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SUMMARY 

This report is concerned with the mathematical features of the de- 

sign of a control system that has the property of simultaneously reducing 

the error and the derivatives of the error to zero in a minimum time. The 

differential equation of the control system is assumed to be of the form 

Ly   *iy» dt' •••' dtn-i 

where L is a linear ordinary differsntial operator of the n "  order 

with constant coefficients, y is the error,, and f is the control func- 

tion or correcting force. In most of the report, it is assumed that the 

function f is discontinuous and takes on only the values -1 .  Thus, 

the control function acts as a simple switch or relay. The problem is to 

determine how the function f should b*> defined, i.e., to determine how 

to switch the correcting force from +1 to -1 and back, so that the 

error and its derivatives are reduced to zero in a minimum time. 

P th h The n    -order equation is reduced to a system of first-order equa- 

tions and the techniques of matrices are used.    The problem is solved for 

all cases when the eigenvalues of the matrix of the system (or the roots 

of the characteristic equation  of the operator    L) are real.    The result 

can be stated as follows:    If it is possible to find any control function 

f    that simultaneously reduces the prror and its derivatives to zero, then 

there exists a unique function    f    which does this in a minimum time. The 

minimizing function  is the one which employe a minimum number of "switches." 

It should be pointed cut that this result holds only for real eigenvalues. 

A slightly broader problem is  considered in a few simple special 

cases, namely, the problem where    f    is restricted only by the inequality 

|f|5v   1»     It is shewn in these cases that no reduction in the minimum 

time is possible, and that the minimizing function is still a function of 

the discontinuous type, where    f = -1 . 

The study was conducted at the Experimental Towing Tank, Stevens 

Institute of Technology, under Office of Naval Research Contract No. 

Nonr-26302. 
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INTRODUCTION 

Limit control refers to a discontinuous control that is allowed to 

take on only extreme values.    Such controls are often referred to as 

bang-bang, relay type,  or on-off controls.    The present study is con- 

cerned with the design of a lir.it control system that will simultaneously . 

reduce the error and the derivative;: of the error to zero in a minimum 

time. 

Mathematically, the error is represented by a differential equation 

or a system of differential equations where the forcing function or con- 

trol function is discontinuous and is allowed to take on only extreme 

values. The problem is to find how to switch the control function from 

one extreme value to the other in such a way that the error and its de- j 

rivatives are reduced to zero in a minimum time. 

This report extends some of the results presented in Reference 1, 

which were essentially the first results for this problem. The work is 

part of the limit control project of the Experimental Towing Tank, Stevens 

Institute of Technology, under contract with the Office of Naval Research. 
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STATEMENT OF THE PROBLEM 

An Automatic Control Problem 

This study is  concerned with a minimum problem associated with a 

linear differential equation containing a discontinuous forcing term.     The 

problem arises physically in the design of an automatic control system for 

optimum performance. 

Consider the control system shown  in Figure 1: 

Controlling 

System 

Control led     i 

System 

Power 
Source 
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FIGURE 

n 
The Durpose of this system is to keep the output y of the controlled 

system constant at the value y^ „  If, at any instant, the output is 
c 

different from y , then an error-sensitive device feeds the error y - y 

back to the controlling system. The output of the controlling system, i.e., 

the control function f , is fed into the controlled system and should be 

designed so as to cause a reduction in the error. The important part of 

the system is the control function wh-ich is supposed to be some function 

of the error and its time derivatives up to a certain order. The broad 

problem considered here can now be stated: 

To determine the control function so that the error and the de- 

rivatives of the error up to a certain order are simultaneously reduced 

to zero in a minimum time,, 

In what followsj a drastic restriction is made on the class of 

control functions that are considered. In fact, in all but one case, 
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it will be assumed that  the  control function    f    Is a discontinuous function 

that is allowed to take on only the values *'o    and    -b ,   where    b    is a 

positive constant-    The controlling system therefore acts as a switch or 

a relay that applies the full strength of the power source to the controlled 

system,,  either directly,  or with a reverse in polarity. 

There is no conclusive reason why a relay type control should be the 

best  one for the present problem*    However, since the full strength of the 

power source is always used,  it does seem reasonable that the error and 

its derivatives can be reduced to zero in a shorter time than by any other 

means.     In this  connection,  it will later be proved,  only in the case of 

very simple systems, that, among all functions satisfying    |f |< b,   the 

minimizing function is  of the discontinuous type described. 

Mathematical Formulation of the  Problem 

In the system shown in Figure 1,  it is assumed for convenience that 

the reference value    y      is zero.    The error is then simply    y(t) .     It 

is also assumed that the controlled system is governed by a linear dif- 

ferential equation with constant coefficients so that the error    y(t)    is 

a solution of 

Ly-ffy, f ,..., £^)    , . (1) 
\      ~u dt" ~ I 

•- 

where L represents the operator 
: 

and the control function    f"    is a discontinuous function taking on only 

the values    +1    and    -1 „      (if    f = -b ,    then    b    can be- made to equal    1 

by a change in the time scale.)    A preliminary statement of the problem 

is to determine the function    f    (that is, to determine for what values 

f = +1 and for what values    f - -l)  such that the solution of equation (l) 

which satisfies the initial conditions 

n    1 

y(0)  = c± ,    ^t     = c2 ,   ...   , -—j^-i = cn (c± - constants) 

f 

I 
-9 
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dt 

,n-l 

dt 
BTT 

t ; 

; •: 

- 

n 

[] 

I 

in a minimum time. 

If the function    f    is at all complicated, there is some doubt as to 

what is meant by a solution of equation (l)   (suppose, for instance, that 

f    is    +1   when    y    is an  irrational number and    £    is    -1    otherwise). 

To circumvent this difficulty, the problem is formulated in different terms. 

For this purpose,  equation (l)  is reduced to a system of first-order 

equations.    In the usual manner,  let 

-\ 

xl = x2 

> 

x    ,   = x n-1        n 

n =  -a x, - a    ,x0 n 1      n-1 I ...   - anx    + f 1 n J 

(x-.  = dxVdt    etc.).'   In matrix form, this can be written as 

x = Ax + p      , 

where 

(3) 

(U) 

X = A = 

" 0 1       0    . .    0 °1 0 

0 0        1    . .     0 0 0 

• 
, p = " 

* • • 

0 0        0    . .    0 1 0 

-a 
n 

"3      -,       'i       • n-1 •  "a2 -al_ f(x) 

Since f can take on only the values -1 , the solutions of 

equation (ii) should be combinations of the solutions of 
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x = Ax - e  , (5) 

where e = col(0,0,...,0,l) .  The solutions of x ~  Ax + e will be 

called P-curves (P for positive) and those of x = Ax - e will be called 

N-curves (N for negative). Along each P- or N-curve there is a natural 

orientation, namely, the direction in which t increases. 

A solution of (U) from the point x  is defined as a continuous 

curve that consists of a finite sequence of alternating P- and N-arcs 

(each of finite time length) starting at the point x° .  The solution 

can be represented by x(t) , a continuous vector function of the scalar 

parameter t .  A path from x  is defined as a solution from x  which 

ends at the origin. With each path there is associated a transit time, 

namely, the sum of the time lengths of the F- and N-arcs making up the path. 

With this terminology, the problem can finally be stated as follows: 

To find_a path of minimum transit time (a minimal path) from each 

point x  in the phase space. 

Corresponding to each solution of equation (U), as defined above, 

there is a control function f , namely, f = +1 on the P-arcs and f = -1 

on the N-arcs (here, a P- or an N-arc is regarded as being closed at its 

initial point and open at its terminal point). The only functions f 

admitted are those such that all the solutions from a point are of the 

type described. 

Since the problem has been formulated entirely in terms of the system 

of equations, it is not necessary to restrict the matrix A to be of the 

above form. The problem can- be generalized slightly and instead o.r con- 

sidering equation (£), the following equations will be considered: 

x - Ax - e  , (6) 

where   A    is any   n   by   n matrix and   e    is any non-null vector. 

* Superscripts on vectors are indices and not exponents. 

** It should be remarked that equation (6) is not necessarily equivalent 
to an n"--order equation. However, physical systems arise directly in 
the form (6), such as the linearized equations that govern the motion 
of a submerged submarine• 
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The final formulation of the problem to be treated in this report is: 

Consider the system of differential equations 

x = Ax +  ef(x)       , (7) 

where    A    is any    n    by    n    matrix,    e    is any non-null vector, and    f (x) , 

a real-valued function of the vector    x ,   can take on only the values    -1. 

How should the function    f(x)    be chosen so that the solution    x(t)  satisfy- 

ing arbitrary initial conditions    x(0) = x      reaches the origin    x = 0    in 

the least possible time? 

General Remarks About the P- and N-Curves. 

The existence or nonexistence of minimal paths of course depends on 

the behavior of the P- and N-curves.    Some of the properties of these curves 

are discussed below. 
f :c~ 

An important fact is that the family of P-curves is symmetric to the 

family of ii-curves with respect to the origin.    This holds  for orientation 

as well as for shape.    The symmetry follows from the fact that if    x(t) 

satisfies    x = Ax + e    with    x(0) = x° ,   then    z(t)  = -x(t)    satisfies 

z = Az - e    with    z(0) = -x   „     Using this property,   it   is    necessary 

to solve the minimal problem for only one-half of the phase space, the 

, . solutions for the other half being obtained by symmetry. 
i! . 

It is known from the well-known existence theorem for linear dif- 

ferential equations that there exists a unique P- and N-curve through each 

point of the phase space.    The equations of these carves can be found in 

terms of 1 

equations 

At terms of the matrix function €.       •     The solutions of the different 

x = Ax - e (8) 

satisfying the initial conditions    x(0) = x      are 

x=€Atxol6At(   /e-Asds)e       ^ (9) 

o 

which are the equations of the P- and N-curves.     (In the case of an 
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ambiguous sim, the upper sign holds  for the P-curves, the lower sign for 

the N-curves.) 

If the matrix    A    is nonsingular,   (9)  can be  simplified to 

At  0 +   /  At       T\.-l /,„>, x = e   x   - (e     - I;A   e     , (10; 

which can he verified by direct substitution.    The points    +A    s    are 

singular points   (or equilibrium points)    of the    DE ,   that is, points 

•A"3 

-1 
where    x = 0 *     The P-curve through the point    -A    e    is just the point 

itself and similarly for the Al-curve through    +A 

At It is well known that the matrix   e can be determined explicitly 

if the eigenvalues of the matrix   A    are kncwr..    In fact,  in order to solve 

the problem, it will be convenient to make a substitution in the   DE    that 

will reduce the matrix   A    to diagonal or Jordan   canonical form where the 
A+. 

eigenvalues are  explicitly displayed and whero the function   € assumes 

a simple form.     Obviously,  the character of the P- and N-eurves is also 

determined by the eigenvalues  of    A „     It will be shown,  in fact,  that 

the character and existence of minimal paths are determined solely by the 

nature of the eigenvalues» 

In this report, a complete solution to the problem will be given in I 

the case where the  eigenvalues of    A    are all real.    The trivial one- 

dimensional case will be solved first; then the two-dimensiona?. cases 

will be discussed, and these will be used as a basis for induction in 

solving the n-dimensional cases.     In addition, the broader problem where 

the controx function    f    is restricted only by the inequality    |f |<   1 

will be solved for the cases of the  one-dimensional systems and a simple 

two-dimensional  system. 

I 

I 

I 

I 
The only known previous results for the present problem are given .» 

by Bushaw in Reference 1. Bushaw completely solved the problem for all .1 

two-dimensional systems (including the case of complex eigenvalues) that 

arise from a second order differential equation with constant coefficients. 

Before proceeding with the analysis, a few remarks will be made about 

the general procedure. The problem is to find the minimal paths which, by 

definition, must enter the origin. The only way a minimal path can reach 
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the origin is by way of the P~ or rt-curve through the origin.    Let the 

curve    T    be defined as the curve obtained by following the P-curve through 

the origin backward in time  (starting at the origin).    The minimal path for 

at least some of the points of    T   close to the origin must consist of just 

that portion of   F    between the point and the origin (if a minimal path 

exists at  all),    tty symmetry,  corresponding points are found on the N-curve 

through the origin,    Thus, all the minimal paths with no "corners" are 

found, a "corner" being a junction of nonzero P~ and N-arcs.    Then the 

minimal paths with exactly one corner are determined, and so on, until 

all 'die minimal paths have been found. 
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0NE- AND TWO-DIMENSIONAL SYSTEMS 

I 

One-Dimensional System 

The differential equations for a one-dimensional system are simply 

x    = ax,   - e        , (11) 

where    x, ,   a ,   e.. ,   are all  real numbers.     It, is assumed that    e  >  0 . 

Three cases need to be considered, namely   a < 0 ,     a > 0 ,     and 

a = 0    (a    is actually the eigenvalue).    If    a / 0 ,   then the solutions 

of  (11)  are 

xi -T 
at/    c +    i \ 

*   lxi   "7/    * (12) 

which are the  equations  of the P- and N-curves whose initial point is    x,    . 

Consider first the case    a < 0 .     The P-curves start at  the point 

x,       and continuously approach the point     -e,/a    as    t-^00  .      The N-curves 

continuously approach the point    +e,/a    as    t-*-00  .      This behavior is 

shown schematically in the following Figure: 

*•* 

e-j/a e-j/a 
"*• x. 

FIGURE 2 

TTow to find the minimal paths.    If    x,       is in the interval 

0 < x,~ < -e,/a ,   the minimal path its  tasily seen to be the "-arc frost 

x,°    to the origin.    This follows from the fact that the N-arcs in this 

interval are directed toward the left while the P-arcs are directed toward 

the right. If the minimal path contained a P-arc, this would mean that    x, 

would be increased and, in order    to reach the origin, a longer N-arc 

would have to be traversed. 

o If x..  is in the interval x, > -e,/a , both the N-arcs and 
1 11 the I 

! 
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P-arcs are directed toward the  left.    However, the minimal path is still 

the N-arc connecting the point    x,      with the origin.     Because of the re- 

sult in the preceding paragraph,  it is only nect   sary to show that the 

minimal  rath cannot contain a P-arc  in the  interval    x, > -e.,/a .      If the 
•L 1 

minimal path did contain a P-arc, say between the points x,  and x1 , 

where x.,  and x  are greater than -e../a and x, < x  , the time to 
-L. X J- XI' 

traverse this arc could be easily obtained from (lk) to be 

1      I xl° + ei/aA 
t_ = - i in     X    .    1,   )    . (13) 

The time to traverse an N-arc connecting the same points is 

1,    / Xl    " el/a\ nM V    * I *" l q    -  ex/a J    • (2Ji) 

It is  easy to prove that    t., < tp    and therefore that the minimal path 

cannot contain a P-arc 

By symmetry, an analagous result is obtained f cr the points    x,    < 0 

where N-arcs are replaced by P-arcs.    Hsnce, a unique minimal path exists 

from every initial point. 

If the eigenvalue    a    is positive,  the equations for the P- and 

N-curves are still given by (lz) but the directions are reversed, as shown 

in the following Figure: 

x 
3-,/a 0 e-i/a 

• -• « m     «     » «* N 

FIGURE 3 

1 

It is seen immediately that no paths exist if   I x,       > e./a  .    If 

|x.   j<e1/a ,   the same procedure as above proves that a unique minimal 

V 
,    1 
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path exists.     If    0 < x,   <C e,/a ,   the minimal path is the N-arc connecting 

x,      with the origin, and if    -e /a <_ x..    < 0 ,   the minimal path is the 

F-arc connect-ing    xn       with the origin. 

If    a = 0,    the  solution  (l?)   fails.     The  equations of  the P- and 

N-curves in this  case are 

xT =    -e.t + x, . (15) 

Here,  the P-curve from any point is  directed to the   right and the N-curve 

is directed to the   left.     By using the same reasoning as above,  it is seen 

that a unique minimal path exists from every point    x,    j   if    >:,    > 0 ,   the 

minimal path  is  the N-arc through    x,    ,   while if    x,    < 0 ,   the minimal 

path is the P-arc t a rough    x..    . 

The results of this section are summarized in the following theorem: 

Theorem 1:     In the  one-dimensional  system 

xi       i    er*xr 

where    e.. > 0    and    f(x )    is restricted to the values    -1 s   a unique 

minimal path  exists if    a £0;    if    a > 0 ,   a unique minimal path exists 

for points    x,       such that | x,   | <e /a    and no path exists for | x,   | >   e../a . 

The minimal path   (if it exists)  for    x,    > 0 is  just the N-arc connecting j 

x '     with the origin, and for    x,     <0 ,   the P-arc connecting    x,      with 

th_3 origin,     (in terms of the control function    f ,   this means    f (x,) = 1 

-signum x, .) 

One-Dimensional System with     |f(xj<l 

The broader problem will be considered here for the one-dimensional 
a+.i=>m 

I 
I 

xx = axx + elf(x1)      , (16) | 

where    e, > 0    and    |f(x..)| <1.      In order to insure solutions of the 

differential equation, it will be assumed that    f(x,)    is piecewise 



continuous with only a finite number of discontinuities in any bounded in- 

terval. The solution of (16) through any initial point will then be uniquely 

determined by the sole requirement of continuity. The class of functions 

considered here will be broader than the class of functions considered in 

the preceding section. It will be shown, however, that the minimum time 

obtained"in the last section cannot be improved. 

Theo rem 2j Among all functions f (x..) satisfying the conditions 

in the preceding paragraph, the minimizing function is just the function 

f (x ) = -signum x..  that was obtained in Theorem 1. 

This theorem will be proved only for the case a < 0 .  The other 

cases can be troaleu in a similar manner.  If the initial point is x. > 0 

the time T   for f(x,) = -signum x.  to get to the origin is simply 

-13- 

a 
(Xl    "el/a' (17) 

It will be shown that the time for any other    f    will exceed T .     Since 

Jf I < 1   and e   >   0 , 

-e± <eif(Xl) < ex (18) 

or, using the differential equation (16), 

i: 
-ei<xraxi <ei 

at 
Multiplying (19) by the integrating factor € gives 

(19) 

-at    - d   ,       -at^ <-     „-at 
•°lc        ^dtUl*      '-elc («>) 

Integrating tiiis inequality from    0    to   t ,   remembering that   x,(0)=x     , 

gives 

!i6 _at 

a -l 1 x,;at 
a 1 "1    —       a* a (21) 
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Setting    x,  = 0    and solving the left-hand inequality results in the follow- 

ing inequality for the time to reach the origin: 

t>-lJ^7i 
e,/a 

;ao 
/ 

This shows that    t >T  .      It is easy to see that the strict in- 

equality will hold unless the function    f(x )    is identical  with the 

minimizing function    f(x,) = -signim x, .     This completes the proof. 

Two-Dimensional Systems 

The minimal problem will be considered for a two-dimensional system 

x = Ax - e (e + 0) (23) 

where    A    is a i; by 2 matrix and    x    and    e    are two-dimensional vectors. 

Onlv those cases where    A has real eigenvalues will be considered. 

It is convenient to make a substitution in the    DE ,   namely, 

x = Tz      , 

where    T    is a real nonsingular matrix.    The    DE    becomes 

r.  + 

z = Dz - w  9 

(2k) 

(25) 

where D = T" AT and w = T e .  The matrix T can be chosen so that D 

assumes one of the three following forms: 

Case (a): D = 
X,  0 

Case (b): D • 

.0  X 

0  X 

X 1 

Case  (c): D = 
0 X 

J 

(26) 

* See, e.g., Reference 2,  page 20b. 

I 
i 
I 
! 

[ 

f 
I 
I 
I 
! 

[ 
I 
I 



where X , X are the eigenvalues of A .  Case (a) will be obtained if 

the eigenvalues are distinct, case (b), if the eigenvalues are equal but 

there are two linearly independent eigenvectors, and case (c), if the eigen- 

values are equal with only one independent eigenvector. 

The solutions of (25) are 

R-U59 
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* 

.Dt Dt' 

where,  corresponding to each of the forms  of    it    in  (26), 

r 
t   v Dt        e

Xlt      0 
Case  (a):    €       =, € 

0      € 
Xt 

Case (b):   6 
Dt 

re
xt o 

xt   I ' 0      € 

oase (cj:   c    • = 

Xt 

L o 

t€U 

-Xt 

(27) 

"^ 

V (2d). 

" 

r  • 

! 

I" 
i : 
i 

I 

It will be necessary to consider several cases in order to solve the 

minimal problem.    However, there are some results that can be established 

for all two-dimensional systems.     In this connection, let   T      be the curve 

obtained by starting at the origin and following the P-curve backwards in 

time. T      is the curve 

z =6 HC -   DS    A     l 6 ds j w (t < 0) (29) 

Also, let r       be the N-curve symmetric to   F      with respect to the origin. 

The following theorem will now be proved: 

Theorem 3-    In the two-dimensional system 

x = Ax - e (e f 0) 
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f, 

V 

I 
I 

II 

I 

where A has real eigenvalues, the minimal paths for points on T •*• T 

are just the portions of T or F connecting the initial point and 

the origin. 

Let z  be any point on T     » except the origin. Let the minimal 

path described in Theorem 3 be denoted by f n and let S be any other 
z + 

path from zu .  It must be shown that the time length of T 0 is less 

than the time length of S .  This will be done by projecting both paths 

paths are paths in the z^-axis for the one-dimensional minimal problem 

of which of the three forms the matrix D takes. This is easily seen to 

be 

• w2 •  " 
z2 -X 

(.% t    2   ) (30) 

if X / 0 and 

if    X = 0 .     It can be seen that the time length of a P- or an N-arc de- 

pends only on the z,- coordinates and is not altered by projection on the 

i 
i 
i 

I 
I 
i 

on ihe Zr,-axis. It will turn out that the time lengths of the paths are 

no", altered by projection. It will further turn out that the projected 
: 

which was considered earlier. From (27), the equation of the z^-component        j 

of any P- or N-curve can be obtained, the result being the same regardless 

I 

I 

I 
,2 - Vt • z°2 (31) j 

J 
z^-axis.    It is also seen that (30) and (31) are just the P- and N-curves -f 

of the one-dimensional problem •' 

%,. = Xz,   - w (32) 

which was discussed earlier. For the one-dimensional problem, the pro- 

jection of r TQ is the P-arc connecting z ? with the origin, which is 

just the minimal path for the one-dimensional problem. The projection of j 

S , which must contain at least one N~arc, will be different from the 

unique minimal path of the one-dimensional problem. The time length of 

r 0 is therefore less than the time length of S . This completes the 
z 

proof. 

. u 
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In some degenerate cases, the minimal paths just found are the only- 

ones .    These cases are given by the following theorem: 

Theorem h-    If    e    is an eigenvector of the matrix    A ,    then minimal 

paths exist only for points on     T      or      T   . 

It will be shown that the P-curve throu^i the origin is a straight 

line and therefore so is the N-curve through the origin  (by symmetry). 

Since the N-curve and the P-curve coincide and since the N- or P-curves 

through any point are unique, no uLuOi- P- or N-curve can intersect    T 

or   r ~ •     Thus, there is no way to reach the origin from a point not on 

r+ or   r~. 

In terms of th~.  z-coordinates, the equation of the P-curve through 

the origin is 

Dt f%-Ds J    €        ds-w        . (33) 

Differentiating (33)  gives 

(1 z =   €BtJ0   6
_Ds ds-Dw + w        . (3U) 

Clearly,    e    is an eigenvector of    A    if and only if    w    is an eigenvector 

• i of    D .    Therefore,    Dw = Xw    and (3U) becomes 

.t 

z = X6Dtj    €"DS ds-w + w (35) 

or 

z = Xz + w 

This is the equation of a straight line and the proof is complete. 

The eigenvectors of D , corresponding to na.«?es (a), (b), (c) of 

(26), are 

R-i.59 
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i 

uase (a): 
1 

and 
0 

1 

1 

Case (b):  any vector > (36) 

Case (c): 
'll 

0 I 
J 

According to the theorem just proved, caae (b) is a degenerate case ar:a 

need net be considered further.  To avoid degenerate cases in (a) and (c), 

and for convenience, it is assumed in the sequel that 

w. > 0 
I 

(i = 1,2) (37) 

Distinct Nonzero Eigenvalues 

In this case, the matrix D assumes a diagonal form. The DE's 

are in the uncoupled form 

z = JJZ - w (38) 

where 

z = 

zl X.      0 Wl 

_Z2 

,     U - 

_   °     \ 
i     w = 

_W2 

X,    and    \r    are the eigenvalues and    X    / \r   .    The equations of the 

P- and N-curves are 

Dt,,_o +    , 
\Z     - uj (39) 

where 

u = D 

"S" x.t 
€   -         0 

W2 

-Dt 
3     e xt 

0      €   c 

x2 

\ 

I 

i 

I 

I 

[ 

I 

i 

I 

I 

I 
T 
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The nature of the  P- and N-curves depends on the sign of    X-     and 

X„ .      There are three possibilities:   (l) X. <  0 ,   X2 < 0 ,    (2) X., > 0, X2>0, 

and (3) X   <C 0 ,   X„ > 0 .      These correspond to the  cases where the singu- 

larity of the differential ec.uation is  (l)  a  stable node,   (2)  an unstable 

node, and  (3)  a saddle point.    Sketches of the P- and N-curves are shown 

in Figures h,  St and 6,  pages 20 and 21.    These Figures are drawn under the 

assumptions that    w., > 0    and    v, > 0 .      In case (l),  the P- and N-curves 

are semi-parabola-like curves that tend to    +u    as    t-*-«oo.    In case (2), 

the curves have the same shape but with reverse direction.    The reason for 
+ 

the interchange of    -u    is that the components of    w    are assumed to be 

positive.     In (3),  the P- and N-curves are hyperbola-like curves around the 

points    +u . 

The case of distinct negative eigenvalues will be discussed first. 

This will serve as a model for the rest of the proofs. The minimal paths 

from points of T   and T   are already known. It is necessary to find 

minimal paths from all the other points in the plane. 

Let C be the simple curve T + T + 0 . This curve divides the 

plane into two open regions. The region which contains the point +u 

a 

"2 

: 0,/ 

rV 

2 A*! 

/  ""' 
N "o o 

FIGURE ' 
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X   < o , x2 > o 

FIQQRI 6 
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r 
will be called    K   ,   and the region which  contains the point    -u    will 

be called    R   .     if    z      is any point in    R   ,   the N-arc from    z      must T 
-r Q 

intersect     T       at  some point    q ,    since the N-arc connects    z      and   +u 

which are on opposite sides of    C .     Also, this N-arc cannot intersect 

F       since    F        is an N-arc and the N-arc through any point is unique. 

Thus,    z qO    is a path from    z      (it will turn out that this is the 
+ 

minimal path).    A similar argument applied to points of    R      shows that 

at least one path exists from every point in the plane.    The points in 

R      can also be obtained by starting at points of     T      and following 

the N-arc through the point backwards in time, that is, for a time   t < 0. 
t 

A similar statement holds for points in    R   . 
i 

The following theorem provides the minimal paths: 
r 

Theorem 5'.    In the case of distinct negative eigenvalues, a unique 

minimal path exists from every point in the plane,    if    z      is in   R   3 

the minimal path consists of following the N-arc through    z      until it _ _  — 
intersects    T        and then following    Y       to the origin.    The minimal 

paths for point.0 in    R      are obtained by symmetry.     (In terms of the con- 

trol function    f ,   this means    f    is    -1    in    R      and on     T    ,   and    f 

is    +1    in   R      and on     T    •) 

Let    z      be any point in    R   .     If any path from    z      leaves    R   , 

it must pass through the curve    T    .     The path cannot leave    R      by * -r 

passing through    T       since, as can   easily be proved, all curves, neces- 

sarily P-curves,  intersecting     V      point into    R   .     After a path in- 

tersects    r    ,   the minimal path from that point must coincide with   T 

{Therefore, only those paths from    z      that lie entirely in   R      and whose 

last corner is on    1        need be considered. 
I ! 

Let the minimal path described in Theorem 5> be called   A .     It is 

known that    A    exists and is unique; also,     A   has exactly one corner. 

A    is the path    z qO    in Figure 7.    It will be shown that the time length 

of    A    is less than any path that contains two corners.    Successive use 

of this result will prove that    A    has shorter length than any other path. 

I 

Consider any path from z  with two corners, that is, for a time 
o 1 -' 

T, follow a P-arc from z  to a point z , then, for a time T    , follow 



an N-arc to a point    z      (on     T    )>   then for a time  T., follow    T       to 

the origin.     If the point    z      la kept fixed,    z      can be taken as the in- 

dependent variable,  since given   T  , then  T1     and  T,     can be determined 

uniquely.    Let the total time length of this path be  T ,   that is, 

R-U59 
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"T = 7"    + T     + "C 
o      "1 2 (", *0>T1>Z2> 0)       * (UO) 

It will be shown that 

4S > 0      for     r   > 0 
d. "o (1*1) 

The TTiinimum time will then occur when  T    = 0 .     However,    T   = 0    gives 
o '      o 

the desired path    A . 

By using the equations of the P- and N-curves, the following equa- 

tions for    z    ,    z   ,   and    z      are obtained: 

, 

Q 

Z  + U = C      U 

z  - u = £     (z  - u) 

-JJ-   - 
O        ^0/1     \ z + u = €    (z + u) 

> (1*2) 

By successive elimination , it is found that 

III 1     -B(T+T+T) -D(T+T) _DT 
•° *u-|€ °    X    '    - 2€       °    X    + 2€     °{u (1*3) 

\   i or, taking components, 

f >     -r- A     IT   . -r \ •>   T    **! 
i    o    1'    „, io z°.   +  u.   - \ €     X   ~2€    X <-2€   x °ju.       (i = 1,2)     .     (I*) 

Differentiating both sides with respect to   T      and solving for    dl/'iT = "^ 

gives, after some simplification, 

XJn     . 
T_ 2€ x c  (T   + 1) = -26 

MTn+"U 
(i = 1,2) (US) 



I 
i 
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These are two simultaneous equations for T     and (T  + l) 

T  by determinants results in 

Solving for 

= 2€ 

] €   11 

(VX2)T2 
1 €

X2 1 

1 €
X1T2 i 

1 ,'V. 

(U6) 

The determinant in the denominator is not zero since X X/X and 

Tj, "> 0 .     Clearly^ the quotient of the determinants will be positive since 

the numerator will have the sa^p sign as the denominator.    It has thus 

been shown that   ~ > o    for  T    > 0 , and the proof is complete. 

The case of positive distinct eigenvalues can now be disposed of 

fairly readily.    A study of Figure 5 suggests that no paths exist from 

points outside the open region    Q    bounded by the P-curve through    +u 

(followed backwards)  and the N-curve through    -u    (followed backwards) as 

shown below: 

I 

1 
r 
r 

! 
i 

I 

I 

\ 

r 
[ 

i 

JPTrUTRTT    A 
*    XWW4MJ        W 

Of course this can be proved analytically (see Reference l) and is based 

on the fact that all curves (necessarily N~curves)  intersecting the P-arc 

connecting    -u    and    +u    are directed cut of the region    Q . 
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i • 

• - 

I     ! 
i    i 

:      : 

The proof given for Theorem 5 holds good without  change for points 

in    Q    since the only place that the sign of the eigenvalues came into 

the proof was in guaranteeing the existence of p^ths.    The region    R     is 

now the region in    Q    and between the curve    C =   T    +  T     +0    and the 

N-curve through    -u   , and    R      is the reflection of    R      in the origin. 

The following theorem therefore holds  (Figure 8 shows a typical minimal 

path): 

Theorem 6:    In the case of positive distinct  eigenvalues, a minimal 

JCLUL1     C.A.J unique) only in the region Q defined above. If 

the regions R  and R  are redefined as above, the minimal paths are 

the same as in Theorem 5- 

In the case where X, < 0 and \r  > 0 ,   the only changes necessary 
+ 

for the above theorem to remain true are in the definitions of Q , R , 

R .  Q is easily determined to be all points in the horizontal strip 

-Up < z,   < Mr .     The region R  is the region between the curve C and 

the line zr   = ur  , and R , its reflection in the origin. A typical 

minimal path is shown in Figure 9s 

+ u 

z 2 

z° 
» 

/ 
/ 

I 
i 

FIGURE 9 

Distinct Eigenvalues with One Eigenvalue Zero 

The matrix O    still assumes the diagonal form 

D - 
X  0 

0  0 
(\   4 0) 
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The solutions of the DE z = Dz - w are different from those of the last 

section since D    is now a singular matrix. The solutions are 

• Wl _ JKtl  o • wi\ 
zl " X  c \z l " Tj 

o +  , 
z2 = z 2 - w2t 

(li8) 

The sketches of these P- and N-curves are shown in Figures 10 and 11, 

page 27, for the cases X < 0 and X > 0 , respectively. 

It can be seen that if X < 0 , a path exists from every point in 

the plane while if X > 0 , paths exist only from the points I z, I < w^A 

The same method of proof will be used as in the last section. The theorem 

to be proved will not be reformulated since it is the same as Theorem 6, 

where Q is the region from which paths exist as defined above, and R 

and R  are the regions above and below the curve C , respectively. 

The notation of Theorem 5 will be used. It is only necessary to 

find the equation for T based on the new P- and N-curves and see if 

T> 0. Since the first equation of (Uti) is the same as the z..-component 

of (39),  one equation for T is (.16)'- 

t- 26 d  (T + 1) - -2€ 
X(YV 

(U9) 

The second equation can easily be found by using the second equation of 

(ko).    The equations similar to (U2) are 

~ 2 = W2^"T2^ 

z\ = z^2 - v2(-\) 

9.°       =   Z +   W   (-T  ) -  2 2      V     oJ 

By elimination,  it is found that 

y    (so 

j 

i 

i 
F 

I 
t 
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.2x     -g 
-r-       \ (51) 

which is differentiated with respect to   T      to obtain o 

T    - r2 - 1 = 0 (52) 

It is recalled that    T = T    +T    + T     j differentiating this equation and 

combining it with (52)  gives 

I 

f 

I 

1 
.  _ T 
1 ' 2 (53) i 

Substituting this into (u9) and solving for T results in f 

r= 26 '21-6 
XT. (5U) 

1 -f 

I 

Since X 4  0 and T_ ,T_ > 0, it is seen that T > 0 for r > 0 , 

which completes the proof. 

Repeated Eigenvalues 

The matrix D now takes the form 

! 

i 

i 

r 

D =1 
X       1 

j_0      X 

If    X / 0  , the P- and N-curves are 

+ Dt   , b +     v 
z-u=€       (,z    - u;      , 

where 

/IT'S 

(56) 

\ 
1 

i 
u = D    w        and Dt m    Xt 

1      t 

0      1 

or if    X = 0 ,   the  equations are 
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;   i 
: 

I"! 

; 

; i 

+ t . /    O      + v O 
\l = "V2 T + tvz k - V      z 1 

^ 

+      4.     •        o 
Z2 = ~w2 2 

(57) 

> 

The sketches of these curves are shown in Figures 12, 13, lii, pages 

30 and 31»    It can be seen that,  if    X jCo ,   paths exist from every point 

in the plane, while if    X > 0 ,   paths exist only in a region    Q    bounded 

by the    P-curve through    +u    followed backwards and the N-curve through 

-u    followed backwards. 

The region    R      is the region above the curve    C    if    X ^0    and 

the region below    C    if    X > 0 .     With this notation, Theorem 6 remains 

true.    The proof is essentially the same as that of Theorem 6 and will not 

be given.    The only change is in the algebra due to the different equations 

for the P- and N-curves. 

Summary of Two-Dimensional Cases 

Some definitions are reviewed below for convenience in summarizing 

the results of the two-dimensional cases: 

Let    r       be the point set obtained by following the P-curve through 

the origin for all time    t < 0 . 

Let    R     be the point set obtained by starting at each point of     T 

and following the N-curve through the point for all time    t < 0 . 

Let   r        and      R     be the point seta obtained by reflecting    V 

and    R    in the origin- 

Let  c = r+ + r~ + 0 . 

Let    Q = R+ + R~ + C . 

The following theorem summarizes the results: 

Theorem 7:     In the two-dimensional system 

x = Ax +ef(x)       , 

where    e ^ 0 ,   f = -1 ,   and   A    has real eigenvalues, a unique minimal 



'.-:' - 
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X < 0 

FIGURE 12 
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path exists for points in Q , and no paths exist for points outside of 

v or points in    R   ,   the minimal path consists of following the N-arc 

through the point until it  intersects     T       and then following    T        to 
+ 

The Minimal Problem for x = f(x,,*.,) with j f | < 1 

The broader minimal problem will be considered fcr the simpl° DE 

x^ • f(x1,x1) 

! 

! 

! 

f 

the origin. Minimal paths for points in R  are obtained by symmetry, 

(in terms of the control function f , this means that f = -i in 

R" • T " and f = +1 in R+ + F+ . ) 

The curve C is the common boundary of the regions R  and R~ .. 

It is on this curve alone that the minimizing control function changes 

sign or "switches" from the value +1 to the value -1 or vice versa. 

For this reason, C is called the switching curve.     

The region Q from wnich minimal paths exist depends on the nature 

of the eigenvalues. In the degenerate case where the vector e is an 

eigenvector of A , the region Q degenerates into the curve C . Aside 

from this case, Q is a "two-dimensional" region. If the eigenvalues 

are nonpositive, Q is the entire plane. If both eigenvalues are posi- 

tive,  Q is a bounded portion of the plane, the boundary curves being 

the P-curve through +A e and the N-curve through -A~ e (both followed        9 

backwards).  If only one eigenvalue is positive while the other is non- 

positive, Q is an unbounded portion of the plane between two paraJJ.^j 

lines, these straight lines being solutions of the DE that are parallel 

I to the eigenvector corresponding to the positive eigenvalue. 

It should be remarked here that, in an (uncontrolled) physical 

system, positive eigenvalues mean some sort of instability. However, it 

has been shown above that, by the proper use of an "on-off" control, the 

system can be made stable, provided the error and its derivative remain 

in the region Q . 

] \ 
Also, another way of characterizing the minimal paths is as follows: 

If any paths at all exist from a point, then a unique minimal path 

exists. The minimal path is the path with a minimum number of corners. 

* Includes repeated eigenvalues. 
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x2 

x0 ~ i U-, ,^.,t 

(50) 

; 

r • 

where | f(x-,x )j < 1 .  It will be shown that the minimizing function is 

still the same function as the one found among the restricted class of 

functions capable of taking on only ohe values  -1 „ 

In order to guarantee solutions to (5d)., it is necessary to put some 

restrictions on f ; however, r is still allowed to have some discon- 
+ 

tinuities so that it will include admissible functions of the type f = -1 . 

It is recalled that in the case f = -1 }   the only admissible functions 

were those such that the solution curve from any point consisted of a finite 

number of alternating P- and N-arcs.  This is equivalent to the requirement 

that any bounded region can be split up into a finite number of subregions, 

in each of which f is continuous. 

In the broader problem (58), it is assumed that any bounded region 

can be split up into a finite number of subregions, in each of which f is 

continuous and satisfies a Lipshitz condition. However5 f should be de- 

fined at every point in the plane.  This assures a unique solution from 

every point in the plane if it is required that the solution curve be a 

continuous curve (in the phase plane). 

Let A be the minimal path obtained previously when f = -1 , and 

let n be any solution to (5o) with the same initial point as A . Denote 

T as the time length of a solution curve. With this notation, it is only 

necessary to prove the following theorem: 

Theorem 6%  T (A) <T(n) . 

It will be sufficient to prove the theorem for initial points in 

R~ and above the x,-axis. The path A from such an initial point x° 

is shown on the following page (the path x qrO): 

/ ± 
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FIGURE 15 

An inequality for any arc of    n    will now be obtained.    Since 

1*1 <1, 

-I< x2 <+1 (59) 

Integrating this from    0    to    t    gives 

-t<x2-::
J
2<t (60) 

or 

t| >|.x2-x°2| (61) 

where the equality sign holds only for a P- or an N-arc.    This expression 

proves the theorem immediately for points on  T       or   T   .- 

An inequality for the slope of    n    is obtained next;    Let the slope 

of    A    be    m j  then 

m x„ 
< 

i 
I 
! 

S 
or 
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T1-^^       . (63) 
|Xjj| |x2j 

Therefore, the slope of    n    at any point lies between the slope of the 

N-curve and the   slore of the  P-curve through the point. 

Consider the curve    n    through the point    x   „     Because of  (63),    n 

cannot pass through either the P-curve through    x      or the N-arc    x q 

through    x   a     If    n    is  to reach the origin,  it must therefore cut the 

x,-axis at a point    q      to the right   of  (or possibly at) the point    q. 

From (6l),  it is seen that T (x q) <T(x q ) . 

Now consider the rest of    n .     If    n    passes below the horizontal 

line through    r ,    (6l)  shows that T (A) < 7(n) ,   and the theorem is 

proved.    Otherwise,   if    n    is to reach the origin,  "'.t must intersect    A 

at some point    s along the arc    qr „     For this portion of    it ,   it is 

seen again from (6l)  that T (x qs) <T(x q s) »     It is only necessary to 

prove a similar inequality for the remaining part of    n .     There are 

three possibilities to be considered: 

1. n    reaches the origin by staying entirely within the area 

bounded by the part of    A s   qrO ,   and the x,-axis. 

2. n    leaves this region through the arc    rO . 

3. n    leaves this region through the x,-axis. 

In case (l), T (A) < T(n)    since the time length along any solution 

is 

dx,       m dx. 

/-/?•/? 
and I x?  aiong n is not greater unaii xr\    aiong u, 

In case (2)3  suppose that n    leaves the region for the first time 

at the point v on the arc rO »  Then the desired inequality will hold 

up to v by case (l) and after v by equation (6l) so that T (A)< *Z"(n) 

will still hold. 
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IP case (3),  as soon as n gets to a point above the x.-axis, the 

considerations discussed earlier will prevail and n will have to in- 

tersect the x.-axis again to the right oi' its first intersection. Thus, 

the length of n has been made longer before case (l) or (2) applies, 

and the desired result follows. 

It is fairly clear that the- strict inequality will hold unless A 

is identical with n , but this means that f would be just the mini- 

mizing function previously found. This completes the proof. 

! 

I 
I 
r 
i 

! 

i 



N-DIMENSIONAL SYSTEMS 

Introduction 

Consider the minimal problem for the n-dimensional system 

-37- 

x = Ax - e (e / 0)  , (6U) 

n 
where A is an n by n matrix with real eigenvalues. By an appro- 

priate nonsingular substitution x = Tz ,    (6U) can be reduced to 

Z = JJZ - w (w f  0) (65) 

! . 

where w = T e and D = T AT , and D is in Jordan canonical form, 

that is, 

D = 

A. 
A2       CJ 

O *K 
(66) 

'• 

Each of the    A•     is a matrix having one of the following forms: 

o 

I • 

Case  (a); 

o 

Case (b): 

o 
o (67) 
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Casa (c): 

X 1 
X 1 

o 
o 

x i 
x 

(67) 

i 

Here,    X.    and    X    are eigenvalues of    A . 

The equations of the P- and N-curves are still given by 

.t 
Dt o + Dt f z=6 z -€     J *o 

Dt 

Ds . 
£   ds-w 

The matrix function €"     is 

(68) 

B? 

.Dt 

A ,t 
€    x   A.t 

V 
A,t 

(69) 

where € has one of the three forms corresponding to cases (a), (b), 

(o) of (67): 

Case (a): 

.V , o 
o 

\t. Case (b)r 6 *"l   , 

X.t 
> (70) 

• 

3 

I 

J 
I 
1 
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• . 

1   t 

Case  (c):   £ Xt 

"21  ' 

l     t 
tn'2 

l    t 

y   (70) 

!    ! 

The minimal problem will be solved first for the cases where    D 

is equal to one  of the matrices in (67), and then for the general case. 

Certain exceptional cases can occur ard will be disposed of in the next 

section. 

' n 

if 

\  i i 

Degenerate Cases 

As was seen in the two-dimensional case;,  certain degenerate cases 

can occur„    The following theorem carries over directly from the two- 

dimeribional case. 

Theorem 9'-    If    w    is an eigenvector of the matrix    D i   then 

minimal paths can exist only for points on  T     +   V   . 

_ + _ - 
T      and  r       are defined just as in the two-dimensional case.  The 

former proof holds good without  change.     It is recalled that  T     and   T 

liii on a common straight line through the origin. 

Even if    w    is not an eigenvector of    D ,   there still can occur 

degenerate cases.    Suppose, for instance; that,  in the system    z«Dz-w, 

i 

ll  ± 

D 

X,  1    0 

X n-1 

and w 

2 
1 
0 

(71) 
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where the   X   . ... ,X are distinct.    It is easily seen that   w    is 
1 n-1 

not an eigenvector of   D .     However, consider the system 

-     =,- * - 
z = Dz - w        , 

where z denotes the n-1 dimensional vector whose components are 

z2's3 * ''' > 2n ' a 

i 

D 

n-1 

and 

1 
0 

(72) 

It can be seen that   w    is an eigenvector of   D    corresponding to the 

eigenvalue   X.. .     In this     n-1    dimensional system, the equations of 

the P- and N-curves are obtained simply by leaving off the equation for 

z.    in the n-dimensional system.    If a path from    z    in the    n-1  di- 

mensional system is considered, a unique path to a unique point    z    in 

the n-dimensional system can be determined simply by working backwards 

from the origin and following P- and N-curves for the same lengths of 

time as for the path in the    n-1   dimensional system.    Conversely, every 

path from   z   will'., in the same manner, determine a unique path from its 

projection    z .     If no path exists from    z ,   no path will exist from    z . 

Now, according to Theorem 9, paths can exist in the    n-1 dimensional 

system only for points on a certain straight line through the origin. 

Therefore, paths can exist in the n-dimensional space only for points 

which project onto this straight line.    These are points with   z.    arbi- 

trary and   z2 , z. , ... , z     satisfying an equation of the form 

I 

I 

I 

I 

I 

Z2'W2 
W2 

w 2 z    - w _n n 
w 

Thus, minimal paths can exist only for a two-dimensional plane through 

the origin. 



i 
1 . 

. 

: 

It is pointed out that the above demonstration depended on the fact 

that the equations for    zr , z, ,--.., z      did not contain    z, .      If    z 

were contained,  then    z    would not  be * solution of the same type of dif- 

ferential equation as    z «, 

fieasonir>p similar to the above will prove: 

Theorem 10:    Suppose the k-dimensional system 

z" = Dz - w (w" ^ 0) 

can be formed bv taking k of the component equations of the n-dimen- 

sicnal system 

z = Dz - w (w / 0) 

If    w    is an eigenvector of    D ,   then minimal paths can  exist only in a_ 

certain    n-k+1    dimensional hyperplane through the  origin. 

In order to avoid these exceptional cases,  it is assumed in the 

sequel that  (l)   if    X    is a repeated eigenvalue,    X    appears only in a 

diagonal matrix of the form (c) of (67) and in only one such matrix, 

and (2)    w.  / 0    for    i = 1,2, ... ,n.     Such a system is called a 

nondegenerate system.    Theorem 10 holds only for    k~l   for a nonde- 

generate system, and, in fact, it will be seen that minimal paths will 

!J exist for all points in some    n-dimensional neighborhood of the origin. 

Terminology and Statement of the Main Theorem 

In finding the minimal paths, it will again be convenient to 

work backwards from the  oil gin.    Using this procedure, the following 

point sets or "surfaces" in n-dimensional space are defined: 

Pu.:    The point set obtained by following the P-curve through the 

origin backwards in time.    R.    is the set of points    z      satisfying 

-Dt, 
-*1 

z1 =6 JUlj[   €"Ds ds-w (tx  >0) 

R-U59 
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R?:    The point set obtained by starting at any point of    R,    and 

following the N-curve through the point backwards in time, that is, points 
2 

z      such that 

-to 

z
2 =€      -,-   _ €      2J    6-Ds dsw (    >  Q)      # 

o 

i : 
I 

R:    The points    z    satisfying 

-Dt , .     -Dt    }  "   n n      -      n    n-1      ,    ^n-1 n /       -Es  . /.    .    „\ 
z   = c z       + (-1)       €       ^    e       ds.w (t  > o;    . 

o n 

Let     R"1 Let    R, be the point set obtained by reflecting   R,     in the 

origin. 

Let    \'\*\'1' 

J%  £ Let Qk - V    Qi + 0 
i«l I 

R. is the same as the curve T      previously defined and R " 

is the same as T ~ .  Q, consists of all points from which a path exists       | 

with no cornersj Q^ consists ox all points from which a path exists 

with exactly one corner; and, in general, Q,  consists of all points from       f 

which a path exists vrith"exactly k-1 corners. Q.  is the logical sum 

of the sets Q. , ... , Q.  and consists cf all points from which paths T 

exist with k-1 or less corners. & 

Two theorems will now be formulated. To prove these theorems, it 

is necessary to consider several cases which will be done in the following 

sections. » 

Theorem 11: In a nondegenerate system with real eigenvalues, the 

point sets Q, , Q,. , ... , Q  are mutually exclusive. From each point in j 

& , a unique path exists with exactly k-1 corners, and no path exists 

with less than k-1 corners. 
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The main theorem of this report is: 

Theorem 12: In a nondegenerate system with real eigenvalues, a 

unique minimal path exists from points in the region Q , and no paths 

exist outside of Q .   The minimal path from a pojnt in Q  is the 

unique path with exactly k-1 corners. 

As is seen from the above theorems, all minimal paths contain 

n-1 or less corners. All the corners of minimal paths lie on the sur- 

face Q , « which is called the switching surface. 
n-1  

Distinct Eigenvalues 

Consider the case where the matrix D in the vE 

z = Dz - w (w.  / 0) (73) 

I  ! 

n 
; • 

has the form 

D = (7U) 

i   : 

where the eigenvalues    X.. , ... ,X      are distinct.    It will be assumed, 

for the present, that no eigenvalue is  zero.    The equations of the P- and 

N-curves are then 

z - u €        (z    - u) (75) 

where u = D w and u. ^ 0 since w. 4  0 . 
x ' i 

Theorem 13: The sets Q. , Q, , ... , Q  are mutually exclusive. 

From each point in Q- , a unique path exists with exactly k-1 corners, 

and no path exists with less than k-1 corners. No paths exist from 

points outside of Q » 

This theorem will be proved by induction* The proof for n • 2 was 

given earlier, The idea of projection will be used again. Denote the 
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n-1 dimensional system obtained by leaving off the first equation in  (73) 

by 

z = Dz ± w        . (76) 

(1  denotes the regions in the n-1 dimensional space with which the 

theorem is concerned. By the inductive assumption, the theorem holds 

corners exists from z and no path with less than k-1 corners. This 

proves the theorem for the sets Q, , Q,. , ... , Q . .  Incidentally, it j. c n—x 
can be seen from the above that a one-to-one correspondence exists between 

Q , Q , ... , Q _. and Q , Q , ... , Q  .  The switching surface 

• 

Ci= lN+o 
i-l 

can therefore be represented as a single-valued function 

zl = F^Z2 * Z3 ' '" ' Zx? 

From the definition of the Q-sets, it also follows that the switching 

surface is continuous. 

The theorem for the set Q  has not yet been proved. To do this, 

it is necessary to have the explicit expression for points in Q . It is 
-1 n 

recalled that Q • R + R  .  The equation for points in R  is ob- n   n   n n 

I 
I 
I 
I 
« 

i 

i 

I 

! 

for Q. , Qn ..... 0 . .  Consider any point z in Q, .  A unique path 
1 ' 2    ' n-1 k 

with exactly k-1 corners exists from this point. This path consists 

of a definite sequence of P- and N-curves foil.owed for definite times in 

the n-1 dimensional space. By starting at the origin and following the 

same sequence backwards for the same times, but now in n dimensions, a 

unique point z is reached by means of a path with exactly k-1 corners. 

This path is unique since otherwise the corresponding path from z would       I 

not be unique. There is no path from z with less than k-1 corners 

since no path from z contains less than k-1 corners, z is therefore       l 

in Q, .  Similar reasoning shows that to each point z in Q,  there is 

a unique point z in Q, ; therefore, a unique path of exactly k-1 

I 
I 

r 



tained from the definition of the it-sets and by the process of successive 

elimination.    If    z      represents any point in    ft   ,   then 

z    + [-1)      u =  L 6 

-D(r.+... + T ) ,     -DT I 
-2€       * n    + ... •  (-l)"'1^     nju   , (77) 

where all the T . are greater than *erc. The equation for points in 

R    is obtained by replacing z  by -z .  Parameters are changed by 

the nonsingular substitution 

R-u59 
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! 1 

= r   + T   + .    . 
12 

a2 

n-1 

TV,*   . r> a 

+ r 
n 

+ T 
n 

T     ,   +T n-1        n 

n 

-\ 

(76) 

J 

\ i 
It is noted that    a    > a„>   ...  > a    >0.     Equation (77) now becomes 

i   T 

I   I 

-Da, -Da, -Da 
zn+  (-l)n-\ -]   £       1-2€     2 t  ...  • t-l)n~h€     n      u    .(79) 

Now if    z11    is a point in   Q    - ,   equations (79) are satisfied by 

n values of    a, ,   ; 

Jacobian of this system: 

certain values of   a, ,   a„ j ... , a    ,    and    a    = 0 .     Consider the 

X a 
11 

Vi 

x a. n 1 

X a X a 
€ 1 2 €   1 n 

X2a2 X2an 

c « . •• C 

X a- X a n 2 n n 
t • e o    t 

(60) 
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Hcre, K is a nonzero constant. The A. are all different from aero by 
x 

assumption, and the u. arc all different from zero since the system is 

nondegenerate. The determinant is also different from zero if the \. 

and the a. are distinct, which is the case here.  (The determinant is 
1 

hood of z .  This shows that, in some neighborhood of z ' , a uniqu>? 

path with exactly n-1 comers exists.  As a  is increased, the 

Jacobian remains different from zero so that a unique path with exactly 

n-1 corners exists from every point in Q .  With the same type cf 

reasoning, it can be established that no path exists from a point in Q 

with less than n-1 corners. 

If it happened that this solution gave a "0 for a point in the neigh- 
borhood of zn , then the point would certainly be in Q _, and could 
not be in Q  because of the uniqueness of the solution/" n 

I 

! 

F 

[ a generalization of the Vandermonde determinant, and a proof that it does 

not vanish is given in Reference 3, part 7, problem 26.) Equation (79) 

can therefore be solved uniquely for a, «a? , ... , a  in seme neighbor- | 

I 
I 

To complete the proof, it must be shown that no paths exist from 
-it- 

points outside of Q .  Consider such a point z .  If a path exists 

from z , it must contain more than n-1 corners; say it contains m-=-l 

corners with m > n .  An equation similar to (79) could be set up con- 

taining m parameters. These equations could always be solved for the 

first n of these parameters and the other parameters set equal to zero. 

Therefore, a path exists from z with n-1 or less corners and z must 

therefore be in Q .  This completes the proof. 

* 
A word should be said here about the extent of Q , the region 

of existence of paths. From (79), it is seen that, if some of the eigen- 

values are negative, the region Q  will extend to infinity in some di- 

rections, while if the eigenvalues are all positive, the region Q  will 

be bounded. 

More precise information is possible.    It could be proved that, if 

the eigenvalues are all negative, paths exist from all points, while if 

the eigenvalue   X.    is positive, paths do not exist for points    I z. I ^ I w.AJ • I 

In the latter case, paths do not  necessarily exist from all points satis- 

fying   | z± | < | w±Ai| • 

• 

I 
! 

! 
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The main theorem for this  case wi2i now be proved. 

Theorem lit:    11" the  eigenvalues are distinct and not  zero, a unique 

minimal path exists for all points in    Q   .     The minimal path for a point 

in    Q      is the unique path that contains    k-1    corners. 
iC • •  • ••       —~ •— 

This theorem will be proved by induction. The theorem has been 

proved for n = 2 . 

The theorem will be proved first for points on the switching sur- 

face Q   .  Consider any point z in Q,  for k < n-1 and its pro- 

jection z in Q  as in the proof of the preceding theorem. The unique 

path A    with k-1 corners from z projects onto the unique path 

A   with k-1 corners from z .  The paths A    and A    have the k-1 # *^ k-1 _    k-1 
same time length.  In the n-1 dimensional space, £> . ,  is the minimal 

path by assumption. Any path from 2 other than A  . would project 

into a path different from A . _ and would therefore have a longer time 

length than A  , .  Therefore, A, - is the minimal path and the theorem 

is proved for all points in Q .  . 

It remains to prove the theorem for points in Q .  Suppose z is 

anv point in Q .  It is known that there exists a unique path A  .. * -        n n-1 
from z containing exactly n-1 corners; it is desired to show that 

A ,  is the minimal path. n-1 F 

Consider any path at all from z .  This path will have a certain 

number of corners and will tnen intersect Q . .  From this point, the n-1 
minimal path is uniquely determined. It is only necessary to determine 

the behavior of the minimal path from z until its first intersection 

with Q , .  For convenience, label the point z as z  .  Consider 

the path A  from z   that has exactly one corner before reaching 

Q .. .  In other words, A  is the path obtained by starting at z" 

and following, say, a P-arc for a time T. > 0 to a point z , not in 

Q , , and then an N-arc, for a time T , > 0 to a point zn~ . which 
n-1 n-1 ' ' 

is in Q , .  From this point, the minimal path is determined. It will 

be shown that the time length of A  can be reduced by making T  smaller, 

* Any path and its "projected" path have the same time length by construction. 



and that it :*.s P. minimum if T • 0 .  This will show that the time length 

of A ,  is less than t..s time length of A •  Successive use of this 
n-1 n 

result will snow that A , is shorter than a uath with any number of cor- 
n-1 

ners. 

if 

Using the equations of the P- and. N-curves, the equations for the 

successive corners of A  are found to be 
n 

I 
i 

n+l 
z + u 

n z    - u 

n-1 
z •• u 

= € 
-D(T ) 

n / n .  x 
U + u) 

_. n-1/ n-1   ^ = € (z   - u) 

. "  n-2, n-2 . . 
• € (z   • u; 

>   (81) 

-Dr ( N 

1. / T\n+1   c       o< o ^ / , snfl z + '-1;  u = c    W + (-1)  u. 

By successive elimination, it is found that 

(zu = 0, T±> 0) 

n+1 .n+1 
-DT 

+ (-ir u = \2€   n-2e n    n-l ...+ (-l)n_1k€ 
-D(T+...+T) 

(-Dn* 
-D(r •...+"0 

u (82) 

I 
1 

Wow let 

T   • T,  • „    .     .      + T 
o       1 n 

Tl * '    ' 

ln-l 

n 

+ z 
n 

c n-1       n 

n 

1 

J 

(83) 

I 

I 

i 
.1 

where a  represent? the total time length of A , 



Substituting (63) into (62) gives 
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(     -Da -Da    , 
n+1 A , , > n+1       j r ._ **"n    ., c *"*s 1 ^ , . U«-1Q "Dal 

z       + (-1;      u = \ 2€        -26 + .„.+  (-1)      26 

-Da 
• (-Dne   °N (81) 

or, taking components, 

I      -X. a -X. a 
z*+1

+(-l)n+1
Uj  = <26   x n-2€   x n~1 

+ (-l)
n+1u.=^ 

-X.a   1 
• ...• (-!)"€   i s|u. ,   • (85) 

Let T  = a  be the independent variable; then differentiating 

both sides of (85) with respect to a  results in n 

-X.a -X.a    ., 
0 = 26   x n - 26   X 11""L a    ,•...• (-l)n_126~ 1&1L 

n-1 1 

n 
-X.a 

• (-Dnfc   x ° a (i = l,...,n)      ,    (86) 

where    a.   = da./da   „     These are    n    simultaneous equations for 
l l      n i 

a   , a, , . o. , a.    _ o     Solving by determinants for    a      gives 
o      1 n-1 o 

-X.a -Xna 
,-    1 n        ^    1 n-1 

-X a -X a 
^    n ii       ^    n n-1 

-Vn-1 

-X a   , 
e nn"1 

"Vi 
o o 

-X a. n 1 

.     € 

-X,a 
1  0 

-X a 
n o 

(87) 
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I 

\ 

I 

The determinant in the denominator of  (67)  is the same as the one 

previously encountered, and is different from zero.     Since the numerator 

is of the same form as the denominator;  the quotient is positive.    Thic 

shows that    a   > 0    when  T    > 0 ,   and therefore the minimum occurs when o n 
) ,     as was to be proved. 

If one of the eigenvalues is  zero,  say the  last one, nothing is 

changed in the above work except the equation for    z   .     Since the DE 

n 

for    z      is n 
. + 

n n 

the solution is 

(68) 

• • ^ o z = -w t + z n    n    n (89) 

It is noted that if the equation in the case of distinct eigenvalues 

is taken for z , namely, 

_  w    X t 

n  Xn 

and the limit is taken as    X -+• 0 ,   equation (89) is obtained.    Thus, it 

is not necessary to go through all the algebra of successive substitution. 

All that is necessary is to let    X -^-0    everywhere.    This, however, dce3 

not cause the determinants used in the proofs of the theorems to vanish. 

Thus, the theorems ars true if one eigenvalue is zero, and are therefore 

true for all cases where the  eigenvalues are distinct. 

\ 

T 

1 

Repeated Eigenvalues 

Consider the case where   D , is of the form 

X 1 
X 1 

D 

X 1 
X 

(90) 

] 

i 

1 



For the present,  it is assumed that    \ f 0 .     The P- and N-curves are given 

by 

R-/5? 
-?1- 

+    Dt, o + \ 
z - u = £  (z - u)  , (91) 

where 

i i 

r 

1 t 

-Dt  -Xt 

A 

n-2 
M  

(n-2)J 

1  t 

J 

(92) 

The solution of the minimal problem will follow the same lines as 

in the last section and most of the proof does not need to be repeated. 

In fact, all that is necessary is to verify that the two determinants 

which correspond to (WO) and (67) are different from zero. 

Consider the determinant corresponding to (87). Equations (8I4.) 

for the path A  still hold, namely, 

f  -Da -Da 
zn+1 + (-l)n+1u - [Zi     n •...• l-l)n"h€-    1 

• (-l)n€ a°)u  . (93) 

Differentiating both sides of this vector  equation with respect to    a 

gxves 
r     -Da -Da    . n     -Dan 

0 = -D\ 26     nu- 2 6     n"1ui    .•...• (-l)n_12€     ~uL 
n-1 1 

-Da "\ 
* (-l)n€     °ua • 

n 

(9h) 

t, 

i 
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Sines    D    is nonsingular,  the vector in braces must be zero.     Taking the 

n-compcm 

algebra, 

n-compenent equations of (9U)  and solving for    a   ,   gives,  after some 

-Xa 

a 
o 

T 

n-l 

o 

n-2 

/ kJ  uk+2 

u -, - a u 
n-l   n n 

u 

-Xa 

/ .  ki    k+1 

u 

n-l 
(-axr 
—icl  Uk+1 

n-2 
(-a/ 

kJ  \+2 

o     • 

n-l   1 n 

u 

n-l 

Z_^ " ki k+1 

o      o       o u 
n 

(95) 

I 

I 

f 

[ 

r 
i 

i 
Fortunately, these determinants can be vastly simplified. Per- 

forming obvious elementary operations on rows, starting from the n 

row and working upwards, results in 

r 
2 

1 
1 
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a 
o 

T 

n- -1 n-1 
n-1 • • • 

n-1 
al 

n- 
a n 

•2 n-2 
n-1 

n-2 
al 

-Xa 
€     n • 

• 
• 

• 

• 

• 
• 
• 

a 
n n-1 

• * * "1 

1 1 • * • 1 

-Xa 

n-1 
n-1 

a 
n-1 

1 

n-1 
(96) 

III 

• 

:. 

The determinants appearing are the well-known Vandermonde deter- 

minants and are different from zero if the elements    a.    are distinct, 

which is the cat;e here.    Since the numerator and the denominator have 

the same form, the quotient is positive, as was to be proved. 

In the same way, the determinant that corresponds to (80)  can be 

shown to be different from zero.    In fact,  It turns out to be the 

Vandermonde determinant again. 

Therefore, the main theorem holds when the matrix   D    is the ele- 

mentary Jordan matrix (90) and the elgenvaiue is different from zero. 

If the eigenvalue in (90) is zero, then 

D = 

0 1 
0 1 o 
o 0 1 

0 

(97) 
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The equations  of the P- and ^-curves can be obtained easily by- 

solving    z - Dz - w    in the ordinary manner.    They are 

*      -l|ir1t*w9|r*...*w   M^'V*^* —**      4-_} 1 \ 1        <: 2J n nJ /    ^    1        2 n (n--l)JJ 

• / 

• (98) 

, -!« ,t • w Jr • (z°   . • z° t) n-l        \ n-1 n 21/ n-1 n 
+       . o z      • - w t • s n n n 

Again, it turns out that (98) can be obtained from the solutions 

(91)»  where X / 0 , simply by taking the limit as X -•» 0 .  Since _he 

determinants in (96) do not involve X ,   the determinants obtained for 

X = 0 will be exactly the same. Thus, the mair theorem also holds for 

an elementary Jordan matrix when the eigenvalue is zero. 

The General Case 

Suppose the matrix D has the form 

A 

JU   = 

lA*. o 
(99) 

v_- 

where each of the A.    is an elementary Jordan matrix of the form 

Ai 

v o 
0        • 

O    k 

I 

(ico) 

The matrices   A.    can be one by one matrices so that purely diagonal 

boxes can be included in    D . 

i 

f 
i 

i 
r 
I 

r 
i 

1 

1 

r 
1 

Li 
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z = Dz - w (101) 

! 

will be nondegenerate if    w.  j* 0 ,   i • 1,2,...,n    and if an eigenvalue 

X.    appears in only one matrix of the form (100). 

To prove that the main theorem holds in this general case,  it is 

only necessary,  again, to consider the determinants corresponding to the 

two determinants used before.    In order to avoid too many notational dif- 

ficulties, the following special case is considered: 

i i 

D = 

Aj 0 0 

0 An 0 
1 

0 0 AIII 

(102) 

I   : where 

AT = 

•n 

Xlx 
• O 

o 
\ 

" X 1 
X 1 

•    • o 
O 

• 
•      « 

X 1 
X 

0 1 
0 1 

•     • O 
o' 

• 
•    • 

0 1 
0 

> (103) 
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It is assumed that A, is of order k, , A   cf order k, ,  and A 

of order k_, .  It is also assumed that X ,...-> ,X are distinct and not 
3 x     n 

zero (this is necessary lor the system to be nondegenerate). 

I 

Let    z.    and    w    be partitioned as follows: 
1 I 

z = aII 

JIII 

V   = 'II 

'III 

(10U) 

where    zT    is a    k..-dimensional,    z T    a k -dimensional, and    Z>TT-T 

k_-dimersional vector, and the same for   v_ ,   wTT ,   wTTT . 

The DE's under consideration can be written as 

r 
I 
i 

[ 

r 
i 

F 

Z.   = A.7.    -   W. 
1        11        1 

(i = I, II, III) (105) i 

I 

i 
m 

! 

These are the same type of matrix equations that have been solved pre- 

viously.    After a little reflection, the relevant determinant can be 

written without further calculation.    The denominator of the determinant 

used in the proof of the main theorem is  (106) below: 

.   1 n-1 

c"Xklan-l 

-Xa k -1 
_     n-J •        \  £. 

n-x 

-Xa n-1 

• Y1 
n-1 

n-1 

Vl 
1 

-X.a 
,    1 o 

-Xw a 
€   «i o 

6     °a    2 

o 

-Xa 

k--l 

o 
1 

MnAl 

I 

I 
1 
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The only comment that is necessary concerns the appearance of such 

factors as    €     n~^   vhich did not appear when the special case of the 

matrix  ATT    was considered previously.    The reason is that, previously, 

such common factors of each column of the determinant could be taken outj 

this cannot he done in the general case. 

The fact that this determinant is different from zero follows from 

problem 7.5 and the solution to problem 76 in part V of Reference 3. The 

rest of the arguments given previously apply without change, so that the 

main theorem remains true in this case. 

Clearly, any number of  elementary Jordan matrices appearing in    D 

will yield to the same treatment.    Therefore, the main theorem holds true 

for any nondegenerate syslemi 

Statement  of Results 

The original problem posed has now been solved when the matrix of 
the system has real eigenvalues. The result can be stated quite simply 

as follows: 

Theorem l5s    Consider the n-dimensional system 

I ' 

x = Ax - e (e /0) 

I \ 
; I 

I I 

where    A    has real eigenvalues.    If a_ path exists from any P^int in the 

phase space, then a unique minimal path exists and is the path that con- 

tains a minimum number of corners. 

•'•'he above theorem holds equally well for degenerate or nondegenerate 

systems.    The only difference is in the region of existence of minimal 

paths. 

For a nondegenerate system, minimal paths exist for all points in 

some n-dimensicnal neighborhood of the origin.    If the eigenvalues are all 

nonpositive, minimal paths exist from all points in the space.    If the 

eigenvalues are all positive, minimal paths exist in a bounded neighborhood 

of the origin.    If some of the eigenvalues are positive and some nonposi- 

tive, minimal paths exist in an unbounded region lying between pairs of 

parallel hyperpianes. 

* Theorem 12. 
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j 
For a degenerate system, all the minimal paths lie on some hyperplane | 

through the origin.    The remarks in the preceding paragraph hold for this 

hyperplane. i 
! 
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CONGLIDING REMARKS 

Some matters which are pertinent to practical applications of the 

results are briefly discussed below: 

If a control system is to be designed for a minimum time of cor- 

rKcti"" of an error and its derivatives, the results in this report and 

those of Reference 1 show that the best control is a properly designed 

limit control or bang-bang control. The mathematical features of the de- 

sign of such a control have been demonstrated in many cases. 

In the practical design of such a system., although the control me- 

chanism itself is as simple as possible (a switch or relay), a computing 

device must be used along with it to instruct the control mechanism when 

to switch fro.T. cno value to another.  Before such computers are designed, 

a great deal of numerical computation must be done; however, the computa- 

tions are not too complex. They would involve only the tabulation of the 

solution of certain linear diff erential equations. 

It should be mentioned that a servo-motor control system of the type 

discussed has already been built (see Reference k). The differential 

equation of the system was one of the simpler ones, namely, "x = -1 . The 

svstem was found to give excellent results and to be much lighter and 

occupy less volume than a standard type of system under the same power 

conditions. 

It should also be mentioned that the design of a limit control system 

depends on the parameters of the system to be controlled. However, it 

certainly cannot be expected that a control can be designed that will give 

optimum performance without vaking into account the particular parameters 

of the svst.pm to b*-' o?',+.rcll°d^ 

» 
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