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I 
SUMMARY 

The "bound vortex drag" of a singly hydrofoil is computed for diff- 

erent, prescribed lift distributions. Eq. (3U) gives the drag in the 

Halting case of a very short span; Eq. (35>) in the case of a very long 

span. 

Subsequently, the case of an arbitrary span is considered (Eq. (39))j 

a numerical calculation has been carried out for a Froude number F = 10.85 

and a rectangular lift distribution (Fig. 11). Eq. (39) can be greatly 

simplified if the Froude number is either very small (Eq. (39*) for a 

rectangular distribution) cr very large (Eq. (39 ) for a rectangular 

distribution). 

In section 7, the problem of the optimum lift distribution of a 

hydrofoil is shortly discussed in a qualitative way. 
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1.    Introduction 

le A hydrofoil of aeml-apan b is considered, moving at a constant apaod 

of adranca V and constant submergence through -water of infinite depth 

(Fig. 1).    The rater ia assumed to be undisturbed axcapt by the action 

of the hydrofoil itself. 

In the present approach, for the p«M*poa« of * simplified analysis, 

the actual foil ia replaced by a single, straight "bound - Tortex-lina" 

in conformity with Prandtl's airplane wing theory.    The bound • vortex- 

line is taken parallel to the (undisturbed) interface, at a distance f 

from it, and located approximately at the centers of lift of the wisg 

sections of the hydrofoil. 

An arbitrary apanwiae lift-distribution is prescribed.    The probl«"» 

LB sinllar, therefore, to the ao-callad "first problem of airfoil theory*, 

complicated here by the presence of an interface. 

Viscous forces are neglected.    Irrctational fluid motion is asaisssd 

everywhere outaide the bound Tortex and the trailing vortex sheet. 

The coordinate system x-y-s in Fig. 1 is consider*" as beiug fixed 

with the foil.    They x-y plane coincides with the undisturbed position 

of the interface.    Viewed in this frame, the fluid-motion vs steady; 

The velocity at infinity, V, shall have the direction of the positive x 

axis. 

2. The Telocity at any given point of the fluid Is designated by the 

rector      C       In the x-y-s system.    It will be assumed that, for points 

on the free rsrface, 

 «     I CO 
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eueh that tacme of the ardor of Bagnltude of   (———! nay bo 

neglected.   The ebore aaauaption la the bettor fulfilled, in the cos 

•tailor lift-dlatributioni, tbo smaller 

• of 

\t 

r^s        is xas maxtmm ral»* of me spamiae circulation-distri- 

bution,   ftcserieal ***aplee In Refa.  (a) and (c) indicate taatlq. (1) 

should s« -soil fulfilled In BMB t actual applications of hydrofoil*, 

It fellows fron the above poatulate that the slope of the aurfaoe 

**r*s ss£ tisaSar height are assuwed to be eaall.   The latter at&teaamt 

rollcws froa an application of Bernoulli'• a equation to the free surface. 

ID fact, it la f<*ad that the ware height is, by virtue of Eq. (1), 

aeened to be eaall compared with the deep-water wavelength   lnVk/§ 

(e.g.   Hef.  (d)    § 228), 

hydro- 
foil 

JL «• £- 
A £- 

T image  system 
c— 

fro? xl2i 

sxirfa^o--^^" /{ 

X; T5 

Pig.l 

'center-of-lift line 
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Also, it will be assumed that the wave height is small compared with 

the submergence of the foil. 

Due to these simplifying assumptions the boundary condition at the free 

surface is linear (section 3»3)« 

3.    Strictly speaking,  the trailing vortexes coincide with streamlines. 

In the case of a wing in an infinite medium, however,  it is known that a 

good approximation to the induced drag is obtained, if the trailing vortex 

lines are assumed to be straight and in the direction of the free stream 

velocity.    At least this is the case if the induced drag over lift ratio 

is small, which in turn requires a reasonably high aspect ratio. 

In the case of a hydrofoil, the preser.c* of the interface causes an 

additional distortion of the trailing vortexes.    The vortex sheet follows 

new to a certain extent the wave motion of the surface.    Due to the damping 

effect exerted by the depth, the amplitude of this motion is diminished 

as compared with the one of the surface.    It follows from the conclusions 

drawn in section 1.2, that this distortion of the trailing vortexes is 

small.    One neglects only small terms of higher order if one assumes, 

for the purpose of computing the wavedrag, that the trailing vortex 

lines are straight.    With this assumption, the boundary condition for the 

velocity at the vortex sheet is linear. 

Concluding, one may note that tte  (in-viscous) drag is small compared 

with the lift in nearly all cases of technical interest,    This means that 

the downwash is small compared -sriLh the ?pe«d of aovaiiCi^  ahich indicates 

that the linearization of the boundary .-cndition at the surface and at 

the vortex wheet is permissible in these cases. 
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2,    Nomenclature 

a, A........constants  (Eqs.   (26"),  (17!); 

b semi-span 

0^ ». lift coefficient of foil 

Dg bound vortex drag 

D» trailing vertex drag 

f c... • •submergence 

F.. Froude number  (Eq.   (33)) 

g. .acceleration due to gravity 

L lift 

L. ...lift per unit span 

n ...constant  (section 7.2) 

r,R radii (Figs. 1, 6) 

S. wing area 

t. • • • ••time 

7 speed of advance 

w ...downwash in y-s plane,  Induced by image of wing-elsment 

Xf7,*,y, ,7, ,7t ,..-• coordinates   (Fig. 1) 

»si elevation of free surface 

/5 .... span-cubasrgence ratio (Eq.  (38)) 

i angle (Fig. 9) 

r .Circulation 

P • .Qmmma function 

}•  .......... angular coordinate  (Fig,  1) 

6f 8   .....*....angular coordinates  (Figs. 6, 9) 

/A  ..........constant (Eq.   (35)) 

<B   ....Density 
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$   perturbation potential pertaining to wing eleaent 

v  ...........perturbation potential of rot at Ian ally By mats trie 
problem (section U.l) 

YS,Y„ V^Vj dimensionless functions  (Eqs.   (3U),   (3$),   (36),  (39)) 

"~ ,.superscript indicating spanwise average. 

Basic Equations 

1.    It is convenient to consider the velocity with respect to the x-y-z 

coordinate system,  at any point below the interface,  as the resultant of 

the following velocities? 

(1) The free stream velocity      V       in the positive x direction. 

(2) The velocity induced by 

(a) the bound vertex, 

(b) the trailing vortexes. 

(3) The velocity induced by 

(a) an image of the bound vortex,  i.e. the vortex 
obtained by reflecting the bound vortex at the x-y 
plane and changing its sense of rotation (Fig. 1), 

(b) the corresponding images of the trailing vortexes. 

(h)    The w»locity derived from a perturbation potential•(x,y,s). 

This merely amounts to « definition of  •        , the determination of which 

will be the first problem considered. 

At all points below the interface,  Ueme  (2),  (3),  and (I*) are of the 

nature of a 3mall perturbation added to   V      .    The only exception to this 

arises in the immediate neighbourhood of the foil, where item (2a) assumes 

large values. 

The velocity defined in (h)  above is iri*otational everywhere,  including 

points situated on the bound - and trailing vortex linos.    Hence, the 
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resultant Telocity obtained by addition of (1), (2), (3)» and (U), is 

also irrotational, as is required, except at points located on the bound 

and trailing vortexes of the foil, where, due to item (2), tne correct 

circulation is obtained. 

Item (3) aboTe is introduced merely for mathematical convenience 

(section 3.3). Omitting or adding it amounts only to different definitions 

of  4 

2. We consider first the case where the span 2b is vsry small compared 

with the other characteristic dimensions of the problem *).    The general 

case of a finite span is then obtained by superposition of the results 

derived for th« inflnitesiiul span. 

3. There is 
J*4> >*T i*T 

the solution being subject to the boundary conditions derived in this 
M * T? * I?    *  ° (2) 

section. 

Neglecting terms of higher order, one may replace the boundary conditions 

at the interface by conditions imposed at z • 0. We examine first the 

velocity induced at any point of the x~y plans, by items (2) and (3) of 

section (3.i). 

The bound vertex (2a) and its image (3a) indue* together a velocity the 

y and s components of which .vanish **) by reason of symmetry. The x com- 

ponent becoees, for ib*.<f 

*) The quantity V /J    f which enters the Froude number, has the dimension 
of a length and, in general, must also be considered as a characteristic 
dimension of the problem. The same applies to r/V  , a quantity which 
in the case where the foil is replaced by a vortex line, appears in lieu 
of the chord. Actually, however, It is «hown in a subsequent part of the 
analysis (section 7) that the above conditions may be replaced by a less 
stringent one:  It is sufficient to require  Zb«f       in order that 
the equations of the present section be valid. 

**) The fact that the %  component vanishes, is the main advantage gained by 
the introduction of the image. 
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from the anaiogon to the "Law of Biot and Swart" in electrodynamics. 

There is    ra » x**<f* and     F     denotes the average circulation, that is 
• b 

2b j 

The trailing vortexes (2b) and their images (3b) induce together a 

velocity with vanishing x and z components. It will appear that the y 

components of velocities do net enter explicitely the boundary conditions 

for the free surface; there is no need therefor* for an expression for the 

velocity induced by the trailing vortexes together with their images. 

Fig. 2 depicts the resultant velocity and its components at a point 

located on the x-y plane. 

£« 0 

The pressure is constant for points on the free surface and may be put 

equal to aero without loss of generality.    Hence, from Bernoalli's equation* 

neglecting terras of higher order in the perturbation velocity, 

since a#» 0 for x « - •*.    zj'z, (x,y) is the local elevation of the free 

surface from its undisturbed position. 



HR - U 

j30f—«"-«   - *;"' ••,———'-~'o ""•"--'~ '    **— < JC— - - .t,«:^"'         •• »* 
..   ;•    .;'-.-' 

Page -9- 

CCNFIEENTIAL 

Simplifying the preceding equation, one obtains 

The constant-pressure surface s,(x,y)  as defined by Eq.   (3), ou.it be 

tangent everywhere to the velocity* aince it is at the sane time a fluid 

boundary.    Neglecting again terms of higher order, this condition Decease, 

Eliminating   z, by differentiation with respect to   x   of Eq.   (3) and 

inserting into Eq.   (b), one obtains the following boundary condition for 

Assuming infinite depth of the water, one has the additional boundary 

conditions, 

since the disturbance produced by the foil must vanish at large depth. 

Finally, since we assume that the water is undisturbed except by the 

action of the foil itself, 

n±\    . («)     = (£)    _- o 
Eq.   (2) together with the boundary conditions  (5),   (6),  and (7) 

determine the potential   4> » 

U.    Before proceeding with the equations so far derived, it is interesting 

to discuss a problem which is closely related to the present one. 

The term      ^V -— (r1*-^1]      * in the equation preceding Eq.   (3) 

did arise from a velocity component (Fig.  2), but it could also have 

P 

(3) 

00 

(5) 

(6) 

(7) 
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arisen from a pressure distribution imposed on the free surface •). 

This suggests to consider the surface wave pattern produced by an air* 

plane flying at an altitude f • over calm water,  at a horizontal speed 71 

(sea plane at take-off),    If we again first assume that the span 2b' is 

small compared with f'- one can show (e.g. Ref.   (#)) that a pressure 

increment 

p- -  ,-v *£*>•;•*-/* m 

results at the surface. <?'     here is the density of the air.    Eq.  (8) 

is usually derived for a plane, rigid boundary.    Talcing into account the 

large difference in density of air and water,  it is not difficult to show 

that one neglects only terms of higher order if Eq.  (g) is applied instead 

to s free water surface.    Indeed, this is also obvious intuitively. 

The velocity of the water, relative to a coordinate system x, y', «i 

fixed with the airplane, can be taken as the resultant of the following 

velocities! 

(1) The free stream velocity   V'        in the positive x' 
direction. 

(2) The velocity derived from a perturbation potential. 

There is, 

Bernoulli's equation,  applied to the water-side of the interface becomes 

or 
i 

With 

i*1 

• )    Compare also Ref.   (f) 
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this becomes, 

#££) Wf) .£.!£QYr,'*n    V=   ° (io) 

/i£)      .(»']       „ At') 

Comparison of Kqs.  (2),  {$), (6), and (7) for    f      mth Eqs,  (9), 

(10),  (11), tad (12) for    •' shows that 

Also 

and 

provided 

and 

V1      . 

t 
X                      * • * JL 

f 
r 7   • 

- zbpVF and 
. i 

L      • 2b ©vT' are the lift of 

<M) 

05) 

the hydrofoil and the airplane wing respectively. 

Frss» Eq.  (3) then follow 

Since the equations determining the potential are linear, the case of 

a finite span can be obtained by superposition of the effects of small wing 

elements.   Wing elements of rectangular lift-distribution can be chosen 

and the limiting process employed, which is schematically indicated in Fig.  3« 

Since superposition is permissible, the results so far derived must be 

ralid also for the finite span and may be formulated as followst 
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Provided that a hydrofoil and an aircraft wing are geometrically 

similar and hare the sane Fronde number (Eq, ii.), the perturbation pets: 

tial   • and the surface disturbance    a. 

I 

r{»,*«,*)'jv 
TF=^ 

r 
r 

r(*) Or 

,«• r(,,»4,.)-r(i.) 

C  

are similar in both cases, in the sense that Eqa.   (13) and (16) hold.    The 

factor of proportionality In Eq.  (16) being a positive quantity, depressions 

of the water surface in one case are also depressions in the other, etc* 

For instance, with L'  - 1300u lb, 2b'  = 70 ft., V • 120 m.p.h.  (Gru- 

mman 0-73 Flying-boat) and fx * 20 ft., the dimensions of the corres- 

ponding hydrofoil craft would become, with V « UO knotst    2b = 10,1. ft., 

f • 3 ft.    Assuming L = 1000 lb, s0<    is    29* of   s0. 

k»    Solution For The Potential t 

ls    Th« fact that the inhocoxenous part 

9      n      * 
of Eq.   (3) ie rot&tionally symmetric with respect to the *-&xis, suggests tc deal 

first    with a modified problem •) which is entirely symmetric with respect to 

ttez-axis;    assume caljn water and a coordinate system at rest relative to 

*)    The approach here is the same as used by Lamb (Ref.   (d)) and in various 
papers by Havelock. 
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the water (Fig. U).    An eztamal pressure    ^.distributed orer the free 

surfsee according to 

-   —o»   - 

(17) 

shall be suddenly applied end maintained during a short interral it   , 

after -which it is removed ("inpulaive pressure*1 )• A and f above are 

constants. In the process of building up the solution for the subaerged 

foil from the solution of the modified problem presently considered, the 

constant f above will be taken equal to the submergence of the foil, 

whereas A will be taken (17*) 

(section 3.U). 

free surface. 

The effect of the externally applied pressure is "felt" instantaneously 

at any point within the (incompressible) fluid.    At any such point, defined 

by coordinates r3 x   a pressure    P (r,s) results, in addition to the hydro- 

static pressure due to gravity.    P (r,») is constant during the time 

interral     o~     and fulfills the equation 

c*P   •    o 

together with the boundary condition Eq.  (17) at s • 0 (e.g. Ref.  (g),   § 73). 

At the end of the interral, the fluid has acquired a velocity which can be 

derived from a potential, which in turn is equal to    - -r ?     (Ref.  (g)). 
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The motion which takes place after the time t • 0, that ia after 

the external pressure has been removed at the end of the interval   St , 

can be described by a potential    $ (r,at, tj    , which fulfills the equation 

-*i     -    © (18) 

Since,      §      m~irP   * one obtains from Eq,   (17) tha condition 

ft.o     «      -Alt(r* + pj'* a$) 
• •o 

For the elevation    Zyrtjof the free surface one has the initial condition 

since at the end of the time interval    St    , Z0    can be shown to 

be of the order of (it) and consequently ia neglected* Capital letters 

are used in order to distinguish thG various functions pertaining to the 

present problem from those pertaining to the case of the submerged foil* 

Applying Bernoulli's equation to the free surface, at a time    t> 0 

and neglecting the square of the velocity as of higher order, 

(The arbitrary time function which is sonetimes retained in the formulation 

of Bernoulli's equation for instationary flow can be merged into the potential). 

Furthermore one has to satisfy at the surface the kinematical condition, 

a - (if.) 
li" terms of higher order are again neglected. Eliminating Z. 

from the last two equations, one obtains as boundary conditions for § , 

(fflL. ••(£)...--• 
Also, 

and 

V i*" /»•-*•    I ix /-K—^ 

(if)       - (»-*•) 

a 0 (18 H) 

(18*) 
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2. A fundamental so! tion of Eq. (18) is 

§  »  e1** 3.(kr) . k » 0 

where  0„   is the zero order Bessel function and k an arbitrary 

constant. From one principle of superposition of particular solutions of 

linear equations , 

f (V r ft)  .   J«(*) <*(ftZk)* k' J.(kr) elk 

oust also be a solution- «4(k)    is a function of   k   to be determined 

(19) 

later. 

Assuming that the integral in Eq.   (19) is uniformly convergent and differ- 

entiating under the.integral sign, one shows easily that Eq.   (la) is ful- 

filled by the expression (19).    Similarly, Eqs.   (18) and (18    ) can be 

shown to to satisfied.    For instance, there is \ 

as required by the first one of Eqs.  (16    ). 

Finally, substituting expression (19) into the remaining boundary con- 

dition Eq.  (18 l ), 

UMXM ** - -An (rx*ry * 
In order to determine v.(k)     from this equation, we make use of the 

integral theorem for Bessel functions, 

F(V) -  J k J. (kr) d k j / T(i) J.(kl) Wl 

Taking here for the function f(r) 

one has 
F(f)     «    Ait  (V*/*)'% 

. 0 0 

The last integral occarting here is brought with the substitution of the 
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new variable     m « —•     for      I       on a standard form, 
?       jT(ll*fx)'VtD.(kl)yi» ±[%»**)'*ZM** 

* *** where     C • jfc * 0   • The Integral on the right is simply 

Jm(m*+i)~    3, (cm) dm      =     £~C 

which la a special case of one of Sonine's formulas (Ref.(h), § 13.6). 

Hence, from Eq.  (20), ^ 

f«(k) 3. (krj elk     .    -    AUfke'fkJt(kr)*tk 

which is satisfied by ' 

A it  .      »f* 
«(*)        -      -   tj-k* (21) 

TV 
Consequently-, one has absolution of Eqs.  (18) to (18    ), from Eq.  (19), 

Ait f      .j-r-k\. ^k(*~fK  f.ji  /L, 

3* The case of a hydrofoil of small span  2 b <*•$      is now obtained 

from the results of the previous section by a process of superposition •). 

Assume, as before, that the pressure forces Eq* (17) act on the free 

surface during a time Interval it   e The wavec produced by this process 

are described by Eq. (22). At the end of the interval it  , suppose that 

the process be repeated, but now with the center of the pressure distri- 

bution at a distance V-Jt from the original center, and so forth. In 

the limit, for vanishing it $  one obtains the case of a pressure distri- 

bution moving continuously at a speed 7. The potential function pertaining 

to this case is identical to the one pertaining to the hydrofoil (section 3.U). 

Consider a point P with coordinates x,y,z in a coordinate system 

fixed with the foil (Fig. £). Also consider a point Q through which the 

foil has passed t units of tine earlier; Q is then at a horizontal 

distance 7t behind the foil. At the present moment, P receives waves 

«) Compare footnote p. 1Z 
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which originated at Q, t units of tins earlier.    Similarly it receives wave* 

from points T  , Q* » etc., though the time elapsed is different*   Re- 

placing therefore in Eq.  (22)     f by |ffW-*/•**'  snd integrating 

error   t   from 0 to «o        , one obtains far the potential  $ pertain- 

ing 

Fig. 5 

if 

Ay 

to the hydrofoil of small span. 

__ t*o *••    ib-**'  « 
The above expression for •        satisfies all the conditions (Eqs.  (2), 

(5),  (6), end (7)) imposed en   •       .In order to check this in the case 

of Eq.   (5). for instance, we hare to find first     ±1 .    For convenience, 

we put 

(23) 

lc||^ **-«/• *'      *     f 

from which 

7t 
Differentiating (23) under the integral sign and altering the sequence of 

integration, — r      .   . *i      f , v 

Ihe last integral, if integrated by parts, is 

-  '-  \ fkfj  •   ~ Jin £K t) 3. (f ) ** 
Making use of the relationship .— n\" * 
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which occurs frequently in applications of 3essel functions^)one obtains 

Differentiating and integrating by parts^again, leads to 

Upon rubstitution Into the left of Eq. ($), together with 

one recognizes that Eq. (5) is indeed satisfied* 

The surface elevation is now obtained from Eqs, (3) and (23 ), 

-• - - ^J fw^^V^I^^l} 
' t*o  *r° "—" " " J 

5>» The Wave Drag of a Hydrofoil of Small Span 

1. The following considerations are valid for the general case, where 

the spsn ^sy  be arbitrarily large; later we shall restrict our attention 

to the case 2b «f . 

Neglecting viscosity, the drag of a foil can be obtained either by 

computing the "downrash" at the foil, or by considering the energy gained 

by the fluid in the rear of the foil. We shall adopt here the method men- 

tioned first. 

At any point on the center of lift line of the foil, the downwash is 

composed of the contributions made "ty items (2u),(3b), and (ii) of section 

3.1. The downwash produced by (2b), and (3b) can be obtained from results 

derived in the wing theory of airplanes. The downwash resulting from (U) 

will be obtained by a superposition of the result obtained in Eq. (23 ) 

valid in the case  2b *.«-J 

To each component of the downwash corresponds a component of the drag* 

The total drag nfy  then be separated into the four (additive) components 

listed in table i. 

(2U) 

! 
•) The same relationship wa: used on pnrres lb/16. 
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Table I 

•"" -   -i  

Corresponding Downwash      Remarks 

(1) Trailing 
Vortex Drag *) 

Induced by trailing 
vortexes, (2b) of 
section IlSal* 

Identical with the in- 
duced drag of a mono- 
plane. Independent of 
submergence. 

(2) Bound Vortex 
Drag ») 

(a) Induced by trail- 
ing vortexes of 
Image,(3b) of 
section IT3JL. 

Identical with the 
"ground effect" of an 
airplane. This com- 
ponent of the drag is 
negative. 

(b) Velocity derived 
from perturbation 
potential, (U) of 
section USA* 

(3) Proflie Drag 

(u) In cases to shich the present theory is net- felly mnHemhi*. 
additional drag auy ba experienced. To those caaea belongs the 
formation of ahock fronts, which cannot be rendered ly a theory 
utilising linearised boundary conditiona. 

•) These expressions were first proposed in Ref. (a) 
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Since the downwaah pertaining to the bound vortex drag can also be 

regarded as being "induced", it seems preferable to use the expression 

"trailing vortex drag" rather then "induced drag" for the first item in 

table 1 *).    In the case of an infinite span and constant circulation 

only a bound yortex is present and only item (2)  (besides  (3) and 

possibly (U)) gives a contribution to the drag*    Hence, it seems Just- 

ified to apply the expression "bound vortex drag" to item (2)] and this 

also in the case of a finite span. 

Since the trailing vortex drag is obtained from the veil-known 

expressions developed for the Induced drag of an airplane wing, we can 

now restrict our attention to the bound vertex drag    £>D • 

2.    Consider first the downwash   w    at any point    P    in the y-x plane, 

produced by the trailing vortexes image of a wing of small span        (Fig. 6). 

The trailing vorticivy shed between      y$ and      y\ + <tyi 

induces at    P   a velocity dw* in the y-z plane.    For the integrated 

effect of this trailing vertex, extending from x • 0 to x • <*>      , one 

finds (e.g. Ref.  (e)), ^ ^r 

Neglecting terms of higher order, 

from Fig. 6.    Hence, 

*)    Ref.   (a). 
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i 

if higher order tarns are again neglected.   With 

the Tertlcal component of the Induced Telocity la 

9  JrT      Wi / «#•» 

4** 

Similarly, the rertleal coaponent of the relocitf induced fcgr the 

trailing rcrtex ahed at      - y$        la 
*~*J£ !*|   +    *J   aw(2^] 

Adding the last two equations and integrating froa   0   to   bs 

one has for the downwash   w   at    P, produced by the trailing rortexee 

image, 

w 
2*R* J   '^,   "» 

if the doamrash la considaved as poaitire If directed doanearde. 

Through integration by parts, one has finally, 

VY "IT*1" i 
ao 

X :.' (2*) 



&*& w \ 

RR - it P*ge -22- 

OONFrDENTIilL 

I*    text we shall find a closed expression for    i- in terse of 

tabulated functions, for points in the loser half of the 7-11 plane. 

From Sq.  (23m).slth X * 0 and ths substitution       r -   V*" , 

The second integral hare is a Sonine discontinuous integral and has the 

Talue (Rsf.  (h),|l3.U?) 

It is therefore sufficient to begin the integration arer   k    at a loser 

k •   0/V rather than at k » 0.    Hence, 

The presence of the square root suggests to substitute a new Tariable of 

«gtegp^ti ea\   tc       br 

from which 

pT2r . x^^jwc(f)  - -a,^H 
It Is convenient to introduoe again the polar coordinates   R,9 (Fig. 6) 

where 
M- f       - - * <**9 

-9 

With '* **v'* -/ . -, . ,   \ 

( Rt  »       real part) and iiissplifyiaf, e* ^/•-/*) 

0*1 gjL-M 
real part) si 

. 4 c*«0 
or 

£.-^e"--#£lJ. •*«.•/".] (26) 
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iriwre 

I. 

I, 

I* 

J 
r   - « •*» f< '#-•••€,' 

ate 

<**U.K   £ 
, * 6^f0"'J*) 

and where    4. is tha diaenaionlese quantity 

a? -£-V    >      0 
2V» 

(26*) 

The integration is undaratood to be taken along the positive real axis. 

Poisson's Integral representation far the sero order Hanksl function 

(Bessel function of the third kind)     H0    ( J J 

arguaent   J can be written (Ref.  (i),|VIII, 8b), 

of the ooaples 

Hi'Vn 
*/•" 

C0i<*) 
cf(A> 

where tha path of integration in the 

it 

•H* 

—* — 

u? « *f * iT       plane san be 

Fig. 7 

(26*) 

taken as indicated in Fig. 7-    This is valid provided 
-   a^e.   J     <.     !/;      <     jc - *rt T 

If •» take    j   *   •* and     /, •  0       the above condition is fulfilled 

and one has 

H 

I. 

Introducing        K,   *   - •* in the last inUgral, # - 



~ir: 

HR - h T>«-~»   Ol._ 

CONFIDENTIAL 

-'- •-"9*v*- 

M 

The first term on the right is real, the second pure Imaginary. 

Hence, 

ft  i.  -   ?••"• H (27) 

independent of 6 . 

The integrals    I,        and    IA can be obtained from     I.       by a 

recurrence farsnula.    Consider the integral 

J m I   C«7*<   »c    e </* 

where     n •    0,  '( 2 ...    . Differentiating with respect to the parameter  «. , 
*£»      «     -fl—ftc  *'****'*'"**(*0t$  -+U* +S+m,9 <«•«/*}«/* 

whereas differentiation with respect to the parameter   0    gives 
& 
>* 

•     • * 

from which, after e short calculation, 

ru*-* r*—(+**fa§tm4«-f*0 4iuJi <t« 

te >* 

Hence, ess has the faraula 

•*•(•* i 

= 
•    *  /•       ,•,         .+ «*(*->** 

J 

a. 30                       ** 

end in particular, 

AX *+i 
^    u • - --/   _    c^jtr    i :• 

-7- ~ir- 
since    a.      and    0    are real.    Putting first    n« 0  ,  after carrying 

(28) 

(28*) 

out the differentiation, 
01 

£« j(       «     -   £  *«0   K, («>; 

1111. _     I J_    W_ /»0^      __«.     .»*_-._ 

With these results, from Eq. (26), 

%    m   . s [~Wfcy - ^Vta] 

(29) 

(30) 

11 
U 

2b <*  i       > 

cv    !        \ 

(3D 

t 
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The part of the eUnorMh which corresponds to Vaa bound cortex drag 

(Table 1) is 

i*<*/    /      *- © J (32) 

The tarn     ***C(f«J    «nd       H, (/A)    ere real and are tabulated la (R«f.  (1) 

for Yaluea of    a     ranging fron 0 to 15*9. 

U.    The bound rartex drag,     D§    , of a short wing is 

De     "       ~y(w~   li)*.**o 
where    L       is the total lift.   With     fC*   tf      md      9'°  » •^ 

introducing the Fronde number    *F       referred to the submergence, 

T--  ^ (33) 
one has fron Eq.   (32), 

±7*7 
or also .  a 

L 
where 

I 
(3U) 

A similar result has bean obtained by Harelock for the case of a submerged 

sphere, Rsf.   (f). 

In the particular case of a very small Fronde number, the tern which 

contains the exponential and Hanksl fauctions tends towards zero for   7-v 0 

and one obtains i. 

The bound vortex drag ever lift ratio is negative in this case. 

The sane result can be derived also in the following manner t   Since 

the Froude number is a measure of the ratio of inertia force and gravity 

fore«j gravity becomes increasingly iisportant as compared with inertia if 

F -*- *»       .It follows then from Eq.   (3) that 
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i. e. the free surface acts like a rigid boundary in this case (Ref.  (b)). 

The boundary condition at the surface can then be satisfied through the 

introduction of the image system (3) of section 3*1 alone, without an 

additional perturbation potential.    All that is left in Eq.  (3U) is the 

term    rp       which originated from the velocity induced by the image 

rystem. 

For large values of P, i.e. small arguments of the Hankel functions, 

one has the •eynpioiie values *) 

( Y * Suler's cons tent).    From Eq.  (3U)> one obtains then after 

short calculation, 

, \ .    +   _L_     „    +   .00995- (H. -    •   Z~7    "    *   ••"•"•' ,_.» it-x (3U") 

Gravity being neglegible as compared with inertia forces in this case, 

the boundary condition at the surface can be satisfied by means of an 

image system of opposite circulation as compared with the image system 

employed so far.    This consideration leads also, independently, to Eq.  (3U;« 

The bound vortex drag in this case la identical with the "ssitually 

induced drag" of a biplane* 

The function     V9 is plotted in Fig.  &*»)«    The bound vortex drag 

is found to vanish at a Froude number F " 0.6U. 

It will be shown in section ? that the condition      2b & f        so far 

imposed, can be grsatly relaxed without Invalidating Eq.  (3U).    For instance, 

!  - i 
*) See also Ref. (a) where this approach has been first suggested. 

**) A similar curve is persented in Ref. (a) , where, however, a somewhat 
different definition for the dimensionless function Y, i*  employed. 
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ft v1    a*f 
or also  1? 24 *• -g- V* 

where A. 

and 4* '   ' w 
In the last aquation, the symbol   ~       neans the span-wise overage of the 

quantity In question. /*     depends upon the lift distributloa only. 

Whereas, for a rectangular lift distribution^   *-/, one finds easily for 

an:   elliptic distribution, 

The function    V, (T)     l* also plotted in Fig. S.       tW]   Tanishes for 

F = 0 and for F •   °©        as one recognises from the expression found for 

Y, •    The physical argument utilised in section 5*U for the cases 

F • 0 and F" «• , leads also to the conclusion that the bound 

vortex drag must vanish in these cases. 

z    Qeneral Case of the Wang Drag of a Single qydrofoil 

1*    Consider now the part of the downwash which corresponds tc the bound 

vortex drag and which is induced at x - 0, y • y t    , s - -f by & wing 

element dy.  , located at x - 0, y • x» * - -f (Fig. 9), 

l: 

 " —:r*r5fiflES5>•~~        m 
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i'l«»   7 

P 
T!T 

*.   *!. 

For this purpose, one has to replace in Eq.  (32)    *Jb        tar     <^( and   «t 

a    * 
F~9#' 

Hence, one obtain* for the downwash angle, I.e. the ratio of the downwash 

Telocity and the speed of adrance, 

• 

>(35) 

I 

and where 
»t F* -[(•< '6M 

9' • 

In Fig. 10, • ** is plotted rareus the diaansionless distance 

  
**- *, « 2 b^6' 

for three different ralues of the Fronde nnaber, 
:~-'-;:=r^=r-^ y • 0 

F - 1C t,°" 
- 

F • *« 
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IT the case F » 0, the terms containing the exponential and Ksnkel 

functions vanish. Consequently, 

J2 JT 'He " 
In the case F * •»  ^ a&iag use of the asynptotic representation for 

the Hankel functions, 

(H- • 

(361) 

,*0' ^(<^ 
« it (36°) 

The right-hand side of Sqs.   (36*) and (36E) vanishes for 0»** corresponding 

to c  ~ *   * *       .At these points the domnrash changes its sign. 

2«    The total downwash angle  (as far as the bound vortex drag is concerned) 

at       u «*  y4 is . 

1 <*>, 
(37) 

and from this the bound vortex drag. 
• b     +fc 

Introducing the dimensionless quantities       X, »   y,//     j      XA   •«    *»/ j> 

and the span-submergence ratio 

ft - — 

- 

one has 

or also 

•'<-^m 

°b- .._.— y 

j 

(38) B»^    - 

1 i 

%VA   2sf 

There is      •fl.    v£ 

i 

xnere is     /a    *]&      •       v .,, v 

M 30) 

•#M 
*     J 

e*i 
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0' ^T>4-^ 

Besides depending from F and /* ,  ¥4depsnde also from the lift- 

distribution. If one puta 

L,  - 

the distribution is 

rectangular for n »   0 

elliptic   for n a Vx 

parabolid  for n« i 

is found The total lift  L - 2b L, 

r_   7N 2% 

after short calculation, where f*     signifies hare the ga&na function. 

Consequently, one can replace in this case '(_ ' • '- •' in Eq. (39) by 

—-TT" a^fzWWJJ (39l) 
I 

, For instance, for   n - 'A       (elliptic dlstribation) this becomes, 

Life)    L,(fXQ j£ ||r.  /2*.\1lfl.^M 

In constrest to the integral encountered in calculating the induced 

drag (trailing vortex drag), the bound Tortex drag (Eq.  (3?)/ is expreaiied 

by a proper integral.    It can be evaluated for iactgsc Tiih the aid of 

a planiaeter: 

In ?ig. 11 yti   is plot-ted tarsus   A        for F - 10.85 and  n - 0   . 

It is convenient in this case, to take as new variables of integration 

in Eq.   (39), 

J^x 

r       * Consequently, •1 

^«-|   A.-A.-4 
n «0 

(39l) 
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Y) Is 'then obtained by integrating und»i- al«*«yrs the EWF cu**e 

Y4 In Fig. 10, but for various values of the limits of Integration] 

plotting the result of the integration versus    Aa and integrating 

once more gives    Y, • 

3.    If expression (3U) for the bound vortex drag of a short wing Is written 

in the same form as Eq.   (39), one obtains, 

Y,   -   /3-f. 
in this case.    The straight lines corresponding to this relationship are 

also dram in Fig? 11, for F • 0, 10.85 and oc       .    They are tangent 

to the curves plotted in this figure.    The slope reaches a maximum at 

about F * 2-5 (Fig. 8) and decreases then again for increasing Frouda 

number.    Hence, part of Fig. 11 is doubly covered by the lines F « con- 

stant. 

Similarly one has for a long wing , 

V,    -   /«*, 

This relationship corresponds to horizontal lines, to which the curves in 

Fig. 11 are asymptotic. 

The bound vortex drag is independent of the lift distribution in the 

case of a short wing (Eq, {%.)), and is, for practical purposes, almost 

independent from it in the case of a Ions wing (section 6). Presumably 

this is therefore true for the whole range of   /3 .    This fact mates 

the distinction between bound vortex drag and trailing vortex drag very 

convenient for calculating purposes:      the former depends upon the Froude 

ccumber and the span-sufcrargenee ratio, but little upon the lift distri- 

bution! the latter depends only upon the lift distribution, 

U.    In the case F » 0, n « 0, Eq.   (39fl) simplifies to 
+ 4      At+7» 

J-A.J 
. 

32 */* ' - | 

c^t'v' <*9{28') «M, 
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The second integral is with    &' •*    ***  ^ -ji 
Atfff A»*£ 

Integrating over *Ax    » one finds after short calculation, 
/I11 

v      -    -   J..  *2*i!ljLl      ; F~l ,   n-n (39*) 
*» /it /J 

This expression for ¥»  may be regarded as an approximation in the 

ease of a rectangular lift distribution and of a very small Froude number, 

and is plotted in Fig. 11. 

The surface acting in this case like a rigid sheet, one can derive 

Eq. (39 )also directly by considering the downwash Eqs (25) produced by 

the appropriate image. 

5.    G'  in Eq. (39) is never larger than J  , where ¥       is the half- 

angle under which the span appears if viewed from the midpoint on the 

surface (Fig. 9). Provided that 

the argument of the functions H0      and ",    in Eq. (39) becomes 

very Swell. Making use of the asymptotic representation for the Hankel 

functions and assuming •*•»*»••%   ******* 

v, 
ss obtained in the cac-c T e;0; «xe«pt for- the sign. 

Consequently, , 

For instance, far F • 10.8$ and     Y* t$* (corresponding to  f ••*''• 7.67) 

one underestimates the bound rortex drag by 22% if this equation is used 

as a first approximation. 
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l 

6.    For comparison, consider the trilling vortex (Induced) drag 

3T 

for an elliptic lift distribution (e.g. Ref.  (e)).    Far e«3ier comparison 

with Eq.   (39), one may write the above equation, 

DT   - 
L* 

% V*     2bj      rc/9 
i Yt 

The expression     —kr is also plotted in Fig* 11. 

The trailing rortex drag predoadnstea over the bound wrtai drag in 

the case of a sufficiently snail span.    It follows then froa the corres- 

ponding theorem derived in airplane wing theory,  that the optimum lift 

distribution (i.e. the distribution for which the total drag of a single 

foil is a artalHna) is elliptic. 

On the other hand, for a suffieiaatiy large span, the bound -vortex drag 

becomes predoadnant.    It follows then from Eq.  (35) that the optinna lift 

distribution approaches a rectangular distribution. •) 

8.   Appendix 

If one introduces in Eq.  (39) Instead of the variables of Integration 

\ and Xt 

7,    =    I A, 

and -sith the symbols 

U. 

V 

T «*»•' -;-FF?? - f H-vf 

(l*o) 

<*-!} 

^^    -   ±f77££?  - X|f|-(iJL./ (A-2) 

*) yu in Eq.  (35) cannot be smaller than   1 •    This latter 
value is obtained for a rectangular lift-distribution. 
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one ootaina shuri calculation, 

-/••* J ( (A=3) 
This la the expreaaic*. for the bound vortex drag stated in the atsieorends* 

Ref.  (j) containing the adranoe information on the present subject amterial. 

R.l K?*» 
R. X. VmjvF 
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