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SUMMARY

This report is concerned with the mathematical features of the de-
sign of a control system that has the property of simultancously reducing
the error and the derivatives of the error tc zero in a minimum time. The

differential eguation of the ccentrcl system is assumed to be cf the form

where L 1is a linear ordinary differential operator of the nth order
with constant coefficients, y 1is the error; and f 1is the control func-
tion or correcting force. In most of the report, it is assumed that the
function f 1s discontinuous and takes on only the values tl. Thus,
the comtrol function acts as a simple switch or relay. The problem is to
determine how the function f should be defined, i.e., to determine how
to switch the correcting force fram +1L to -1 and back, so that the

rror and its derivatives are reduced to zero in a minimum time.

The nth—order equat ion is reduced to a system of first-order equa-
tions and the t.chniques of matrices are used. The problem is solved for
all cases when the eigenvalues of the meirix of the system (or the roots
of the characteristic equation of the operator L) are real. The result
can be stated as follows: If it is possible to find any control function
f that simultanzously reduces the error and its derivatives to zero, then
there exists a ﬁnique function f which does this in a minimum time. The
min’mizing function is the cone which employs a minimum number of “switches."

It should be pointed cut that this result holds only for real eigenvalues.

A slightly broader problem is ccnsidered in a few simple special
cases, namely, the problem where f 1is restricted only by the inequality
it € 1. It is shown in these cases that no reduction in the minimum
time is possible, and that the minimizing function is still a function of

the discontinuous type, where f = <

The study was conducted at the Experimental Towing Tank, Stevens
Institute of Technology, under Office of Naval Research Contract No.
Nonr-26302.



INTRODUCTION

Limit ccntrol refers to a discontinuous control that is allowed to
take on onlv extreme values. Such controls are often referred to as
bang-bang, relay tvpe, or on-off controls. The present study is con-
cerned with the design of a limit control system that will simultaneously
reduce the error and the derivativec of the error to zero in a minimum

e

time.

Mathematically, the error is represented by a differential equation
or a system of differential equations where the foreing ruaction or con-
trol function is discontinucus and is allowed to take on only extreme
values. The pro.lem is to find how to switch the control function from
one extreme valﬁe to the other in such a way that the error and its de-

rivatives are reduced to zerc in a minimum time.

This report extends some of the results presented in Reference 1;
which were essentially the first results for this problem. The work is
part of the 1limit control project of the Experimental Towing Tank, Stevens
Institute of Technology, under contract with the Cffice of Naval Research.
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STATEMENT OF THE PROBLEM

An Automatic Corntrol Problem

This study is concerned with a minimum problem associated with a
linear differential equation contuining a discorntinuous forcing term. The
problem arises rhysicallyv in the design of an automatic control system for

optimum performance.

Consider the control system shown in Figure 1:

Controlling . I | Controlled y
| L : - -
‘ System | System
i |
| |
!

i Power

{ Source !

| AR

i <
FIGURE 1

The purpose of this system is to keep the output y of the controlled
syvstem conétant at the value Ve ® If, at any instant, the output is
different from R then an error-sensitive device feeds the error y - Vs
back to the conirolling system. The output of the controlling system, i.e.,
the control function f, 1s fed into the controlled system and should be
designed so as to cause a reduction in the error. The important part of

the system is the control function which is supposed to be some function

of the errsr and its time derivatives up to a certain order. The broad

problem considered here can now be stated:

To determine the control function so thuat the error and the de-

rivatives of the error up to a certain order are simultaneously reduced

to zero in a minimum time.

In what follows, a drastic restriction is made on the class of

control functions that are considered. In fact, in all but onc case,
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it will be assumed that the control function f _15 a discontinuous function

that is allowed to take on only the values +b and -b, where b is a

positive constant. The controlling system therefore acts as a switch or

a relay that applies the full strength of the power source to the controlled

syvstem, either directly, or with a reverse in polarity.

There is no conclusive reason why a relay type control should bte the

best one for the present problem. However, since the full strength of the
power source is alwayvs used, it does seem reasonable that the error ard
ils derivatives can be reduced to zero in a shorter time than by any other
means. In this connection, it will later be proved, only in the case of
very simple svstems, that, among all functions satisfying |f|< b, the

minimizing function is of the discontinuous type described.

Mathematical Formulation of the Problem

In the system shown in Figure 1, it is assumed for convenience that
the reference value Y, is zero. The error is then simply y{t). It
is alsc assumed that the controlled system is governed by a linear dif-
ferential equation with constant coefficients so that the error y(t) is

a solution of

dy a1y
it

where L represents the operator

LETR 20 P e A D a (D dit), (2)
and the control function 1 1s a discontinuous function taking on only
the values +1 and -l1. (If f = b, then b can be made to equal 2
by a change in the time scale.) A preliminary statement of the problem

is to determine the function f (that is, to determine for what values

f = +1 and for what values f = ~1) such that the solution of equation (1)

which satisfies the initial conditions

dy(0 d < ,
v(Q) = ¢y s —%ﬁ;l = Cp oy ene s -——7ﬁ§§l =c ey, = ccnstants),
dt B

o -
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in a minimum time.

If the function f is at all complicated, there is some doubt as to
what is meant by a solution of equation (1) (suppose. for instance, that

-

f is +1 when y is an irrational number and f is -1 ctherwise).
To circumvent this difficulty, the probiem is formulated in different terms.
For this purpose, equation (1) is reduced to a system of first-crder

equations. In the usual manner, let

hid = X W

K
n

1 %

X = x
n-1 n
xn = -anxlman_lx2 S grera = alxn + f |
(;’cl = dxl/dt etc.).” In matrix form, this can be written as
x=Ax+tp , ()
where
—xlT ) . . 0 1 [ 0 ]
X5 0] s ‘s O 0 |
[ ] L 4 ' -
X = s A= s P = ‘
. . . ! .
. 0 o 0. .0 1 0
hxn- Lfan -, - . . o-a, -alJ _f(x)_

Since f can take on only the values 22 s the solutions of

envation (L) shoula be combinations of the solutions of
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x=Ax -e , (5)

vhere e = c01(0,0,...,0,1) . The solutions of x = Ax + e will be
called P-curves (P for positive) and those of x = Ax - e will be called
N-curves (N for negative). Along each P- or N-curve there is a natural

orientation, namely, the direction in which t dincreasecs.

#*
A solution of (L) from the point x°" is defined as a continuous

curve that consists of a finite sequence of alternating P- and N-ares
(each of finite time length) starting at the point x°. The solution
can be represented by x{i), a continuous vector function of the scalar

parameter t. A path from x° is defined as a solution from x° which

ends at the origin. With each path there is associated a transit time,

namely, the sum of the time lengths of the P- and N-arcs making up the path.

With this termiriology, the problem can flnally be stated as follows:

To find a path of minimum transit time (a minimal path) from each

point x° in the phase space.

Corresponding to each solutior of equation (L), as defined above,

there is a control function f, namely, f = +1 on the P-arcs and f = -1

on the N-arcs (here, a P- or an N-arc is regarded as being closed at its
initial point and open at its terminal point). The only functions f
admitted are those such that all the solutions from a point are of the
type described.

Since the problem has been formulated entirely in terms of the system
of equations, it is not necessary to restrict the matrix A to be of the
above form. The problem can be generalized slightly and instead o¢.® con-
sidering equation (%), the following equations will be considersd:

xehxte (6)

it
where 4 is any n by nmatrix and e 1s any non-mill vector.

#* Suyperscripts on vectors are indices and not exponents.

# It should be remsrked that equation (6) is not necessarily equivalent
to an n“- -order equation. However, physical systems arise directly in
the form (6), such as the linearized equations that govern the motion
of a submerged submarine,

mEE W semN O meny o wmay 0 AN WS DR
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The final formulation of the problem to be treated in this report is:

Consider the system of differential equations

x = Ax + ef(x) , (7)

where A is any n by n mtrix, e 1is any non-null vector, and £(x),

a real-valued function of the vector x, can take on only the values _E}.

dow should the function f(x) be chosen so that the solution x(t) satisfy-

ing arbitrary initial conditions x(0) = x° reaches the origin x = O in

the least possible time?

The existence or nonexistence of minimal paths of course depends on
the behavior of the P- and N-curves. Some of the properties of these curves

are discussed below.

An important fact is that the family of P-curves is symmetric to the
family of rti-curves with respect to the origin. This holds for orientation
as well as for shape. The symmetry follows from the fact that if x(t)
satisfies X = Ax + e with x(0) = x°, then 2(t) = -x(t) satisfies
z = Az - e with z(0) = -x°. Using this property, it is necessary
to solve the minimal problem for cnly one-half of the phase space, the

soiutions for the other half being obtained by symmetry.

It is known from the well-known existence theorem for linear dif-
ferential equations that there exists a unique P- and N-curve through each
point of the phase space. The equations of these curves can be found in
terms of the matrix function G'At. The solutions of the differential

equations

. +
x = Ay -

. (8)
satisfying the initial conditions x(0) = x° are

£ =
At o+ At jeAst)e ’ (%)

which are the equations of the P- and N-curves. (In the case of an

t o
-3 =

\O
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ambiguous sifn, the upper sign holds for the P-curves, the lower sign for

the N-curves.)

1f the matrix A is nonsinguler, (9) can be simplified to

+ i
el B (B gl 10)

which can be verified by direct substitution. The poinis +A "e are
singular points (or equilibrium points) of the DE, that is, points
where x = 0. The P-curve through the point A" is just the point

itself and similarly for the N-curve through *A*le 5

It is well known that the matrix eAx can be determined explicitly
if the eigenvalues of the matfix A are kncwn. In fact, in crder to solve
the problem, it will be cormvenient to make a substitution in the DE that
will reduce the matrix A to diagonal or Jordan canonical form where the
eigenvalues are explicitly displayed and wher. the function eAt assumes
a simple form. Obviouslv, the character of the P- and N-curves is alsn
determined by the eigenvalues of A, It will be shown, in fact, that
the character and existence of minimal vaths are determined s~lelv by the

nature of the eigenvalues.

In this report; a complete solution to the problem will be given in
the case where the eigenvalues of A are all real. The trivial one-
dimensional case will be solved first; then the two-dimensional. cases
will be discussed, and these will be used as a basis f'or induction in
solving the n-dimensional cases. In additicn, the broader problem where
the controt function f Is resiricted only by the inequality |f|5; 1
will be solved for the cases of the one-dimensional systems and a simple

two-dimensional systemn.

The only known previous results for the present problem are given
by Bushaw in Reference .. Bushaw completely solved the problem for all
two-dimensional systems (including the case of complex eigernvalues) that

arise from a second order differential equation with constant coefficients.

Before proceeding with the analysis, a few remarks will be made about
the general procedure. The problem is to find the minimal paths which, by

definition, must enter the origin. The only way a minimal path can reach

. [aman ] [ ] [ ] L

[———

frmier



the origin is by way of the P- or N-curve through the origin., Let the

curve [' be defined as the curve c¢btained by following the P-curve through
the origin backward in time (starting at the origin). The minimal path for
at least some of the points of [ close to the origin must consist of just
that portion of [ between the point and the origin (if a minimal path
exists at 2ll). By symmetry, corresponding points are found on the N-curve
through the origin. Thus, all the minimal paths with no "corners' are
found; a "corner" being a junction of nonzero P~ and N-arcs. Then the
miniwAal paths with exactly one corner are determined, and so on, until

all cthe minimal paths have been found.
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ONE- AND TWO-DIMENSIONAL SYSTEMS

One-Dimensional System

The differentisl cquations for a one-dimensional system are simply

X. =ax. - e 5 (11)

where X5 8, €, are all real numbers. It is assumed that el‘) 0.

Three cases need to be consid-red, namely a <0, a> 0, and
a=0 (a is actually the eigenvalue). If a ¥ 0, then the solutions

of (11) are

e aL 4
+ 71 rat/ c+ “11 i
80 """ & % a / 7 (12)

which are the equations of the P- and N-curves whose initial point is xlo .

Consider first the case a < 0. The P-curves start at the point
o

Xy and continuously approach the point -e.l/a as 1 -—=@® . The N-curves

continuously approach the point *el/a as t-+»m . This behavior is

shown schematicslly in the following Figure:

— »— e s < P

- ® g » X

el/a 0 -el/a 1

—— e - — — — — — — — . — — — —— — - e e
FIGURE 2

le) ’ S - - -~ Y . .
< -el/a ; the minimal path is easlly sSeen to be the N

~ £
w=aI'C 1XI0ni

YWow to find the minimal paths. If x1° is in the interval

0 <x
x1° %o the origin. This follows from the fact that the N-arcs in this
interval are directed toward the left while the P-arcs are directed toward
the right. If theminimal path contained a P-arc, this would mean that Xy
would be increased and, in order to reach the origin, a longer N-arc

would have to be traversad.

o .. . s
If x is in the interval x

B 10 > -e,/a, both the N-arcs and the

’—ﬁ-
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P-arcs are directed toward the left. However, the minimal path is still
the N-arc connecting the point xlo with the origin. Because of the re-
sult in the preceding paragraph, it is only nect sary tc show that the

minimal path cannot contain a P-arc in the interval xl> -e_./a. If the

minimal path did contain a P-arc, suy between the points x and x

1 3
where x1° and Xy are greater than -el/a and xl< xlo, the time to
traverse this arc could be essily obtained from (1¢) to be

/0
1. (% ¢ el/a
bP = - ; :L"]\ xj ¥ e./a . (13)
o) A

The time to traverse an N-arc connecting the same points is

< /xlo - el/a
tN Sl § 111\){—1—_3175 . (lh)

It is easy to prove that ty < tp and therefore that the minimal path

cannot contain a P-arc

By symmetry, an analagous result is obtained fcr the points xlo <0
where N-ares are replaced by P-arcs. asnce, a unique minimsl path exists

from every initidl point.

If the eigenvalue a 1s positive, the equations for the P- and
N-curves are still given by (1¢) tut the directions are reversed, as shown

in the following Figure:

A
\
]
4
Y
L {
o

- — X

~el/a 0 el/a 1

————— ———— . — — — —&— — - — - — — —p— — —— N
FIGURE 3

It 1s seen immediately that no paths ex:st if | xJol > el/a . If

ixlci <el/a , the same prccedure as above proves that a unique mirnimal
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path exists. If 0< xlo__<_ el/a , the minimal path is the N-arc connecting
xlo with the origin, and if -el/a <_xl° < 0, the minimal path is the

. o . o
P-arc connecting X, with the origin.

If a =90, the sclution (12) fails. The eqguations of the P- and

N-curves in this case are

= + + G o S
X, —et *x) . (15)
Here, the P-curve from any point is direcied to the right and the N-curve

is directed to the left. By using the same reascning as above, it is seen
(SN

that a unique minimazl path exists from every point xlo; if 22 0, the
minimal path is the N-arc through xlo s, while if xlo < 0, the minimal
path is the P-arc tarough xlo .

The results of this section aresummarized in the following theorem:

Theorem 1: In the one-dimensional system

x, = ax_ + e flx ) ,

where e
—_ 1

minimal path exists if a <03 if a >0, a unique minimal path exists

> 0 and f(xl) is restricted tc the values &, a unique

for points Xy and no fos

The minimal path (if it exists) for xlo > 0 is just the N-arc connecting

xlO with the origin, anmd for xlo <0, the P-arc connecting xlo with
the origin. (In terms of the control function f , this means f(xl) =
~-signum Xy .)
One-Dimensional System with lf(xl” L1

The broader problem will be considered here for the one-dimensional
svatem

x) = ax) + e.LL'(xl) g (16)

where e, > 0 and |f(xl)| 1. 1In order to insure soluticrs of the

differential equation, it will be assumed that f(xl) is piecewise

oot woem GEmEm @ EEmR e
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continuous with only a finite number of Jdiscomtiauities in any bounded in-
terval. The solution of (16) through any initial point will then be uniquely
determined by the sole requirement of continuity. The class of functions
considered here will be broader than the class of functions considered in

the preceding section., It will be shown, however, that the mifiimum time

obtained in the last section cannot be improved.

Theorem 2: Among all furctions f(xl) satisfying the conditions

in the preceding paragraph, the minimizing function is just the function

f(xl) = -signum xl that was obtained in Theorem 1.

This theorem will be proved only for the case a <0. The other
cases can ve trealed in a similar manner. If the initial point is xlo >0,
the time T for f(xl) = -sigoum x. to get to the origin is simply

. /x.° -e./a
T=—lln7 _ﬁ__l_e ; ) (17)
S T

It will be shown that the time for any other f will exceed T . Since
l£) <1 and e;> O,

-e; < elf(xl) < e, (18)

or, using the differential equation (16),
e i (19)
Multiplying (19) by the integrating factor et gives

. .-at . d , _-aty, ¢« -3t .
-'L,l € 'Sdt (Alé ;> elc . (ZO)
Integrating tiis inequality from O to t, remembering that xl(O) =x1° 5

gives

e e
—le-at'- 1/;xl€._at—. os__rlefatw_l_ (21)
a a

L
[



e

PR IY T

TP

T €00 AP IR, LS IO XIS PRI

T TR I N ST

Setting Xy

ing inequality for the time to reach the origin:

1 /xlo - el/a\ .
tz-gln(—?a—/ , [z2)

This shows that t2>7 . It is easv to see that the strict in-
equality will nold unless the function f(xl) is identical with the

minimizing function f(xl) = -signum x This completes the proof.

lo

Two-Dimensional Systems

The minimal problem will be considered for a two-dimensional system

.
+

s (e f0) (23)

’,

where A 1is a ¢ by 2 matrix and x and e are two-dimensional vectors.

Onlv those cases where A has real eigenvalues will be considered.

It is convenient to meke a substitution in the DE, namely,

x = Tz . (24)

whers T 1is a real nonsingular matrix. The DE becomes

+

z=Dz ~-w , (25)

shere D = T-XAT and w = 738, The mabirix. T 6an be chosen so that D

assumes one of the three following forms:

= - N
Xl 0
Case (a): D = 5
.0 ]
S
n (V)
C : D= & (26)
ase (b) o Al ¢
N 1]
C : D=
ase (c) o ] 2 ]

% See, e.g., Reference 2, page <08.

= 0 and solving the left-hand inequality results in the follow-
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where )\l » A =zre the eigenvalues of A . Case (a) will be obtained if
the eigenvalues are distinct, case (b), if the eigenvalues are equal but
there are two linearly independent eigenvectors, and case (c), if the eigen-

values are equal with only one independent eigenvector.

o

The sclutions of (25) are

r a2t
Dt + Dt ’l. -Ds > .
z =€ z° -¢€ <L06D dsj w 5 (27)

where, corresponding to each of the forms of U in (26),

r )\‘t ._' W
i L 0
Case (a): eDt = € ,
! At |
-8 €™ | |
- -
_ G)\t 0
Case (b): GDt = A : k (28).
L 0 & |
At At
bt _1€ €
Case (c): €7 =
A
[ o €

It will be necessary to consider several cases in order to solve the
minim=1 problem. However, there are some results that can be established
for all two-dimensional cystems. In this connection, let T bve the curve
obtained by starting at the origin and following the P-curve backwards in

time. ' ¥ is the curve
D ? D
z =€ “{fe' = ds}w (B=0) . (29)
o

Also, let I' ° be the N-curve symmetric to f'+ with respect to the origin.

The following theorem will now be proved:

Theorem 3: In the two-dimensional system

+

x = Ax - e (e #0)

R-L59
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wherec A has real eigcnvalues, the rinimal paths for points on [ + T

are just the portions of I' ¥ or T~ connecting the initial point and

the origin.

Let z° be any point on [ +, except the origin. Let the minimal
path described in Theorem 3 be denoted by [ +o
o 2
path from 2z~ . It must be shown that the time length of [ ;o is 1less

and let S be any other

than the time length of 5. This will be done by projecting both paths
on she za-axis. It will turn out that the time lengths of the paths are
no.. altered by projecticn. It will further turn out that the projected

paths are paths in the zzwaxis for the one-dimensional minimal problem

which was cansidered earlier. From {Z7), the equation of the z,-component

2
of any P- or N-curve can be obtained, the result being the same regardless

of which of the three forms the matrix D takes. This is easily seen to
be

% o 2
2y = % 2% = 5% ) (30)

if % £ 0 and

0
2

~~
Lo
=

N

+
z, = -wzt + 2
if A =0. It can be seen that the time length of a P- or an i-arc de~
pends only on the z,,-coordinates and is not aitered by projection on the

4

z,-axis. It is also seen that (30) and (31) are just the P- and N-curves

of the one-dimensional pfoblem

L *
z, = Xzz - v, (32)

which was discussed earlier. For the one-dimensional problem, the pro-
jection of T ;o is the P-arc connecting 202 with the origin, which is
just the minimal path for the one-dimensional problem. The projection of
S , which must contain at least one N-arc, will ue different from the
unique minimal path of the one-dimensional problem. The time length of
I'+o is therefore less than the time length of S . This completes the

proof,

ey L | ey
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In some degenerate cases, the minimuai paths just found are the only

ones. These cases are given by the following theorem:

Theorem l: If e is an eigenvector of ithe matrix A, Ghen rinimal

R . . +
psths exist oniy for peints on [ r T .

It will be shown that the P-curve through the origin is a straight
line and therefore so is the N-curve thraugh the origin {by symmetry).
Since the N-curve and the P-curve coincide and since the N- or P-curves

s g 3 3 +
through any point are unique, no othcr D= or N-curve can intersect [

T e
oL e e Thuo, tl

-
' o T .

1 way tc reach the origin from a point not on

In terms of th~ z-coordinates, the egquatiocn of the P-curve through

the origin is
t
z = eth E-Ds ds-w s (33)
)
Differentiating (33) gives

t
z = eDtjo €S 4s.Dw + w B (3L)

Clearly, e 1is an eigenvector of A 1if and only if w 1is an eigenvector

of D . Therefors, Dw = Aw and (34) becomes

N

t
b GDtL € Ds ds'w + W (35)

or

Azt w @

N
[}

This is the equation of a straight line and the proof is complete.

The eigenvectors of D, corresponding to rases (a), (b), (c) of
(26), are

R-459
-1 -
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M1l o W
Case (a): ' and R

| O 11
case (b): any vector , ~

1
Case (c):
0

{ . |

1

J

(36)

According to the theorem just proved, case (L) is a degenerate case ana

need nct be considered further. To avoid degenerate cases in (a)

and for convenience, it is assumed in the sequel that

w.>0 (i =1,2)

1

Distinct Nonzero Eigenvalues

In this case, the matrix D =assumes a diagonal form. The

are in the uncoupled form

é=DZ-W ’

where
zl [ xl 0 wl
Z = Py D = F) w = .
L_Zz: | 0 x2 w2

xl and Xz are the eigenvalues and xl ¥ kz . The equations of

P- and N-curves are

+ D .
gl — i =2 t(zo Two,
where
] r )
l hY
r | I‘.-t
g € - 0
-1 Dt f
u=0D"-= , €7 = At
Eg i 0 c Zl
Xz L
L -

and (c),

(37)

DE's

(38)

the

(39)

va‘
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The nature of the P- and N-curves depends on the sign of ')\] and
Ap - There are three possibilities: (1) )\1< 0, A, <0, (2) A >0, Ay >0,
and (3) )\l< 0, 2, > 0. These correspond to the cases where the singu-
larity of the differential eguation is (1) a stable node, (2) an unstable
node, and (3) a saddle point. Sketches of the P- and N-curves are shown
in Figures L, 5, and 6, pages 20 and 21. These Figures are drawn under the
assumptions that w, >0 and w,> 0. In case (1), the P- and N-curves
are semi-parabola-like curves that tend to +u as t-s+o. In case (2),
the curves have the same shape but with reverse direction. The reason for
the interchange of :u is that the components ¢f w are assumed to be
positive. In (3), the P- and N-curves are hyperbola-like curves around the

points +u.

The case of distinct negative eigenvalues will be discussed first.
This will serve as a model for the rest of the proofs. The minimal paths
+ -
from points of [ and T are already known. It is necessary to Iind

minimal paths from all the other points in the plane.

Let C be the simple curve [ "+ I'” + 0. This curve divides the

- plane into two open regions. The region which contains the point +u

~

FIGIRE 7
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will be called v , and the region which contains the point -u wil’

be called R . If 2° is any point in .R-, the N-arc from z° must
intersect I'+ a*t same po2int q, since the N-arc connects z° and +u
which are on opposite sides of C. Also, this N-arc cannot intersect
T7 since '™ is an N-arc and the N-arc threugh any point is unique.
Thus, zoq() is a path frem z° (it will turn out that this is the
minimal path). A similar argument znplied to poinis of R+ shows that
at least one path exists from every point in the plane. The points in
R~ can also be ottzined by starting at points of 'P+ and following
the N-arc through the point backwards in time, that is, for a time t <O.

A similar statement holds for points in R".
The following theorem provides the minimal paths:

Theorem 5: In the case of distinct negative eigenvalues, a unique

minimal path exists from every point in the plane. Iif z° is in R,

2

the minimal path consists of following the N-arc through 2° until it

intersects [ ¥ and then following I"+ to the origin. The minimal

£

trol function £, this means f is -1 in R™ andon I'", and f

is 41 in R andon T'.)

Let z° be any point in R . If any path from z° leaves R,
it must pass through the curve I'%. The path cannot leave R~ by °
passing through r- since, as cm easily be proved, all curves, neces-
sarily P-curves, intersecting r- point into R . After 2 path in-
tersects T , the minimal path from that point must coincide with TI' i
Therefore, only those paths from 2° that lie entirely in R~ and whose

+
last corner is on [° need be considered.

Let the minimal path described in Theorem 5 be called A&. It is
known that & exists and is unique; also, & has exactly one corner.
A is the path z°q0 in Figure 7. It will be shown that the time length
of A 1is less than any path thatl contains twe cerners. Successive use

of this result will prove that A has shorter length than any other path.

' g . o] . . 3
Consider any path from 2z~ with two corners, that is, for a time

"6, follow a P-arc from 2° to a point zl , then, for a time Z'l

s follow

jravemy

-y

Vorr—y ;-W; ¥ orm vy Py 1 Ty q rAveryy I varmees g

—

oy
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an N-arc to a point zd (on 1"*), then for a time 'L'2 s follow ' to
the origin. If the point 2° s kept tixed, Z'o can be taken as the in-

dependent variable, since given i , then T, and T, can be determined

o] 1 Zl
uninuely. Let the total time length of this path be T, that is,
=T +7. +7C AT .
T rO 1 ) Ly “? Tl,t2> O) ()JO)
It will be shown that
e i 0 (L1
E: >0 Ior ‘L‘o > a )

The minimum time will then occur when ‘L’o = 0. However, ’L‘o = 0 gives

the desired path A.

By using the equations of the P- and N-curves, the following equa-

tions for zo, zl, and zd are obtained:
. -DT, }
z2 +u=€ g4
-D7 .
it -u=€e ! (°-u) $ (L2)
0T
2’ +u=¢ o(zl+u)
J
By successive €limination, it is found that
{ ozzs
-D(T +T +7:() -D(T +C ) -pT
Zo+u=<LE Old-z 01'-‘25 OJ?U (h3)
or, taking components,
{( N - A (T 2T\ ~ o D
O sy, =€ L_ge ¥ O Vi gt oh rsa12) L ()
2y vy 7 - fr (=12 .

Differentiating both sides with respect to To and solving for dT/dTo=T

gives, after some simplification,

T T 5
Yol N 2)

T-.90€l° (T, + 1) = -2€ = (i =1,2) . (L5)
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These are two simultaneous emations for T and (T + 1). Solving for

T by determinants results in

AT
;7 el
1 exz 1
. ()T, '
T - 2¢€ T | (L6)
L el
AT
1 € Z2 ¢

The determinant in the denominator is not zero since N # A, and
> .
772 >0

....... e mam -2

the numerator will have the same sign as the denominator.

Clearly, the quotient of the determinants will be positive since

It has thus
been shown that T > 0 for T, > 0 , and the proof is complete.

The case of positive distinct eigernvalues can now be disposed of
fairly readilyv. A study of Figure 5 suggests that no paths exist from
points outside the open region Q bounded by the P-curve through +u
(followed backwards) and the N-curve through =-u (followed backwards) as
shown below:

Y
o]

Of course this can be proved analytically (see Reference 1) and is based
on the fact that all curves (necessarily N~-curves) intersecting the P-arc

connecting -u and +4u are directed out »f the region Q.
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The proof given for Theorem 5 holds good without change f£or points

in Q since the cnly place that the sign of the eigenvalues came into

the proof was in guaranteeing the existence of paths. The region R is
+ -
now the region in Q and between the curve C = [ + [’ 4 0 and the
+ =
N-curve through -u , and R 1is the recflection of R in the origin.

The following theorem therefore holds (Figure 8 shows a tvpical minimal
path):

Theorem 6: In the case of positive distinct eigenvalues, a minimal

~~ 13

and is unique) only in the region Q defined above. If

the regions R and R are redefined as above, the minimal paths are

the same as in Theorem E.

In the case where xl <0 and x2;> O, the only changes necessary

: g +
ror the above theorem to remain true are in the definiticns of Q, R ,

R . Q 1is easily determined to be all points in the horizontal si~ip
-u, < z, <u, . The regioi R~ is the region between the curve C and
the line 2, = U, and R , its reflection in the origin. A typical
minimal path is shown in Figure 9:

%
by }
=S -0———0——— e S iy —
/? ////‘ i
/ 7
L —
~ A > 7 _
i 74! I E
' -
f‘ _,/ :
[ di
q -— .
| -u
FIGURE 9

Distinct Eigenvalues with One figenvalue Zero

The matrix U still assumes the diagonal form

] o’I
D = (» £0) s

-~
$==
-J
S
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The soluticns of the DE z = Dz i w are different from those of the last

section since O 1is now a singular matrix. The solutions are

(L8)

J

The sketches of these P- and N-curves are shown in Figures 10 and 11,
page 27, for the cases A <0 and A\ > O , respectively.

It can be seen that if A\ < 0, a path exists from every point in

the plane while if A > 0, paths exist only from the points | 2, | < le/)\l .

The same method of proof will be used as in the last section. The theorem
to be proved will not be reformulated since it is the same as Theorem 6,
where Q is the regicn from which paths exist as defined above, and R~

and R’ are the regions above and below the curve C , respectively.

The notation of Theorem 5 will be used. It is only necessary to
find the equation for 7 based on the new P- and N-curves and see if
i’> 0. Since the first equation of (L8) is the same as the zl—component
of (39), one equation for T is (LS):

2\T, . AT, +T)
+- 2€ “’(rl+1)=-2e 1 2

: (49)

The second equation can easily be found by using the second equation of
(43). The equations similar to (42) are

-

2 . h
27, = wy(=Ty)
; O - S L
2, =2, n2(-l) (50)
1l
0O = s (=T
2%, z2+h2( 0) :
_/

By elimination, it is found that

———

I oy oumn [ Rl —

et Pev sy
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s (51)

which is differentiated with respect to 'L'o to obtain

%l-%2-1=o . (52)

It is recalled that 'L'=To + T

combining it with (52) gives

1 +Z'2 3 differentiating this equation and

= ]
o - —2' o (53)

(5kL)

Sirce N #0 and ta,l‘l>o, it is seen that T > 0 for z-o>o_.

which completes the proof.

Repeated Eigenvalues

The matrix D now takes the form

1]
D =

| |
o 2]

If X\ #0, the P- and N-curves are

t+
o
ct

wu=€"(z°2u 5 (56)

where

-1 Dt )t

o
"
o
)
o)
m
I
m

“e

or if A =0, the equations are

pravessry — = ¢ - g
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; h

+ t ; 0 + Pe} :

Z. = e, —— t 7 - w + !

Z1 kz 5 tiz 2 hl) 2 1 >
! (57)

2, = :w t + 2° |

2 2 2 : i

J

The sketches of these curves are shown in Figures 12, 13, 1k, pages
30 and 31. It can be seen that, ir A\ <O, paths exist from every point
in the plane, while if A > 0, paths exist only in a region Q bounded
by the P-curve through +u followed backwards and the N-curve through
-u  followed backwards.

The region R is the region above the curve C if A\ <0 and
the I:égion below C if X > 0. -With this notation, Theorem 6 remains
true. The proof is essentially the same as that of Theorem 6 and will not
be given. The only change is in the algebra due to the Jifferent equations

for the P- and N-curves.

Summary of Two-Dimensional Cases

Some definitions are reviewed below for convenience in summarizing

the results of the two-dimensional cases:

Let ' be the point set obtained by following the P-curve through
the origin for all time t <O.

Let R be the point set obtained by starting at each point of F+
and following the N-curve through the point for all time t<O0.

Let '~ and R’ be the point seis obtained by reflecting [**
and R~ in the origin.

P*+«r-+o.

RN+R +C.

Let C

Let Q

The following theorem summarizes the results:

Theorem 7: In the two-dimensional sysvem

x = Ax +ef(x)

where e # 0, £ = rl , and A has real eigenvalues, a unique minimal




FIGURE 12

A>C

FIGURE 13
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path exists for points in Q, and no paths exist for points outside of

Q. For points in R, the minimal path consists of following the N-arc

throuch the point until it intersects I‘+ and then following r * to

the origin. Minimal paths for points in R+ are obtained by symmetry.

(In terms of the control function f, this means that f = -1 in
R +T” and £=+1 in R + T".)

The curve C 1is the common boundary of the regions R and R .
It is on this curve alone that the minimizing control function changes
sign or "switches" from the value +1 to the value -1 or vice versa.

For this reason, C 1is called the switching curve.

The region Q from which minimal paths exist depends on the natnre
of the eigenvalues. In the degenerate case where the vector e 1is an
eigenvector of A, the region Q degenerates into the curve C. Aside
from this case, Q 1is a "two-dimensional®™ region. If the eigenvalues
are nonpositive, Q 1is the entire plane. If both eigenvalues are posi-
tive,* Q is a bounded portion of the plane, the boundary curves being
the P-curve through +A-le and the N-curve throurh -A-le (both followed
backwards). If only one eigenvalue is positive while the cther is non-
positive, Q 1s on unbounded portion of the plane between two ra.zilan
lines, these straight lines being solutions of the DE that are parallel

to the eigenvector corresponding to the positive eigenvalue.

It should be remarked here that, in an (uncontrolled) physical
system, positive eigenvalues mean some sort of instability. However, it
has been shcwn above that, by the proper use of an "on-off" control, the
system can be made stable, provided the error and its derivative remain

in the region Q.

Also, another way of characterizing the minimal paths is as ftollows:

The Minimal Problem for ‘:él = f(xl,:'cl) with 1 f]|<1

The broader minimal problem will be considered fer the simple DE

X, = f(xl,xl)

* Includes repeated eigenvalues.

reo——t

trwmy
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or the equivaient systenm

(59)

JE \
Xy = & (x, 3x,,/ .
[ < [ 4

=
n
.\-_\/___/

where | f(xj,xz)} <1. It will be shown that the minimizing function is
still the same function as “he aue found among the restricted class of

functions capable of taking on only -he values +-'.L.,

In order to guarantee solutions in (56), it is necessary to put some
restrictions on f{ i however, i 1is5 still allowed to have some discon-
tinuities so that it will include admissible functions of the type f = tl.
It is recalled that in the case f = tl, the only admissible functions
were those such that the solution curve from any point consisted of 2 finite
number of alternating P- and N-arcs. This is equivalent to the requirement
that any bounded region can be split up into a finite number of subregions,

in each of which f 1is continuous.

In the broader problem (58), it is assumed that any bounded region
can be split up into a finite number of subregions; in each of which f is
continuous and satisfies a Lipshitz ccondition. However, f shculd be de-
fined at every peint in the plane. This assures a unique solution from
every point in the plane if it is required that the solution curve be a

continucus curve (in the phase plane).

Let A be the minimal path obtained previously when f = :l, and
let n be any soluticn to (50) with the same initial point as A . Denote
T as the time length of a solution curve. With this notation, it is only

necessary to prove the following theurem:
Theorem 65 Z (&) Z7(n) .

It will be sufficient to prove the theorem for initial points in
R~ and above the x,-ax1s. The path A from such an initial point x°
L

is shown on the following page (the path x°qro):
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n= N 4
L “‘\‘ .
\ x° % n
\\ .
N \ \
X \
\ I
— X
0 Ja ql 1
L
v »'S
Fd
”
r
' It
FIGURE 15

An inequality for anv arc of n will now be obtained. Since
| o~
£l <1,

<k, < (59)
Integrating this from 0 to t gives

-t sz - ::"2 <t (60)

or

Iti Z i-x2 - x02 ) * (61)

where the equality sign holds only for a P- or an N-arc. This expression

proves the theorem immediately for points on F+ or '™«

An inequality for the slope of n 1is obtained next:
of n be m 3 then

-2t the slope

cN
N>
AT

el
N
-~

or e —

{ it [ = s [ 7] =]
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Therefare, the slope of na 2t any point lies hetween the slope of the

N-curve and the slove of the P-curve through the point.

Consider the curve n through the point x°. Because of (63), =
cannot pass through either the P-curve through x° or the N-arc x°q
through x°, If n 1s to reach the origin, it must therefore cut the

x,-axis at a point q° to the right of (or possibly at) the point gq.

F;L-om (61), it is seen that T (x°q) ﬁf(xoql) .

Now consider the rest of n. If mn passes below the horizontal
line throcugh r, (61) shows that T (A) < 7(r) , and the thearem is
proved. Otherwise, if = is to reach the origin, °t must intersect A
at some point s along the arc qr. For this portion of s, it is
seen again from (61) that 7 (x°gs) S_Z'(xoqls) . It is only necessary to
prove a similar inequality for the remaining part of n. There are

three possibilities to be considered:

1. n reaches the origin by staying entirely within the area

bounded bv the part of A&, qr0, and the x, -axis.
2. n leaves this region through the arc r0.
3. n leaves this region through the xl-axis.

In case (1), T (A) £T(n) since the time length along any solution

is

dx dx
fdt:f—'—l.—.f—l
.xl

X0

and |x2i along 1 is not grealer than Ixai along &,

In case (2), suppose that n leaves the region for the first time
at the point v on the arc rO. Then the desired inequality will hold
up to v by case (1) and after v by equation (61) so that 7 (A)< T(n)

will still hold.
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in case (3), as soon as & gets to a point above the x,-axis, the

1
considerations discussed earlier will prevail and n will have to in-
tersect the xl-axis again to the right of its first intersection. Thus,
the length of m has been made longer before case (1) or (2) applies,

and the desired result follcws.

It is feirly clear that the strict inequality will hold vnless A
is identical with =n, but this means that f would be just the mini-
mizing function previously found. This completes the proof.

X owis frcmmg feesmg hn ama-



N-DIMENSIONAL SYSTEMS

Introducticn

Consider the minimal problem for the n-dimensional system

% +

X = Ax - e (e #0) (6L)
where A is an n by n matrix with real eigenvalues. By an appro-
priate nonsingular substitution x = Tz, (64) can be reduced to

S

2 = D2 -~ w (w # 0) 5 (65)

where w =T Ye anmd D = T7IaT , and D is in Jordan canonical form,

that is,

(A, ~~ ]
b, )
D= K . . ' (66)
O a

Each nf the ‘Aj_ is a matrix having one of the following forms:

3 N )

Case (a): . 5

I y - (57)

Case (b): ° s

R-459
-37-



=3

N

Case (¢): .

>

Here, )\i ard A are eigenvalues of A,

> (67)

The equations of the P- and N-curves are still given by

t
) =Rt e :ent[oe-ns F

The matrix function € ot is

a-t
e ! A.Zt
€
elt . O : ,
] At
. e k
A.t

where € %
(c) of (67):

has one of the three forms corresponding to

E)\lt
)\Qt
€ ¢
Case (a): s .
U * )\ t
c J

Case (b): eM‘I ,

(68)

(69)

cases (a), (b),

SeS

e s T T
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N n-1

1 ¢ & 2
2t ° ° i,rx-'l).'
n-2

’._l
ct
jos
)
(3™
=

Case (c): eli' > 5 }' (70)

-

~

The minimal problem will be sclved first for the cases where D
is equal to one of the matrices in (67), and then for the general case.
Certain exceptional cases can occur ard will be disposed of in the next

section.

Degenerate Cases

As was seen in the two-dimensicnal case, certain degenerate cases
can occur. The following theorem carries over directly from the two-

dimensional case.

Theorem 9: If w 1is an eigenvector of the matrix D; then

— — ——————————e ey e cm——

minimal paths can exist only for points on I'" + I'7,

% -
' and T are defined just as in the iwo-dimensiocnal case. The
former proof holds gcod without change. It is recalled that r'* and T~

1ic on a common straight line through the origin.

Even if w 1is not an eigenvector of D, there still can occur

N o = R . . +
degeneraie cases. oSuppose; for instance, that, in the system z2=Dz-w,

(2 1 ] [ 2]
A

‘_J
> 0O
N
(:::)
s O N

D= ° and w o= p (71)

o
L
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where the Xl T ’Xn-l are distinct. It is easily seen that w 1is

not an eigenvector of D. However, consider the system

= D5 2 i

Nje
t
-

where Z denotes the n-1 dimensional vector whose components are

22,33, cee s B and

[
>
n
e o OH

(o] ]
n

(72)

|
n

and

It can be seen that % is an eigenvector of D correspording to the
eigenvalue Xl o Inthis n-1 dimensional system, the equations of
the P- and N-curves are obtained simply by leaving off the equation for
zy in the n-dimensional system. If a path from z in the n-1 di-
mensional system is considered, a unique path to a unique point 2z in
the n-dimensional system can be determined simply by working backwards
from the origin and following P- and N-curves for the same lengths of
time as for the path in the n-1 dimensional system. Conversely, every
path from z wil., in the same manner, determine a unique path from its
projection Z. If no path exists from 2z, no path will exist from =z.

Now, according to Theorem 9, paths can exist in the n-1 dimensional

system only for points on a certain straight line through the origin.
Therefore, paths can exist in the n-dimensional space only for points
which project onto this straight line. These are points with 2z, arbi-
trary and Zg s Zyseee s By satisfying an equation of the form

1l

Thus, minimal paths can exist only for a two-dimensional plane through
the origin.

Jh [ ] o 5~ _] _—— i

P ey
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It is pointed out that the above demonstration depended on the fact

1 I1f Zy
solution of the same type of dif-

that the equations for z,

were contained, then % would not be

32,4 -~+ 52 did not contain z
2 n
5

ferential equation as z.
Reasoning similar to the above will praove:

Theorem 10: Suppose the k-dimensional svstem

z =Dz % (% # 0)

can be formed by taking k of the camponent equations of the n-dimen-

sicnal system

3 =Dz - w (w #0) .

If % is an eigenvector of -5, then minimal paths can exist only in a

certain n-k+1 dimensional hyperplane through the origin.

In order to avoid these exceptional cases, it is assumed in the
sequel that (1) if A is a repeated eigenvalue, \ appears only in a
diagonal matrix of the form (c) of {67) and in only one such matrix,
and (2) W, #0 for 1i=1,2,...,n. Sucha system is called a

nondegenerate system. Theorem 10 holds only for k-1 for a nonde-

generate system, and, in fact, it will be seen that minimal paths will

exist for all points in some n-dimensional neighborhood of the origin.

Terminology and Statement of the Maiin Theorem

In finding the minimal paths, it will again be convenient to
work backwards from the origin. Using this procedure, the following

“point sets or "surfaces" in n-dimensioral gpace are defincd:

Rlz The point set chbtained by following the P-curve through the

origin backwards in time. Rl is the set of points zl satisfying

-tl
-Dt .
zl =€ 1,{) €"® ds-w (tl >0) .

R-1,59
-4l -
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R2: The point set obtained by starting at any point of Rl and

following the N-curve through the point backwards in time, that is, points

Z such that

(2} -Dt’ ‘ =f}c;
22 = 6 Lz.‘. - e aj:) e D‘) ds.w (t2> O) ®

Rn: The points 2" satisfying

@ D n-1 n-1 -th -Ds
z =¢& n, + (~1) & = o € ds.w (tn> 0) .

Let Pj(-l be the point set obtained by reflecting Rk in the
origin.

Let Q =R +R

LetQ:‘—'i Qy £ 0o
Toi=]

R.L is the same as the curve r' ¥ previously defined ard Rl-l

is the same as ' ~. Ql consists of all points from which a path exists
with no corners; Q2 consists of all points from which a path exists
with exactly one corner; and, in general, Qk consists of all polnts from
which a path exists with exactly k-1 corners. Qk is the logical sum
of the sets Ql aleler=t> Qk and consis*s cf all points from which paths

exist with k-1 or less cormers.

Two theorems will now be formulated. To prove these theorems, it

is necessary to consider several caseg which will be done in the following
sections.

‘Theorem 11: In a nondegenerate system with real eigenvalues, the
point sets Ql s Q2 > een y Qn are mutually exclusive. ~from each point in

Qk s a unique path exists with exactly k-1 corners, and no path exists
with less than k-1 corners.

. . %
9w g toemg

-

- mwommey
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The main theorem of this report is:

Thearem 12: In 2 nondegenerate system with real eigenvalues, a

unique minimal puth exists from points in the region Q; » and no paths

exist outside of Qn' The minimal path from a point in Q,_ 1is the

k

unique path with exactly k-1 corners.

As is seen from the above theorems, all minimal paths contain

n-1 or less corners. All the corners of minimal paths lie on the sur-

*
face Qn-l s which is called the switching surface.

Distinct Eigerwalues

Consider the case where the matrix D in the uUE

2 =Dz L% (wi #£0) (73)

has the form

iR . p) (7)-1)
ol

where the eigenvalues k) ieteis ’Xn are distinct. It will be assumed,

for the present, that no eigenvalue is zero. The equations of the P- and

N-curves are then

+ ] +
z - u =€'Dt (zo - u)

5 (75)

=1 y
where uw =D "w and u; # 0 since v, £0.

Theorem 13: The sets Ql’ Qg, eielo! 5 Qn are mutually exclusive.

From each point in Qk 5 @ unique path exists with exactly k~1 corners,

and no path exists with less than k-1 corners. No paths exist from

points outside of Q:,

This theorem will be proved by induztion. The proof for n = 2 was

given earlier. The idez of projection will be used again. Denote the
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n-1 dimensional system obtained by leaving off the first equation in (73)
by

Z=Dz¢w . (76)
Qk denotes the regions in the n-1 Jdimensional space with whiich the
theorem is concernec. By the inductive assumption, the theorem holds
for 61 ,62 e ele ’6n-l . Consider any point Z in ak . A unique path
with exactlv k-1 corners exists from this point. This path consists
of a definite sequence of P- and N-curves followed for definite times in
the n-1 dimensional space. Bv starting at the origin and following the
same sequence backwards for the same times, but now in n dimensions, a
unique pcint 2z 1is reached by means of a path with exactly k-l corners.
This path is unique since otherwise the corresponding path from 2z would
not be unique. There is no path from 2z with less than k-1 corners
since no path from z contains less than k-1 corners. 2z is therefore
in Qk' Similar reasoning shows that tc each point 2z in Qk there is
a unique point z in Qk; therefore, a unique path of exactly k-1
corners exists fram 2z and no path with less than k-1 ccrners. This
proves the theorem for the sets Ql ’QZ’ cee y Qn-l . Incidentally, it
can be seen from the above that a one-to-one cerrespondence exists between

9 Q2 Aonic ’Qn-l and Ql, Qz, S1e1\s Qn-l' The switching surface

can therefore be represented as a single-valued function

Zl=F(22,Z3’ooo’zn) .

From the definition of the Q-sets, it also follows that the switching
surface is continuous.

The theorem for the set Qn has not'yet been proved. To do this,

it is necessary to have the explicit expression for points in Qn'. It is

recalled that Qn = Rn + Rn-l. The equation for points in Rn is ob-
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tained from the definition of the l-sets and by the process of successive
- elimination. If z° represents any point in Rn , then

y -D(T]+T}+, . ,+Tn')
= z + (-1)" Tu= | € - N
-D(T2+...+r ) -7

n-l¢ “}u , (717)

where all the ‘ri are greater than zere. The equation for points in

3 p

o Rn_l is cbtained by replacing z by -z . Farameters are changed by

the nonsingular substitution

T T i
= + + . e +T
al 1 2 n
= ° . ° . T
3y Tyt *a
. ? (73)
an-l = Tn-l +Tn
4 7 Tn |
J

T It is noted that al > 32> STt a >0. Eqation (77) now becomes

r

-Da -Da -Da $
fu - (79)

Zn + (‘l)n-lu =\L 6 1 - 26 2 + eee + (-l)n-lze 2
Now if 2" is a point in Qn-l , equations (79) are satisfied by
certain values of a PR an-l and an = 0. Consider the

Jacobian of this system:

A
c 1 M2 Mt
Aa Aa A4
lazn " 621 €£2.“‘€2n
0%y T
Iaaj ; K j}il(xiui ° ° ° (80)
€ )‘nal e)‘naZ G)‘nan
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dere, K is a nonzero constant. The A, are all different from zero by
assumption, and the u; arc all different from zero since the system is
nondegenerate. The determinant is also differert from zero if the Xi
and the a, are distinct, which is the case here. (The determminant is

a generalization of the Vandermonde determinant, and a proof that it does
not vanish is given in Raference 3, part V, problem 26.) Eguaticn (7%
can therefore be solved uniquely for a1 18,9 c00 58 in scme neighbor-

hood of z". This shows that, in some neighborhood of 2"

, 3 wiqe
path with exactly n-l1 corners exists.* As a, is increased, the
Jacobian remains different from zero so that a unique path with exactly
n-1 corners exists from every peint in Qn . With the same type cf
reasoring, it can be estgblished that no pata exists from a point in Qn

with less than n-l1 corners.

To complete the proof, it must be shown that no patns exist from
points outside of Q:. Consider such a point z. If a path exists
from =z, it must contain more than n-1 corners; say it contains m-l
corners with m> n. An equation similar to (79) could be set up con-
taining m parameters. These equations could always be solved for the
first n of these parameters and the other parameters set équal to zeru.
Therefore, a path existsfrom 2z with n-l or less corners and 2 must
therefore be in Q:. This completes the proof.

4 word should be said here about the extent of Q:, the region
of existence of paths. From (79), it is seen that, if some of the eigen-
values are négative, the region Q: will extend to infinity in some di-
rections, while if the eigenvalues are all positive, the region Q: will
be bounded.

More precise information is possible. It could be proved that, if
the eigenvalues are all negative, paths exist from all points, while if
the eigenvalue A, is positive, paths do not exist for points |zi|2:|gy&i|.
In the latter case, paths do not necessarily exist from all points satis-
fying |z | < |/

%

If it happened that this sclution gave a_ = 0 for a point in the neigh-
borhood of 2n, then the point would cergainly be in Qr-l and could
not be in Q'1 because of the uniqueness of the solution.

| e

¥ oxvg o ah
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The main thecrem for this case will now be proved.

Theorem 1i: 1t the eigenvalues are distinct and not zero, a unique

¥
minimal path exists for all points in Qn - The minimal path for a point

in Qk is the unique path that contains k-1 corners.

This theorem will be proved by induction. <Thc theorem has been
proved for n = 2.
The theorem will be proved first for points on the switching sur-
3¢t
face Qn-l'
z

Jjection

Consider any pcint z in Q for k< n-1 and its pro-

in Qk as in the proof of the preceding theorem. The unique

path Ak-l with k-1 corners from 2 projects onto the uniquc path

A with k-1 corners fram zZ. The 'paths A and & have the
k-1 - k-1 k-1

same time length. In the n-1 dimensional space; & k-1 is the minimal
path by assumption. 4ny path from 2 other than Ak-l would project

into a path different from A and would therefore have a longer time

k-1
lcngeh than Ak-—l + Therefore, Ak-l is the minimal path and the theorem
is proved for all points in Q:_l .

It remains to prove the theorem for points in Qn' Suppose z 1is
any point in Qn . It is known that there exists a unique path A n-1
from 2 containing exactly n-l1 corners; it is desired to show that

An-l is the minimal path.

Consider any path at all from 2z . This path will have a certain
numober of cc;rners and will then intersect Qn-l . From this point, the
minimal path is uniguely determined. It is only necessary to determine
the behavior of the minimal path from 2 until its first intersection

with Qn_lo For convenience, label the point 2 as znﬂ'. Consider
the path An from zml that has exactly one corner before reaching

)
Qn-l . In other words, z‘.\n is the path obtained by starting at 2

and fcilowing, say, a P-arc for a time T >0 to a point 2" , not in
Qn-l s and then an N-arc, for a time rn-l >0 to a point zn-l s which
is in Qn-l . From this point, the minimal path is determined. It will

be shown that the time length of An can be reduced by making Tn smaller,

¥ Any path and its "projected" path have the same time length by construction.
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and that it s 2 minimum if 'L‘p = 0, This will show that the time length
of L\_’ 1 is less than t..e time length of An . Successive use of this
n-

result will show that L\n 1 is shorter than a vath wit: any number of zor-

ners,

Using the equations of the P- and N-curves, the equations for the

successive corners of An are found to be

D(Z.) A
§ -
zn*.; +u B 6 n (zn + u)
I
-DT
z" - u = € n-l(zn-l - u)
T , . 81
zn l + u = € n-&(zn & + u) & ( )
-DT( b A -
ate (-1)™y - € °12° + (1P . (2° = 0, T,> 0)
W,
By successive elimination, it is found that
14 e
-DT -D(T +T ) ., ~D(T +...40)
et et {26 n_pe B opl o, sa)lhe 1 2
-D(Z. +ooo+-": )
+ (-1)n€ @ n _} u . (82)
Now let
ao = ro +.Tl + v L ] L ] + Tn ]
al - 25 l + o . o + 7T )
. . r (83)
an-—l. Th-l i n i
i
a = T

where a, representa the total time length of An )

LN ] - ] ——
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Substituting (83) into (82) gives

-Da -Da ~Da
+ Iy o~ n "l 1=
zn 1+ (-1)1"111 = {20: Te2€ Y Te .4 (—-1)“ 126 1
B o ‘
+ (-1)% %l (8L)

or, taking components,

( ~-\.a - -)\.a\'
ap b e (-1, =tee n_petnl, | 4()e t Ojui . (85)

Let T n " 3 be the independent variablej then differentiating

toth sides of (85) with respect to a  results in

-.‘A.ia A.a . n-1 -)\.al .
n-1 1

9
+ (-1)% 1O éo (1 =1,...,n) , (86)

where a; = dai/dan o These are n simultaneous equations for

2 L - g 3 o S i i p g
a a 9 an-l olving by determinants for ao gives

s"‘lan e"‘lan-l - Bl

s e n'n e.x“a"'l ... e.x“al
- = - (87)

¢ '1%n-1 ] o e-xlao

' e-xnan-l . . e"}‘nao
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The detenninant in the denominator of (87) is the same as the one
previously encountered, and is different from zero. OSince the numerator
is of the same form as the denominator; the quotient is positive. Thic
shows that éo > 0 when Tn > 0, and therefore the minimum occurs when

Tn =0, as was to be proved.

If one of the eigenvalues is zero, say the last one, ncthing is
changed in the abcve work except the equation for zZ, . Since the DE

for z_ is
n
2z = ‘Wn 3 (68)
the solution is
& o
T et + .
z ¥ b4z (89)
It is noted that if the equation in the case of distinct eigenvalues
is taken for Z, namely,
V \
2 : tﬂ =€ )\nt ZO : ‘:2. ‘
n A n A 2
n

and the limit is taken as \ =+ C, equation (89) is obtained. Thus, it
is not necessary to go through all the algebra of successive substitution.
All that is necessary is to let )\n->0 everywhere. This, however, dces
not cause the determinants used in the proofs of the theorems to vanish,

—

Thus, the theorems ar2 true if one eigenvalue is zeir'o, and are therefore

true for all cases where the cigenvalue3 are distinct.

Repeated Eigenvalues

Uonsider the case where D, is of the form

(% 2

e

D = ol " (90)

- o

O

1
X-—

et Prowz

P )
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For the present, it is assumed that X\ # 0. The P- and N-curves are given

oy
+ Dt +
zZ -u=¢€ (z° T w) |, (91)
where
'1 v Ef' e ¢ © o tn_l !
{ 2 n-1)! |
i .n-2 i
s S W2l |
et - M ' ' : (92)
{_ 1
The solution of the minimal problem will follow the same lines as
in the last section and most of the procf does not need to be repeated.

In fact, all that is necessary is to verify that the two determinants

which correspond to (80) and (87) are different from zero.

Consider the determinant corresponding to (87). Equations (8L)
for the path An still hold, namely,

([ -Da . -Da
O ﬂkzé Dogeer (-1)h2e- 1
._Da \
f (D% Clu . (93)
Differentiating both sides of this vector equation with respect to &
gives
4 —Dan -Dar_l n-1 -Da.|
O = -D‘ 26 U 26 ! ué 1 * 560 ¥ (-l) 26 —ué
~ n-1 1
7 -Da_ |
s (-17€ %ua ) . (55)



Since D is nonsingular, the vector in braces must be zero. Taking the

n-compcnent equations of (94) and solving for éo s, gives; after some

algebra,
- -1
n-1 K n «
\ (-a, (-a;)
/ -
Lk Yks1 ¢ ki kel
% o o
i s r,
E g:£ I n-¢
3 } ¢
: e [ L=TKE T2 0 0 0 L TERT Ve
¥ 0 o
3 €
B : .
%— -3 o
i un_1 - anun 4 & B un-l - alun
éo un o ° . un
—2- = n-1 a-i * (95)
N k K
(-a ;) \  (-a)
Z s i VS R ki Y%kl
o o
-A\a . °
€ ©° .
u ° ° o u
n n

Fortunately, these determinants can be vastly simplified. Per-
forming obvious eiementary operations on rows, starting from the ntn

row and working upwards, results in

ey
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n-1 a n-1 3 n-1
n n=1 & < © 1
a n=-2 n-2 a n=-2
n 8n-1 il
-\a
e n L2 L ] [ ]
an an-l [ ] - [ ] 31
éo 1 ] . . s 1
g (96)
= a n-1 a n-1
n-l ® [ 3 a - .o
-Xa Y )
€ ° . .
an-l ao
l ® L2 . [ ] 1

The determinants appearing are the well-known Vandermonde deter-
minants and are different from zeroc if the elements a,
which is the caue here. Since the numerator and the denominator have

are distinct,

the same form, the quotient is positive, as was to be proved.

In the same way, the determinant that corresponds to (80) can be
shown to be diff erent from zero. In fact, it turns out to be the
Vandermonde determinant again.,

Therefore, the main theorem holds when the matrix D is the ele-

mentary Jordan matrix ($0) and the eigenvalue is different from zero.

If the eigenvalue in (90) is zero, then

- -

0351 O

D L. : (97)
O "6

L 0]
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The equations of the P~ and N-curves can be cbtained easily by

solving 2z = Dz > % in the ordinary manner. They are

/ t‘ tn\\ I‘o o o +!'l-].. 1]

== ;i m——— L, vty — |+ + L+, . +go =
25 ‘\"ltﬂ"é 2! “n nt Lz 1% n (n-1):]

L \ (58)
+ t o] o
= -y v — |+

Zn-1 \ n-lt * ¥n 2!) (2 n-1 t 2t !
1
2z =twtez° '
n n n J

Again, it turns out that {98) can be obtained from the solutions
(91), where \ # 0, simply by taking the limit as A -+~0. Since .he
determinants in (96) do not involve A, the determinants obtained for

A = 0 will be exactly the same. Thus, the mair theorem also holds for

an elementary Jordan matrix when the eigenvalue is zsro,

The General Case

Suppose the matrix D has the form

’ (99)

where each of the 11.1 is an elementary Jordan matrix of the form

)\i;;il O T'

A - e (109)
O i
1

The matrices Ai can be one by ons matrices so that purely diagonal
boxes can be included in D,

e .

e ] et |

e

¥
vy wmQ

berm g



will be nondegenerate if Wy #0, i=1,2,...,n and if an eigenvalue

Xi appears in only one matrix of the form (100).

To prove that the main theorem holds in this general case, it is
only necessary, again,to consider the determinants corresponding to the
two determinants used before. In order to avoid too many notational dif-

ficulties, the following special case is considered:

p— =

A; © 0

D={ 0 AII 0 s (102)
] 0 J AIIQ
where
r : i
A
(S|
2 (O
AI= Q .= J
o
5
L. -
[ 1
A1
% 1L =
1&II= e 3 > (103)
O "
- k o
" 01 g
ZHe
AIII— o .
O "o
. o o
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It is assumed that fA is of order k. A_._ of order k. and A___
G S I B gy 22 TR

of cxder k,. It is also assumed that Xl,...;kn;k are Jdistinct and not

3

zero (this is necessary [or the system to be nondegenerate).

-

Let zs and w be partitioned as follows:

- -
ZI WI
2= |z . W = | g 5 (104)
| fmr | ¥II1]

where z2; is a kl-dlmen51ona1, 211

k3-dimepsiona1 vector, and the same for W

a kz-dimensional, and 21y @

SEEY Eppne

The DE!s under consideration can be written as

z, =Aiz. - W, (D, T, TIE) . (105)

These are the same type of matrix equations that have been solved pre-
viously. After a little reflection, the relevant determinant can be
written without further calculation. The denominator of the determinant
used in the proof of the main theorem is (106) below:

-\, & ' -\_a
€ 1 'n-1 . . . € 1o
) X1 ~\1-_ &
€ fln-1 .. . € '
-\a - ¥, =1 -\a ka-l
e \an-l) . . . 6 ao
g1 S (206)
e * L] L] E e N &
k. =1 -
. K3 . k3 1
n-l * L] * o
a2 2
n-l ] L] * ao
an-l o . o ao
l o * » 1

’
P cmay
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The only comment that is pecessary concerns the appearance of such
factors as € “n-1 which did not appear when the special case of the
matrix I\II was considcied previousiy. The reason is that, previously,
such common factors of each column cf the determinant could be taken out;

this cannot be dune in the genersl case.

The fact that this determinant is different from zero follows from
problem 75 and the solution to problem 76 in part V cf Reference 3. The
rest of the arguments given previously apply without change, so that the

main theorem remains true in this case.

Clearly, any number of elementary Jordan matrices appearing in D

will yield to the same treatment. Therefore, the main theorem holds true

for any nondegenerate syslem:

Statement of Resuits

The ariginal problem posed has now been solved when the matrix of
the system has real eigenvalues. The result can be stated quite simply

as follows:

Thearem 15:¢ Consider the n-dimensional system

X = Ax = e : (e # 0) ,

where A has real eigenvalues. If a path exists from any peint in the

phase space, then a unique minimal path exists and is the pata that con-

tains a minimum number of corners.

The above theorem holds equally well for degeneraie or nondegenerate
systems. The only difference is in the region of evistence of minimal

paths.

For a nondegenerate system, minimal paths exist for all points in
some n-dimensicnal neighborhood of the arigin. If the eigenvalues are all
nonpositive, minimal paths exist from all points in the space. If ihe
eigenvalues are all positive, minimal paths exist in a bounded neighborhood
of the origin. If some of the eigenvalues are positive and some nonposi-
tive, minimal). paths exist in an unbounded region iying between pairs of

parallel hyperplanes,

# Thecrem 12.
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For a degenerate system, all the minimal paths lie on some

hyperplane

through the origin. The remarks in the preceding paragraph hold for this

hyperplane.
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CONCLUDING REMARKS

Some matters which are pertinent to practical applications of the

results are bri=fly discussed belcw:

If a control system is to be designed for 2 minimum time of cor-
recti» of an error and its derivatives, the results in this report and
those of Reference 1 show that ths besi contrcl is a properly designed
limit contrel or bang-bang control. The mathematical features of the de-

sign of such a control have been demcnstrated in many cases.

In the practical design of such a system, although the control me-
chanism itself is as simple as possible (a switch eor relay), a computing
device must be used along with it to instruct the ccntrol mechanism when
to swit+h from cne value to ancther. Zefore such computers are designed,
a great deal of numerical computation must be done; however, the computa-
tions are not too complex. Theyv would involve only the tabulation of the

solution of certain linear differential equations.

It skould be mentioned that a servo-motor control system of the type
discussed has a2lready been built (see Reference l:). The differential
equation of the system was one of the simpler ones, namely, x = 1. The
svstiem was found to give excellenl results and to ke much lighter and
occupy less volume than a standard type of system under the same power

conditions.

It should also be mentioned that the design of a limit control system
depends on the parameters of the system to be centrolled. However, it
cervainly cannot be expected that a control can be designed that will give
optimum performance without vaking into account the particular parameters

of the system tc ba comtrzlled,

R-L59
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