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SUMMARY

During the past several years, investigation has been carried
out at the Daniel Guggenheim School of Aeronautics, Rew York University,
to study the buckling behavior of sandwich structures. The main effort
hezs been directed towards the determination of the buckling loads of
¢ircular sandwich cylindere under different loeding conditions. It was
found that for cylinders with weal corss, linear theory predicts buckling
loads which agree with experimenta. .estlis, This 1is contrary to the
case of homogeneous cylinders, where linear theory gives buckling louds
much higher than those observed from experiments., The reason for this
keg been explained in Heference 11, In this report, the theory of buck-
ling of sandwich cylinders vmd-. axial compression, torsion, and bernding,
and combined loads is developed in & unified mannerg and the prineipal
experimental results are presented, The interrelationship obtainsd be-
tween thne criticel loadz is plotted in the form of non-dimensiunal in-

teraction curves,
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Symbols and Units

radius of c¢ylinder to middle surface, 1n,
shear rigidity of the corej C = (hft)Gc, 1b, per in,

portion o” “Soundary over wnich displacements are prsscribed,

bending rigidity of a sandwich elemnty D = Eft(htt)z/z(l.vf_)“

1be~in,

Young'!s modulus of elasticity, ib, per sq, in,

secant modulus of elasticity, 1b, per sq. in,

2tEf/a2, 1o, per cu, in,

shaar modulusy G = E/2(1+v), 1b, per sq. in,

thickness of core layer, ine

moment of inertia of sandwich cylinder about its diameter,
in.‘l+
complementary energy, in,~lb,

buckling coefficient
torsional instability coefficient

length of cylindar, in,
IC/Mat
[1-(N1/C) 1 IC/Mat

[102/ X 2 /6= (T/ma%) (ny/A )] 10/Met

[14n3/ X %1 6+ (1/me%0) (ny/ X )] 10/Mat
longitudinal wave length, in,
c¢ircumferential wave length, in,

free length of cylinder, in,

nurber of half waves longitudinally

applied bending moment, in,--1b,

resultant bending snd twisting moments in the composite
atructure, in.-1b, por in,

x- and y-compsrentc of the resultant mowent on the boundary
iny~1be per in,

resvltant normal forces in the composite structure, 1b,

per in,
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resultant shesring force in composite structure, 1lb, per in.
resultant medlarwsvrface nermsl foress, 1lbe per ine
resultant mediar-surface she2aring force, lb, per in,
applied normal feree in axial Jdirection, 1lb, per iu,

number of fulil vaves clrcumferentially
external iateral pressure on cylinder surface 1lb, psr sq. in,

1/2(pufp&) 1b, per sq. in.

left=hand side of Modified Donuell's Equetion with ussumed
function w substituted

shear stress resuliants in composite structure normal to
mniddle surface, 1b, per In,

resultant Q on boundary, it. per in,

radius of curvature of median surface of sandwich structure,
in,
bending stress ratio, Ry= 2Mat/IC

compression stress ratio, R.= N-/C
\v) A

torsion stress ratio, RT- T/2va20

thickness of face layer, in,

aprlied torsional moment (Fig. 2), lbe=in,

displacements I n-, y-, &and z-directlons resrectively of
a roint in middle surface of cylinder, in,

work dore by the force resultants due to large deflection,
in,~1lb,.

Tain snergy, liwlbe

potential of external forces and moments, in.-1lb.
rectangular ~ocrdinates (Fig. 2)

X~ and y-componants of the force resultant acting on the
boundary, lte per in, L 1/z .
curvature paramster, 2 = (1-v;) 1/ 2at

(h+t)2/a2

somporents of change of sicpe of normal to middle swurface

of sandwicli shell,
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Subscripts

]

u

cr

——— —— — e RO . il e e
%n
(h+t)G /B %
1% i

shearing strain
first wvariation
unlt elongation, in. per in.
poiar cc-crdinate {(Fig, 2)
e,/
Tagrangliszn miltipiiers
Poisson's ratlo
normal stress, 1lb. per 3ge ire
sheay strezs, 1b, per sge. ine

A -
operator, (=3 + =3j = (‘=3 + 3 )

< < 4692
3x a}' Ox 8
2 2 i

2t 2 et a* 8 82,2
opsrator, (---—5 M Al S i 2 = 5 ¥ 4) =( X

ox O ox 9x Oy ox a" 3@

2 2 4 ~R 2 4

ol 3 a 9 ¥
i R ekl R e

0x lox's 3 1700

face layer

core lsayer
iower face layar
uppaer face laver
median surtace

eritical {(burkling)
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Introcurtion

A zardele-typs structure couslstzs of twe axtermal layera

3

of thin high-strengih materiail and a thlcxk internal layer cf 1ighi-
sight meteriai. The Former are usually calisd the fase layers
and the latter the sore., Tne bamic advantvage of a sandwich structurs

P

8 its higrh vending rigiaity and zonsequently buckiing strengih ang

e

its relatively ifprhl ueight., Th> use of sapdwich-type structurai
eleme.te Jor alrcrat’i construrilon has recsived congiderable amocumt
of atterntion with the develspment of high-speed alroratt, This

is berause at nigh speed the zarface of the planc must be maintained
smacth without bucklirg during flight, This is a reguirement which
the ordinary thin.shesiostringer typ2 of construction =amnot mee*

without wmduwe sacriilis of the welight ecconomy.

The tuckling and tending of sandwichetype beams ard fiat
plates nave besu stulied Ty meny investigatore, Durinz the past
several years, investigations have teen carried cut at the Daniel
Guggerheim School <t Aeronautics ol New York University to study
the buckliing tenavlisr of sandwich cylinders under varilous lcading
conditions, This reporv summarizes the principal theoretical and

sxperimental findings of these investigaticuna,
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Derivaticn of the Governing Equations

In order to derive a complete systsm of equations for
the sandwich shell composed of face layera and scre iayer, it is
necessary to consider separately the statics of the r1aze layers
and that of the tore layer of the shell, Combination of the re--
sults obtained for the components will lemd to thcse differential
equations of eguiiibrium for the composite shell., The facs layers
are treated like thin shells of thickness t having negiigible
bending sfiffness sbout their ovn middle surface, The loads applied
tc these face shelis are of two kindss externsl lead® and lcsds
caused by the stressss in the core layer {Fig. 1), The core layer,
cf thickness h, is assumsd to behave like a tnree«dimensicnal
elastic continuum in which those stresses wnich are parallel teo
the faces are negligible compared with tlis transverse shear and

normal stressses,

Asgsuming largs deflection, the equilibrium differential

equations for the upper face layer are the follcwing?

aN aN N.__. bw _

X8 (g o By, 3 “'E*"xu(l"'ﬁ't')“o (1)
ox 2R &y R Bx 2R

aN o aN. N B

AT BEGy L yw X _u .,.‘y_u(1+!1_t§).o (2)

Ox 2R 8y R ax 2R



T - —— ,
- = R T i s i ST 2 o
et e
N Bw ot g
_ﬂ' + g_ N (1 + n L) \__Lu‘ + N -—A‘?j'
R Bx 2R % yxu. 8}--]
: ow N_. S g
+ &y s u&_"hd»t_ — + pu(l + Qj-E)
oy | ¢ @ 1+ == 3y SR
2R
; Ow Bw
+ ¢ (1-)5&- . T 8 (1 + 2EB) 4 o —ia0
2u 2R 3% 2R Ju ay

Similarliy, for the iower face layer, the equilibrium equa-

tions are
ON . 5N N, Bw .
Dok, B 3 -BY Lo
ox 2R oy R or 2R
ON__ . AN N Bw.
e R R e R e R
N [ ow. ow
X 1 ¢
.s+-a—- le (1”12:3 . *Nm —
R ox 2R ox By
ow. N 5w
+l[um lfﬁh% e +p&(1_!1.'£§)
oy 0x (1 = ==) 3y 2R
L 2R
n+t awg het a"’&
- Gzi(l SR A R - ==) - Ty& —_—2 = 0

(4)

(5)
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where the subscripts u and 1 denote the upper and lowsr surfaces raspectively.

Under the assumpticn of negligible face-parallel core stresses,

the equilibrium equations for tre core layer are‘

r..
a_ l(l_:),tx_],:u
0z L R _I
[~ 2
£. (1--2‘) 't_l 0
0z R y_l
< (1-"2')1):]*-1 *-Q‘-kl-z)dzno
ox R _] oy ° 0z R

(7)

(8)

(9)

Let the values of the three stress components at the middle surface (z=0)

be dssignated by the subscript m. Integration of Eqs. (7) to (9) rssults in

Q-2 ==

R X xm
Z\‘z
1--' ‘“ =
( n ¥y ym
ot
(1 -2 c!z==o:)zm-z—-Z -6--6—-(1--2')'\:x
R oy 0x R

Let Qx and Q_ be the resultant transverse shear forces. Then
J

2
, bt
~ (h+t)x
Qy = T_dz = ~-———E—z
VoL b
_ bt -
2

(10)

(11)

(12)

(13)

(14)
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From Eqs. (20), (21), (i3) and (i4). the following relation. may be obtaineds

(l + p.iﬁ) T - (1 e l’g_‘_t) Tx} = 0

2 2R
e D I 1| - g (15)
; © Uyu og ¥
2 2R 2R i
htt

For thin sandwich shells, —2}1 <<1. In such cases, a combization
of Eqs. (i<), [13), and (i4) gives

L TP B = a a
1+ 2 4 _,(1‘,_.:32:1’: d‘..,..%.,._ol (16)
zn <L
2R 2R ° dx By

In view of tne¢ ract that all face-parallel core stre::-s are
neglected, the face-perallel stress resultants and couples of ke comporsite
shell are due to the stresses in the i‘acehayers only and may be ob%ainsd

as follows:

¥ =N (l + lﬁﬁ) + N (1 . M)
% = 2R 2R
N_=N_ +NXN
7 yu Tyl
N_=N 1+ -‘-’_‘;'.‘.'.E:, * N - pr
ey 2R o 2R (17)
N_=N__ +N
yx yxu  yxh
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M o=B N (g bﬁ)\.ux&(l_!ﬁ‘.)
= 5 2R 2R
=
h+ r
M ==— ) -N +N
T, L yu ¥y
h+ 2 h+t h+t
M _==— | oN_(1+>==)2N_.(1-==
= 2 [ e 2R m 2R
(17 cont'd.)
M -h"tr_nw‘a,n
¥yx 2 L yxa JMJ
? 3 (1 + Ll*’—t) 4 1(1 oy b:;h.
= 2R 2R
h hit
q=2 [p 1+ _p -0
2 2R 2R
9%m ™ : dzu(1 * .h_*i) * dz&(l B Eﬂ.‘)l
2| 2R |
het
Since Nyxu = Nm and N 3 = Nm and 2'R<<1, one may writas ny = ny

and M =M ,
Xy

Define the def'crmation of the composite shell to be

v (wu + wx)/2

and
e ™ (wu - wx)/(h-*t) (18)

where w represents the affective transverse deflection of the middle surfuce
and e represents the effective transverse normal strain for the composite

shell, From these d=finitions, L and Vg =3y be written in terms of w and
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- (htt)e
b (19)
wl B W o .(.kltt}.?. (20)

2

With equations (15) te {20), the following equations mey be obtained
by carrying out a&ﬂitionl 8s well as subtraction of equations (1) and (4),
and (<) and (5).

(21)
5x 8y R 8x R Ox
ON oN N
Y _x - _ﬂ -el + —u Q_ﬁ_ - & = O (22)
ox oy R ox R Ox R
aM_  8M_ M (bt )N
X, X, X 8w X @...;_,quo (23)
ox oy R ox 4R 0x
aM_ oM ¥ (het) N
& — P _H QV_ + _...___ﬂ a—e - = 0 (24)
0z oy R 3x 4R ox
From equations {(3) s {6} may be derived the following two reiations:
N ;
-I..Q—.(Jﬂ,bn g"..\.La_I“ O___‘_’YI" a_w,\
= X “n / \“m )
R ox Ox oy oy 8x by
L o RN R O R
ax X ox 3y 8y ¥ ax 8y
0 0 Q
e M 0 a2 q 20 (25)
ox 3y R oy Ix oy




Mooa v 3wy . D v B
-+ (M, =+ M__ ") + = (M + M ==
R ox " ox dy 3y ¥ ax 7 8y

A ax * Bx Faxs 4 8y Y 8x 3y
2
L (met)am) - (o Bag By, (o) X (<6
= dx b oy 4 R
When the raaius of curvature R becomes infinite, Equations (21)

to (26) reduce tc the same equations obtained by Keissner 1'2. Wheu the
affective transverse normal strain e for the composite shell is nreglected,
Equations (21) to (25) reduce to the usual equations of force and moment
equilibrium for homogeneous shells. Eq. (26) has no counterpart in the
theory of homogeneous shells, in the senss that the corresponding equation
for the homogeneous shell contains information that is not of practical
interest and js therefore never formulated. This equation gives the local
change of thickness of the shell caused directly by the external loads by

way of the non-linear terms having stress resultants and couples as factors,

In order to solve these differential equations of equ.librium,

it is necessary to derive an appropriate system of stress-displacement re-

tiong. This may be done by the use of the method of compiementary energy,
vhich states thgt the true state of stress is distinguished from all static.-
ally correct states cf stress by the condition that the complementary energy
be a stationary valus, In the linear elasticity theory, for a material
obeying Hooke's law and for given surface stresses or displacements the
complementary energy is the difference of thc strain energy V and of the
virtual work W which the surface stresses do over that portion of the sur-
face where the displacements are prescriled. In the non-linear theory of
alasticity it can be shoun4 that the expression for the compismentary energy
may be derived from the expression for the potential energy by a Legendrs
typc of transformetionyand in the case of & thin shell with finite deflec-
tior, the complementary energy J is

—
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o R =

3k

JeV+U-W {7)

where V is the strain energy, W, the work function and U, the.dork dons *.
the stress rssultants in ths middle plane due to lerge deflection, rn.aely

UB—[/ N(—-) +2N = ( )"] (28)
Nox oy

.Denote the properties of face layers and the core by the sub-

«3’!?

scripts f and ¢ respectively., The strain emergy of the face layers anc

the core may bte written asl

1 1 l 2 2 2'
- —————— N +« N - y
2 /{q 1\| 2vf}« N_+2(1 + vf)N_

7 ol —l

2 JTuw2..2 2
m l-Mx + My - 2vfoMy + 2(1 + vf)Mﬂ}% dx dy

f ’

2 2
5 3 3
Vc = l//{qx X Qy + bed [dmz * L (;"x + &)Llédx dy (29)
2 (h+t)C E, 12 8x oy |

The work done by the stress resultant due to large deflection

is
f '5
W OV l
U-- N (—) * AN - —--+N.,>,u ) {1 +=—) dx dy
ax 8y 3y | e
Y Buy Ow By ;
+ 1 ) *szy«“é R T ICINE S g
2 ox © 9x 8y v dy 2R

With the aid of Equations (17), (19) exd (20), U becomes




=14~
> 2
s [,(aw) o ooy oM Ow s(a-‘!)!dxdy
5 oax ox ay Yoy |
(h+t)? 9e,% 3¢ Qe Bey ]
N N (%) + o . YN (%) |dxdy
UL R
L .
_ ngg Q-PM (Q- Q+§2ﬂ)
dx dx T ax 0y 9oy bx
dy 8y

The work function W( is

/-
awu &, ]
= —— — a
L [%nu o, Ynu Tt (Xnu & Ynu ) Yl =
ox J

oL @
- uq der y::e(lx*&-,qnos
* | IZE" ox oy )
=7 /’ ~
) Ca

vhere the last two integrals sre the work dons by the shear stress resultant
in the core., The firat one of these two 1s ths work done due to the dis.-

placement of the middle surface and the second due to comprsssicn of the
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Define the displacemmmis of the middle surface and the rasultant
load on the boundary of the composite shell to be as followas

u = -l(%-r uy}3 V= *l*(vu*v_);
2 2
B"zi (-u, + oy)3 ﬁy-j; («v, * vy )2
xn - xnu * xn.\‘ ) Yn = !nu b Ynl'
o = By * Xy My = 228 oty + T)

The work function W beaomas

W= [xnu-rznv-r(&io!ng:ocn)v

Ca

*Mnxsx*ynyay'(uax_-:‘%yg)w

Ly By , o (bew)? ; fe .,y Be
%"ax*%”ay“# 4 (x“ax “ay)°

8Q o
+’-‘-‘-§-(i"*—§)qn]d- | (3)

128, & oy

Introdusing the Lagranglan multipliers A, to )\6 and cerrying
out the first varlation with respest to N_, N, ny, Moo Mps Mxy, qx;’%,m;
O_v end o, independently, the relation
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éL“JVf-fd(Vc-l-éU-f-Jw

+

+

KY

oN aN N M
J/ﬁl[_.x P L X X 9.9.],
JAN L 0x Oy R ax R &x ]
AT
N, Wy S, My s Y
2L ax oy Rdx R d8x R
[N
b _z+§_(N @)"’Q"(N aw)
AB_R ax * ax oy X ax
Lo By L& By L 88 0y 0
ox oy oy dy ax T Ox 3y ™ ax
M%&) & ) e P
L, % + PR k)
ox xyay My ax 9y
(q %+Qyﬁﬁ)_ﬁz@
* ax ey R ay]
M 2 N :
3f_.,+_:;z e e’ %o (]
Rex 4 R ox
EL ) M R N, .
WU, 2 Dy oo, (ewd® A be o
| ex oy R ox 4 R ox
}6[-_1 + a (M aw + M 'QX) + 3 (M a'\y . M ‘q‘y.)
R x &x Yoy oy Y ax dy




1
het)? A Be Be ; }t’2 3 de oe
Vel g 8Ly 8y {8 gy B,y de
A v Toax oy 4 oy N oy oy
o B 2 Q
» {artMosg) - (g Mg B . {his) dx dy = © {32)
o ;3
ox oy 4 R =2

ieadr to the conditlons

4]

k[‘:ﬁ"{ ‘A5=By /\6::

on the boundary. As equaiiorn (32) also holds for eny psri of the structure
if the boundary displacements rsferring to thie part are iGantifi=d with
the displacement occurring in the actusl

that the Lagrangs®

solution of the problem, it fcilows
e multipliers throughout the structure are related to ithe
generallzed Jisplacements in the intericr ot the boundary. It foliows that

equation {33) aliso hoilds true now in the interior,

Using equations (33), the Euler equations of d L =0 in the Cal-
culuz of Veriations give the following stress-displacement relations:

Nt 9_3 5.k !-‘21. g i’h+t)2 (_9.)27
2tEf z ox ox J

YoV e _w, L (Qz‘? . ()2 @ e
2LEf 3y R 2| oy 4 B8y R 0x
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)
Xy, o, wdw, (et)? Be e
2EE 9y Ox Ox oy 4 0x 9y
o (het)> Py 8
LI & _ () g Be
R ox 4 R Ox
Loy .6514.;@}1 e

t(h+t:32'Efj’2 9x 9x Ox

Nofs % suse . oge Pxogu,e

t{h+t)°E/2 8y oy 8y R 0x R Ox R

e
WloveMoy OBy OBy pupe ow Do _y 2o, Py u
t(net)*E, 6y Ox Oox8 8 Ox R Ox R 3=
) o

% __,(Lh't)é.(qx _92).5 b _ 2, M,
\mt)(}(3 1%, ox 8x Ox ox

. a
Y vt 8 %% ml)_'v,rg_g_gg__“epxg
(he+t)G 12E, ay ax 8y Y By 9y dy

)
P A 0w 5 hft e

R R 8y 4 R

en .. dzm/Ec A _ (34)

In the case of flat sandwich plates, R-* 09, the stress-strain
reélations (34) reduce to exactly those obtained by Reissner 2’3. In tke

cass of homogenecus shells (Gc = 325 E;—> o, e—0), aquations {34} then
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reduce to the stress-strain relations for homogen=ous sheils when finite

deflection is assumed,

It buckling of the sandwich structure as a unii is to be studled,
the effect of the trensverse normal stress déformability ewn usvaily be
neglected and theretore one may assume Eo = o0 and e = ), In the buckling
theory, the displacementa uw, v, and w are the displacements occurring ZJurirg
buckling and the quantities Nx’ Ny’ etc, represent only the changss in the
internal forces during buckling, If we denote the median surface stresses
by N, fiy, and Exy and neglect the terms which Donnell ° justified as being
smell, the equiiibrium =2quations bezome

oN oN

0x dy
oN oN . :
X + —l = 0 2 : (36) :
Ax 3y ;
8Q 8. N_+ N e
hes St i SRP N - (37)
ox oy R * 82" :
- 2 - 2
Y ey oxBy
GMY oM
_.L..;.'._.gu ngo (38}
ex oy
oM oM,
e Gl Qy = 0 (297
dx oy
and the stress-displacement relations become
YoVl L ou
2tE ox
g (50)
2tE B 33

£
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e ST R
REE R 96  8x
Me o vy %6
t{h+1)%E, /2 i , '
. {4C conbld. |
Mm% 1 By
t(h+t)2Ef/z R 86
4{1+v )M 8 3!
f g 2% .1 X
t(h+‘~)‘erﬂ..‘f 85 R 39

= 5 + e
(h+t)G, * ox
-Q:l—-—— 3 ﬁ. 4 -l ...a.w.,
(n#t)e, 7 R o0

Equation (40) may be rewriiten in the folleowing forme

25E - -
. o, & M
* 1w 2| oex TR a0 R
Tev. ™ | i
tE.
N - 2 Br \ B 1 (':‘_‘\'4" ¥ -
Y oaw L T ex R o R
M = -2tEf 1 @_1} d'V)
o 2(1+v,) R 89  ox (42)
2 y )
(h+£)“tE. OB 3B
Mx = ——————-—-2‘ - (--u-}-( 4 vf ;l’. ._.X. )-




A
YC4R
¥ ,M.f. (o s + & 31.321)
& vfz) f 5 r 30
D A
(et YSRE, - 3. AR
M_ = L \.:“f..z:‘,._'_x)
5 o201+ ve) R &2 Bx
(41 con*'d. )}
Qx = (h+t) G, {p. < e
ox
Q = (b+t) G, (B, += 2
3t v 'R ag

Substitu'ing these

and eliminating ., v. B, and 5y, one cbtains finally

relations into equations (

353 through (39)

oy = 2tE 4
e I
D VOE' + (l — - v‘) .—_2_E 9-%
¥ R ox
2 e - Re
- VL (W 8w 4 ﬂ{)' o + N .a....t"_.“ )] = 0 (42)
Ax T axdy 7 oy

vhere V72 = Bé/axa + 02/ay2'

and C = (h+t) G,e

Equation (42} is the Moiifisd Donnell's Equati
and sandwich she’lz and is the ore which was obtained by Stein and Mayers

D= Eft(h+t)2/2(1 = vfz)

on for curvad eand.2ab 1

-
e erpadaNA Wk WAL y.a.a

R
voo

6

for an isotropic zandwich element,
Galerkin's Mgthod of Approximats Solutions

We shail now procead to selwe equation (42) in the case of buckling
of sandwich c¢lirculer <ylindsis under various loadings, ILet us consider

the cylinder ro e under the general combined loading of axial compression,

icrsion and beniing (Figz, 2). In such a case, we hawe
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-2 P

N o= -Ny+ (2Mat/1} cco @,
X S

(43)
N . = T/2wa%, N_= 0
£y y

where Nl is the force psr unit length due to axial compression, M is tks
bending moment, I is the moment of inertia of the cyiinder, T is the
torsionel moment, and & “he radius ofthe circular section. With such a

loading, equation {42) thus becomes

DV8w+(l—2V2}
c

2tE 4 , oM, 2, n
__g Q..‘;' ‘,v“ { - M. +‘{M‘l‘“ cos 0)8;’ Ow
a ax‘* ek I ex‘ TTB. axﬁO
(44)

vhere y 1g tglken as 28,

Equation (44) may be solved by means of Galerkin's method as

follews® we first assume the deflection w of the cylinder after buckiing

in the form of a series that satisfiss the boundary conditions but with

undetermined paramsters. For long cylinders, nowever, the boundary condi-

tions at the two ends become umimportant and we may assume the deflection

serias without any regard Yor the end conditions. For a cyliinder under

combined axial compression and bending, w may be assumed in the following

U

4% caen
LUl o

v a gin X %‘? % coe n@ (45)
b n=0d

and for a cylinder under torsion only, the deflection after buckling is of

the following 1‘0rm8,

w0 Ty
w= I B sin (<=5 2 nQ)
 Pn
=i %

00 - e
= 3 B (sin % con n@ -~ coz == gin n0)
s 3 .3




T '

w2

Guided by these expressions, we chall assume the deflection of the cylinder

.
in the case of combined loading as followss

n- n
1 1
mrx Ty
w = gin —= Y A comn@ +ccs == T B sin nl.
W\ n - 5 n
b n=_ 3 n=l

(47}

With w expressed in a proper series, ws shall next substitute this series
inte (44). If the expression (47) happens to be the exact solution cof equa--
tion (44), after substitution equaticn (44) will be identically equal to
zero, In general, this will rot be so and the resulting expression wiil

be a function of » and @ which we shall denote bty Q. CGalerkin®s equations

for the determination of the coefficients A*a and Bn are

ar 1
[
Q sin TX o9 nO add dx = O (48)
j 3
0 o

3

2w
,[ Q cos EX sin 1n0 ad0 dx = 0 {49)

J 3
0 0

which, when written out, becomes

2m b A A
(DV8w +pdu X V2 Q'-l";) sin ZX cos n0 add dx
4 4
ox c Ax by
/0 18]
oy
2 2 Y
+N / ( ov 2 Vé fj__!.-.{) sin T cos n@ 239 dx
1 - ~%
j ox C ax b
0 0
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in which F = ZtEf/hz, and

2r

rd

o

b

75

A
/ (D vak' + F g.l;.:. o s
0x C

693!\

9x30
DF

2
v

ox
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mwrx
1

b N

4

o'vw
/.
8x~

mrx
) cos —= sir r®

1

2in nQ ad@ dx

- AP T NI o b -

sin === cos nQ cos Q ad@ dx

(50 conttd, )

; sin nrx cos n6 add dx = O,

adQ dx

) cos X gin n 40 dx = 0

h S

(51)
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Substituting the assumed function w intc these equations ard
carrying ont the integration, we obtain

g ~ [/ ~2
| DA%« p2% BN pE M R 45D
l & & @
- a a va
N, O )? + né)z N,D )?( ‘)? + n2)31
- e - T A
as Ca8 J =
-
. |—T-\ MDA+ 2 i 22 A7 B
h¥a]
L Wag mCat” _l =
et 2024 192t A3(A2 5 52
I s S (TN WH L)
Ia ICa o
(52)
and
O OIS D S D W R
8 A &
1 ‘2( e n2)2 N,D <! Az + nz)J
&6 - Cagr n
(53)
2 242 2 243
+mXLk8+n LI AT AR,
e mCa ?
Jrar A2 A2 222 | e A% A2 2%’ (B, +R_ )=0
6 8 1 * - L
| Ta ICa _J

-nsteed of working with these *wo equations, it is found conven-
ient to combdbine them into the follcwing ones, Thus, by subtracting equation
(53) from (5Z), we obtain

teanf,




e e s

A I o VD & R . A GG ¢ ¢ e

2ban

2y

w3

DA%+ nd* FA DR A A2+ 0¥
g i S %

a a Ca

2 2, P
-Nl)\(A2+n2)2 NIDA\lzi»n)B
z -

8

a Ca

Ta mCa~~

_,m)(,\zgnzﬁ uml(lzwfﬁj’x

. | Mat 1 2( AZ + n2)2 . Matd Az( )\2 + n2)3 (
'_ Ia6 10&8

in vhich A= ma/A , K = A - B, e2d in which 2K,

a

added, we have

K

is tc be substituted
for K, at n = 13 K, = 0 vhenn) n,. When equations (52) end (53) are

n-=1

ool

[D()‘z

] N )‘2( Az + 122

Ca

nZ)A 5 FAAA + DF AL( Aéz + nﬁ
&a

N,D A2 A2+ nd)3

a6 CeaLg

n

Tra mCa

P AT+ n?)? +nm/\';)\12+n53]x.
) J

e 2% Q2402 e A2 A2 23y3 1
| 1e° Ica®
; a

(K*

n-1

+ K

n

i

+ K

+1)

)=

n+l

.0’

(54)




n

in which X' = A.1 + Bn" Agein at n = 1, ?J('o is to be substituted for K‘O

and K!r' = O when n >]21a

The substitution of n from 0 to n; in equations (54) and (55)
resuits inznl + 1 simltaneous algebraic equations for an %+ 1 unknowns,.
One solution tc these equations is,of course, the trivial one, namely,

Kn"K'n.C (n=0,1,293’o°o,nl)o

The non-trivial solution is carried out in the following section,

141,

" g il

- — -—k.




L DR S VI - Q. ST~ i - - ‘ - ~ <omm Lo e O

28

Lav e

Doherminatlon of the buckling Leads

Caso la ckling under axial ccenpression,

It the candwich cylirnder is undsr the acticn of axisl compressic:
only, then M= T = O in Eqse (54) 8:d (55) and we cbiain

2 2
~ ~ 3 \
DAZAt | FAL | RSB  MATTA%ED)
] 4
aS a” Ca” a
~ 02
N,D A %( X2en?)” -l (56)
- = K =0 (5
Cag J n
To find the non-trivial solutiine of the above equation; we must set the

coefficient of Kn equal to zero, which gilves, after some simplification,

2 ' 2
2 Ak i n,
N ya(l+ 'X_Z)l‘ +4 ’6'(1-»\:;) A4+ 2a )2 (1+ .7\2)

2'32(1-vf2) 1 (14 _zﬁ)2 + Ta (i+ 7:2)3

2 2 e
AT A A (57)

-

, ; ; 2,2
where ¥ = (h+t)G /Epb, a = {(u+vt) /a",

In view of the prasence c{ the sandwich cylinder parameters 7
end a in equation (57), the determination of a mirimum K, wlth respect
to the parameters A and n proves to bs iIntractabie anaiyti:ally. Con-
sequently, a numerical treatmern® was attempted. In the numorical analysis
three cases weres treated: (a) ihe core considered exiremely woak ir sheer
vith @ = 1074 and ¥ = 2.7 x 1L3u3; (b) +the core coasidered moderately wesk
in shear with a = 10% and ¥u 2,7 % 10“'23 and (c¢) the core considered

relatively strong in shear with a = 107 ani P+ 2.7 x 171,

The values in case {&) were chosen S0 as Yo coincide with the
nominal properties of the cylinders used in the sxperimental study. The
other valuez were chosen as ccnvenient multiples of tre first set. The
results of the numerical analysis are shown in Figs. 3.4, and 5. The veluves

~ - . - -~ = Z,
cf r and )\ cbtained from these figures for a mintmum N,/C are given in
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Table 1. Tatle 1
c T va/r Nl/ C iy r A
16~ 29510~ 3.7 1.00 5 oc
A o ..
o™ 2.7x10 ~ J037 De20 o) 18
107 2.7x107T 0,037 0,0769 7 7

In Figs. 2 t¢ 5, curves for only a few values of n are shown
which are sutficient to ensure a minimm value of Nl,’C for the corre-
sponding A, It wes possiblis To make epproximate analyticel calculations
that served as a guilde to bracket the minimum n fer e partizular A,

This recduced the amount of ceiculation tc the pcint where 2t was only
necessary to calculate from Eq. (57), the n curwe for a corresponding }‘\
range, With this procedure, the walues of Nl/cmin ars reasonably cer-

tain, although n ani A may be in =light error.

These numerical calcuiations indicated that the minimum vclues
of Ny occurred at n¥ ¢ and\>Y1. By taking n = O in (57), we have

¥, Ya A% 2a }.2+4:;~(1-v§)

¢ Vel v A2

(58)

Since minimum N, occurs at large value of A y we can determine the mini-

mam Nl from the condition

oN, /8 e (59)
Equation (59) has ihe foilowing real solutionss
A\ = oo (60)
end E -
<
<0 2 T + \/]-Jf
v 2
Tv(]“vf)

Note that from eq. (61) when
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the only real root is A = oo,
The normsl stress In the faces et buckling 1s
Oop = N1/2t

Substituting Eqs. (61) into Eqe (58) and simplifying, we obtain

Oop ™ kBEf['(h+t)/g] (63)

where the buckling <coefficient ks is

.2 E.t
A (h+t) . a . £
s _2§ ~2:. - » - 2\
L(l—vf )a A (htt) 2(1-V£ )Gca
ks = E t (64)
: £ 32 ‘h-tt}
— A
2(1-v, )Gca a

Values for the buckling coefficient ks and half wave length hsave
been computed from Eqs. (64) and (61), respectively, by taking vp = 043,
These data are snown in Figs. 6 and 7. When Eft,/Goa 2 0.95, the value

L2 lLh 2 SS-3

of the buckling coefficient 1is
kg = (1/2) (G 8/E.t) (65)
Under these conditions, the buckling stress
C (h+t)Gc/2t (66)

has a value that is irndependent of the wave length,

An interesting feature of the theorics illustrated in Fig, 6
is the fact there are apparently three ranges into which the shear effects

of the core cen be divided: (a) When Eft/'GcaZO.%, the core 1s extremely




a"’l“‘-"" o

N —

week in shear and N__ = (h+t)G,s (b) When Ol Eft,/Gca < 0,95, the core
is moderatley week in shear and o, is given by Eq. (60). {(c) When Eft/Gca
< 041, ths cors is relatively strong in shear, and the sandwich cylinder
behaves essentially in the same manner as the homogeneous cylinder. while
shear effects are negligibls in this region, this nonlinear theory, which 1s
necessary to describe buckling of a homogeneous cylinder, will also be re-
quired for the sandwich cylinder. The linearized solution for the buckling
stress of the latter can be obtained as

o= (1/V l-v2)E'(h+t)/a

The strain energy solution obtained by Leggett and Hopkinalo alsc agrees
with the results shown in Fig. 6 when their scluntion is simplified for a
core that does not carry any axlai losd. A slight difficulty in thelr
solution which was not noted by Leggett and Hopkins is that, in the region
A-A' thown iIn Fig. 6, the buckling stress given by their equation goes to
zero, for in this region A becomes imaginary for this branch and, conse-
quently, the A = o0 branch must be usede

Case 2, Buckling under torsion

If the cylinder is under the action of torsional loeds only,

then N.=M=0 in Egs. (54) and (55) and we obtain

L

[D( Al F AA"‘ , DF A"‘(e)\ )

a8 a Ca

= g b

. -~ 2 N A -2 2 -I
2A (A2 | 1 A (3 )’ J K0  (67)
™ mCa

To £ind the non-trivial sclutions, we set the coefficient of Kn aqual to

zero and obtain

24 - 2
. Ry 2 _
T+ aT)\L(l-fJ%ﬁ/r;\.L-vf)Tw%QO( X‘(;d-;-\
N Y 22 . 23 (68)
2wa"C 2y-292 n n 4 n n .
LN T =(1+=x) + 2a ¥ A =(1+ =)
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where the plus and minus signs indicate thet the direction of T is immaterial
to the buckling,

In order to find the lowest possible wvalue of T, we may minimize
the right-hand side of (68) with respect to the variables A and {(n/X).
It may be pointed out that A end (n/ A ) actually should teke on only dis-
crete wvalues on account of the integral character of the n and n (Am‘/})f,
However, 1n the case of sendwich cylinders wit:. weak cores, it will be
shown subsequently that the minimum values of T oceur at very large vulues
of A . It is therefore possible to consicer both A and (n/A ) as con—
tinuous variables in the minimizing process,

Let us first examine the condition 3T/3A = 0. We find from
this condition that either A = OO or

2
2 2(1‘”21')7‘ \/I-V T (1+ f—z
- n< (69)
JEE(1+;?) (1-v§)'?2(1+ §§) -a
It is evident that when
E.t 2
%ﬁj_.(}fa >Vi-+42 (1+-An7) (70)
o

the only real root is Az =00 .

The condition (70) corresponds to ths case where the sandwich

has a core weask in shear., By substituting 12 = o0 in equation (68) and
ng T with respact to (n/ ), we find

mintimizd

»

n
T=+1 (M
X )
which glves
N
+
2 C c
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This result for a core very wesk in shear corresponds to that obtalned
for a sandwich cylinder under axial compression, a sandwich plate under
compreszion, or a column, The critical loading in all thame cases dependz
solely upon the shear rigidity of the core.

For sandwich cylinders with cores not weak in shear, it is neces-
sary to proceed dirsctly with the minimization of the Eqe. (68) with respect
to A and the ratio (n/ A J» This results in a pair of non-linear equations
in A and (n/ A ) and their solutions become very tedious, . Inasmuch as
i1t is known that the linear theory does not predict acejuately the buckling
loads for a homogeneous cylinder, it is expected +that the linear theory,
on which the present analysis is basedy 2also will not predict the buckling
logds for samdwich cylinders with cores strong in shear, The reason why
linear theory checks well with the experimenta} results in the cass of
sandwich cylindess with weak core has been presented in Reference 1ll.

Case 3, Puckling under bending

If the cylinder is imder the action of bending loads only, vo
let N,=T=0 in Egs, (54) and (55) and we obtain

[D( A 2%2)4 F ’l\ L DF ’)‘ 4( 11\2+n24_]

+ + K
8 al’ CaF _l n
6 £ YWn=1 T+l
Ia ICa _J
[
(73)

for n ¥ 1 where K ;= O, For n =1, 2K, is to be substituted for ¥, cnd
for n> =;; K = 0, For eny value of i; taken we then have (n1+1) equa-~
tions with (nl+1) unknowns, To obtain the non-trivisl sclution, we shalil
set thedeterminant of the coefficients cf KG’ Kl-‘ Kz, A Kn.‘ equal to
zero, from which the buckling load can be calculateds This procedurve,

however, requires very tedious calculation for a general sandwich cylinder,

N
et e e e e e S Wt e e e e e i —
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To 2implify the calculstions, iet us study the effect of A
on the buckling load of a sandwich cylinder with weak core. This is done
by calculating the buckling icad ot such a cylinder with n, = 1,2,354456
The results are plotted in Fig. 8. It is evident from these curves that
for 811 those values of Ny, minimm M occurs at A—> 9O, The convergence

of ID/2Mat as ny increases can easily be seen from the figure.

-

By assuming that A is a larga number, many terms ia eqe (73)
can be neglected and we obtain

K g *LE *+K ;=0 (74)

for n ¥ 1. L = CI/Met in the above equation, For n = 0, we have

Ky + K =0 (75)
and, for n = 1, we have
2K, + 1K, +K,=0 (76)

To calculate the buckling load, insiead of solving the determinant equa-
tion for a large number of terms, an alternative sclution can be obtained
as follows, We observe that Eq. (74) 1s a finite difference equation in
terms of K . The trivial solution of Egqs. (74), (75) and (76) is

K, =0 (n=0,1,2,3, ¢« o o )

The nontrivial solution of Eq. (74) is
K. = Aa™ + Ba™ (n=1,2,3 oo « ) (773
where A and B are arbitrary constants and a is related to L by the formulia

a2 +aL+1=0 (78)

L=~ (a+aD) (79)

Substituting Eqe (77) into Eq. (76) &nd using relation (79),we fiud
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-1 2 -2
ZKO--LK.l-Kz--L(Au-fBa ) = {Aa” + Ba™°)

= _A (cx2 + al) - B(a"2 + a'lL)

= A+ B (80)
Now, equation {75) is the only ome yet to be saticfied. Substituting K,
given ty Eq. (80) and X; glven by Eq. (77) into Eg. (75) and using rela-
ticn (79), we obtain

1) . 0

l. Hence, L = I2o0r

(A -B) (a
for which we find 02 = 1 and @

i+ A

+

2Mat/I = = C

(h+t)c;c (81)

We note that, when a = 4 1, the two rcots of Eq. (78) are equal and Eq.
(77) must assume the form

Kn = (A + nB)an
But Kn must be finite when n—+ o0 3 we have, therefore, B = 0, In this
case, we find thst a = ki 1 is again the correct solution. The plus or
mirus signs in Eq, (81) indicate that a positive or negative moment on the
c¢ylinder will make no difference so far as buckling is concerned. Eq. (81}
indizates that the sandwich cylinder buckles when the maximm tending streas

reaches the buckling stress when tne cylinder 1s under axial compressicn
only,

Case 4. Buckling under combined axial compression and bending

The detexrmination of the buckilng load for a sandwich cylinder
under combined compression and bending can be cerried out in a manner simi-
lar to thalt employsd in the cese of buckling under pure bending. Let
T = 0 in Eqs. (54) end (55). Again, by assuming large A , Eqse. (54) and
(55) become

K

' 8
ey ¥ LE K 0 (82)

1)

s e
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for n ¥ 1, whers B = [:1 = (Nl/b)] IC/Met. For n = 0, we have

L'k, + K; = 0 (83)

and, for n = 1, we have

& = (s
2Ky + LKy + Ky = 0 (/)

12e

Eqs. (82), (83), and {(84) are exactly thc same as Egs. (74), {75), an

(76). The solution is therefore ﬁ! = - 2 or

Ny T (2Mat/I) = C = (h+t)G, (85)

Equation (85) again indicates that buckling of the sandwich cylinder will
occur when the maximum compressive stress in ilhe cylinder is equal to the

buckling stress when the cylinder is under compression alcne.
6s&é S5 Buckling under combined axdial comprsssion and torsion

When M = O and again assuming that A is large while the retio
n/\ mey be finite. Eqs. (54) and (55) becoms

n2 N
1 T n . \
(1+—- =t = -) K =0 (861
X ¢ m% AT
and
2 N
(l+n—2-—1+T—-§-2)Kr'l=0 (87)
X ¢ mT A
The non-trivisl solution occurs when
’ 2 N
.'.]..2_ !‘. =t (1+?—§ __.].:.) (88)
ra<c A A ¢

Minimizing T or N; with respect to the ratio (n/1), we find

n_% _ T
} 2ma C

e e e s s B R
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and buckling occurs when
2 XN
2me s c
or a——

{90)

T +
2. \// 1 -
2ma C

< l

Case 6, Buckling under combined axiel comprsssion, bending and

torsioen,

Now let us take up the general case of buckling under combined
compression, bending ané tocrsion, Our problem is then to find the non-
trivial solutions of Eqs. (54) and (55). This is, however, a very difficult
task. From the previous cases of buckling of sandwich cylinders with wesak
core under compression alone, bending alone, and torsion alone, it was found
that tha minimm buckling loads occur at A= oo, Pividing equations (54)
and (55) by AB, and remsmbering that n, may also be very Large, we shall drop
all terms containing A to a power greater than zero in “he denominator
but keep terms containing the ratio nl/}li o Equations (54) and (55) thus
become

2 N
n - X n Mat -
1+ ) Ky v == (K 4 +K ) =0 (91)

A2 ¢ md A"

n2 Nl T

Mat
S A U e

b3 3 3 Le v o IRy - - .o o S &
Urydilviaing these equations through by Mat/lU, wa obtain

Kn+l LK Kn-l = Oy (93)
KtV K+ K 40 {(94)
in which
- 2 N
L= a2 I 1, (95)
Mat X ¢ mac A

r
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2 N, .
Lt = X (1+l-1-5--l+!—--.9i) (96)
% Mat Y ¢ meT A

As in cases 3 and 4, one may attempt to sclve equations (93) and (94) as
finite-differsnce equetiona, This, however, was not found possible. The

reason s that equations (93) ard (94) are now finite-difference equstvions

with variable coefficients and the solutions of such equations are difficuit

mathematical problems, Instead we shall soive the problem in the following

manner.

et us first investigate the magnitude of nye If ny is small
compared to A then nl//\ —+(C as A —* ©0 and equations (93) and (94)
reduce to the governing equations in the case of combined compression and
bending. In order that the tcrsional load may have any effect on the buck-
ling phenomerna, Y must also be a large number so that the ratio nl/}\
may remain finite, For any n close to n,, sey, n = nl-l, nl-2, .« o oey
n;-q, (g £ < n;), it is obvious that such terms as /AN s 2/N s 000
qa/ A vanish as A\ —e o0, Thus, for the equations in which n = nyy D=1,
n1-2, s o o sy 14, the following reiations hold:

2
T By N oMy
= —— (1 - —
Mat ? C ma X)
- (97)
-L

Therefore, if ir the serias for w. we take the summatior of terms

tha systam of equatiors will be as follows:?

(98)
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and J
L'K! + Kt = 0 \
nl nl-l
1§ 'l 1 1 =
K n, + L'K nlul + X n1_2 0 {
f (99)
K + DK =0
n1q+l n,=q )

o]
- < N n
where L' = 0 (1 + 21-5-- L ELE?' _l)
Mat A° ¢ mc A

To obtain the non-trivial solution of (98) we set the determinant

of the coefficients Kn equal to zerc, namely,

L 1 0 O .6 e @ 0
1 I 2 0 0s5ss0 0
o 1 L 1 TR EE 0 |
‘ =0 (100) )
. k
0 0 0 0 Oeeseasl L
Equation (100) can be rewritten as
L - 1
I - 1 =0 (101)
L-.
- 1
L-_1
IL-x
L
By taking mors and mors lsrms in the expression for w, we have

successively largsr and larger c ntinued fractions in (101) amd in each
case tle roots L are found,
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The question now arises as to whick cf the roots obtalned in
solving equation (101) 4s the one which should be used in the final anal-
ysis. This 1s emsily foterminable from relsticn {27), which, when re-

written, becomes

Mo il (1.,21T _...l-l._z_ __1.) (102)
Lat A ¢ wat A

Obviously the lowest value cf the critical bending moment M occurs for
the largest value of i; therefore, in sclving equation(10i), the largest

root obtalned in each crse is the one selected.

It is noted (Fig, 9) that the largest root of equation (100)
approachss e value of 2,00 as larger and larger continued fractior:c ere
considered. Therefore the value L = 2,00 is taken as the solution. Equa-
tion (102) therefore becomes, after dividing througt by IC/Lat,

N
oI e T S P (103)
IC )‘ c e A

In order to find the lowest possible value of the term 2Mat/IC,
1% is necessary to minimize the right-hand side ~f (103) with respect to
the veriable n,/\ . Thus, we obtain
2

i N SO .-

- (L= = ' = 0. (104)

8(n,/X) A2 ¢ m% A

Hence
g ¢
oA
A oG

Consequently, equation (103) becomes

2Mat 1 T (106)
T A 1 N ( 2 )
I0 c 2me“C

or
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or

2Mat
ic

(107)

{

T = % /1 .
uaz“u \‘

Exactly the same result is obtained if the non-trivial solution
is found from equation (92)., It is to be notzd that the buckling lcalda in
§ases 1 to 5 can all be obtained from eq., (107), as they shouid bte.

o |4

b}

I wo define the stress ratios Rc, RB’ RT according to the follow-

jng formulas

N

R = . Critical compressive stress
C Buckling stress under compression alone
- 2Mat _ Critical bending moment

Ry

IC Buckling moment under bending alone

B Critical torsional moment

R. =
21!'320 Buckling moment under torsiin alone

r

then equation (105) may be written as

B’l‘.: \/1-(RB+RC). (108)

The interreietionship betwsen compressicn, bonding, and torsion-
el stress ratios given by equation (108) is plotted for engineering use in
Figs, 10 and 11. Once any two stress restios are specified, the buckling
value of the remaining stress ratio can be determined graphically from

VYeqa Alvweaa
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Experimental Investigation®

Case 1. Buckling Under Axial Compression

Test program,

In an effort to test cylinders within a range of practicatl
interest, it is desirable thet the radius to thickness ratio should he es
large as possible, Whereas a relatively large value of the &/t parameter
is easily obtainabis for a homogeneous cylinder by constructing the cylinder
of sheet of several thousandths of ean inch thickness, the sandwich cylinder
pressnts the problem that considerably greater thickness is required for
the éendwich for practical reasons,

A 1/8-in, tuick sandwich was considered the minimum thickness
feasible, and conscquently rather large radii were chosen so that the.g/t
values would be within a range of possible use in aircraft construction.
Three different radii were used to permit a veriation in the !/t parameter
to be studied within the capacity of the testing faciiities. bTo determine
the length effect, if any, two different lengths were used ir the investiga-.
tions,

A1l other detalls of the specimens were similar, The 24S-T alu-
minum-alloy faces of 0,010-in, tiickness were bonded to a 1/8-in, ceilular
cellulose acetate (CCA} core of approximately 4.5 to 5.0 lbs. per cu, ft,
density. At each end of the cylinder, a 1 1/2-in. deep hardwood insert
replaced the core to allow for the uniform introduction of end loads intc
the oylinder,

The cylinders were manufactursd Ly Gaydyne, Ince., Port Jervis,
N.Y., and their fabrication details are quoted: "A1l aluminum fsces are coated
with & metal primer prior to esssembly to the core. The primer is an adhesivs
manufectured by the Causcin Company of America and Lewsrs thelr code number

of NT=4il2.

¥ The experimental work was carried out mostly by G. Gerard and F, K,

Teichmann.




The cors is then planed to the thickness of 1/8 in,, and solid wood re-
inforcements are glued to ihe edge. A secondary adhesive is used ic combine
ths aluminum facus and the coreg the adhesive used is Plastron 250-2. Ai-
though this resin adhesive will polymerize et a room temperature of 75°F,.,
surficient heat was applied during the fabrication of the cylinders tc az-
ceierate the "setting" of the bond, Pressure necessary to bring the surfacer
in intimate corntact was applied, and the assembly was molded in a period

of 2 to 3 hours. The final operation consists of trimming or finishing the

ends of the oylinder to assure an even nlane and squareness to the ends.f

Load was applied to each speciment by means of a Baldwin-Southwark
universal hydraulic testing machine, The 10-in, radius cylinders were testsd
ir a machine of 60,000-1b, capecity, whereas the remasindsr were tested in
a 200,000-1b, capacity machine., The specimen rested on a 1/4-in, machined
plate, which in turn rested directly on the bese of the machine, & 1 1i/2-
ine machined steel plate wa: centered on top of the cylinder and load was
applied to this through a self-aligning compression head,

Duaring the progress of the test, load was applied slowly. At
appropriate increments of load, strain-gage resdings at four stations and
deflection readingp at three stations were teken., Near the buckling load
of the cylinder, the load increments were reduced, At feilure, both the
meximum lcad and the drop load at which the machine stabilized were recorded,

Uitimate loads and dimensions

A summary of the important test results is given in Table 2,
The various dimensions given in this table are those thet were obteined
prior to test at the estimated center of the buckle patiern. It was noted.
however, that this location usually did not coincide with the location of
minimum thickness or maximum length of the cylinder.




Table 2
Fresentation of Test Data
Calculated
~ Yominal Inslde Total Face Core Ultimate Drop
Iength, Rac .us, Thickness, Thickness, Thickness, load, Load,
Cylinder* In, In, In, In, In, Lbs, Lbge
1C12A+ 12 10,05 0.144 0,0107 0.1226 9,675 4eRE%
1012B 12 9.99 0.134 0,0107 0.1126 31,825 Lo C2%
10244 24 10.09 0,138 0.0107 0,1166 10,625 5,028
1024B 24 10.05 0.135 0.0107 0,1136 13,985 5,625
12124 12 12,00 0a142 00107 0,1206 18,175 5,673
1212B 32 11.89 0,136 0.0107 0.1146 18,475 8,950
12244 24 11.88 0.132 0.0107 0.1106 17,625 8,225
1224B 24 Premature failure dus to poor bonding
14124 12 13,89 0.143 0.0107 0.1216 26,950 2,253
1412B 12 13.86 0.134 0,0107 0.1126 33,800 25400
1424A 24 13.88 0,132 0.0107 0.1106 21,150 . 5,900
14248 24 13.84 0.131 00107 0.1096 18,450 7,100

* Note that the cylinders are identified by the radius that is given by the

first two digits and the 1eﬁgth that 1s given by the last two diglts.

+ This eylinder was initially buckled, dwring manufacture, at the location cf
buckling under load,

was a representative valus.

Material property tests conducted on the CCA core material in-
dicated that a shear modulus of Gc = 2,000 lbs. per sq. in. I 20 per cent
Since the stress in the farcas at buckling

was well below the proportional 1limit of the material, no maverial property
tests were conducted on the face material.

failurej 10124, 1012B, 1212B.

Description of failure

In general, the mode of instability observed on the ¢ylinders
tested can be roughly divided into three groups: (a) Cylinders in which
buckles apreared in isclated locations before snap buckling precipitated

+\ n.a
WU vyil

nders in which no visible ev{dence
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of bueckling occurred before srap buckling precipitated failure: 10244,
1024B, 12124, 1224B. (c) Cylinders in which outward bulging either pre-
ceded or accompanied snap buckling: 14124, 1412B, 1424A, 1424LB,

The cylinders in group (a) exhibvited isolated buckles that grew
as the load was increased, These buckles usually formed the nucleus of
the snap buckie pattern that occurred at fallure with explosive violence,
At failure, the ulitimate load dropped to a valu® approximately 40 per cent
of the peak valus. The behavior cf group (b) was simil .r with respect
to the drop in 1lnad, The characteristic buckle patterrn obtained in these
groups is shown in Fig. 12,

Group (c) cylinders exhibited a short wave length outward bulge,
usually at the junction of the CCA core and hardwood insert, in addition
to a snap buckling paittern. The former mode of instability appesred to
be characteristic of the type associated with wrinkling of the faces. In
the cases where the outward bulging preceded failure, it was noticed that
portions of the bulge erea changed to the characteristic snap buckle pattera
at, or immendiately after, failure., In addition, the drop load was much
less than for the other two groups, averaging about 20 per went of the
peak vzlue,

Buckle patterns

Data on the buckle patterns obtained in the tests are glven
for each cvlinder in Table 3.

The shapesof the buckles obtained from the snap buckle patterns
were diamond-shaped as shown in Flg. 12 and of approximately 3 to 1 aspect
ratie &s given in Table 3., They indicated the characteristic tendency
to buckle inwardly. It is noted for purposes of comparison that, for a
homogeneous cylinder, the buckle is usually diamond-shaped and of an aspect

ratio close to unity.

Another detail ¢“ importance was the occurrence of only ore

buckle ir the axial direction for all the cylinders., In testing Cylinders

1254

1012B and 1024A, excessive deformation was applied to the cylinder tc de-.
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termine if additional buckles would form in the axial cirectinn. It was
ohsarvad that no further buckling occurszd. This behavior is probably
due t> the formaticn of a weak area at the buckle location once buckling
occurs. Further deformetion of the cylinder appears to be completely
restricted to the buckle location with ultimate crushing of the core and

separation between the face and core,

Table 3
Data on Buckle Patterns
Buckle Size
Longitu= Circum- Number of
dinally ferentially Circum=
L =3/n =12 feromttal 18 A
Cylinder in, in, Buckles* Hx n
1012A 1.5 40 24 2,47
101.2B 1le5 40 24 2,67
10242 1.5 40 24 2,67
12124 1.5 he5 24 3.00
12244 1.5 be5 24 3,00

* Note that trese buckles were sinusoidally srranged around the circum-
ference (see Fig. 18#).

Influence of length

A 12~8nd 24-1in, length of each cylinder werz included in the
test program to determine the i1nflusnce of lemgih upon the buckling chear-
acteristics within this range of length. Allowing for the hardwood inserts
in the end of each specimen, the free length, ;f’ of ths cylinders in
which buckling is likely to occur is reduced to 9 and 21 in,, respectively,

The buckling losd per inch, N 4as a function of L./a is showm
in Fig, 1% Within this range of the parameter and considering ths scatisr
of the test data, no conclusions as tc the effect of length could be de-

termined. Examination of the buckle dimension data indicates, however,

ol
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that no effsct of length on the buckling load should ocecur, sinea; for
the shortsst cylindsr, the axial wave lsugith was approximaiely orc-giuth
of the free length, It is anticipated that only when the free langth
apnroaches the cxial. length will the length influance the buckiing char-

acteristics,
Physical and material property variation

Examination of thz dimsnsional propertiss of each cylinder
indicated that the varietion in dimensions from the average were of the
following aprroximate orders of magnitude: (a) face thickness, t % 0.0015
in, (commercial tolersnce)j (b) core thickness, h I 0.008 in.; (¢) inside
radiusj a = 0,030 in.; (d) length, Y & 0,008 in,

Variation in the shear modulus of the CCA core was iound to
be G, I 20 per cent, The variation of E, of the face material is known
to e negligible for aluminum alloys. A valus of E 6

e = 10.5 x 10" lbe,
per 8q. in, was used,

An attemst was made to correlate the location estimated to be
responsible for buckling with initial imperfections sucn as minime values
of thickmsss or maximem values of length, From the tabulation of dimen-
sional data for each of the cylinders, no correlation was indicated.

Since correlation with dimsnsional imperfections was lacking, it is assum-
ed that the buckle location is caused primarily by local wsak spots created
by the variations in the core shear modulus, The fact that only one _ongi-
tudinal buckle formed in all cylinders appears to be further conf’ rmation
of this hypothesis,

Additional evidence of this type of behavior of sandwich elements
subject to buckling has previounsly been offered by Hoff and Mautnerlz.
They suggest that, in & sandwich siructure subject io uriform load, such
as a beam in bending, the results are a statistical average of the core
propertiss, Ou lus viher hand, a siruclure subjeci To buckiing responds
to local weak spols cnused by defects in the core properties, and, hence,
the results should be bssed on the lowest properties rather than on the
average properties.
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Correlation of theory and test data
t was found herein that for values of Eft/Gog 2. 0.95, the
oriticel ioading is given by the following equationt

Ncr = (h + t) Gc

It appears that, for this range of Eft/Gc"i, the critical stress is inde-
pendent of the radius & and depends essentially upon the core propertles,

To test the validity of this conclusion, the test data ere plotted
in Fig, ¥ as a function of @& Also shown are the resuits obtained from
the prececing equation bgsed on the upper and lower 1limits of the shear
modulus, Oc, glven previously. Since no correlation of failure location
with dimensional impsrfections was obteinsd as discussed in the previous
section, it is assumed that the variation in the shear modulus is primarily
responsiblie for buckling.

While the test data in Fig, 14 appear to indicate an apparent
influence of the radius, it is felt thsat thia appearent sffect can be ex-
plained by the variation in the shear modulus, Consideration must also
be ziven to the fact that the i0-in. radius cylinders were tested in a
60,000-1b, capacity testing machine, whereas the remainder were tested
in a 200,000-1b, machine, This may have some tearing un the lower values
f the 10-ir, redius grouvp. Fmt.ﬁormore, the cylinders were manufactured

rdsr of Iincreasing radius, and, if some allowence is made for an im-

o]
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provement in manufacturing technique with experience, then the large radius
cylinders sre favored,

Considering all these factors, it appears that reasonable corse-
lation between the critical load obtained from the theory and the test data
was obtained within the region of Eft/Gcg of the experiments,
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Case 2, Buckling under torsion

Test program
Again the sandwich used bad a thickness of 1i/8 inch, The
nominal radius of é inches which was used for all cylinders was dictated
by the capacity of the testing facilities, To determine the effect of
length upon the buckling loed, two different lengths. were used in the in-
vestiga‘tioﬁ,

The most significant paz;ameter in overail buck’ing of sandwish
elements is the shear rigidity c¢f the cora materisl, GConsequently, two
different materisls were selected for the cores celiular cellulose acetate
(CCA) of approximately 5,5 to 6 1bs/su. ft. density and end grain balsa
(EGB) of approximately 5 to 5,5 lbs/cu, ft, density. For all cylinders,
the face material used was 0,010 inch 248~T3 aluminum alloy.,

To faciltate installtion of the test specimen in the loading
jig, two inch wide hardwood blocks were bonded to both the inside and out—
side faces at each end of the cyiinder {see Fig, 15), The end faces of these
blocks were thsn'tm'ne& down on a lathe to insure planeness of the facs,
perpendicularity with the axis .cf the cylinder anrd parslieilsm cf the faces,

Teet procedure )

The pertinent dimenslons of each specimen were determined

as follows, Four evenly spaced longitudinai stations were lightly scribed
on the outside wall of the .cylinder. The outside radius was then msasured
to the nearest 0,01 inch at each pair of stations at both erds, The length
of the cylinder between hardwood blocks was also determined at each station

o the nearest Ue01l inche

The total thickness of the cylinder wall was measured at eash
station at both ends just inside the hardwond blccks and at the center by
means of a speclal dial gage with a least division of 0,001 inch. The
thickness of the fyces was measured with a ten-theusandths microme_t;r before
the éyiindé;s ﬁé}e-aséembléd. The average dimensions for each cylinder are
given in Table 4.
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Installation of the specimens in the specially designed torsior
loading jig was accomplished by bolting the specimen tc the steel end
plates through the hardwood blocks at the ends of the cylinder, The loading
mechanism ‘s showr in Fige 15 with a specimen Instelled and tested. Lead
was applied by means of a hydraullc tension jack and was measured by a
calibrated strain gege tension link st the jeck which was accurats 43 il

2 per cent,
Physical property tests

The important physical properties in overall torsicnal buck.
1ing of sandwich construction are the siicer stress-strain characteristics
of the face material and the shear modulus of the core material. The methods
used to determine these properties are discussed in some dotail due to
their importance in evaluatiorn of the test data,

The shear moduli of the core materials were determined by test-
ing as simple beams, strips of flat sandwich construction. The beams were
fabricated by the manufacturer of the cylinders of the same materials and
in the same manner as the cylinders themselves. The test consisted of ob-
taining load-deflection data from which the shear modulus of the core matcr-
ial was determined from the difference in deflection betwsen the experi-
mental valwe and that computed for *he beam neglecting shear deflections,
From six tssts of each core material, the following values of shear modu.-

Jus were obtained:
cellular cellulose acetatet? Gc = 3,00 psi = 20%

end grain balsa: G_ = 15,700 psi & 7%.

[sd

No experimental techrijue is known for d.uarectly determining shear
stress-strain characteristics of thin sheet material, The method used in
this invesuligation was to obtain the stress-—strain properties under axial
comnression and tension loads of specimens oriented at 45 degrees with the
grailn direction of the face naterial, This orientation was chosen since
a pure shear field can be represented by orthngonal tension and compression

stress of the same magritude as the shear-stress at 45 degress with the
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irsction of the shear stress. The axial stress-strain data so obtained
' ars shown in Fig. 1é as ihe limits of the variation in stress-strain prop-

erties from the average of the specimens tested.

A shear stress—strain curve can be constructed from axial stress-~
strain data by use of the fcllowing transformations of the maximuym shear

theory:?
’
t=9/2 and Y= (1 + v)e {(i09)

09
In the yield regilon of the stress-strain curve, Polisson's ratio can be

3

reprasentad byl

v E 0,5 - 0.2 ES/E (110)

whare E and ES are the elastic and secant moduli of the axial strsssc-
strain c__om. The desired chear stress-strain cwve shown in Fig, 16 vas
obtained by applying Eqe. (109) end (110) to the upper and lower limits

of the axial stress-strain dsata,

Test results
Average measured dimensions of the sandwich cylinders to-
gether with the failing loads are given in Table 4. Photographs of typicel
buckle patterne taken after conclusion of the tests are shown for each
type of cylinder, Fig. 17 shcws an end grain balsa core cylinder, Fig.
18 shows a CCA cylinder of 24 inch length and Fig. 19 a CCA cylindsr of
12 inch length.

It is noted that in all cases, there was no observaticn of buck-
ling before the failing load was reached,

Correletion of theory with experimental results

(a) End grain baisa cylinders

For this group of cylinders, we find that the peremeters
i Eft/Gca = 1,1 and a/(h+t) = 48, These cylinders behave esgentially as
homogensous cytinders, Therefore, the results of Ref, 14 can be used to i
evaiuate the effect of the boundary conditions and leng-h of the cylinder

upon the critical shear stress, From Ref, J4, for a cylinder clamped at the
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ends

2
T (2t)% 3/4
= £ (113)

7D

where D = bending rigidity of sandwich plete = Eft(h+t)‘/2(1-v;)

2, /2 2
Z = curvature parsmeter = (l-vf) 1“/2at

In using the above relations for a sandwich plete  the thickmess of the
homogeneous cylinder has been replaced by twice the face thickness of the
sandwich cylinder, (2t); Eqe (111) can be reduced to the following by taking
v = 0.3,

5 1/2 3/4
Top = LeddEo(h+t)°A  (at) (112)
By substituting the appropriate values given in Table 4 for the paramsters
appearing in Eq. (112) i+ is fexmd that

B £33,000 pai (113)

The velue of the critical stress given by Eq. {113) is based on elastic
buckling and consequently is far in excess of the shear proportional 1imi:
of the material used. A method for computing plastic shear buckling stress-
es 1s given in Ref. 15, in which it is suggested that the effective modulus
to be used in plastic shear buckling is the shear modulus, By this method,
the critical shear strain is computed and the plastic buckling stress is then
obtalned from the shear stress-strain curve at the particular value of
critical strain., From Eq. {(113), thereforz,

14
E{Er © Tcr/Gt = 0.109 (114)

This iz evidently a very large value of critical surain for which
the shear stress-3train curve ies not known. In addition, it is highly
doubtful that the method given in Ref. 15 (which is for the yield region
of the stress-strain curve) would apply at such large values of critical

strain, Therefore, tc effect a compariscn between theory and test data,
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serve the relation between these date and the shear stresgs—strain curve

given in Fig. 16.
appsars tc be

of the stress~-strain curve.

These dsta are plotted at e strain of 0.01 since thiz

ressonable value indicating the 1imit of the yield reglon

A% 31

Although reasonable agreement is indicated

in Fig. 21 it 1s to be noted that significant difference between the theory
and tests may be obscured by the Tact that buckling occurred in the plastic

reglons Table 4
AVERAGE DIMENSIONS AND FAILING LOADS OF SANDWICH CYLINDERS
Core Total  Average
Cylin- Materi-~ Mean Thick-~ Face Falling Failing Failing
der al _ Length Radjus ness Thiﬁ%Es, Moment ngd/in: Stress
1l a (h+t) t Mor N.. Tor

No.1 EGB 20,06" 5.99"  Q,145% 0,103"  126,000"1b, 560 1b/in, 28,000psi
No,2 EGB 19.50 5,99 0.155 0,103 103,600 460 22,900 |
Noe3 CCA 7.90 6,01 0.138 0.105 42,000 185 8,850
No.4 CCA 7495 £.00 O.l4z  0.105 25,200 111 50320
Noe5 CCaA 19.80 6.01 0.137 0.105 25,400 117 54550
No.6 CCA 19.92 6,02 0.132 0,105 22,700 100 4,78C

ders was approximately five. Ac

of this group of cylinders shoul

1
Py24 a——

cora,

cording to Fig. 20,

f2

(b) Cellular cellulose acetate cylinders

The average value of the paramster Eft/Gca for this group of cylin-

he n
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)
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Therefore, the experimental values of the torsional instability

cozfficients were computed as shown in Table 5 and plotted in Fig. 20,
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Table 5

EXPERIMENTAL TORSION INSTABILITY COEFFICIENTS
FOR CCA CYIINDERS

s . 4
E:t/G a = 5,155 s7\h+t) = LR
v T aN ‘I/‘( \C_
Cylinder Ner h+t G, Ky=Nop/ A58, 0
Ne, 3 185 1b./in, 0,118" 3,400 psi 04462
No, 4 111 0,122 3,400 0.268
No. 5 117 0,117 3,400 04294
No. 6 100 0.112 3,400 04263

The comparison of the theory and test data shown in Fig. 21 re-
veals that the test results are considerably below the theoretical v:lue,
The large veriation in shear modulus of the cove (= 20%) is certainly not
sufficiert to account for this discrepancy. It appears, however, that

poor bonding of the faces to the core may be the cause of the discrepancy,

It is possible that, becsuse of the curvature of the structure,
inspection by tapping the cylinders did not reveal any area of poor bénding
before the test. During loading, however, evidences of poor bonding were
noticed, The eviderce was a crackling noise which as heard almost immcdi-

ately upon the spplication of load.

Additional evidence was obtained after the cylinders were tested,

In some of the cylinders, the faces werse peeled from the core and it was
“mmd thet thera

1T TO
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onsider h ne
attached to the bonding of the faces. It appears that in a satisfactory
bond, particles of the core material would adnere to the bonding of the

faces after peeling,

This difficulty occurred only with the CCA core mgterial and
may possibly be attributed to the small thickness (1/8") of core materiel
usedes In addition the CCA was produced bty & new manufacturer and %hare

was evidence of considerable nonuniformity of cell size,
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Case 3. Buckling under bending

Test program

The cylinders tested in pure bending had sgain a thickness
of 1/8 inch and a radius of 6 inches. To snsurs uniformity of introdue-
tion of bending load, all the cylinders were 36 :inches long. Two different
material were again used for the coret cellular cellulose acetate (CCA)
of approximately 6 1bs./cue, ft. density and end-grain balsa (EGB) of approx-
imately 5 to 5.5 1bs,/cu. ft. density., For all cylinders, the fuce material
used was 0,010 inch 24S-T3 alumdnum alloy.

To faciltate installtion of the test spacimen in the loading
jig, two inch wide hardwood blocks were bonded to both the inside and out-
side faces at each end of the cylinder (see Figs. 22 and 24). The ond faces
of these blocks were then turned down on a lathe to insure planensas cf the
face, perpendicularly with the axis of the cylinder srd parallelism of the

faces,

Test procedure

The pertinent dimensions of each specimen were determined as in
the case of buckling under torsion, The average dimensions for sach cylin-
der are given in Table 6.

Instellation of the specimens in tne specially designed bending
loading jig i1as accomplished by bolting the specimen to the steel end plates
through the hardwood blocks at the ends of the cylinder. The loading jig
is shown in Fig. 22 yith a spesimen inatalled and tested. Load was applied
by mezns of a hydraulic tension jack and was measured bv a calibrated stirain

gage tenslor link at the jack which was accurate to i percent,
Physical rroperty tests
The impcrtant physicul properties in overall bending buckling

of sandwich construction are the compressive stress-strain characteristics

of the face material and the shesr modulus of the core material.

]
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The with-grain compressive stress-strain characteristics of the
0,010 in. 24S=T3 aluminum alloy used for the faces of the sandwleh cylinders
vas determined by use of & sn1id sguide compression jig of tre National

~

I .

P
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ing stresswsirsin data are shown in Fig, 23,

The sheer moduli of the core meterisls were deterraned by testing as be-

fore,

of shsar modulus were obtajined:

cellular celluiose ac~t-tes

From at least four tests of each core msierial, the following values

G. = 3400 pci = 17%

+
end grain balsa: G, = 17,600 psi -~ 15%
Test results
Average ineasured dimensiors of the sandwich cylinders together

with the failing (buckling) loads are given in Table 6.

Fig. 24 shows a

typical overall buckle pattern obtained on most of the 1/8-in. cylinders;

additional data on the buckling patterns ere given in Table 7,

The measursed

wavelengths were obtained in regions of relatively 1ittle distortion.

Table 6

AVERAGE JIMENGIONS AND FATLING LOADS OF SANDWICH CYLINDERS

Total  Averages Maxi- Maxi.
Cylin- Core Mean  Thick- Thi:;i Failing Fgffing F:i?ing
der Material Length Radius ness ness M?ment “Loadéggz Stress _____
3 a (h+2t) ¢ Hor Nop /T8 %er _
No,1 CCA 32,091 6.48" 0,141" 0,0105" 67,900"1bs,5141t/in. 19,300 psi
No .2 CCA 22,13 6,50  0.125 0.0105 46,100 3477 16, 500
No.3 CCA 22413 6,49 0,125  0.,01C5 77,700 587 28,C00
No.4 CCA 32,16 6,53 0,141 0,0105 89,600 670 31,900
No.5 EGB 31.29 6,47 0.141 0.,0105 53,100 404 19,30C
No.6 EGB 31.09 6,55 0,156 0,0105 654700 500 23,800
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Tabls 7

DATA ON INSTABILITY PATTERNS

Tvpe of Longitudinel Circumferential
Cylinder Instability Locaticn Weve Iength  Wave Length
Lx Lb
No.1 1/8"CCA Buckle Central 1n 3
No.2 1/9"CCA Buckle Central 1 2
No.,3 1/8"CCA  Buckle Central 11/ 31/2
Antisyrmetrical
No.4 1/8"CCA  Wrinkle Both ends 7/16 Ta
No.5 1/8"EGB Buckle Central 1 3/2 31/2
Antisymmstrical
Yo.6 1/2nEGB Wrinkle At end 7/16 e
A

~ Correlation of Theory with Experimental Results

The 1/8 in, CCA cylinders are sandwich cylinders with weak
cores, The average centroidal heipght, (h+t), of cylinders No. 1 to No. 4
is 0,118 in, % 6% and the average shear modulus is 3400 psi - 17%. There-
fore, the average shear rigidity of this group of cylirders is 400 1lbs,/in,
+ 23%, which is the theoretical buckling loading. Tne average experimental
feiling loading was found to be 530 1bs,/in, - 33%. Thus, the experimental
failing loading is 32 percent highcr than the theoretical value, on the

average.

The fact that the bending buckling load is higher than the
compressive buckling load for cylinders of the same dimensions has been
observed in tests on homogeneous cylinders., It has been suggestsd that
this behavior may be due to the bucklin~ phenomensa responding to the ever-
age value of comprsssive stress on the cross section rather than the maxi-
mum <tress. In the case of pur bending, the maximum stress would be l.4

tiTes a3 great as ihe average value,

For sandwich cylinders in compression, the theory indicates
that the value of the perameter E.t/G.e governs the behavior of the cylin-
der., Thus, it has been found that cylinders can be considered weak in

)j;“




s

vy

© . ——

58~

shear when the value of Eft/Gca exceeds unity. To effect a comparison
between the cylinders loaded in compression and bsnding which were differ-
ently constructed =2s concsrns Gc and 2, it appears that if the values of
Eft/GOa were aqual or at least greater than unity for each growp, a direct
comparison would be valid,

The value of this parameter for the compression specimens
averaged 5 and for the bending specimens Eft/Gca = 5 also, Thus, since
the compressive test data checks theory wvery well, it can be concluded
that in bending the 32% higher experimental value is in agreement with the
vehavior observed for nomogensous cylindars, thue scocunting for ths dis-

crepancye

Although these conclusions are based on data with which large
percentage verliations are aasociated, it appears that the trend 1s clearly
indicated. The fact that the scatter of the experimental valuss is con-
siderably higher than that for the core properties is based on the fact that
the latter values were estasblished from beam bending tests, In a besm
test, the results are s statistical average of the core properties, whereas
a structure subject to buckling responds to locel week spots caused by
dsfects in the cors properties. Thus, the scatter would tend to be greater
for the buckling data,

The 1/8 in, end grain balsa cylinders, No. 5 and No, 6, have
cores muth stronger in shear than the cylinders with CCA cores. Based on
the observations made on these two oylinders, it appeared that they camnot
be considered in ths weak in shear catsegory. These cylinders, therefore,
failed at a small fraoction of the theoreticel load, This is evidenced by
the fact that the average failing loading of this group was 452 1be./in.
as compared tc 5°C 1bs./in, for the 1/8 in,0CA cylinders, alihough the shesr
modulus of the EGB core was over five times as great as the TC) core, The
fact that the EGB cyliniers were not even as strong as the CCA cylinders is
difficult to reconcile witn the core properties, Unless some other mode
of buckling is responsible for this anomalous behavior, it appears that
poor hoanding to the ECE cors may 5 responsible Ior the swemingly iow
values of failing loading,
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FIGURE 24

OVERALL B8ENDING BUCKLING
OF 1/78" CYLINDERS
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