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SUMMARY 

During the past several years, investigation has been carried 

out at the Daniel Guggenheim School of Aeronautics, New York University, 

to study the buckling behavior of sandwiv-h structures. The main effort 

has been directed towards the determination of the buckling loads of 

flrcular sandwich cylinders under different loading conditions. It was 

found that for cylinders with weak cores, linear theory predicts buckling 

loads which agree with experimental /-es^lta. This is contrary to the 

case of homogeneous cylinders, where linear theory elves buckling loads 

much higher than those observed Iron experiments. The reason for this 

hes been explained in Heference 11, In this report, the theory of buck- 

ling of sandwich cylinders und*n.' axial compression, torsion, and bending, 

and combined loads is developed in a unified manner; and the principal 

eTperimentai results are presented. The interrelationship obtained be- 

tween the critical loads is plotted in the form of non-dimensional in- 

teraction curves. 
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Symbols and Unita 

a        radius of cylinder to middle surface, in. 

C        shear rigidity of the corej C = (hft)G , lb. per In, 
c 

G.       portion o" boundary over which displacements are prescribed, 

2 2 
D bending rigidity of a sandwich elenrntj D • 2-t(b*t) /2(l-Oj 

lb.-in. 

E Young's modulus of elasticity,  lb, per sq,  in, 

E seoant modulus of elasticity, lb, per sq. in, 
2 7 2tE»/a  , lb, per cu, in, 

Ct        ehaar modulus; G -• E/2(l+v), lb, per sq, in, 

h        thickness of core layer, in, 

I        moment of inertia of sandwich cvlinder about its diameter, 

in.* 

J        complementary energy, in,-lb, 

k        buckling coefficient 
s 

K* torsional instability coefficient 

1 length of cylinder, in, 

L DC/Mat 

L» [l-CN^C) J  IC/Mat 

Z [l«n2/X 2-»3/3- (T/ira2C)  (r^/\ )] IC/Mat 

L* [l+n2/ X ^70+ (T/ira^)  (n^X  )]    IC/Mat 

L longitudinal wave length, in a 

Lfi circumferential wave length,  in, 

1^ tree length of cylinder, in, 

xn number of half waves longitudinally 

"M applied bending moment,  in,-lb, 

M-f.M_.iM resultant bending and twisting moments in the  composite 

structure,  in.-lb, per in0 

M.M x- and y-coraponent? of the resultant moment on the boundary 

in,-lb. per in, 

resultat 

per in. 

N «N resultant normal forces 3n the  composite  structure, lb0 
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N resultant shearing force in composite  structure,  lb, per in* 
xy 

K ,U resultant meclian-o-urface normal forces,  lbe per in, x   y 

U resultant meriiar-surface  shearing force, lb, per in, 
xy 

N, applied norpiai force  in axial direction,  lb, per in, 

n number of full waves  circumferentially 

p external lateral pressure on cylinder surface lb, per sq,  in« 

q l/SvP^j-p^)    It. per  sq.  in. 

Q left-hand side of Modified Donueii's Equation with u.s?umed 

function w    substituted 

Q ,0^ shear stress resultants in composite  structure normal to 

middle  surface, lb. per in, 

Q resultant Q on boundary,   ib. per in. 

R radius  of curvature of median surface of sandwich structure, 

in. 

R_ bending stress ratio, R» 2Mat/lC 

R_ compression   stress  ratio,  R,a N-/C 

R_ torsion stress ratio, R_,» T/2tra C 

t thickness of face layer,   in, 

T applied torsional moment  (Fig, 2), lb,-in, 
u»v?wt displacements in ?;~;  y-, enri  r.-directions respectively of 

a point in middle surface of cylinder,  in, 

U work done by the force resultants due  to large deflection, 

in,-lb, 

» ouieuii   onorg^,    jJiirxu. 

W potential of external  forces and moments,  in.-lb.. 

x.y.z rectangular coordinates   (Fig.  2) 

X #Y x- and y-componants of the force resultant acting on the 

boundary,  lb, per in, ., /, 

Z curvature  parameter,   Z •   (1—v«)       l^/Sat 

a (h+t)2/a2 

p  .8     components of change of slope of normal, to middle surface 
x y 

of sandwich shell. 
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X 

Q 

(h+t)G /E„t 
X 

shearing strain 

first variation 

unit elongation,  in0 per in. 

polar cc-crdinate (Fig,  2) 

iuraA 

Ai» A2»  A?* 

A.  •      r\- •      # V 
'4"   '5     " o 

L-agran^isii multipliers 

Fcisson's ratio 

normal stress,  lb. per sq.  in. 

shear- stre.?.?,,  ib. per sq.  in. 

,9^     a* , 
operator, ,,—j + —;?) 

9x  9y 6xc  ad© 

^ r *f 

ax' 
operator, v"7~ + —^J 

„•- 2  a«+     a4     aA-    a2      a2 2 

9y~"   9x    9x 9y   9y   9x  a 90*" 

a2   -2 A   j.2    a2 U 
operator, (*^ • ^~) - (^ + 4-g) 

9x   9y     9x   a 9G 

Subscripts 

f face layer 

0 core layer 

S lower face layor 

u upper face layer 

m roadian surface 

or critical (buckling) 



IntroCy** tion 

A ?ai>.dv- so-type structure consists of bwc external layers 

of thin high-strength material and  a thick internal layer of light- 

weight material.    The former are usually called the face layers 

and the  latter the core*    The basic advantage of a sandwich structure 

is its high bending rigidity arid consequently buckling strength and 

its relatively ligh;   weight,,    The  ane of sandwich-type structural 

eieme;.!,;: fc2   aircraft  construction has received considerable  am--uut 

of attention with  the development of high-speed air craft,    This 

i.-? becauot at high speed  the surface of the  piano must be maintained 

smooth  without buckling during flight,,    This is a requirement which 

the ordinary  thiu-sheet-stringer type of construction cannot meet 

without undue  sacrifice  of  the weight economy,. 

The buckling and bending of sandyich~typ6 beams and flat 

piate3 have been  studied   oy many investigators.    During the past 

several years,, investigations have been carried cut at the Daniel 

Guggenheim School of Aeronautics of Hew York University to study 

the buckling behavior of  sandwich cylinders under various leading 

conditions.    Tnis report fmmnaii-_.es   the principal theoretical and 

experimental findings of   these investigations. 

 i. 
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Theoretical Development 

Derivation of the Governing Equations 

In order to derive a complete system of equations for 

the sandwich shell composed of face layers and core layer? it is 

necessary to consider separately the statics of the face layers 

and that of the core layer of the shello Combination of the re- 

sults obtained for the components wi31 lead to these differential 

equations of equilibrium for the composite shello The face layers 

are treated like thin shells of thickness t having negligible 

bunding stiffness s-bout their ovn middle surface,, The loads applied 

to these face shells are of two kindsi    external loads and loads 

caused by the stresses in the core layer (Fig0 l)o The core layer, 

of thickness hf is assumed to behave like a tjiree-disensional 

elastic continuum in which those stresses which are parallel to 

the faces are negligible compared with the transverse shear and 

normal stresses0 

Assuming large deflection, the equilibrium differential 

equations for the upper face layer are the following!! 

+ ^J1 + —•> - ° w 
• 2R 

5w  u 

dx               2R            8y          R ax 

8x      2R   8y     R  3x   ^    2R 
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-23 + 2- 
R        8x 

9v 
N    vl + "-*—••)    •" "•    + » 

»w 

2R      ax 

_ u 

&7 

6y 

5vr N   . dv 

xyu      ~        , .  h+t        a 

2R 

+ p II +  ) 
u 2R 

+   d      (1  •  te±)   +   T -J 
2R *"     3x 

a.  hvt\ ew 

2R *»     By 
'2> 

Similarlyp  for the lower face layer,   the equilibrium equa- 

tions are 

_^_xl    /.,      h+V       „_y*i + ^iZi      i 

dx 2R 

/.      h*tx       - x    U - —) - 0 
8y R Qr 2R 

(4) 

9N    , ... QN _„ «    .      9w., . ,. xyl ,-.,      h+t»   .      yi xyi 1 ,.,      h+t. _ - 

9x 2R 3y R 6x ^ 2R* 
(5) 

R        8x *        "    2R        6x    '    ^      3r _ 

3y 
N 
xyi 

8w.      N - 6w. 
s  + 

9x    (1 
h+ts 

?R 
9y 

p. (1 -  ) 

<fR dx 2R J        8y (6) 
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where the subscripts u and i denote the upper and lower surfaces respectivelye 

Under the assumption of negligible face-parallel core stresses, 

the equilibrium equations for the core layer are! 

a 
8z 

8z 

a. 
8x 

(1 - *) 

R 

2 

R   Ty 

* u 

«•= 0 

(1 - £) x, 
R 

9    * 8 — \ *  ~ 
3y '  8z 

(1 - ~) «. 

(7) 

(8) 

(9) 

Let the values of the three stress components at the middle surfacs (z*0) 

be designated by the subscript au Integration of Eqs. (7) to (9) results in 

(1 - «) x   • T _      x        xm n 

2 
(1   -  -)      '„      -   T 

R      y      ym 

& - ?  '. " *zm - z 
_8y 

• Ml 
3x 

z<> 
"    ' Tx R 

(10) 

(11) 

(12) 

Let Q and Q^, be the resultant transverse shear forces. Then 

h+t 
r + 
/ i (I - ~) dz • (h+t) i 

x   _ xm 

h+t 

2 

h+t 

«y 
x dz — *g 
7      i - (=*)' 

2R 

(13) 

(u) 
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From Eqs.   (10).,   (11)»   '13)  and  (1A)»  the following relation,  may be obtained? 

ft   .   h*t\ /«       h-:-t\ r, 
(1 + ) t      - (1 - —) a . « 0 

2R      XU 2R      ** 

(i + fci), 
2R 

ri      h+t\ ,      ^y 

*» 2R      * R 

h+t 

2 [" h+t 

2R 
) T 

A.U 

h+t\ 
i 

2R 
lxi 

h+t f   ,,   .  h+tN •-      h+t»        1 

2 P 2R ja 2R yi|      > 

h+t 
For thin sandwich shells,      _ «1.    In such cases,  a combiration 

of Eqs.   (12),   (13),  and  (14.)  gives 

ah+t\                  /n       h+t\    _           __*X _*7 +  )  a     - (1 - —•)  « - «  + —*• 
2R      ra 2R 6x        8y 

(16) 

In view of the laet that all face-parallel core stre^-4 are 

neglected,  the face-parallel stress resultants and couples of tfep composite 

shell are due to the  stresses in the facepLayers only and may be obtained 

as follows: 

..    /»      h+t\      „     ,,      h+tx 
Nx ' wxuvx * " >  * %VX i 

• 2R A 2R 

N    • N      + N , 
7       yu      yl 

N      * N        (1 + =-*) + N    . t,: >.y        -yu • xyiv 
h+tx 

2tt (17) 

N      • N        + N    , yx       yxu       yx!k 
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M 

M 

h+t 

h+t 

NJ1 + *&) * N    (1 - fctS 
** 2R ^ 2R 

N      + N . 
7U        y* 

M h+t 
*y 

N   (i * *£*) • N   (i - tei) 
Xyu 2R XyX 2R 

jnc       2    |_ 

(17 cont'd.) 

/-i   . h+t\           /.      h+t\ p = p..(l +  ) + p-(l ) 
2R 2R 

1 q - - 
2 

zm 

h+t h+tN 
P„(l   +    )    -   Pall   -    ) 

_ u 2R       ^ 2Rj 

_ZU 2R 21 2RJ 

h+t 
Since II, = N and N_ « N,  and    _-_«l. one may write II     « N 

yxu       xyu yx3b.       xyx 2R        * ^ xy       yx 

and M  • M . 
xy   yx 

t 

Define the deformation of the composite shell to be 

v • (w + v u v^)/2 

and 

e - (wu - wv)/(h+t) (18) 

where w represents the effective transverse deflection of the middle surface 

and e represents the effective transverse normal strain for the composite 

shell. From these definitions, w and w„ insy be written in terms of w and 
U -Oh 

u es     f*/-\l "1 rjyo • 
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2 (19) 

2 
w^ - w - -^-^ (20) 

With equations (15) tc (20), the following equations may be obtained 

by carrying out addition! BS well as subtraction of equations (1) and (4.), 

and \£)  and (5/< 

6N   PSL   H  .   M  _ 
_JE + _22 + -Z 3v_^ 3£B0 (21) 
ox   9y   R 6x   R ox 

3K    9N   N   „   M  -   Q 

3x   dy   R  Ox   R Sx   R 

8M   8M   M  9   (h+t)V 
—2 + —£L + J &„ . —2  22. „ Q * 0 (23) 
8x   8y   R 8x    4R    8x  ^ 

/-.\   ! •«  / • \ From equations v3y «jw 10; may be derived tha following two relations 1 

N 
.JL. 5- IK   2SJ * w  21^ ^ £_ /«  8w . „ 8wx 
R  8x  X 8x    ** 8y   8y  ^ 8x    7 8y 

8 /w 8»  ...  8e\  8 /„  8e   .. 8©\ — (M — * M  —) - — (M  — *  M —; + p 
8x  x 8x    ** 8y   8y  ^ 8x    7 8y 

ox   8y   R ay     3x  T Oy 
(25) 

8M    8M   M   -   (h+t)^   ~ 
__2Z + _Z . J2 OS + : 1_J2 3e _   „ Q (^} 

8x   8y   R  3x    AR    8x  ^ 



' • «****«»!«• 

-12- 

6x  - 8y    U R 

1 + «L (H 92 + M  &) 4 ^- (M  ^H-M ^-) 
R   3x   5x   ^ 8y   8y *? 6x   7 3y 

4   8x  x 8x  ^ 6y    A   By  ^ dx   7 6y 

- Ch*t>(<z-) - (^ & + a «K) , &*2? i « 0        (<6) 

- 

When the raaius of curvature R becomes infinite, Equations (21) 
1 2 to (26) reduce to the same eqiiations obtained by Rsissner ' • Whea the 

effective transverse normal strain e for the composite shell is neglected? 

Equations (21) to (25) reduce to the usual equations of force and moment 

equilibrium for homogeneous shells. Eq, (26) has no counterpart in the 

theory of homogeneous shells, in the sensvJ that the corresponding equation 
1 

for the homogeneous shell contains information that is not of practical 

interest and is therefore never formulated. This equation gives the local 

change of thickness of the shell caused directly by the external loads by 

way of the non-linear terms having stress resultants and couples as factorso 

In order to solve these differential equations of equilibrium,, 

it is necessary to derive an appropriate system of stress-displacement re- 

lations * This may be done by the use of the method of complementary energy, 

which states that the true state of stress is distinguished from all static- 

ally correct states cf stress by the condition that the complementary energy 

be a stationary value. In the linear elasticity theory, for a material 

obeying Hooke's law and for given surface stresses or displacements the 

complementary energy is the difference of the strain energy V and of the 

virtual work W which the surface stresses do over that portion of the sur- 

face where the displacements are prescribed. In the non-linear theory of 

elasticity it can be shown that the expression for the complementary energy 

may be derived from the expression for the potential energy by a Lsgandre 

type of transformation,and in the case of G thin shell with finite deflec- 

tion, the complementary energy J is 



-13- 

J * V + u - w (27) 

where V is the strain energy, W, the we** function and V9  tb»'-4iwi3c:4oii» 
v 

the stress resultants in the middle plane due to large deflection, r.-.jialy 

2 . 
J 

Vr 
N (&) + 2N & & + N (2S) 

8x ^oz dy  7 6y 
dx dy (28) 

>* 

S»n6i* the properties of face layers and the core by the sub- 

nd c respective] 
i 

the core may be written as 

scripts f and c respectively. The strain energy of the face layers and 
.1 

V, 
2tE •r       l_ 

N/ v H 2 - 2v^ N    + 2(1 + vf)N     " xy 

dx dy  ^       H2 + M 2 - 2v_M M   + 2(1 + vjM_/ 
t(h+t)

2E.     I    X * fx^ f    ^ 

c     2J//\(h+t)cc Ec[
a      12     5x      8y J{ 

(29) 

The work done by the stress resultant due to large deflection 

is 

flL 

.->//|.„A>-»   -- 
OV. 

2^ 
+ N (-2)  (1 + JUi) dx dy 

***   8x  8y   ^ oy J *    2R 

•}/*•* • 2N 
6v- 8w, 

2R 
) dx dy 

With the aid of Equations (17), (19) arid (20) „ U becomes 
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U - i / /t (SK)2 * 2N  & SS , N (&)' 
/7 3x ^ 3x 3y  y ay 

dx dv 

8   7J 
N (&) + a 2a 2£ + H (&)* 
X dx     ^ 3x 3y 7ayy 

dx dy 

x 3x 8x   ^ 8x 8y  3y 8x 

••V 
ae av 

8y 3y 
dx dy (30) 

The work function W(? is 

r 

w 
8w       8v 

X  u + Y  v + (X  —- + I  —-) w nu u   nu u  x nu _     nu a ' u 
8x       8y 

S r °s       ew\    1 
/  L 8x     3y  J 

w Q_ da + «n ./ 12E„  8x   8y 
as 

-^ 

where the last two integrals are the work done by the shear stress resultant 

in the core9 The first one of these two is the work done due to the dis• 

placeTrcent of the middle surface and the second due to coasprssslao cf the 
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core. 

Define the dleplaotwnto of the middle surface and the resultant 

load on the boundary of the coHpoelte shell to be as follows! 

u-i(u^+ *yl 
2 

v » Myn + vjf 

Px = "^ {~\ + V» h+t  u  * h+t   U   * 

X  + X . 4 nu   nV n  nu  nl" 

•w • ^s * W* "hy     v *nu  nV 

The work function W be<?o«»s 

V - ©feu • InT • (^ ^ • ^ £ • Q^) V 
_/ L Ox    07 

• S« e* * «w <v - (v£ • V £>» 

9x   * fty      4     Ox    9y Ox   " 9y 

• **&.!& 
1 **TT1    JV—. xxaQ oy 3 oy 

do (31) 

Introducing the Lagranglan multipliers ^. to A/ and oarrying 

out tho first variation with respoot to N , N , N ^ M, M » M 9 Q 'Wl 

0 and a Independently, the relation 
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«JL»<fvf+<fv+<Ju+</w 

r ft     T 8N 9N K 

- 

a.       M      ^   1 gw       y   oe ! 

3x        R   3xJ 

+   A 
[SN 8N        N 

3x       3y R 

M 0 

a*        R      3x        R. 

is   ax 
(H    SH)  + L. (N      fi£) 

8x        9y      ^   3x 

+ fi- (N     SS) + 2- (N    2i£) . SL (M   2£)  _ 2- (M     2*) 
8x     ^ oy        ay     J 3y       3x      x 8x        8y     ** 3x 

A ~ au      DQ 
- -d- <H_ *) - «- (M   *) • P + (-2 • -*> 

8x      ^ 3y        8y     y 3y 3x       3y 

7 6y R   3y 3x 

-   T3M        3M_r        M    - /. 

L Ox 8y R 3x 

ft)2      Jjj    3e 
R  ax 

X -2E + Ji _ -22L   8w + ih+tl.   ^SZ   «& 
3x       3y        R      3x R      3x V 

x J2 + SL fa   &L + M      *£) + 9_ fM      3>       »    ^ 
LR     3x 

(M   2X + M     HS) 
ex XV 

3y       3y       *  3x 
M   «S) 
7 3y 
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1"' u , cL(N  SSL 
dr ax 

!    fe) _ iiiili! a. (N   & + s  fii) 
^ dj U 3y     ^ 3y       y 3y 

'•u.il' * fr,       ^W    .     _       OWv     ,     (h-irj J X       I 

ox      T 8y 4- R J.' 
ax At, (32) 

<T 

Leadv to the conditions 

\ • « x2 A3 = w 

^    - e ^6     e 

on the boundary. As equation (32} also holds for any part of the structure 

if the boundary displacements referring to thie part are identifiad with 

the displacement occurring in the actual solution of the problem, it fellows 

that the Lagrange's multipliers throughout the structure are related to the 

generalized displacements in the Interior of the boundary,. It follows that 

equation (33) also holds true now in the interior0 

Using equations (33)» the Euler equations of d  L = 0 in the Cal- 

culus of Variations give the following stress-displacement relations: 

N 
i     V 

2tE, 

3u      1 r.3vx2      ih+t)2   -3ex2~i 

3:v      2 |_ 3x U 3x     J 

 I   X pv 

2tE, ay 

H + i (flB) + 
,,iP2    fi    21 

il   8v 

R      2 8y U         3y  J R   3x 

c-    • \2       6 

a« 
4 R ax- 
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^JSg K:3a + &:+95l9w+ (h+t)2      8e    8e 
2tE 8y     8x     8:,t 8y 4 8x   8y 

v   8w      (h+t)2     fi[   5e 
J,      MM nu     ^.    •Iwa.nJaH •   »i •MM' • 

R 8x    4     R 8x 

M - vJM 8ft x  8v 9e 

t(h+t)^/2   9x  3x 8x 

t(h+t)^EL/2   67  8y 8y  R 8x  R 3x  R 

t(h-Pt)nEx-   8y .' 8x  8x 8y   8y 8x  R 8x   R 8x 

(h+t)G„ I2E   8x  ox   dy 

8w _ de - _ 8w e 

8x  8x   8x 

!Jr- !- _ hH  8_ (SE"+ !i) = . + SH _ £• w 
(h+t)GA,   12E„ 8y  8x   oy 8y  8y 

9w 

8y 

+ I + 2£ §H + th*t)   e 

R  R 8y    4   R 

e » - tf /E 
zm o (34) 

In the case of flat sandwich plates , R-*"°°, Lhe stress-=3train 
2 3 

relations (34) reduce to exactly those obtained by Roissner ' • In the 

case of homogeneous shells (G « g E —»oo, e-K>), equations (34) then 
C   t£      C 
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rndu.ce to the st-ress-s train relations for homogeneous shells when finite 

deflection is assumede 

If buckling of the sandwich strideture as a unit is to tie studied;, 

the effect of the transverse normal stres« eteformabllifcy *BB usually-%S 

neglected and therefore one may assume E    •   oO   and e • 0o    In the buckling 

theory,  the displacements u, v, and w are the displacements occurring during 

buckling and the quantities N , N , etc, represent only the changes in the x     y 
internal forces during buckling.    If we denote the median surface stresses 

by N  „ N •  and N      and neglect the terms which Donnell '   justified as being x     y xy 
small,  the equilibrium equations become 

8N 3N 
_x + __s: « 0 
8x ay 

8N 8N 
+ -1 = 0 • 

- * 

8x dj ' 
— -** . 

an an N 4- N 
+ N efw 

6x 8y R X 8x^  • 

(35) 

(37) 

7   6y2 ^ 8x8y 

8M       8M  '_ 

6x 8y 

9M_    a*c 
+ —*   - Q_ - 0 (39) 

8x 8y ' 

and the stress-displacement relations become 

.1 et,     r: 

2tE„ 8x 

y       r x       x   cjE 

2tE.p R    83 

(40) 

H. 
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2(l+ON 
22 

>tE. 

I     3u     .   3"? 
'"        ' " v    • " " 

R    OG        3x 

M.   - v A 
+A2t t(h+t)  E^'2 dx 

(4C cont'd. 

M    - v_M 
JL ..L2L i 2r 
t(h+t) E^y'2       R     60 

4(l+vf)M 

t(h+i)22f 3y 

ap* .1  !fk 
30 

«x 

(h+t)G^ 
*  P, 

8w 

ox 

i  a 1     ^ 
-*     "•  p.   •»   —    — 

(h+t)G y     R   6fl 

Bqti&tlon (4,0) may be rewritten in the following form; 

O+T? 

w       „ f j       3ll      J /I    dv Wv"l 

l~vf *   I  dx R3C        R J 

2tE, ,     a -* 

y    i-vf   L      ax     R  ac   RJ 

2tE, 
H /  1.    3u    ,   dv>. 

1X7      2(l+vf)        R    30        8x 

(h+tJ^tE-      Opx 36 
J4  • -—.   (-•— + v., — —*•) 
x      2(l-v    ) 3x R      30 

(41) 
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M    «  "I    (Vf    •-    + *    -I) 
J       2(1 - vf } 8x        R      50 

(h+t)2tE<,        .     38        66 
M      - —    ( -   — + —*>) 
^      2(1 + vf)        R      dO        6x 

Q. - (h+t) G   (e  + ^ 

Q-  (h+t)  G.  <B    •*    ' 

(41 cont'do) 

> c   xry 
R   e*> 

Subst-itu'/lug thsse relations into equations  (35)  through (39) 

and eliminating u. -••.   8 ,  and 8 „  one  obtains finally x j 

2,r r _A i  2t&<    A 
D  V°v • (X - *  V ) I 

C L   R ox4 

-  ^ <•**%«   2K^-~    *^-S-H)l      -0 (42) 
x 3x2 *»  5x8y S oy'    J 

vhere    V2 - 82/dx2 + 92/6y2, D « Eft(h+t)2/2(l - vf
2) 

and C »  (h+t)  G . 

Equation  (4.2) is the Modified Donnell'a Equation for curved sssdvish plates 

and sandwich shells and is the one which va-s obtained by Stein and Mayers 

for an isotropic sandwich element. 

Calerkin's Method of Approximate Solutions 

We shall now proceed to solve equation (42)  in the case of buckling 

of sandwich circular o^lindsi'S under various loadings.    Let us consider 

the cylinder to be under the general combined loading of axial compression, 

torsion and benuing (Fig„ 2)„     In f<uch a case, we have 

: 

- 
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(43) 

; 1. 

where N,  is the force per unit length due to axial compression,  M is the 

bending moment,   T is the moment of inertia of the cylinder,  T lo ttto 

torsional moment,  and a the radius ofthe circular section.    With such a 

loading, equation (42)  thus becomes 

D v8w • (i - £ v2} 
c 

{ 
2tE, 

V 
{      v    A 2Mui    „      _»  8*v .  T      8 v ( - N-  +     cos 0) —x + —* 1 

3x*     Tra^ 8x60]) 
0 

vheT*e   v   Is    t.oVon    a t:    oO 

(u) 

Equation (44) ma7 be solved by mean3 of Galerkin's method as 

follows?; we first assume the deflection w of the cylinder after buckling 

in the form of a series that satisfies the boundary conditions but with 

undetermined parameters. For long cylinders, noweverf the boundary condi- 

tions at the two ends become unimportant and we may assume the deflection 

series without Rny regard for the end conditions. For a cylinder under 

combined axial compression ar:d bending, w may be assumed in the following 

*  7 
X ULIU  , 

• 

v • sin HTFX 
OO 

2 
nO \. 

cos nO U5) 

and for a cylinder under torsion only, the deflection after buckling is of 

the following form", 

w •      S     B    sir  (—- - nQ) n • ' 

OO 

(46) 

Z      B„  (sin SS4 cor, nQ - cos ~~    sin nO) 
n 5 5> 
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Q co3 -— sin nO adO dxB0 (49) 

which, when written out, becomes 

27T,        1 
k •    o a4_ 

(Dv w * F —7 -• — y —r) gln   cos n® a<*0 dx 

k 
Qx> C     9xU 1 

D   6 8 w%,    ""^ 
- V   ;>J sin     cos n® ^^ dx 

ex"  c   ax"    3> 

.1 
'i 

2! 

Guided by these expressions, we shall assume the deflection of the cylinder 

in the case of combined loadinp as follows: 

ni nl 

w - sin ~   Z     A COB v.Q  + cos ~--     S  E sin nO. 
x   n«0 i  n^l /.^•x 

With w expressed in a proper series, we shall next substitute this series 

into (44.). 1^ the expression (47) happens to be the exact solution of equa- 

tion (44), after substitution equation (44) will be identically equal to 

zeroo In generalr this will not be so and the resulting expression will 

be a function of x and 0 which we shall denote by £. Galerkin's equations 

for the determination of the coefficients A and B are 

1 
r 

Q sin ~ cos r.C adO dx - 0 (48) 
\ 

(50) 
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AfijJ    V6 2-4) sin SDE COB n0 C08 o adO dx 
C 8x 1 

(50 cont'd.) 

2rr S 

- —^       / /      (C7   —   - "   V """"" ' sljl "—   COs n® a<^ dx     °« 
•we.'      I / 3x80     C 3x80 1> 

in which F • 2tEf/a
2,  and 

2TT i 
' f L L v*u TIP       ? frN. 

/ 

/     (D V8* * P ~7 ~ PJ    V2 M) cos 22*   sin n0 ^ to 
3x4 8x^ V 

z L 8_w     D      ___6 8 Wx BTTX      .       /->•,/%• 
+ N, / /       VV    —5 ~ ""      V    —o)  cos      sin n0 ad0 dx 

3x       C        '     8x i 

2 2 
(r7   —~ - -    \7   —5)  cos sia nO C03 0 adO dx 

8x^      C 3x \ 

2rr i 

.2 
iff    ,L 3'w       D    _6 8fw    N mx 

3 ira / » 0x30     C 3x80 

(51) 

 i.. 
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Substituting the assumed function v into the3e equations and 

carrying out. the integration  we obtain 

"1 o k4/  \2  .     2, 
D( ,V f nX   + E_£       DF   X(  A t_nfl 

i 
a fJa 

H     X2( X2 * ^f    V A2< X2 + =2)3" 
 g- 77~ 

p ira irGax" 
•    B 

Mat A2( X2 ±. n2)2   + MatDX2(A2 + nV 

la6 ICa* 
(A    .  • A ^) - 0, 

and 

[.x DC X2 + n¥        FJC
4
      ,  DF    XA(..y    + n2) 

a Ca 

(52) 

Hx >f( X2 * n2)2 2        2N3- 

Tn 

ira TTC 

N D   X"(    A* • n  )"H -^—-^ J, 

a1C J ^ 

(53) 

Mat b   X2(   X2 * n2)2 MatD A2(   X2 * n2)' 
——*—**—/ •*•—     + •  * U  

la' ICa 
[B    ,   + B    .) - 0. ' n-1        n+x' 

.nstead of working with these two equations,  it is found conven- 

ient to combine them into the following onesn    Thus, by subtracting equation 

(53)  from (52), we obtain 



=26- 

D(  \2 + n2)U   +Fjt    , DF  1A(   \2 • r?) 
a a4 Ca 

Ni V*t A2 + p2>2    wiD *2< }2 * ^3 

a Ca 

Tn X ( A 2 -v n2)2       TDn A ( X 2 • n2)3 1 

ira wCa* J<= 
2,    i2 Mat ^   X~ + a-lf      + 2feffi-A_LJki±JL.L 

I?" * iCa* <Kn-l + Kn+1> " °. 

(54) 
in which ^= rmra/%     v   » A   - B.  and ir. which 25^ is to be  substituted nun 0 
for K0 at n «= Ij Kn » 0 when n> n,»    When equations (52)  and (53) are 

added, we have 

[a a Ca 

2/   -\ 2        2X2 

Ca 

2/    i2        2*3 •i  A   (   V + **f H,D   A"(   A    +0 
1 Ca 

+ 1^A(   ^Sn¥   + TDn A ( A 2 • n2)3 

ua TrCaJ 
K» 

Mat   A2(   A2 • n-,2    ,  MatD A2(  A2 ^ n¥ 

la ICa* <K'n-l + KW - °. 

(55) 
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in which X' * A + B „ Again at n « 1, 2K'n is to be substituted for K' nun u w 

and K* - C when n > it,« 

The substitution of n from 0 to n, in equations (54) and (55) 

results in^n, + 1 simultaneous algebraic equations for 2n, + 1 unknowns, 

One solution to these equations is,Of courset  the trivial one^ namelyp 

Kn » K» - C (n « 0, 1, 2, 3, • o o, n^o 

The non-trivial solution is carriad out in the following section. 

- 
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Nation of the Buckling Leads 

Caso 1. Buckling under axial compressiono 

If' the sandwich cylinder is under the actioiu of axisl compressic? 

only, then M - T = 0 in Eqa. (54) a.'.id (55) and we obtain 

t -SF—+   4   + —7z ""—r—' 
a       a        Ca a 

2, T2 2*3 -l 

T Ca 
Kn -" ° (56) 

To find the non-trivial solutions of the above equation, we must set the 

coefficient of K  equal to zero, which gives, after some simplification0 

2 '        _      2 
a .        j, 1_    1_   n_ 

Nx  Ta(l+ ^2)4 +4. T(l-vf *) ^4 + 2a "^2 (l+ ^2) 

G 2l^(l-y>/) 1_(1+ nf)2 + Ta (1+ n2)3 

X2      X2 \2 
A   A A (57) 

where T *-- (h+t)G,/Ef t„ a - (h*t) /a**. 

In view of the presence cf the sandwich cylinder parameters "JP 

and a in equation (5-7), the determination of a minimum N, with respect 

to the parameters A and n proves to be intractable analytically. Con- 

sequently,, a numerical treatment was attempted. In the numerical analysis 

three cases were treated? (a) the core considered extremely weak in shear 

with a = 10  and T » 2.7 x 10 j (b) the core considered moderately weak 

in shear with a * lC-i+ and T«^ 2.7 x  10 %  and (c)  the core considered 

relatively strong in shear with a » 10'"** and ^ «= 2.7 x 10 . 

The values in case (a) were chosen so as to coincide with the 

nominal properties of the cylinders used in the experimental study* The 

other -values were chosen as convenient multiples of the first set., The 

results of the numerical analysis are shown in JTig30 3?4t 
&nd 5. The valu? 

cf n and X obtained from thcoa figures for a minimum N,/C ai'e given in 

i 

- 
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Table 1. 
Table 1 

a T vVr        VCmin c A 
1CT4 2.7xL0=J 3.7             1.00 <"*-» 

r*** 

10^ 2.7xlO~~ 0o37          0.6k.6 0 18 

10"4 2O7X10"1 0.037        0.0769 7 7 

In Figs. 3 to 5, curves for only a few values of n are shovm 

which are sufficient to ensure a minimum value of N-./C for the corre- 

sponding A •  It wes possible to rake approximate analytical calculations 

that served as a guide to bracket the minimum n for a particular A• 

'This reduced the amount of calculation to the point where it was only 

necessary to calculate from Eq. (57), the n curve for a corresponding \ 

range. With this procedure, the values of N-,/C A     ars reasonably cer- 

tain, although r. and A may be in -Light pr-ror. 

These numerical calculations indicated that the minimum values 

of N1 occurred at n = 0 andX»l« By taking n = 0 in (57), we have 

v1  Ta XU+ 2aX2+4y(l-vJ) 

c raX\2T2(i^)X 2 (58) 

Since minimum N-, occurs at large value of A , we can determine the mini- 

mum N-, from the condition 

Wj/8 A - 0 (59) 

Equation (59) has the following real solutions: 

A2 - °° (6o) 

(Td-vJ) 

Note that from eq, (6l) when 
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»    G a e 

the only real root is A " °° • 

The norms" stress in the faces at buckling is 

ocr « V2t 

Substituting Eqs, (61) into Eq. (5?) and simplifying, we obtain 

aer « kHErr (h+t)/al (63) 

where  the buckling coefficient k    is 

X2(Vt)   ,          a        (            V 
4(l-vf

?)a        X2(h+t)      2(l-vf
2)Gca 

*a- V         ^2    (h+t) 
2(l-v.,2)Gca     A          a 

(64) 

Values for the buckling coefficient k    and half wave length have 

been computed from Eqs»  (64) and (61),  respectively,  by taking V- = 0,3. 

These data are shown in Fig-ss 6 and 7«    When E-t/G a  ^ 0s95s  ^h& value 

of the buckling coefficient is 

kfl - (1/2)   (Gca/Eft) (65) 

Under these conditions, the buckling stress 

acr - (h+tjG^t (66) 

has a value that is independent of the wave length. 

An interesting feature of the theories illustrated in Fig» 6 

is the fact there are apparently three ranges into which the shear effect? 

of the core can bo divided: (a) When E-Vt/G>a^.0.95, the core is extremely 

- 
- 
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weak in shear and N  » (h+t)G . (b) When 0.1 < B*t/GL« < 0.95, the core cr       o i  c 
is moderatley weak in shear and a      is given by Eq. (60).  (c) When B,t/G» 

< 0,1, the core is relatively strong in shear, and the sandwich cylinder 

behaves essentially in the same manner as the homogeneous cylinder. While 

shear effects are negligible in this region, the nonlinear theory, which lo 

necessary to describe buckling of a homogeneous cylinder, will also be re- 

quired for the sandwich cylinder. The linearized solution for the buckling 

stress of the latter can be obtained as 

(3/vi-v2)E(h+t)/a 

The strain energy solution obtained by Leggett and Hopkins  also agrees 

with the results shown in Fig, 6 when their solution is simplified for a 

core that does not carry any axlel load, A slight difficulty in their 

solution which was not noted by Leggett and Hopkins is that, in the region 

A-A* shown in Fig. 6, the buckling stress giver, by their equation goes to 

zero, for in this region A becomes imaginary for this branch and, conse- 

quently, the A = °°   branch must be used. 

Case 2. Buckling under torsion 

If the cylinder is under the action of torsional loads only, 

then N,Bfr*0 in Eqs. (54) and (55) and we obtain 

[ a8 .* ^3^ 

«     i       n    ~> _    O 

+    Tn I ( XW   +    TDa A (  A *>n") 
im8 ~ T/Ca10 

Kn * °     *67) 

To find the non-trivial solutions, we set the coefficient of K equal to * n 
zero and obtain 

A   4. 

+ aTX
4(l*fe)4(l^f)T*2oe \2(1+^) 

f - 2 2     % .     2 3 (68) 
U(l~vf) f A   T^1 ^ + 2a 0 A H1+ rj) 

A  A A   A 

• 
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where the plas and minus signs indicate that the direction of T is immaterial 

to the buckling, 

In order to find the lowest possible value of T, we may minimize 

the right-hand side of (68) with respect to the variables A and (n/A)» 

It may be pointed out that A and (n/ \  ) actually should take on only dis- 

crete values on account of the integral character of the n and ra (^anurl^i), 

However, in the case of sandwich cylinders wit* weak cores, it will be 

shown subsequently that the minimum values of T occur at very large values 

of A i It is therefore possible to consider both A and (n/A ) as con- 

tinuous variables in the minimizing process. 

Let us first examine the condition 6T/8A." 0C We find from 

this condition that either A. • ©o or 

2  2(l-v
2
f)T   >/0( - /l-^f T (1* 3g) 

^ " /^V-iJi£\ "     o  o   2 2 (69) 
a 

It is evident that when 

r    Ga
>v      f   u A2 (70) 

the only real root is ^ • oo . 

The condition (70) corresponds to tha case where the sandwich 

has a coro weak in shear. By substituting \ - oo in equation (68) and 

minimizing T with resect to ^fi/ ? ^ - we find 

* « + 1 (71) 

which gives 

Nor  + 
- 1 (72) 

1. 

• 
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This result fo^ a core very weak in shear corresponds to that obtained 

for a sandwich cylinder under axial compression^ a sandwich plate under 

compression, or a column. The critical loading in all th«s« cases depends 

solely upon the shear rigidity of the eores 

For sandwich cylinders with cores not weak in shesr, it is neces- 

sary to proceed dirsotly with the minimization of the Eq, (66) with respect- 

to A and the ratio (n/ A )• This results in a pair of non-linear equations 

in A and (n/A ) an(3 their solutions become very tedious.  Inasmuch as 

it is known that ths linear theory does not predict adequately the buckling 

loads for a homogeneous cylinder, it is expected that the linear theory, 

on which the present analysis is based- also will not predict the buckling 

loads for sandwich cylinders with cores strong in shear. The reason why 

linear theory checks well with the experimental' results in the case of 

sandwich cylindeas with weak core has been presented in Reference 11. 

Case 3. Buckling under bending 

If the cylinder is under the action of bending loads only, V9 

let N.«T»0 in Eqs. (54) and (55) and we obtain 

8 U ,s    o a a Ca 
K_ n 

2    2v2 MatA^   \%nV + HatD A*|   XW  j   (R      +R      } 
la ICa n=~    R ~ 

(73) 

for n y* 1 where K ," 0. For n • 1, 2KQ is to be substituted for K„ end. 

for n > n-j. K • 0. For any value of ji-. taken we then have (n.+l) equa- 

tions with (n,+l)  unknowns.    To obtain the non-trivial solution, we shai] 

set the determine of the coefficients cT K„. K,. K~. 
U'       X-       <.- 

.   .  K  +  eoual to 
nl  * 

zero, from which the buckling load can be calculated. This procedure, 

however, requires very tedious calculation for a general sandwich cylinder. 
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To simplify the calculations, let us study the effect of A 

on the buckling load of a sandwich cylinder with weak core. This is done 

by calculating the buckling lead or such a cylinder with n., • 1,2,3,4»5. 

The results are plotted in Fig. 8. It is evident from these curves that 

for all those values of n-, minimum M occurs at A""* °o» The convergence 

of ID/2Mat as n, increases can easily be seen from the figure. 

By assuming that A is a large number, many terms in eq. (73) 

can be neglected and we obtain 

K _+LK+K.,-0 (74) n-1    n   nsl ' 

for n / 1. L • Cl/!!at in the above equation. For n • 0, we have 

IK0 
+ \ - 0 (75) 

and, for n -  1, we have 

2KQ * IX, + K2 = 0 (76) 

To calculate the buckling load, instead of solving the determinant equa- 

tion for a large number of terms, an alternative solution can be obtained 

as follows. We observe that Eq. (74) is a finite difference equation in 

terms of K . The trivial solution of Eqs. (74), (75) and (76) is n 

K- C    (n - 0,1,2,3, . . . ) n 

The nontrivial solution of Eq. (74) is 

Kp - A<xn + Bo41    (n = 1,2,3, . . . )        (77) 

where A and B are arbitrary constants and a is related to L by the formula 

or 

o2 + aL + 1 «= 0 (78) 

h • - (a + a"1) (79) 

Substituting Eq. (77) into Eq. (76) and using relation (79),we fiud 
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2KQ « - IXj-Kg - - L (Aa + BcT1) - (Aa2 + Ba~2) 

- -A (a   + aL) - B(a~* + cf^L) 

- A + B (80) 

Now, equation (75) is the only one yet to be satisfied. Substituting KQ 

given by Eq. (80) and K, given by Eq. (77) into Eq. (75) and using rela- 

tion (79), we obtain 

(A - B) (a - a"1) = 0 

for which we find a • 1 and a = ~ 1. Hence, L = - 2 or 

2Mat/l = 1 C = t (h+t)G„ (81) 

Ue note that, when a » - 1,  the two roots of Eq.   (78)  are equal and Eq. 

(77) must assume the form 

Kn - (A + nB)aD 

But K must be finite when n—»-<*> ; we have, therefore, B = 0, In this 

case, we find th-vt a -  - 1 is again the correct solution.  The plus or 

minus signs in Eq. (81) indicate that a positive or negative moment on the 

cylinder will make no difference so far as buckling is concerned. Eq. (81) 

indicates that the sandwich cylinder buckles when the maximum tending stre3- 

reaches the buckling stress when the cylinder is under axial compression 

only. 

Case A. Buckling under combined axial compression and bending 

The determination of the buckling load for a sandwich cylinder 

under combined compression and bending can be carried out in a manner simi- 

lar- to that employed in the case of buckling under pure bending. Let 

T • 0 in Eqs. (54-) and (55). Again, by assuming large A • Eqs. (54-) and 

(55) become 

Kn~l + L\ + Kn+1 " ° <82> 
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for n / 1, whers L' « |_ 1 ~ (\/o)~}   IC/^at, For n » 0, we have 

L*KQ + Kx - 0 (83) 

and, for n = 1, we have 

2KQ + LT^ + K2 - 0 (84.) 

Eqs, (82), (83); and (84) are exactly the same as Sqs. (74)t   (75)» and 

(76). The solution Is therefore L* = - 2 or 

N1 1 (2Mat/l) « C « (h+t)Gc (85) 

Equation (85) again indicates that buckling of the sandwich cylinder will 

occur when the maximum compressive stress in the cylinder is equal to the 

buckling stress when the cylinder is under compression alrne, 

Case 5« Buckling under combined axial compression and torsion 

When M e 0 and again assuming that A.   is large while the ratio 

n/X  may be finite, Eqs. (54) and (55) become 

and 

a* % - - + he \) Kc ° ^) 
X        C        Tra C     A 

The non-trivial solution occurs when 

T r,2 Ni 

~ A "   (1+^  '  1 (88) 
Ta C    A A c 

l-Iinimiziiig T or N,  with respect to the ratio (n/^ ), we find 

n      + 

} 2ira C 
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and buckling occurs when 

T   2 h 
(—V-) • - - 1 (39) 

2WB\J C 

or /" 

2rra C V'-* (90) 

Case 6. Buckling under combined axial compression, bending and 

torsion. 

Now let us take up the general case of buckling under combined 

compression, bending and torsion. Our problem is then to find the non- 

trivial solutions of Eqs« (54-) and (55). This is, however, a very difficult 

task. From the previous cases of buckling of sandwich cylinders with weak 

core under compression alone, bending alone, and torsion alone, it was found 

that the minimum buckling loads occur at A • oo. Dividing equations (54) 
8 

and (55) by ?, , and remembering that n. may also be very large, we shall drop 

all terms containing X to a power greater than zero in the denominator 

but keep terms containing the ratio n,/A  • Equations (54.) and (55) thus 

become 

2        N 
n 1      T n v v       Mat 

& + \~2 " - " H     \ > Kn + — (Kn-1 + W A C      ua^C    A IC      n X       n X 
(91) 

(1 *$ - *i- bo A' K,» * "5(K-+<w * °   <92) 

or,dividing these equations  through by Mat/lC, va obtain 

Kn+1 + ¥n + Kn-1 " °» »3) 

K'n+1 + L'nK,n + K'n-1 " ° (%> 

in which 

L -2-  (1 + a-.a.T      a). (95) 
n     Mat X       C     7ra*C   A 
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L»_ 
IC 

Mat 

N 

X   C  iraTJ A 
(96) 

jia in cases 3 and 4, one may attempt to solve equations (93) and (94) as 

finite-difference equations* This, however, was not found possible,. The 

reason is that equations (93) and (94-) axe now finite-difference equations 

with variable coefficients and the solutions of such equations are difficult 

mathematical problems.  Instead we shall solve the problem in the following 

manner. 

Let us first investigate the magnitude of n,. If n, is small 

compared to X then n,/A —*" C as A  *~ °° and equations (93) and (94) 

reduce to the governing equations in the case of combined compression and 

bending. In order that the torsior.al load may have any effect on the buck- 

ling phenomena, n.  must also be a large number so that the ratio n,/X 

may remain finite. For any n close to n,, say, n = n,-l, n,-2, • • ., 

n.-q. (q /^ ^ n,), it is obvious that such terms as l/X » 2/X » • • • 

q/ A vanish as / —"•*°°w Thus, for the equations in which n «= u-,, n,-l, 

n.,-2, . . • ., u,-q, the following relations hold: 

\ ' V1 '\-2'' "°\- 
3C 

Mat 

n. 

Y        C  ira C  X 

(97) 

Therefore, if 1B the series for w. we take the summation of terms 

from R=J-<J to n-; the system of equations will be as followsi 

LK   + K  n - 0 
nl    nl-1 

K  + IK      .  + K    - 0 
r^    n^-1   n^-2 

K   ., + Bt ru -q-rl    n^-q 
* 0 

(98) 
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L J. 

- 

and 

L»K»      + K'      . - 0 nl V1 

K»        + L'K'      ,  + X' - 0 n, n-. «l n. —2 

»  •  « ^i 

K' ,  + L'K' - 0 ni-q+l n-j-q 

(99) 

where L» •      (l + — 
Mat } 

Nl  ,  T nl} 

C     ira C    A 

To obtain the non-trivial solution of (98) we set the determinant 

of the coefficients K    equal to zero, namely, 

L 1 0 

1 L 1 

OIL 

0      0 , 

0 0 . 

1 o . 

0 0 

0 0 

0 0 

0      0      0      0      0 ....  1 

- 

(100) 
- 

Equation  (100)  can be rewritten as 

L - 

L - (101) 

L -      1 

L-4 
L 

uj  ucucijig mors CIJ~ILL inors  terms j.n o^c oXpressioii for w. we have 

successively larger and larger c mtinued fractions in (101) and in each 

case the roots L are found. 
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The question now arises as to which of the roots obtained in 

solving equation (101) is the one which should be used in the final anal- 

ysis. This la easily dcterminable from relation (97), which, when re- 

written, becomes 

K . £. (1 + ^j - -1 - L-- A (102) 
Lat      Jf    C  iraC A 

Obviously the lowest value of the critical bending moment M occurs for 

the largest value of Lj therefore, in solving equation(lOl), the largest 

root obtained in each case is the one selected. 

It is noted (Fig. 9) that the largest root of equation (100) 

approaches the value of 2.00 as larger and larger continued fractions are 

considered. Therefore the value L = 2.00 is taken as the solution. Equa- 

tion (102) therefore becomes, after dividing through by Ic/Latt 

att.x.aj..!!i.i_i. (1o3, 
ic A        c     **c   * 

In order to find the lowest possible value of the term 2Mat/lC9 

it is necessary to minimize the right-hand  side ->f (103) with respect to 

the variable ru./\     .    Thus, we obtain 

2 
v        -   . 

(104) 

Hence 

(i • X 
c 
 T_ 

ira2C 

nl        T 
\   "  .     2. 
A      i^rra u 

Consequently, equation  (103)  bejomes 

2Mat m 1 _ h _ ( __1_)2 (106) 
10 C       ' 2TT8

2
C' 

, 

or 
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or 

2rraTO     V     C   IC 

Exactly the same result Is obtained if the non-trivial solution 

is found from equation (92). It is to be notad that the buckling lcad3 in 

fases 1 to 5 can all be obtained from eq. (107), as they should be. 

If we define the stress ratios IL,, B_, R_ according to the follow- 

ing formulas 

_   1    Critical compressive stress 

C   Buckling stress under compression alone 

_ m  2Mat m   Critical bending moment  

IC   Buckling moment under bending alone 

Critical torsional moment 

2ira u  Buckling moment under torsion alone 

then equation (105) may be written as 

H, - - \/l - (RB + Rc). (108) 

The interrelationship between compression, bending, and torsion- 

al stress ratios given by equation (108) is plotted for engineering use in 

Figs, 10 and 11. Once any two stress ratios are specified, the buckling 

value of the remaining stress ratio can be determined graphically from 

-' 

-i-.aaa     rtnmittt 



Experimental Investigation* 

Case 1. Buckling Under Axial Compression 

Test program. 

In an effort to test cylinders within a range of practical 

interest, it is desirable thst the radius to thickness ratio should be as 

large as possible* Whereas a relatively large value of the «/t parameter 

is easily obtainable for a homogeneous cylinder by constructing the cylinder 

of sheet of several thousandths of an inch thickness, the sandwich cylinder 

presents the problem that considerably greater thickness is required for 

the sandwich for practical reasons. 

A l/£-in. thick sandwich was considered the minimum thickness 

feasible, and consequently rather large radii were chosen so that the §>/t 

values would be within a range of possible use in aircraft construction. 

Three different radii were used to permit a variation in the 0/t  parameter 

to be studied within the capacity of the tc .iting facilities. To determine 

the length effect, if any, two different lengths were used in the investiga- 

tions • 

All other details of the specimens were similar. The 24S-T alu- 

minum-alloy faces of 0»010-ino thickness were bonded to a l/8-in. cellolar 

cellulose acetate (CCA) core of approximately U»5  to 5»0 lbs. per cu. ft. 

density. At each end of the cylinder, a 1 l/2-in. deep hardwood insert 

replaced the core to allow for the uniform introduction of end loads into 

the cylinder* 

The cylinders were manufactured by 3k,yuynef Inc., Port Jervis, 

N.Y., and their fabrication details are quoted: "All aluminum faces are coated 

with a metal primsr prior to assembly to the core. The primer is an adhesive 

manufactured by the Cauein Company of America and ba&ro their code number 

of NT-U2. 

* The experimental work was carried out mostly by Ge Gerard and F0 K. 

Teichmann. 
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The core is then planed to the thickness of 1/8 in,, and solid wood re- 

inforcements are glued to the edge. A secondary adhesive is used to combine 

the aluminum fac^s and the corej the adhesive used is Plastron 250-2, Al- 

though this resin adhesive will polymerize at a room temperature of 75°FoP 

sufficient heat was applied during the fabrication of the cylinders to as- 

cslerate the "setting" of the bond. Pressure necessary to bring the surf&ze- 

in intimate contact was applied, and the assembly was molded in a period 

of 2 to 3 hours. The final operation consists of trimming or finishing the 

ends of the oylinder to assure an even -nlane and squareness to the ends0" 

Load was applied to each speciment by means of a Baidwin-Southwark 

universal hydraulic testing machine. The 10-in. radius cylinders were tested 

ir. a machine of 60,000-lb. capacity, whereas the remainder were tested in 

a 200,000-lb. capacity machine. The specimen rested on a l/4-in. machined 

plate, which in turn rested directly on the base of the machine, A 1 l/2«- 

in. machined steel plats wat. centered on top of the cylinder and load was 

applied to this through a self-aligning compression head. 

During the progress of the test, load was applied slowly. At 

appropriate increments of load, strain-gage readings at four stations and 

deflection reading^ at three stations were taken. Near the buckling load 

of the cylinder, the load Increments were reduced. At failure, both the 

maximum load and the drop load at which the machine stabilized were recorded0 

Ultimate ioadB ana dimensions 

A summary of the important test results is given in Table 2„ 

The various dimensions given in this table are those that were obtained 

prior to test at the estimated center of the buckle pattern. It was noted.-, 

however, that this location usually did not coincide with the location of 

minimum thickness or maximum length of the cylinder. 

-«» 

-•• 
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Table 2 

Presentation of Test Data 

Calculated 
Nominal Inside Total Face Core Ultimate Dr<»p 

Length, Rac .tia, Thickness i.    Thickness, Thickness, Load, Load j, 

Cylinder* In. In2 In. In. In. Lbs. Lbs. 

1C12A+ 12 10.OS 0.144 0.0107 0.1226 9,675 4-, ICIC? 

1012B 12 9.99 0.134 0.0107 0.1126 31,825 4,025 

1024A 24 10.09 0.138 0.0107 0.1166 10,625 5,025 

1024B 24 10.05 0.135 0.0107 0.1136 13,985 5,625 

1212A 12 12.00 0.142 0.0107 0.1206 18,175 5,6^ 

1212B 12 11.89 0.136 0.0107 0.1146 18,475 3,950 
-   - 1224A 

1224B 

24 

24 

11.88         0.132              0.0107 

Premature failure due to 

0.1106 

poor bonding 

17,625 8,225 

1/.1PA. 12 13.89 0.143 0.0107 0.1216 26,950 2,250 

U12B 12 13.86 0.134 0.0107 0.1126 33,800 2,400 

U24A 24 13.88 0.132 0.0107 0.1106 21,150 5,900 

24 13.84 0.131 0.0107 0.1096 18,450 7P1U0 

* Note that the cylinders are identified by the radius that is given by the 

first two digits and the length that is given by the last two digits. 

+ This cylinder was initially buckled, d^ing manufacture, at the location of 

buckling under l>ad. 

Material property tests conducted on the CCA core material in- 

dicated that a shear modulus of G • 2,000 lbs. per sq. in. - 20 per cent 

was a representative value. Since the stress in the faces at buckling 

was well below the proportional limit of the material, no material property 

tests were conducted on the face material. 

Description of failure 

In general, the mode of instability observed on the cylinders 

tested can be roughly divided into three groupsJ (a) Cylinders in which 

buckles appeared in isolated locations before snap buckling precipitated 

failurej 1012A, 1012B, 1212B. (b) Cylinders in which no visible evidence 
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of buckling occurred before snap buckling precipitated failure: 102AA, 

I02Z.B, 1212A, 122AB.  (c) Cylinders in which outward bulging either pre- 

ceded Or accompanied snap buckling: L412A, 1412B, 1424A9 1A24B. 

The cylinders in group (a) exhibited isolated buckles that grew 

as the load was increased. These buckles usually formed the nucleus of 

the snap buckle pattern that occurred at failure with explosive violence0 

At failure, the ultimate load dropped to a value approximately 4-0 per cent 

of the peak value* The behavior of group (b) was simil o° with respect 

to the drop in load. The characteristic buckle pattern obtained in these 

groups is shown in Fig. 12. 

Group (c) cylinders exhibited a short wave length outward bulge, 

usually at the Junction of the CCA core and hardwood insert,, in addition 

to a snap buckling pattern. The former mode of instability appeared to 

be characteristic of the type associated with wrinkling of the faces. In 

the cases where the outward bulging preceded failure, it was noticed that 

portions of the bulge area changed to the character-' stic snap buckle pattern 

at, or immendiately after, failure. In addition, the drop load was much 

less than for the other two groups, averaging about 20 per fjent of the 

peak value. 

Buckle patterns 

Data on the buckle patterns obtained in the tests ars given 

for oach cylinder in Table 3. 

The shapesof the buckles obtained from th« snap buckle patterns 

were diamond-shaped as shown in Fig. 12 and of approximately 3 to 1 aspect 

ratio as given in Table 3. They indicated the characteristic tendency 

to buckle inwardly. It is noted for purposes of comparison that, for a 

homogeneous cylinder, the buckle is usually diamond-shaped and of an aspect 

ratio close to unity. 

Another detail c' importance was the occurrence of only one 

buckle in the axial direction for all the cylinders. In testing Cylinders 

1012B and 102£A, excessive deformation was applied to the cylinder to dt-.-- 
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termine If additional buckles would form in the axial direction. It was 

observed that no further buckling occurrsd. This behavior is probably 

due to the formation of a weak area at the buckle location once buckling 

occurs. Further deformation of the cylinder appears to be completely 

restricted to the buckle location with ultimate crushing of the cere and 

separation between the face and core. 

Table 3 

Data on Buckle Patterns 

Buckle Size 

Longitu= Circum- Number of 

dinally ferentially C ir-o urn— 

L   = \/m 
X 

L0 = 2S 
n ferantial i£ „ X 

Cylinder in. in0 Buckles* "x       n 

1012A 1.5 4.0 24 2.67 

1012B 1.5 4.0 24 2.67 

102U 1.5 4.0 24 2o67 

1212A 1.5 4.5 24 3.00 

1224A 1.5 4.5 24 3.00 

* Note that these buckles were sinusoidally «_rranged around the circum- 

ference (see Fig„ li). 

Influence of length 

A 12-and 24-in, length of each cylinder were included in the 

test program to determine the influence of leiigth upon the buckling char- 

acteristics within this range of length. Allowing for the hardwood. in3erta 

in the end of each specimen, the free length, L.., of the cylinders in 

which buckling is likely to occur is reduced to 9 and 21 in., respectively. 

The buckling load per inch, N>T>, as a function of Lr/m is 3 hour, 

in Fig. 1JU Within this range of the parameter and considering th.3 scatter 

of the test data, no conclusions as to the effect of length could be de- 

termined. Examination of the buckle dimension data indicates, however, 
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that no effect of length on the buckling load should occur- slnc«s for 

ths shortest cylinder,   the axial wave length was approximately onc'»aii.th 

of the free length.    It is anticipated that only when the free length 

approaches the ucial length will the length influence the buckling char- 

acteristics. 

Physical and material property variation 

Examination of ths dimensional properties of each cylinder 

indicated that the variation in dimensions from the average were of the 

following approximate orders of magnitude!  (a) face thickness,  t - 0.0015 

in0  (commercial tolerance)}  (b) core thickness, h - 0.008 in.j  (c) inside 

radius| a - 0.030 in.}   (d) length, \ - 0.008 in. 

Variation in the shear modulus of the CCA core was   round to 

- ..0 per cent.    The variation of E+, c I be G   - 20 per cent.    The variation of E, of the face material is known 

to   e negligible for aluminum alloys.    A value of E. • 10.5 x 10   lbs. 

per sq„ in0 was used. 

An attempt was made to correlate the location estimated to be 

responsible for buckling with initial imperfections such as minimum values 

of thickness or maximum values of length.    From the tabulation of dimen- 

sional data for each of the cylinders, no correlation was indicated. 

Since correlation with dimensional Imperfections was lacking, it is assum- 

ed that the buckle location is caused primarily by local weak spots created 

by the variations in the core shear modulus.    The fact that only one longi- 

tudinal buckle formed in all cylinders appears to be further conf rmation 

of this hypothesis,, 

Additional evidence of this type of behavior of sandwich elements 
12 

subject to buckling has previously been offered by Koff and Mautner- . 

They suggest that, in a sandwich structure subject to uniform load, such 

as a beam in bending, the results are a statistical average of the core 

piopbitloo.  On the uliiBr hcuidp a aLrucLure subject to Duckling responds 

to local weak spots caused by defects in the core properties,, and, hence, 

the results should be based on the lowest properties rather than on the 

average properties• 
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Oorrelation of theory and test data 

» 

It was found herein that for values of E.t/G » ^, 0.95,  the 

critical loading is given by the following equation!! 

Ncr - (h • t)  Gc 

It appears that, for this range of E-t/G V the critical atress is inde- 

pendent of the radius l^and depends essentially upon the core properties. 

To test the validity of this conclusion, the test data are plotted 

in Fig. "J*t  as a function of ft. Also shown are the results obtained from 

the preceding equation based on the upper and lower limits of the shear 

modulus, G_, given previously. Since no correlation of failure location c 
with dimensional imperfections was obtained as discussed in the previous 

section, it is assumed that the variation in the shear aoduliss is primarily 

responsible for buckling. 

While the test data in Fig. IK  appear to indicate an apparent 

influence of the radius, it is **elt that this apparent effect can be ex- 

plained by the variation in the shear modulus. Consideration must also 

be given to the fact that the 10-in. radius cylinders were tested in a 

60,000-lb. capacity testing machine, whereas the remainder were tested 

in a 200,000-lb. machine. This may have some bearing on the lower values 

of the 10-in. radius group. Furthermore, the cylinders were manufactured 

in order of increasing radius, and, if some allowance is made for an im- 

provement in manufacturing technique with experience, then the large radius 

cylinders are favored. 

Considering all these factors, it appears that reasonable corre- 

lation between the critical load obtained from the theory and the test data 

was obtained within the region of E-t/Ga of the experiments. 
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Case 28 Buckling under torsion 

Test program 

Again the sandwich used had a thickness of l/8 inch* The 

nominal radius of 6 inches which was used for all cylinders was dictated 

by the capacity of the testing facilities,, To determine the effect of 

length upon the buckling loed5 two different lengths were used in the in- 

yesfcigation0 

The most significant parameter in overa.";.! buck'ing of sandwich 

elements is the shear rigidity of the cere material,, Consequently, two 

different materials were selected for the cores cellular cellulose acetate 

(CCA) of approximately 5.5 to 6 lbs/cu. ft„ density and end grain balsa 

(EGB) of approximately 5 to 5.5 Ibs/euo ft. density,, For all cylinders,, 

the face material used was 0„010 inch 24.S-T3 aluminum alloy. 

To faciltate installfcion of the test specimen in the loading 

jig, two inch wide hardwood blocks were bonded to both the inside and out- 

side faces at each end of the cylinder (see Fig„ 15)o The end faces of these 

blocks were then turned down on a lathe to insure planeness of the face, 

perpendicularity with the axis of the cylinder and parallelism of—the faces. . 

Test procedure 

The pertinent dimensions of each specimen were determined 

as followso Fo-or evenly spaced longitudinal stations were lightly scribed 

on the outside wall of the cylinder. The outside radius was then measured 

to the nearest 0,01 inch at each pair of stations at hoth ends. The length 

of the cylinder between hardwood blocks was also determined at each station 

to the neare»l 0.01 inch. 

The total thickness of the cylinder wall was measured at each 

station at both ends just inside the hardwood blocks and at the center 'ay 

means of a special dial gage with a least division of 0.001 inch. The 

thickness of the faces was measured with a ten-thousandths micrometer before 

the cylinders were assembled. The average dimensions for each cylinder are 

given in Table 4. 
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Installation of the specimens in the specially designed torsion 

loading jig was accomplished by bolting the specimen to the steel end 

plates through the hardwood blocks at the ends of the cylinder, The loading 

mechanism is shcwr. in Fig. 15 with a specimen installed and tested,, Load 

was applied by means of a hydraulic tension jack and was measured by a 

calibrated strain gsge tension link at the jack which was accurate to - 

2 per cento 

Physical property tests 

The important physical properties in overall torsional buck- 

ling of sandwich construction are the sheer stress-strain characteristics 

of the face material and the shear modulus of the core material. The methods 

used to determine these properties are discussed in some detail due to 

their importance in evaluation of the teat data. 

The shear moduli of the core materials were determined by test- 

ing as simple beams, strips of flat sandwich construction. The beams were 

fabricated by the manufacturer of the cylinders of the same materials and 

in the 3ame manner as the cylinders themselves. The test consisted of ob- 

taining load-deflection data from which t,he shear modulus of the core mater- 

ial was determined from the difference in deflection between the experi- 

mental value and that computed for the beam neglecting shear deflections. 

From six tests of each core material, the following values of shear modu- 

lus were obtained: 

cellular cellulose acetate: G • 34-00 psi - 20$ c 

end grain balsa:    G   = 15,700 psi - 7%, 

No experimental technique is known for djoctly determining shear 

stress-strain characteristics of thin sheet material.    The method used in 

this investigation was to obtain the stress-strain properties under axial 

compression and tension loads of specimens oriented at 4-5 degrees with the 

grain direction of the face material.    This orientation was  chosen since 

a pure  shear field can be represented b,y orthogonal tension and coynpression 

stress of the same magnitude as the shear-stress at U5 degrees with the 
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d^roction of the shear stress. The axial stress-strain data so obtained 

are shown in Fig. 16 aa the limits of the variation in stress-strain prop- 

erties from the average of the specimens tested. 

A shear stress-strain curve can be constructed from axial stresu- 

strain data by use of the following transformations of the maximum shear 

theoryi 
/ 

T • a/2    and  j * (l + v)c I'lOQ) 

In the yield region of the stress-strain curve,, Poisson's ratio can be 

rsTirescntcd by 

v - 0.5 - 0.2 E /B (110) 

where E and E    are the elastic and secant moduli of the axial strsss- s 
strain c<... Ws    The desired  shear stress-strain curve shown in Fig. 16 was 

obtained by applying Eqs.   (109) and (110)  to the upper and lower limits 

of the axial stress-strain data. 

Test results 

Average measured dimensions of the sandwich cylinders to- 

gether with the failing loads are given in Table A.    Photographs of typical 

buckle patterns tnVAri after conclusion of the tests are shown for each 

type of cylinder.      Fig. 17 shews an end grain balsa core cylinder, Fig. 

18 shows a CCA cylinder of 2A inch length and Fig. 19 a CCA cylinder of 

12 inch length. 

It is noted that in all cases,  there was no observation of buck- 

ling before the failing load was reached. 

Correlation of theory with experimental results 

(a) End grain balsa cylinders 

For this  group of cylinders,  we find that the  parameters 

E.t/Ga • 1.1 and a/(h+t) « Z.8.    These cylinders behave essentially as 

homogeneous cylinders.    Therefore,  the results of Ref. 1U can be used to 

evaluate the effect of the boundary conditions and leng h of the  cylinder 

upon the critical shear stress.    From Ref. 14,  for a cylinder clamped at the 
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ends 

T (2t)l2 3A 
-2£-s-  -0.93Z (111) 

-where D - bending rigidity of sandwich plate • >',ft(h+t)~/2(l-vp 

2 1/2 2 
Z « curvature parameter = (l-v_)    iV2at 

In using the above relation* for e sandwich plate, the thickness of the 

homogeneous cylinder has been replaced by twice the face thickness of the 

sandwich cylinder, (2t); Eq. (ill) can be reduced to the following by taking 

v = 0.3. 
T A>    3// 

tcr « 1.0Ef(h+t)
2A  (at) (112) 

By substituting the appropriate values given in Table A for the parameters 

appearing in Eq.   (112) it i? fotsnd that 

T     - £.33.000 psi (1131 

T^e value of the critical stress given by Eq.  (113)  is based on elastic 

buckling and consequently is far in excess of the shear proportional limit 

of the material used.    A method for computing plastic shear buckling stress- 

es is given in Ref. 15,  in which it is suggested that the effective modulus 

to be used in plastic shear buckling is the shear modulus.    By this method, 

the critical shear strain is computed and the plastic buckling stress is then 

obtained from thy shear stress-strain curve at the particular value of 

critical strain.    From Eq.   (113),   therefore, 

^cr " V'Gf " °-109 (1U) 

This is evidently a very large value of critical sorain for which 

the shear stress-strain cu^ve is not known.     In addition,  it is highly 

doubtful  that the method given in Ref. 15  (which is for the yield region 

of the stress-strain curve) would apply at such large values of critical 

strain.    Therefore,  to effect a comparison between theory and test data, 
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the test date are arbitrarily plotted in Fig. 2J at a strain of 0,01 to ob- 

serve the relation between these date and the shear stress-strain curve 

given in Fig. 16. These data are plotted at s strain of 0.01 since this 

appears to be a reasonable value indicating the limit of the yield region 

of the stress-strain curve. Although reasonable agreement is Indicated 

in Fig, 21 it is to be noted that significant difference between the theory 

and tests may be obscured by the ffact that buckling occurred in the plastic 

region" Table 4 

AVERAGE DIMENSIONS AND FAILING LOADS OF SANDWICH CYLINDERS 

Core 
Cylin- Materi- 

der aL 

Total      Average 
Mean        Thick-        Face      Failing 

Length    Radius      ness fleas    Moment 

(h+t) 

Failing     Failing 

Load/in.      Stress 

M_ cr N. cr cr 

No.l EGB 20.06" 5.99" 0.U5'1 0.103" 126f0C0"lb? 560 

No.2 EGB 19.50 5.99 0.155 0.103 103,600 460 

No. 3 CCA 7.90 6.01 0.138 0.105 42,000 185 

No. 4. CCA 7,95 6.00 0.H2 0.105 25,200 111 

No. 5 CCA 19.80 6.01 0.137 0.105 26,400 117 

No.6 CCA 19.92 6.02 0.132 0,105 22,700 100 

22,900 

8,850 

5,320 

5,550 

4,78C 

(b) Cellular cellulose acetate cylinders 

The average value of the parameter E.t/Ga for this group of cylin- 

ders was approximately five.    According to Fig. 20,  the  buckling strength 

of this  group of cylinders should be effected  only cy the shear rigidity of the 

core9    Therefore,  the experimental values of the torsional instability 

coefficients were computed as shown in Table  5 and plotted in Fig. 20, 



-54- 

Table 5 

EXPERIMENTAL TORSION INSTABILITY COEFFICIENTS    , 

FOR CCA CYLINDERS 

£ft/Gca = 5»x5| aifh+t) = 48 

Cylinder Ncr h+t Gn ^SI^!^l2 

No. 3 185 lb,/in. 0.118" 3,400 psi 0.^62 

No. A 111 0.122 3,400 0.268 

No.  5 117 0.117 3,400 0.294 

No. 6 100 0.112 3,400 0.263 

The comparison of the theory and test data sho»m In Fig. 21 re- 

veals that the test results are considerably belov the theoretical vilue. 

The large variation in shear modulus of the  core  (- 20$)  is certainly not 

sufficient to account for this discrepancy.    It appears,  however,  that 

poor bonding of the faces to the core may be the cause of the discrepancy. 

It is possible that, because  of the  curvature of the structure, 

inspection by tapping the cylinders did not reveal any area of poop banding 

before the test.    During loading, however, evidences of poor bonding were 

noticed.    The evidence was a crackling noise which was heard almost immedi- 

ately upon the application of load. 

Additional evidence was obtained after the cylinders were tested. 

In some of the cylinders,  the faces were peeled from the  core and it was 

•°ound that there were considerable areas in which no core material remainsd 

attached to the bonding of the faces.     It appears that in a satisfactory 

bond,  particles of the core material would adnere  bo the bonding of the 

faces after peeling. 

This difficulty occurred  only with the CCA oore material and 

may possibly be attributed to the  small thickness (l/8M)  of core material 

used.    In addition the CCA was produced by a new manufacturer and ^here 

was evidence  of considerable nonuniformity of cell size. 
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Case 3r    Buckling under bending 

Test program 

The cylinders tested in pure bending had again a thickness 

of 1/8 inch and a radius of 6 inches. To ensure uniformity of introduc- 

tion of bending load, all the cylinders were 36 inches long. Two different 

material were again used for the core: cellular cellulose acetate (CCA) 

of approximately 6 lbs./cu. ft. density and end-grain balsa (EGB) of approx- 

imately 5 to 5.5 lbs./cu. ft. density. For all cylinders- the face material 

uded was 0.010 inch 24-S-T3 aluminum alloy. 

To faciltate installtion of the test specimen in the loading 

jig, two inch vide hardwood blocks were bonded to both the inside and out- 

side faces at each end of the cylinder (see Figs. 22 and 2Z.). The end faces 

of these blocks were then turned down on a lathe to insure planeness of the 

face, perpendicularly with the axis of the cylinder ard parallelisa of the 

faces. 

Test procedure 

The pertinent dimensions of each specimen were determined as in 

the case of buckling under torsion. The average dimensions for each cylin- 

der are given in Table 6. 

Installation of the specimens in the specially designed bending 

loading jig vas accomplished by bolting the specimen to the steel end plates 

through the hardwood blocks at the ends of the cylinder. The loading jig 

is shown In Fig. o?.  with a specimen installed and tested. Load was applied 

by metns of a hydraulic tension jack and was measured by a calibrated strain 

gage tension link at the jack which was accurate to - 2 percent. 

Physical property tests 

The important physical properties in overall bending buckling 

of sandwich construction are the compressive stress-strain characteristics 

of the face material and the shear modulus of the core material. 

~3 
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The with-grain compressive stress-strain characteristics of the 

0.010 in.  24S-T3 aluminum alloy used for the faces of the  sandwich cylinders 

was determined by use of a solid guide compression jig of the National 
n„ ;au uf 3i/aridiurc5  type,     iao cLi-oss-sLrain data are shown in Fig.  23o 

The  shear moddli of  the core material? were deternaned by testing as be- 

fore.    From at least four tests of each core material,  the following values 

of shear modulus were  obtained: 

cellular cellulose ac^"tes    G„ » 3400 pci - Y?% 

end gra5n balsa: G - 17,600 psi t 15$ 

Average measured dimensions of the sandwich cylinders tog»+her 

with the failing (buckling) loads are given in Table 6. Fig. 24 shows a 

typical overall buckle pattern obtained on most of the 1/8-in. cylinders! 

additional data on the buckling patterns are given in Table 7. The measured 

wavelengths were obtained in regions of relatively little distortion. 

Table 6 

AVERAGE DIMENSIONS AND FAILING LOADS OF SANDWICH CYLINDERS 

Total 

Cylin-    Core Mean 

der        Material Length Radius ness 

Average 
Face 

Thick- 
ness 

Failing 

Moment 

Maxi- 
mum 
Failing 
Load K£^ N„ "M/ira cr 

Maxi- 
mum 

Failing 
Stre_3S 

1 (h+2t) n cr cr 

No.l 

Nos2 

No.3 

No.4 

No. 5 

No.6 

CCA 

CCA 

CCA 

CCA 

EGB 

EGB 

32.09" 6.4.8"    0.141"    0.0105"    67,900»lbs.5141b/in.    19,300 psi 

32.13    6.50      0,125      0.0105      4-6,100 

32.13 6.49 

32.16 6.53 

31.29 6.47 

31.09 6.55 

0S125 0.01C5 77,700 

0.141 0.0105 89,600 

0.141 0.0105 53,100 

0.156 0.0105 65,700 

347 

587 

670 

404 

500 

16,500 

28,CJ0 

31,900 

19,300 

23.800 
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Table 7 

DATA ON INSTABILITY PATTERNS 

Type of                                         Longitudinal    Circumferential 

Cylinder Instability Location Wave Length      Wave Length 

No.l l/8»CCA        Buckle Central 1" 

No.2 1/5"CCA        Buckle Central 1 

No.3 1/8 "CCA        Buckle Central 1 l/U 

Antisynmetrical 

No.4 l/8"CCA        Wrinkle Both ends 7/l6 

No.5 l/8"EGB        Buckle Central 1 1/4. 

Antisvwmetrieal 

Sc.6 l/S"EGB        Wrinkle At end 7/l6 

3" 

3 1/2 

ira 

3 1/2 

Tra 
-V- 

Oew«l«tien of Theory with Bxpertwratal Results 

The l/8 in. CCA cylinders are sandwich cylinders with weak 

cores.    The average centroidal height,   (h+t),  of cylinders No. 1 to No. U 

is 0.118 in.  - 6% and the average shear modulus is 34.00 psi * 17$*    There- 

fore,   the average shear rigidity of this group of cylinders is 4.00 lbs./in. 

+ 23$,  which is the theoretical buckling loading.    The  average experimental 

failing loading was found to be 530 lbs./in. = 33$.    Thus,  the experimental 

failing loading is  32 percent higher than the theoretical value,  on the 

average. 

The fact that the bending buckling load is higher than the 

compressive buckling load for cylinders of the same dimensions has been 

observed in tests on homogeneous cylinders. It has been suggested that 

this behavior may be due to the buckling phenonv-na responding to the aver- 

age value of compressive stress on the cross section rather than the maxi- 

mum stress. In the case of pur bending, the maximum stress would be 1.4. 

t-i.T.es a3 great as  the average value. 

For sandwich cylinders in compression,  the theory indicates 

that the value or the parameter Eft/G^a governs the behavior of the cylin- 

der.    Thus,  it has been found that cylinders can be considered weak in 
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shear when the value of E-t/fia exceeds unity.    To effect a comparison 

hetween the cylinders loaded in compression and bending which were differ- 

ontl^ constructed as concerns G    and a, it appears that if the values of 

E-t/G a were equal or at least greater than unity for each group, a direct- 

comparison would be valid* 

The value of this parameter for the compression specimens 

averaged 5 and for the bending specimens E.t/Ga • 5 also.    Thus, since 

the compressive test data checks theory v*ry well,  it can be concluded 

that in bending the 32# higher experimental value is in agreement with the 

behavior observed for homogeneous cylind«r«j  thus accounting for the dis- 

crepancy. 

Although these conclusions are based on data with which large 

percentage variations are associated, it appears that the trend is clearly 

indicated.    The fact that the scatter of the experimental valuos is con- 

siderably higher than that for the core properties is based on the fact that 

the latter values were established from beam bending tests*    In a beam 

test,  the results are a statistical average of the core properties, whereas 

a structure subject to buckling responds to local weak spots caused by 

dsfects in the core properties.    Thus,  the  scatter would tend to be greater 

for the buckling data. 

The l/8 in. end grain balsa cylinders, No. 5 and No. 6, have 

cores mu7h stronger in shear than the cylinders with CCA cores.    Based on 

the observations made on these two cylinders, it appeared that they cannot 

be considered in ths weak in shear category.    These cylinders, therefore, 

failed at a small fraction of the theoretical load.    This is evidenced by 

the fact that the average failing loading of this group was 452 lbs./in. 

as compared to 5"0 lbs./inw for the l/8 in.GCA cylinders, although the shear 

modulus of the EGB core was over five times as great as the CCA core.    The 

fact that the EGB cylinders were not even as strong as the CCA cylinders is 

I difficult to reconcile with the core properties.    Unless SOES other mode 

| of buckling ia responsible for this anomalous behaviorf  it appears that 

•psr.r- hnnrHn_g t.n the EGB ccra say be responsible for the seemingly low 

values :>f failing loading. 
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FIGURE   I.      RESULTANT   FORCES   AND  MOMENTS 

ACTING     ON    SANDWICH  ELEMENT 
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FIGURE   4.     EXACT    NUMERICAL    RESULTS 

FOR      CASE     (b) 
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FIGURE    10.   INTERACTION    CURVE:   TGRSICr*   STfESS 
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FIGURE   12.      CHARACTERISTIC   BUCKLE   PATTERN: 

1/8"   CCA      CYLINDER     UNDER      AXIAL    COMPRESS ON 
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FIGURE  15 

TORSION     TEST   SET-UP w 
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FIGURE 16,      STRESS—STRAIN    CHARACTERISTICS     OF 

FACES    0.0/0" 24S-T     AT      45*   DIRECTION 
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FIGURE  21.      CORRELATION   OF   THEORY   AND 

EXPERIMENT    FOR    EOS     CYLINDERS 
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FIGURE   22 

BENDING     TES T     SE T- UP 
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FIGURE 23. COMPRESSIVE    STRESS   STRAIN    CHARACTERISTICS 

OF   FACES     0.010"   24S-T    WITH    GRAIN 
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FIGURE   2 4 

OVERALL    SENDING    BUCKLING 

OF    1/8"   CYLINDERS 
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