).

Furtharmore one has to satisfy at the swrface the kinematical condition,

w2

It iz
1f terms of higher order are again neglected. Eliminating Z,

from the last two equations, one obtains as boundary conditions for $ ,

(). s (E)...-© (18*)
Also,

(B)..= (&) _-o (18™)
ad

(18¥)
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2. A fundamental sol tion of Eq. (18) is

$ = ck‘ J, (kr) ; k2 o
where J, is the zero order Bessel funciion and k an arhitrary
constant. From tLno principle of superposition of particular solutions of
linear equations,

L -]
= ;) k= /. i
E(rzt) = ju(k)ca(ysk t)je J,(kr ok
[ ]
mst also be a solution. x({k} 1is a function of k to be dotermined

later.

(19)

Assuming that the integral in Eq. (19) is uniformly convergent and differ-

entiating under ths integrai sign, one shows easlly that Eq. (lé is ful-
£111ed by the expression (19). Similarly, Egs. (1& and (181!) 2an be

shown to be satisfied. For instance, there is
T T )
a3 required ty the first one of Eqs. (16%¥).
Finally, substituting expression (19) into the remaining boundary con-
dition Eq. (16°),
f:(k) de(kv)dk = - AL (vi:

In order to determine «(k) from this equation, we make vse of the

:*l"y‘
i

integral theorem far Bessel functions,
[ d
ld = 7 N epe [ —. | - : \\
F(r) = J k J, (k7) dk |1 F(t) Jo (ki) o2
[ 4

[
Taking hers far the fmction F(7)

- ¥
F(r) = At (r‘#f‘) *
ons has =

J.((k)n,(kr)dk = - Asefk,.).(kr)dkﬁ(lu;')"" J (x)d

The last integral occarting here is brought with the substitution of the

(20}
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new variable ma= & ! a standard form,
Jz(['of)-V‘J (1¢le = _jm(m‘f}) J (cm)dn,

where ¢ = fK 20 .minugulontmugmusmﬂy

j,n(m ﬂ) J.(cn)dm* = e'c
which 18 a special case of one of Sonine's formlas (Ref.(h), § 13.6).
Hmca’ from qu (20)’ o

[«(4) 2 (rfak w - Af_@fk e T3, (kv) ik
which is satisfied by .

$k

Consequently, cne has assolution of Eqs. (18) to (2 18 ), from Eq. (19),
k(z-f)
s(rzt) = - ‘_“'}f cos( fom 5j ke T, (k) dke (22)

3. The case of a hydrofoil of emall span 2b <« § is now obtained

fron the results of the previous section by a process of superposition #),
Assums, as berore, that the pressure forcss Eg. (17) act on the free

surface dwring a time interval ¢t . The waver produced by this process

are described hy Eq. (22). At the end of the interval §t , suppose that

the process be repeated, but now with the center of the pressure distri-

tution at a distance V-§t from the ariginal center, and so forth. In

the limit, for vanishing St , ome obtains the case of a pressure distri-

bution moving contimiously at a speed V. The potential function pertaining

to this case is identical to the one pertaining to the hydrofoil (section 3.i)e
Consider a point P with coordinates x,y,z in a cocrdinate system

fixed with the foil (Fig. 5). Alsc consider a point Q through which the

f0il has passed ¢ unitez of time earlier; Q is then at a horizontal

distance Vt behind the foil. At the present moment, P receives waves

#) Compara footnote p, 12
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which originated at Q, t units of time esrlier. Similsrly it receives waves
from points @ , ", etc., though the time elapsed is different. Re=
placing therefare in Eq. (22) v v [[¥t-x"+5" md integrating

over t from O to ©©  , one obtains for the potential ¢ pertain-
ing

AY Fig. 5

to the hydrofoil of szmall span,

$(ryz) = "%Ff f"’("’T"/‘“k(pﬂl('kl?%w]‘w*‘ dé dk

txo keo 2bo<f
The above expression for ¢ satisfies all the conditions (Eqs. (2),

(23)

(5), (6), and (7)) imposed cn ¢ ., In order to check this in the case
of Eq. (5), for instance, we have to find first )ﬁ « For canvenience,

we put
kv(Vt--)" g =
from which
)0 o 08
e = -y -
ot Ix
Differentiating (23) under the integral sign and altering the sequence of
integration, i "y
h 2-f) )
L V—i-tfke ° fom(r;f?t)l(ﬁ;& dt
P33 5

k=o Eso
The last integral, if integrated by parts, is
sk (T . 1o
- "/— J,,(kr/ v 3 JM\l@E t) J.(’-) at .

Lso
Making use of the relaticnship

fke“("f):?,(kr) g ()(_zxru (f~z))

leno
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which occurs frequently in appl;cations of BDessel functionsi§)one obtains

. - MO G- 9 ""rff‘«(f'i?t)k% k1)) oA e W

tro keo
D‘...ffereutiuting and i.ntegrating by parts sgain, leads to

2. SO (1) e Tl feaffamgie T T e o)

Upon rubstitution into the laft of £q. (5), together with
i’ V"" [;s(!gk Ee =43 (k}’(ve-q ry }Jt dk (23%)
&

one recogm.zea “that Eq. (5) is indeed satisfied,

The surface elevaticn is now obtaj.ned from Eqs. (3) and (23 )y
! T, ¢
2,(%9] = pr TI‘J“(Ft). 1_. _,.“( Ve - t / Ii‘i; (2,4)
20 k*O
The Wave Drag 9_1_ a y:irofoil of Small Span

1. The following considerations are valid for the general case, where
the spem =gy be arbitrarily large; later we shall restrict our attention
to the case 2b«<f,

Neglecting viscosity, the drag of a foll can be obtained either by
computing the “dowrrash® at the foil, or hy considering the energy gained
by ithe fluid in the rear of the foil. Ws shall adopt here the method men-
tioned first.

At any point on the center of 1liit line of the foil, the downwash is
composed of the contributions made wy items {2b),(3b), and (L) of mection
3.1. The downwash produced by (Zb),' and (3b) can be obtained from resuiss
derived in the wing theory of airplanes., The downwash resulting from (L)
will be obtained by a superposition of the rcsult obtained in Eq. (23‘)
valid in the case 2b % »

Tc each component of the dowrmwash corresponds a component of the drag.

o 'Y 4
T™he Lotsl drag mar then be separated ints the four {additive) components
-t kS
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Table I
¥ =1
L Corresponding Downwash Remarlcs l
(1) Trailing Induced by trailing Identical with the in-

Vortex Drag #)
D,

vortexes, (2b) of
section TI3.].

duced drag of a mono=-
plane. Independent of
submergence,

(2) Bound Vortex
Drag #)

D,

(a) Induced by trail-
ing vortexes of

image, (3b) of
section II3.1.

Identical with the
"ground effect” of an
airplane. This com-
ponent of the drag is
negative,

(b) Velocity derived
from perturbation
potential, (L) of
section IIB,).

(3) Profile Drag

(h) In Cabeb UU 'u.suh iV pa Ve waw '“v\-.‘
additional drsg muy be experienced. To thoee cases belongs the
formation of shock fromts; which cannot be rendered bty a theory

dha vmacsant +than

utilising liaearizsed boundary conditions.

iz not fully annlicuhla,

%) These expressions were first proposed in Ref. (a)
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Since the downwash pesrtaining to the bound vartex drag can also be

regardad as being "induced®, it seems preferable to use the expression

“trailing vortex drag® rather thcn “induced drag" far the first item in

table 1 #), In the case of an infinite #pan and constant circulation

only a bound vortex is present and only item (2) (besides (3) and

possibly (L)) gives a contribution to the drag. Hence, it seems just-

ified to apply the expression "bound vortex drag" to item (2); and this

alao in the case of a finite span.

Since the trailing vortex drag is obtained from the well-lmown

exmessions developed for the induced drag of sm sirplane wing, we can

now restrict our sttention to the bound vortex drag D "

2. Consider first the downwash w at axy point P in the y-x plans,

produced by the tralling vortexes image of a wing of small span

The trailing vorticily shed between y, md  yy vy,

(?ig. 6)~

induces at P a velocity dwe in the y-z plane. For the integrated

effect of this trailing vortex, externding from x 8 0 to x 8 °°
finds (.ogo Ref. (‘))’

Neglecting terms of higher order,
R' m R=-yyanb

from Pig. 6. Hence; p
dw® 2 - E_(I+ FAax9)

%) Ref. (a)e

?
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A1
R

if higher order terms are again neglected. With
Yy ton @
€ =

¥; coel
sim(0§) 8 And-gcnl m ,.:..0(1- ‘R‘-.—;)

the vertical component of the indunced velocity is
in 0 df‘fi Wi/ a_ 0\ b Ty cm(20)]

_4_;%—— f—i\m"__

4@/ = TR |' R aiwd |
Similarly, ths vertical component of the welocity induced hy the
trailing vertex shed at -y is

am8 4L T 9 (9]

. QI’i L K A4inw8 3
Adding the last two equations and integrating from O to b;

cae has far the downwash w at P, mroduced by the trailing vortexes

image, , b
cos(26) | . di"
w - ) — dy,
2’\‘&‘ < ,’

1f ths domwrrwa=sh is considsred as poeitive if directed dounmwarde.
Through integration by parts, cne hes finally,

60 3 b con20) ; et ‘
ZXR: Hslio

4

e e, st S
o e g o T A ) Ry W e
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3, Jext we shall find a closed exmression for %:i in terms of

tabulsted functions, for points in the lowoer half of the y-s plane,

From Xq. (23™) with X = 0 spd the sudstitution T VE,
bF f k(‘ f) . CRrYS
B o S et [ ([ (T

A-o Teo

The second integral hsre is 2 Sonine discontimuous integr:l and has the

valus (Rsf. (h),§13.47)

*~ 0 for k< y_l_“ 1.0, k< %;
Jr“'("vT z)l(“""&‘ ofr = S %
. ‘-
rre m& ol g‘) fm- k > _'g.i.
. k.- A V
It 1s therefore sufficlent to begin the integration over k at a lower

Udt ke a/‘v" rather than at k = 0. Hence,
= 1. gk
_ k,ef.(: f)m /,y;, & %_‘. /, =
e i d_ -
“La gt &
The presence of the square root mgguta to substitute a new varisble of
on

s

. K|
It is convenient to introdace again the polar coordinates R, 2 (Fig. 6)

x-f = - Rcwn®

y - R aem O

le-v‘-.-.. -_LJ ]

" zbﬁ -;p; 171 .(Msc*)ie 2\,1 ol crshn E!l“"'o*"“‘yd‘
| . With iz " T4xvt © \
‘ ] =) _9_8‘ Ma»“:‘v‘ k;'l

cos -’-5 .ainOA&«‘K./ = Re e 2v
R‘ = al ﬂ and 48y ) -
( ::F P— ) m:ilpl e TR vh ‘,.(o :,
%2. R 1‘.7’ R f(“,{xfi) é (2

z t‘ﬂtV‘ e

i ar ‘bF c“’ =
; -Q
| R~ [&I.*Z&Iu*ﬂfh] (26)
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where =
r . 6- i)
L [ (" e
2 = _/_ﬂ-r"ﬂ)
A Jlrwslx it “dx
o te % -tm{'-l“/
I, = Jewk'ne ix
end vhere a is the dimsnsionless quaniity
SR
N T2 °

The integration is understood to be taken along the positive real axis.

Poisson's integral representation for the zero ordsr Hankel function
©)
(Bessel function of the third kind) H, ( S) of ths complex

argument I can be written (Ref. (1),§VIII, Su),

Ho'(S) = -j T o

where the path of intszration inthe w= L¢/¥  plme can be

‘iy Fig. 7

taken as indicated in Fig. 7. This is valid provided
- oy et -« x-u}f
If we taks [ = ia  and 1, ¢« @  the above condition 13 fulfilled

snd ons has e

=7 00-1'”

HO1a) = _f Rl _f 4~'+§1[e“"’“( av
[ ]
Introducing w = - ¥ in the lsst integral, o

oo Y
T s Ie Sl s (“I"‘)d I H:l) l'() - 7 je = L34
(] a

”

- -
PR e s

(26)
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The first term on the right is reai, the second pure imaginary.
Hence, o)
: ; (27)
& I‘ - -f— ¢ H' (' Q)

irdependent of 0 .

The integrals I, and I, can be obtained from I, by a

recurrence formula. Consider the integral
o " __‘,_,,(O-in}
e jcouf x e dx
[
sc o Differentiating with respect to the parameter a ,
- -j.;u("fc e"“'/"")(,,a oy PRIV «'-v(m)cbc

wheare ne o |

¢

;1:1~“ :H

whereas differentiation with respect to the parameter 6 gives
%% ) ’fo.“n‘ 9-“"{'"7’«;5 gl < iroslad (K_)d,(
from which, after s short cd.culation, o (€m0
-9 I ) 'S g Gl
SRR Y
[
Hence, &5 has the farmula
- ain b ?_;_,. - o0 ":J
I.o: a 36 Ia (28)
md in particular
P ’ s YT, . WRT.)
RI A T 9 R —mP A 1
W = < )8 oa (28°)

since a @d 6 are real. Putting first n=0 , after carrying

out the differentiation, o
Re I, = - § w8 H (o

(29)
-a A 8 Do lqn‘ ponpiany I Ny v
wiwil (A3 2N Add Mje \€U ) VU 4 allaD : (28/‘ =
Y, E
e S ced’® iH (10} - —“‘—a— H, (:Q)] (30)
With these results, from Eq. (26),
o g‘bf' -a b o1 - 28] | (f/". 1 )
RS | (o L U O LS ()

2b «< f ’ x=0




The part of the dowwwash which correspoids to 42 bound vortex drag
(Table 1) i»

w - % = ’!:”: {--.m F,y.? H(‘(Q)-(lmai-i)ﬂ((qj }

2bxf ; x=

o) ,0 . ,
he terms :H, (&) ad  H,'(a) are real md we tasmlated in (Ref. (1)
for values of a ranging from O to 15.9.
L. The bound vortex drag, D, ,o.flshortrlngu
DO - V (IV‘ ;; n-y:o
whare |, is the total 1ift. With g.zf and 6«0 , axi

introducing the Frouds mmmber T  referred to the submergence,

one has from Eq. (32),

Dy = -!va-‘f,(‘r'} ; b «f \
or gl=o 2 - l
D~ o€ = ]
L‘ f
- v S ply - i) £

A similar result hss been obtained by Havelock fcr the case of a sutmsrged
sphere, Ref. (f).

In the particular case of a very small Froude mmber, the term which
contains the exponential and Hankel functions tends towards zerc for Y=~ 0
axi ons obbains

0h) ., = = gem = —002S
The bound vortex drag cver 1ift ratio is negative in this cese,

The same result can be derived also in the following marner: Since
the Froude mumber is a measure of the ratio of inertia force and gravity
force, grevity becomes incrsasingly important as compared with inartia if

Fw oo 1t follows then from Eq. (3) that

(32)

(33)

(34)

(34%)
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z, B

i, e. the free surface acts 1ike a rigid boundary in this case (Ref. (b)).
The boundary condition at ths surface can then be satisfied through the
introduction of the image system (3) of section 3.1 alone, withsut an
additional perturbation potential. All that is left in Eq. (3L) is the
term &  which originated from the velocity induced by the image
rysten.

For large valnes of F, 1.6, small arguments of the Hankel functions,

one has ths asymploiic values #)

W) -k e (37

H?’ ] @« <= %= F
(¥ = Buler's conZ'u}nt). l-‘r,;m Eq. (34); one obtains then after

short calculation,

0/ .

Qravity being neglegihle as comparsd with inertia forces in this case,
the boundary condition at the surface can bes satisfied by means of an
image systez of opposite circulation as compsred with the image system
employed so far. This consideration leads also, independently, to Eq. (3L5.
The bound vortex drag in this cese is identical with the "matually
induced drag® of a biplane,
The function Y, is plotted in Fig. 8e#), The bounc vortex drag
is found to vanish at 2 Frouds nmusber F = 0.6k,
It will be shown in section 7 that the condition Zb« f 80 far

imposed, can be graatly relaxsd without lnvalidating Eq. (3L4). For instancs,

#) See also Ref. (a) where this apprcach has been first suggested,

##) A similar curve is persented in Ref. (a) , where, Lowever, a somswhat
different definition for the dimensionless function Y, I8 employed.

\ :
(Yo e = (L™
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D = —=—. 4 ¥ . 2b s §
(1 i >J
or also i B L b
D Sy s
2 = Gkt (r) b(35)
whare = %
2
Y.(F) =~ 5
and Z'i'
7 B 4

(=)
In the last squation, the symbol ~  mesans the span-wiso average of ths
quantity in question. M depends upon the 1ift distrituition only.
¥hereas, for a rectangmlar 1lift distribution, /.-I, one finds oasiiy for

an: elliptic distritutiom,

2
22T = .os
It :

/h. =

The function Y, (F) 18 also plotted in Fig. 8. ¥ (F) vanishes for

FSO0md for Fas oo
Y\ L]
P=20and F= o

as one recognizes from tiie expression found for
The physical argument utilizsed in seci:ion 5,4 for ths caves
s leads also to the conclusion that the bound

vortex drag must vanish in thea2e cases.

General Case of tha Wave Drx o_f 2 Sgle M&i}.

ls Consider now the part of the downwash which corresponds tc the bound

s 8= =f by a wing
element du, , located at x = 0, y = ¥, 5 = -f (Pig. 9),

vortex drag and whick is induced at x = 0, y = y,



) — o e St e ya
P TR T A L T — JRapsioy peragiraigrmisgod & .
3 % L 5 -v s’ 00

— LT s

HR - L - Page =29-

CONFIDENTIAL

Por this parpose, one has to replace in Bq. (32) 2b by dy, amd

-

L 4 s af !
Q - | — =
AV i’ Fcoz 8’

Hence, one obtaine for the downwash argls, i.e. the ratioc of the downwash
velocity and ths speed of advance,

L. (y '
y(_v—{}" Y, (F. 8% 3,
where z

' 'j' Nyl \ i . Wy v >(36)
V() = S [ o)) (e et )]

cos20'cos (20 l
and where = = T
’
Ya= 9,
e ! = ar Aﬂ —'—‘i—"—- J
In Fig. 10, Y, is plotted versus the dimensionless distance

Y- o 2 tan 8’
§

for three different values of the Froude mumber,
r=s0
P = 10.°"

Fa on
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In the case F 2 0, the terms containing the expotential and Hanlel

functicns vanish, Consequentiy,

(¥4 ‘9' M(zo'}
(Y - - = .
) 7 x (36%)
In the case F = o0 | miing use of the asymptotic repraesentation for

the Hankel functions,

) o3t m(l&)

(Y' e 2 (36“)
The right-hand side of Eqs. (36!) and (26%) vanishes for O;¢§wmaponding

’\'00 Y- 9 - s 2

e At these points the domwash changes its aign.
2. The total downwash angle (as far as the bound vortex drag is ccncernsd)

at Yy - Ya i

+b
{ 4 )
L. 0 y F. m’;ﬁﬂ _) d’
",V ‘5',‘ e & s (37
y=-b
s from this the bound vorvex drag, <
+b 4
i
= : L WED /F n«/f-« , dy
D. ',‘v'f‘f J (i) (ﬂ}h ’ j (
gu-b ye-b _
Introducing the dimensicnless quemtities X = 4/f ;, A, = 3./f
and tha span-submergence ratio
s &
onus has )2 ; )
Do = v mE O
or zieso -
2. Gnr oy i 50)
= i (N L(f\) w2522 0y )
Y; - F J’ 5.&7:: : YL(F’ e ‘\ >d
Me-f A4
4 8 -+
o sl i
2' .Ll T:' § L ‘,'(;,:‘_ B
»e-p x,u-[% - “”_______. }dxlax
o
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' = erc fan )«.-X.

Besides depending from F and 3 , ¥, depends also from the lif:-
distritution. If one pute

N
L, = Ly max }J

the distribution is

=
c']c

rectangular for n = 0

elliptic for na Y%

parabolid for nae |
The total 1ift L« 2bl, is found

*h
bt L""“J E ‘7] dy - 25'--...;]“' viv = & DO L, e

[ (nb !
l" 9‘. PR
after shart calculation, where [ signifies hsre the gamun function.

Consequently, one can replsos in this ¢ —QZ‘-) —f—-i) in Bq. (39) vy
i(”") -(‘*l) r(""*) A ,‘ Ax 3
L g : . :!”(m) {[' ({‘) ][' (%)]}

For instamcs, for n = /2  (elliptic distribution) this becomes,

_@A_ f'hl . B Ur, (1))][ (I_Tz)*j

L r
In const.rut to the integral encountered in calculating the induced

35)) is expressed

~~

drag (trailing vortex drag), the bownd vortex drsg (Eq.
W a proper integral. It can be evaluated for lsbansc with the sid of
a planimeter:

In Fig. 1 Y, is plotted vorsus 4  far F = 10.85 and n=0 .
It 48 convenien!, in this case, to take as new variables of integration

in Eq. (39)s
l\.| = x:_- \,
Ay = K,

Consequently, s M -4

‘fz = -{TJJA,_ Y, (Fy arc fon 1')‘“\'
As“"g' A Ay ﬁi‘

nsO

(39%)

(39%)
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Y, is then obtained by inisgraling under always Lhs DTS

z Y, in Fig. 10, but for various wvaluss of the limits of integrationj

plotting the result of the integration versus A, and integrating

once more gives Y, .

3. If expression (3L) four the bound vortex drag of & short wing is written

in the same form as Eq. (39), one obtains,

Y, - At

in this case, The straight lines corresponding to this relationship are
: also dram in Fig. 11, for F = 0, 10.85 and ce o They are tangent
to the curves plotted in this figure. The slope reaches a maximm at
about F = 2.5 (Fig., 8) and decreases then again for increasing Froude
number. Hence, part of Fig. 11 is doubly covered by the lines F = con-

stant.

Similarly one has for a long wing ,
Yy = /“Yl
This relationship correspond= to horizontal lires, tc which the curves in
Fige 11 are asymptotic.
The bound vortex drag is independent of the 1lift distribution in the
case of a short wing (Eq. (3L)), and is, for practicsl purposes, almost

independent from it in the case of a long winz (section 6). Presumably

this is therefore true for the whole range of /3 o This fact malms
the distinction between bound vortex drag and trailiing vuriex deag very
convenient for calculating purposes: the former deponds upon the Froude

rumber and the span=subtmergence ratic, but little uvpon the 11t distri-

e o i

bution; the latter depends only upon the lift distribution,

Le Inthe case F 2 0, n » 0, Eq. (39%) simplifies to

?a Ay 2
- dA, cor? b ces(267) dA,
’ uxpj J

AR Mys Al'é
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The second integral 1 Wth 6' = v fem 4
1 8
Al A 5 Acf
"A‘A = —-!'r-g
aca RS (1 &) '+ % lAsac-4
Integrating over A, , one finds after short calculatlon,
b
7 + ﬁ-
L 4 5 - F fz.'_(_l_d 3 Fasl w0
3 m A

’

This exprassion for Y, may be regarded as an approximation in the
case of a rectangular lift distribution and of a very small Froude mumber,
and is plotted in Fig. 11,

The surface acting in this case like a rigid shs2t, cne can derive
Eq. (395;150 directly by considering the downwash Eq. (25) prodngod by
the appropriate image.
S. 6" in Eq. (39) i3 never larger than ¥ , where ¥  is the half-
angle under which the span appears if viewed from the midpoint on the

surface (Fig. 9). Provided that

Fwn? :—f——»l

V1+L:

4 ) o, .
the argument of the functions H, and H, in E3. (39) becomss

very smeile aaking use of the asymptotic representation for tne Hankel

functions and assuming n s 0 3 4 Age Y2 )
. cor*t co1(20,dA
v ! a3 Fasbis
-3 - ¢+ 2v”4 (= - ;‘ = A~ 32
which 1o the same ae obteined in ths zase F =08, axcept for the =ign.

Cons=squeniiy,

YS = +

e v A |
r. (1’/ *_/ e Feosd » | , n=o
Ix /3 ’

Yor instance, for F = 10.85 and &= 45° (corresponding to F <1 7= 7,67)

one underestimates the bound vortex drag by 22% if this equation is used

s a first gpproximation.

(39%)

(39"
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6. For comparison, considsr the trailing vortex (induced) drag
2
L J
D2 & V: exbt

for an elliptic 1ift distribution (e.g. Ref. (e)). For easier comparison

with Eq. (39), one may write the above equation,

D, = L : L. g n= 72 (
d B V: 16 xf (LO)
The axpression # is also plotted in Fig. 1l.

The trailing vortex drag predominstes over the bound wortex drag in
the case of a sufficiently small span. It follows ther from the corres-
ponding thecrem derived in airpiane wing theory, that the optimum 1ift¢
distribution (i.e. the distribution for which the total drag of a single
foil is a ainizxs) is elldéptic.

On the other hand, far a suffielsntly large span, the bound vortex drag
becomse rredominant. It follows then from Eq. (35) that the optimmm 1ift

distribution approaches a rectangular distribution. #)

6. Apmndix
If one introduces in Eq. (39) instead of the variables of integration
A, and A,
11 2 ZX.
?z. = 2 A!

mnd with ths symbols

—‘— ! X- :i i A -9 {3
“ T o T oFpeeE - rV'*( ) -1}
Ver 07 | LW TR w Ll ;
v D w e () e (2 (-2
*) A in Eq. (35) cannot be smaller than | o This latter

valus is obtained far a rectangular lift-distribution.

e et -
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one ootains shori caiculation,

+
'Y 3

¢ - /m‘n5 o ;(i}. _v
B v fi -G - T eyt e ] SEE
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This i3 the expressior. far the bound vortex drag steated in the msmorandca
Ref. (J) containing the advanoe information on the present subject material.
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