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PREFACE

During the past two years the suthor has been asso-
ciated with Contract N7onr-35810 between the Office of Naval
Research and Brown University; first as Visiting Professor of
Applied Mathematics at Brown University, and later as consul-
tant. During that time, problems of uniform slabs with cut-
outs and reinforced cutouts have been studied. The following
report 1s a survey of those results which have been obtained
by the theory of limit analysis. Some additional results in-
volving complete solutions [%; 8]0'3 are not included. How=-
ever, all other results obtained are either included in detaill
here, or specific reference 1s made to a previous report.

With these eioeptions; then, the present survey supersedes the
"B,11" reports [1-9] listed in the references.

This survey report 1s being issued at this time pri-
marily because the contract supporting it is about to expire,
rather than because the subject may be regarded as fully under-
stood. For this reason, many of the results presented are
admittedly incomplete. However, it has seemed worthwhile to
indicate possible lines for future attack, rather than to limit}
the report to entirely solved problems,

The author would like to take this opportunity to
express his appreciation to B, Levin and R, K, Froyd, graduate
students at the University of California, Los Angeles, for

0.3 Numbers in parentheses refer to the references collected
at the end of the report,
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their assistance‘throughout the past year and a half, In addi-
tion to results for which they are directly responsible [5; 6,
9 ], they have helped considerably with many of the concepts
and calculations throughout the report, The author also wishes
to thank the staff at the Graduate Division of Applied Mathe-
matics, in particular Professors W, Prager, H, J. Weiss, and

P. S. Symonds for thelr many useful suggestions and helpful

eriticisms throughout the past two years,

Philip G. Hodge, Jr.
Los Angeles
May, 1953
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INTRODUCTION

The problems to be discussed in this report are best
exemplified by an example., Let us consider first a thin plane
slab of thickness h, made of a homogeneous material, and loaded
in its plane by uniform tensions of magnitude 2kAhT, , 2khh'ry
per unit length applied along the boundary of the slab (Fig,
O.la). As N is slowly increased from zero, there will be some
critical value kl** for which the slab will be no longer serv-
iceable,

We shall return to a more precise formulation of kl**
shortly. First, however, let us consider a second slab iden-
tical with the first except that it contains a centered cutout
(Fig. 0.1b), If this slab is also loaded with tensions 2kAhT,,
2kMTy and A is slowly increased from zero, the critical load
Ao** will, in general, be less than kl** y Since material which
formerly carried part of the load has been cut out., Finally,
if thin reinforcing rings are welded to either side of the slab
(Fig. O.lc) the critical load XB** will be increased over the
unreinforced slab,

The design problem implicit in the preceding paragraph
is two-fold, First, to design the reinforcing rings so that the
slab with the reinforced cutout has the same critical load as
the original whole slab (obviously one cannot, in general,
roinforce the slab to more than original full strength)., Second,
if design to full strength is impracticable, to determine the
actual strength of the final reinforced cutout slab,

[ T
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In order to approach these problems, it is first
nocessary to obtain a more prccise idea of the critical load
M#*, To this end, let us consider more closely the bchavior
of the unreinforced slab in Fig. O,1b. As N is increased from
zoro, the material will first be cverywhere elastic., The rela-
tion between thc applied load and any particular displacement
will be linear, and if the load is removed the slab will return
to its original undeformed state, This will continue until A
reaches a value A ; at which point the slab will become plastic

at the most highly stressed portions A (Fig. 0.2a). Further

(Contained plastie
deformation)

&)

\&

Fig. O.2a

Partially plastic slabs.
increcasos of the load will no longer be rclated linearly to

displacements, and an unloading would produce residual stresses
and strains,

For certain applications, it may be that this non-
linear behavior with residual stresses and strains, would render
the slab no longer useful, Ilowever, the deformations at this
point are still small, and thore is no tendency for them to in-

croase rapidly, Therefore, it may be that furthoer increases in
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load are acceptable. In this case, regions of plastic material
will begin to form about the points A (shaded regions in Fig,
0.2a, 0.2b), and possibly to start at other points, However,

(Contained plastic
deformation)

Fig. 0.2b
Partially plastioc slabs,

there will still be a constraining framework of elastic material,
so that the slab can stand further increcases in load, As A\

is further incrcased, thcse plastic regions will grow, until

for some critical value A\* ; the elastic framework is no

longer able to constrain the plastic flow (Fig. 0.2c¢)j even if

// (Unrestricted plastic
£low)

Fige. Oes20 )
Partially plastic slabs.
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the material in the elastic rogions were replaced by rigid
material thé overall deformations of the slab could still in-
crease to large values, If the material is perfectly plastic,
the plastic regions can support no further load, so that the
slab as a whole may deform indefinitely. For a strain-harden-
ing material somewhat greater loads can be supported, but a
rclatively large increase in deformation will accompany a come-
paratively small increasc in load. Typical load displacement
curves for both types of material are shown in Fig. 0.3.
Throughout this report, we shall assume that the
material is perfectly plastic and incompressible.o'h For such
a material we can specify the requirements of a "complete"
solution of the problem corresponding to any value of the slow-
ly increasing load. Assuming tﬁe slab to be in a state of
plane stress, such a solution will consist of determining threc
stress components Oys oy; ¢xy
Vxs Vys Vg all as functions of x and y. The stress components

and three velocity components
must everywhere satisfy the yleld inequality

F(a,, oy, £, )50 | (0.1)

Xy

where F 1s a given function for the material, and the equil-

ibrium equations

-ﬁ-é-‘a;n-'O,-’iu +1y'x-°. (0.2)

s -

0.4 This last rostriction is not vital to the general conclu-
siogseibut considerably simplifies the mathematical pre-
sontation,
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load

l (perfectly plastic

material)
_7T_ N
¥ l
| .
displacement
(a)
load
A
(Strain-hardening
material)

displacement

(b)
Fig. 0e3
Load displacement curves,
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The velocity componcnts must satisfy the condition of incom-

pressibility
vy OV ov
am—— --l _z= [ ]
Ox’+0§ + 53 0. (0.3)

Where the strict inequality holds in 0,1, the mater-

1al is said to be elastic and must satisfy Hookec's law:

av, . . o,
Ea-’-fwx-l/zoy,EEl-dy-l/zax,

G (;;5 + %;%) = Tyy o

Together with Eqs. 0,2 and 0,3 this provides the necessary six

(0.4)

equations, Where the equality holds in 0,1 the material is
sald to be plastic, and must satisfy the plastic potential
stress strain law

OF/3c 8F/80
EQvy/ox) - 8, - §8,) = EGv,/By) - (0, - §3,)

(0.5)
3F/d%
= albvx/ﬁy + 0v_/08X) --ixy ’

Equations 0.1; 0.2, 0,3 and 0,5 provide the nccessary six equa-
tions in the plastic case. 1In addition; the stress components
must be in equilibrium with the applied loads, and certain
continuity conditions must be satisfied in the interior of the
slab, These latter conditions determine the position of the
boundary between the elastic and plastic regions.

A cursory examination of Eqs, 0.1 through 0.5 in-
dicates that the problem of finding a complete solution is
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extremely difficult, since not enly must we solve six equations
in as many unknowns, but some of the equations are non-linear,
and a free boundary must be determined. The only known.solu-
tions are in cases where symmetry or other restrictions reduce
the number of independent and dependent variables., An example
of such a solution is given in (4). 1In general, however, Egs.
0.1 through 0.5 have defied solution, to date.

Although the determination of a complete solution
appears impossible, we can use recent theorems by Drucker,
Greenberg, and Prager [ 10, 11 ] to determine something about the
critical load A¥* , A precise formulation of these theorems
will be given in the first chapter. However, the basic ideas
behind them may be stated as follows. In addition to consider=-
ing A** as the maximum load which the slab can withstand with-
out ylelding indefinitely, we may also consider it as the
minimum load for which increased deformation becomes possible
with no increase in load. Using this viewpoint, it can then
be shown that by considering essentially only those equations
which contain stresses alone we can obtain a lower bound on the
collapse load, while considering only the equations which con-
tain velocities we can obtain an upber bound., If the two
bounds are equal, we have the actual value of the collapse load,
but even if this is not the case we may be able to obtain
bounds sufficiently accurate for engineering purposes.

The body of this report will be concerned with the
application of the theorems of Drucker, Greenberg, and Prager

to the problem of analysis and design of slabs with both
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unreinforced and reinforced cutouts. In Chapter I, we shall
state the theorems precisely and indicate the precautions

which must be used in applying the results to actual situations.
Also.we shall show that for a symmetric cutout it is necessary
to examine only uniaxial and uniform bilaxial loadings to de-
duce certailn results concerning any type of uniform loading,
Finally, we shall discuss certain relationships between the
reinforced and unreinforced cutouts,

In Chapter II we shall be concerned with problems of
narrow reinforeing rings which may be reasonably approximated
by curved beams, Various shaped cutouts and types of rein-
forcements will be considered., Chapters III and IV are con-
cerned with different methods of finding upper and lower bounds,
respectively, for slabs with unreinforced cutouts, while Chap-
ter V gives examples of these techniques as applied to various
shaped slabs and cutouts., Finally in Chapter VI we consider
slabs with reinforced cutouts and compare some of the results

with experimental data.
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I. BASIC CONCEPTS

1, Mathematical Model. In connection with some of
the results which will be presented in later chapters, the
question may well be raised as to whether the assumptions made
are "realistic." The subject of what constitutes a realistic
assumption is a most important one, yet one which is often
negleocted in the arguments generated pro and con when a new
theory 1s presented,

The first point which must be emphasized is‘that no
mathematical theory can be entirely realistic. Consider for
example the uncut slab in Fig, O.la, and compare an actual slab
being stressed in a testing machine (in uniform tension, say).
This actual slab is not a perfect rectangle, since there will
inevitably be minor cuts and irregularities along the edges;
by the seme token the faces are not perfect planes. The applied
load can be only approximately uniform, Any mathematical
analysis must moreover assume knowledge concerning the physical
properties of importance, in particuler in this case concerning
the yleld stress function and the post-yield behavior of the
metal. It is well known, however, both that these properties
are highly complex and that they may vary appreciably for
specimens cut from different noints of a structure, because of
unavoidable differences in treatment during the manufacturing
process,

8ince it 1is practically impossible and in fact un-
desirable because of the tremendously complicated nature of

the analysis, we do not aven attempt to give a completoly

realistic mathematical account, Instead, we begin our
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mathematical analysis by postulating a mathematical model.

For the example considered in Fig. O.la, the mathematical

model consists of a perfectly rectangular slab with perfectly
plane faces acted upon only by perfectly uniform forces ap-
plicd preclsely at the edges. In general, a mathematical model
singles out those features of the physical problem which are
considered important by the investigator, replaces them by
corresponding mathematical idealizations, and ignores all fea=-
tures considered unessentlal., Once the mathematical model has
been chosen, one operates on it according to the laws of math-
ematics, in order to predict the results of certain experiments.
These experiments are also carried out for the original physical
problem, and the two results are compared, If this comparison
is satisfactory for the purpose for which the results are in-
tended, and of course for a sufficient variety of tests, the
mathematical model is deemed satisfactory.

Suppose, however, that the comparison of results is
unsatisfactory, Even in this case, the model may be used to
advantage in any of several methods., It may be that although
the results are not satisfactory in all generality, they are
useful in a more limited context, Thus; a mathematical model
of a metal which specifies a linear relation between stress
and strain 1s inadequate for very large stresses, but highly
satisfactory for sufficiently small ones,

Alternatively, the experience gained in formulating
and comparing the model may suggest ways of specifying a
better model and nmey suggest the mathematical techniques
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necessary to work vith the more complex model, And finally,
the crude model may, when supplemented by suitably chosen
experimental results, enable one to make better predications
than the experiments alone could lead to,

With the preceding discussion 1+l as background, we
shall formulate appropriate mathematical models for slabs with
cutouts in the following chapters. However, there are certain
general features which are common to all cases, First, that
part of the slab which 1s not covered by the reinforcement
(and which we shall refer to as the base slab) is assumed to
be in a state of plane stress, The reinforcement together
with that part of the slab covered by the reinforcement will
be called the hub., The state of stress within the hub will be
differently specified for different applications, but in all
cases the tractions transmitted to the hub from the base slab
will be assumed to be uniformly distributed over the total
thickness of the hub, Observe that this assumption may depart
rather far from reality if the reinforcements are thick com-
pared to the slab,

Finally, it will be assumed that the material of base
slab and hub is perfectly plastic, incompressible, and satis-
fles Tresca's ylield condition [13 ) of maximum shearing stress:

F(dx, Gy, cxy) = max ” 61 ','dz ', , dl = Y '] - 2k$° (101)

1.1 For a more complete treatment of the subject of mathe-
matical models, see, for instance, Ref., 12, Sec. 1,1,
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where °1 and 6, are the principle stresses in the slab, A
perfectly plastic material is one which behaves elastically

for stresses less than the yleld stress, flows indefinitely
under constant yield stress, and cannot support stresses greater
than the yleld stress. The stress-strain curve for such a
material 1s given in Fig. l.la while Fig, 1,1b shows a graph-
ical representation of Tresca's yleld condition. In Fig. 1.1b;
states of elastic stress are represented by points within the
hexagon ABCDEF, and the material cannot support stresses repre-
sented by points outside of the'hexagon. Points on the hexa-
gon represent plastic states of stress: A is uniaxial tension,

B is equal biaxial tension, G is pure shear, etc.
¢

!

/ il

2k Fige l.la

&———— Stress=strain diagram
! o2

> € cA B

r
2k H
T D
Yield condition ——— 210

E jo— 2k-TF— 21:-.'

Fige l.1
Perfectly plastic material
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2, The Drucker-Greenberg-Prager Theorems. As pre-
viously stated, the basic concept behind the theorems of

Drucker, Greenberg, and Prager 1s to determine the smallest
load for which an increase in deformation can occur with no
increase in applied load. T”ié load will be referred to as

the yleld losd and the structure will be considered safe if

the acting load 1s less than the yleld load., Subject only to
the additional qualification that loads up to this value can

be considered to be applied to the undeformed boundary, certain
significant results have been obtained. It is beyond the scope
of the present report to reproduce the proofs of these theorems;za-
we shall merely state the resuvlts insofar as they arply to t'e
problems under consideration,

First, then, let us consider a stress field (i.e., a
set of three functions d, oy; ‘ky) which satisfy the equations
of equilibrium (Tgs, 0.1l) and tle Tresca yield restriction (1,1).
If any such stress field 1s called gtatically admigsible, then

the first theorem may be stated as follows:

Theorem 1. The yield load is the largest load for
which there exists a statically admissible stress

field.
It follows from Thm., 1 that gny load for wrich a

statically admissible stress field can be found must represent
a lower bound for the yield load, Further, it should be noted

that no explicit requirements of continuity were made, Of

2.1 Both theorems were originally proved for a Prandtl-Reuss
matorial in nlane strain[10 1., Complete proofs for these
cases are also given inf 14 ], Secs. 33 and 39, They have
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course, equilibrium implies that the tractions across any
element must be continuous, but it will frequently be useful
to consider stress fields across which the remalning stress
component (the interior component of stress M1k, p. 1551)
exhibits a finite jump,

The second limit analysis thecorem is concerned with
velocity fields which satisfy the equation of incompressibility
(Zq. 0.3). Let such a veloclty field be considered as produc-
ing purely plastic strain rates, and define a stress field by
the stress-strain law (Eqs. 0.5 with the stress rates equal to
zero)., The resulting internal rate of dissipation of energy

has been shown [1] to be given at each point by

D = 2k max | e | (2,1)

where max | & | denotes the absolutely largest principal com-
ponent of plastic strain rate, The total internal energy is

defined by
* : e
aqgfpdv=zkd‘ max | ¢ | av. (2,2)
v v

Also, 1f'¢ represents the vector velocitlies of points on the
boundary, and'ﬁ the applied force on the boundary, the external

rate of dissipation of energy 1s given by

,De n J\s?? . 7V ds. (2.3)

2.1(Cont'ﬁ?. Tlso been proved for the general perfectly plastic

solid L1l J, A detailed account for the case of a material

satisfying Tresca's yleld condition may be found inl1l f.
Also, see [1) for a more thorough discussion as applied to
states of plane stress, '
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‘With these preliminaries, an incompressible velocity
fleld will be called kinematically admissible if the internal

rate of dissipation of energy does not exceed the external rates

The second theorem then reads as follows.

Theorem 2, The yield load is the gmallest load for
which it 1s possible to find a kinematically admis-

sible veloeity field.
It follows from Thm, 2 that any load for which it is

possible to find a kinematically admissible velocity field is
an upper bound on the yield load, Further, it follows from
Thms. 1 and 2 together that the yield load is the unigue load
for which it is possible to find both a statically admissible
stress field and a kinematically admissible velocity field. It
will be observed that in this case also no explicit requirements
of continuity were stated, It follows from the incompressibil-
ity of the material that the normal component of velocity must
be continuous across any surface, but the tangential component
may exhibit a finite .Jjump. The appropriate internal energy
dissipation may be evaluated by a limiting procesé. This pro-
cedure will be 1llustrated in Chapter III. |

3. Arbitrary uniform edge logdg. For the main part
of this report we shall be considering loadings of the type
given in Figs, 0,1, i.e.,, a uniform tensile load of magnitude
2I\hT, per unit length on the sides normal to the x axis, and
a uniform tensile load of magnitude 2klh'1'y on the remaining sides,
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If we consider first Fig, O.,la, and take A= 1, it is evi-
dent that for the uncut slab the resulting stress field will

be constant:

dy = 2k Ty, O =2k Ty, T, = 0, (3.1)

- 8ince the principle directions are those of the coordinate

axes, it follows from 1,1 that the stress field 3,1 will be
~statlcally admissible only if

max[lTxl,lTyl,lTx-Tyllsi (3.2)

Therefore, if we consider a load space with coordinates T,, Ty,
the load point must lie in the hexagon ABCDEF (Fig., 3.1l)., This
hexagon will be called the donain of safe loads.

Let us next consider the same slab with a cutout (Fig.
0.1b)., Obviously the domain of safe loads in this case will be
some region R wholly contained in the hexagon ABCDIF, For
reasons which will be elaborated on in the next section, we are
not as interested in the actual region R as we are in the largest
hexagon A'B'C'D'E'F!'similar and similarly placed to ABCDEF which
is contained in R, In other words, we seek the largest number
A\ such that if Tx; Ty
the loads XTx,)\Ty are safe for the slab with cutout, Such a
value N will be termed the gutout factor.,

With this definition of a cutout factor, we can show

is a safe load for the uncut siab, then

that for a slab which is symmetric with respect to the x and y
axes, only a few different types of loading need be considered
in order to establish a lower bound on A, To this end,
suppose that a statlically admissible stress field 89 can be
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constructed for the uniaxial tension load (M , O ), that a
statically admissible field S, can be constructed for the
uniaxial tension load ( O, A, ), and that a statically admis-
sible stress field S3 can be found for equal biaxial tensions
( Aos ko). It can then be shown that a statlically admissible
stress field can be constructed for any load point lying in
the hexagon determined by Ko' If, in addition, the slab 1s
symmetric wit respect to the line y = x, then the existence

of 82 can be deduced from S The proof of this result follows

from the convexity of the liad domain and the yield surface.
Details may be found inl 21,77 ], or[101].

For a reinforced slab, the same results are generally
valid, In particular, if the slab is to be reinforced to full
strength, the dimensions of the reinforcement must be such that

=1,

4. Relations between reinforced and unreinforced
cutouts. For certein types of application, it 1s desirable to
design a reinforcement for a cutout which will restore the slab
to full strength, independently of the base slab dimensions.

The only method of guaranteeing this, is to choose a constant
stress field in the base slab; since such a stress field will
satisfy the boundary conditions along any parallel boundary.
Thus, the determination of a statically admissible stress field
in the base slab is trivial, and it remains only to consider the
hub.
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If the hub is of constant thickness H, then it may
itself be considered as a plane slab, When loads 2kth, 2khTy
per unit length are applied to the base slab, the same tractions
will be submitted to the hub, so that the stress on the hub
boundary 1s 2k(h/H)T,, 2k(h/H)Ty. Therefore, the analysis of
the reinforced cutout slab is reduced to an analysis of a plane
unreinforced slab.

It is basically for this reason that, in analyzing an
unreinforced slab we are more interested in obtaining the largest
possible load hexagon (Fig. 3,1) rather than the actual domain
of safe loads. For, once the value of A has been determined for
a slab of given dimensions and cutout, the thickness H of a hub
of the same dimensions and cutout necessary to restore a slab

of thickness h to full strength, independently of the dimen-

sions of the base slab 1is

The principles underlying the above remarks remain
valid even if the surfaces of the hub are not plane. 1In this
case, of course, other means must be used to analyze the hub,
but if this can be done, Eq. 4.1 is still valid, provided that

the reinforcement 1s so designed that h/H = const.
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II. NARROW REINFORCEMENTS

5. General theory. Consider a cutout of arbitrary
shape in a slab of thickness h, reinforced by arbitrary narrow
reinforcing rings (Fig. 5.1)., It is desired to find a lower
bound for the cutout factor of such a slab, valid for any type
of uniform loading and independent of the dimensions of the base
slab.

In view of the results of Secs. 3 and 4, the analysis
of this problem can be reduced to the consideration of the hub
alone, loaded under uniform uniaxial or equal bilaxial tensions.
In the present section we ma'e the stipulation that the dimen-
slons of a hub are such that 1t may be reasonably approxinated
by a closed curved beam and that shear in the beam may be neg-
lected. Of course, such an assumption can be incorporated into
the mathematical model of the problem for any dimensions. How-
ever, the results predicted are likely to be reasonable only if
the reinforcement is reasonably narrow, and if the thickness
ratio of hub to slab 1s not so great as to seriously affect the
carrying capacity of the hub,

Let the hub be referred to polar coordinates’, @ with
origin at the center of symmetry, if any - otherwise at some
interior point, Let the inner radius of the hub be denoted by

P a(e) (5-1)
and the radial thickness byd (8) so that the outer radius is

I'=a(d) +3(0) (5.2)

o em—
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The height of the hub at any point is then given by
H = K(T,0) (5.3)

We shall restrict our consideration to hubs whose
inner and outer boundaries are sufficlently near to circular,
so that a "cross-section" of tie hub may reasonably be considered
as a section 9 = const., (Fig., 9.2a). Within the framework of
beam theory, the stresses across any such section may be re-
placed by the stress resultants, Since shear is to be neglected,
at each section © we have an axial force N(®) and a bending
moment M(9), Let these moments be taken about an arhitrary

value r = b(0),

\ (Dimensions of cross section)

Fige 5.22

Cross section of hub,
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The resultants N and M must be derived from the axial
stress o exerted across th: section. Since this stress cannot
be‘greater than the yleld stress, the resultants will be sub-
Ject to certain inequalities. To determine these inequalities,
consider the casc where the section is stressed to capacity.
Thus, in Fig. 5.2b, suppose the hub section to be stressed to
the yield limit in tension forT>n and in compression for T" > n,
If the yicld stress is denoted by 2k, the resultant force and

moment are

\ b+ 1 a+d
N(O) -_-J 6 dA = 2k [I -H4arl +]bi}'{1 ar 1, (5.%a)
a

(Fully plastic eross section)

4

»|
b 1k

Fig. 50 2b

Cross section of hub,
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b+1 a+d
M(O) = J"“b «T)dA = 2k[ | ~(b-YHAM + (b-D)HATL ). (5.4Db)
a b+1
Equations 5.4 define N and M in terms of a parameter
. N which may take on any valuc between a-b and a+d-b, Similarly,
if the regions in tension and compression are reversed, one

obtains the equations

. b+n a+d
N(8) = 2x[ J HAP + "rb;fti'dl‘ ], (5,5a)
a

M(0) = 2k [ J’b?g-P)HdP + J‘a:(bb-l")}{dr‘ ]l. (5.5b)
a b+n
If these curves are sketched in on N, M plane, the resulting
closed curve is called an interaction curve. Stress resultants
corresponding to safe stresses must lie within this closed curve,
The closed hub represents a structure with one degree
of indeterminancy, so that the forces and moments at any point
may be expressed in terms of the applied loads and a single
redundant, Let this latter be the moment at section 0 = 0. For
simplicity of exposition, we shall assume that the hub is sym~
metric with respect to the x and y axes, although the results
are easily extended, Equilibrium of the first quadrant in the
y direction then demands that

N(O) = 2IAMT (8, + 8,) (5.6)

where a, and d, are the values at O = 9 of a and & y respectively,
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4

Next, let us consider equilibrium of an arbitrary seg-
ment of the hub, OABCD (Fig. 5.3). For convenience we may re-
place the uniform loads on BC and CD by equipollent concentrated

forces
Fy = 2kMiTy (a +8 ) sin 6,
F, = 2khTy [ (g + 8) = (a +8) cos 0 ] (5.7)

acting at the midpoints of BC and CD, respectively. FEquilibrium
in the direction of N(6) then yields

N(8) = Fyx sin 6 - Fy cos 8 + N(0) cos @

= 2k\h(a + d) I T, sin® @ + T_ cos? @ 1, (5.8a)

y

while moment equilibrium about N = b furnishes

M(8) = M(0) - (b, - b cos 8) N(0)

+Fy (b - 88) sin 8 + Fy[a° * % "2(“")"“ ® b coso ]

= M(0) + 2X\h(a# )(b =~ Q?)(Tx sin? 9 + T, cos20)

y
- 21Ty (8 + Bo)(b, - 20} 20 ),
(5.8b)

The analysis problem now consists of the following,
Eliminate n between Eqs, 5.4 and between %gqs. 5.5 to find the
interaotion curve, and express the fact that the point with co-

ordinates N, M must lie within this curve by means of inequalities,
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N(e)

M_jr_’Fx

(a+d)sin @
+(a+d)sin @

—_

(o)B

\T/’NF

< %o o I

t[(agtd,) + (atd)cos 0]

Fig. 503 '
Equilibrium of hudb segment.
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Substitute Eqs. 5.8 into these inequalities to obtain inequal-

itiles involving M(O);e s A and known quantities. M(O) is now

chosen so that A will be a maximum subject to the condition

that these inequélities be satisfied for all 0K 0 g-. Several

examples of how this 1s done, together with the application of these

results to design will be given in the remaining sections of this chap
6. Cylindrical ring reinforcements | 2; 71. If the

height H(e)‘of the hub is a constant it is convenient to choose

b to be the center of the sections
b=a+1/2% (6.1)
Integrating Eqs. 5.4 and 5.5 we then obtain

N = « 2kln, M = - 2kH ({3 -qz), (6.22a)
N = 2Hn, M = + 2kH (135 - 12, (6.2b)

respectively, After eliminating n, Eqs, 6.2 can be combined to
give the interaction curve in the form (Fig. 6.1)

8 xH | M| + ¥ = (2kH8)2, (6.3)
Therefore, safe stress resvltants must satisfy
8xm| M| + W ¢ (2uup)? (6.4)

As a first example, let us consider a circular cutout
with a circular reinforcement, so that a and & are each constant
[2]. In the case of biaxial tension, Ty = Ty = 1 Egs. 5.8

reduce to
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M
A
12 /2
1 —> N
< 2kHY —|
Fig. 6.1 ]
Domain of safe stress resultants for cylindrical hub.
N(0) = 2K\h(ag + bp), 1M(0) = M(0), (6.5)

Obviously the best choige of M(0) is zero, so that inequality 6.4

becomes
2k\h (8 + 8,) < 2KHb,. (6.6)

For given dimensions a,, d,, H the maximum cutout factor for

equal blaxial loading is thus

HY
L m—; ’ (6.7)

with, of course, the stipulation that A\ <1,
For uniaxial loading the result is not quite so trivial,
In this case, Ty = 1, Ty = O so that Egs. 5.5 reduce to
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N(O) - 2\h (ag + dg) sin? @
M(Q) = M(0) + IkAh ay (ap + b)) sin® ©
Substituting these values into 6.4t we obtain
81 | M(0) + IAh ay (g, + b,) sin® @ |
+ 4 1222 n2(ag +8,)2 sin* 0 < (2uEb )2, (6.8)

The left-hand side of 6,8, considered as a function of sin? o,
obviously achieves its maximum value at one or both of the end-
points sin? @ = O or sin® @ = 1, Therefore, 6.8 will be satis-
fied for all 0 < © < 7 if and only if

8KH[ M(0) + kAha  (a, +35) ] + U K A2 h? (ag + b0)° g,(2kHb°)2;
8KH [-M(0) - KAhag(ag + 85) 1+ 4% K222 12 (a, + 8,)2 < (2 )2,
8t M(0) g (21md )

-8k M(0)g (2kHd )2 (6.9)

Inequalities 6,9 are conveniently treated by a semi-
graphical approach in[2] ., However, in view of the more complex
examples to follow, in this report, it is instructive to solve
them by a formal mathematical procedure. To this end, we first

solve 6,9 for 8kH.M(O), obtaining
- (2kHB,)2 - BMK2 Hha(a, +b,y) + 4 K2 A2 n(a, + 8)2 < M(0)

£ (21:}150)2 - 8K Hha,(ag + 3y) = U 12 )2 hz(ao + 50)2;
(6.10a)
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- (2um8,)% ¢ BKE My < (2Hb,)2. (6.10b)

Now; since M(0) is a redundant monent, we are not only free to
choose 1t as we wish, but we don't really care what it is, There-
fore, the only requirement we make of Inequalities 6,10 is that
the system of inequalities is not incompatible, but actually
possesses a solution, A necessary and sufficient condition that
this be the case is that the left-hand side of each continuved
Inequality 6,10 be less than the right-hand side. The resulting
four inequalities are all independent of M(0O) and may be written

2 22 n2(ay + 85)° <2 (Bg)°, (6.11a)
2 . 2,2 2
- 2(hdy)" = 2NThag (&g + d,) + A° h™ (ag + 8,) <0, (6,11b)
2 2 .2 2
=2 (hb,)" + 2Mihag (ag + 8,) + X h (a(J +8,)" £ 0, (6.11c)
2 2
- (H3,)" < (Hd )", (6.114)

Inequality 6.11d is an identity, and since A is positive,
6.11b will be satisfied whenever 6,1lc is, Therefore, N 1s the
largest number which safisfiesré.lla and 6,11c. Which of these
inequalities provides thé domlnating restriction depends upon the
ratio 35/2q. It is readily verified that

Hb d
Bh(ao-!-bo) 1f—a-§ 2 2,

A
(6.12)

' \Iao2 4-260?
e O )

2o 1f%i! < 2,
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Obviously, if N\ satisfies 6,12, it also satisfies 6.7.
Therefore, 1t follows from the results of Sec. 3 that A as given
by 6.12 is the cutout factor for a slab with a circular cutout
reinforced by annular rings of constant height.

In particular; if we want to design a reinforcement to
restore the slab to full strength; we may set A = 1 in Eqs. 6.12

and solve for the necessary thickness Hs

H=h (1+g2), 1f 22 » 2,
(@)

8o
(6.13)
H=h fo bq\ ) 1 59 L2
Nag® + 2 852 = ag °

Fig. 6.2 solid curve, shows H/h as a function of S,

As a second example; consider a square hole reinforced
by a square reinforcement, The hub to be analyzed is then
bounded by two similarly situated squares of half side ay and
ag + 8. The equations of the inner and outer boundaries in the

first quadrant are given by
a =ay sec 9 d=d,y sec @ for 0 £ 6 < wh, (6.1k%a)
a =agcsc O, b= b, csc 6 for /4 6 < W2, (6.14b)

Consider first the case of blaxial tension. Due to
symmetry it 1s here sufficlent to consider only the first octant,
0< ©< n/+. Substituting 6.1%a into 5.8, and taking Px = Ty = 1,

we obtain
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H/h o
Fige 642

Reinforcement to full &trength by
ecylindrical hub,

circular cutout with
cireular reinforcement
v eemeeee- square cutout with square

3.0 \ reinforcement
. -1

2.5

2.0

1.5

1.0 1.5 2.0 2.5 3.0 _/a



B11-22 3

N = 2kAh (ag + by) sec §, (6.15)

M = M(O) + lhhay (ay + 8,) tan® o,

The substitution of Eqs. 6.15 into the yield inequality furnishes
an expression which is linear in tan? o. Therefore, the extreme
values must come at the endpoints 0 and w4 of the interval of

consideration, Further, it is obvious from 6,17 that both M and
N are increasing functions of 6., Therefore, the yield condition

6.4 will be satisfied for all values of © if and only if
81t M(n/M) + [ M) 12 < (2ka8)2,
- 811 M(0) + [ N(O) 12 < (21:A8)2,
In view of Eqs. 6.15, these inequalities may be written
- ()2 + A2 12 (ag + bg)® < 2H M(0)/k,
< (HB)? = 2)Hhag A (ag + 8,) - 2 A2 h2 (a, + 3,)2,

A necessary and sufficient condition that there exist an M(0) such
that the above inequality is true is that the left-hand member

be less than the right-hand. Solving the resulting inequality

for N we obtain finally

2 2
H -89 + \]-ao + 2 bo
)\ S_ BE ao + 60 . (6015)

Under uniaxial tension, we must consider both the first
and second octants., For 0 <6 {n/%, we find that thec extrcme
values may occur at either end of the lnterval, and hence are

lead to
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2 H | M(0) | /x <H2 32, (6.17a)

2 H | M(0)/k + Ana(ay + 8,) | +2 N n?(a, + 8,02 <H? 8.2,
(6.17b)

In the second octant M 1s constant and N is an increasing linear

function of sin © which leads to the two inequalities
20 [ - Mo/k - Miag(a, + 3,) 1< HZ 8.2,
2H [ Mo/k + Mag(ap + do) 1+A2 h? (a, +8.)° < H® 8.2,

(6.17¢)

Solving each of the
that Eqs. 6.17c are
other inequalities,
by eliminating M(O)

six inequalities 6.17 for 2H M(0)/k we see
each automatically satisfied by one of the
The remaining four inequalities obtained

will all be satisfied if

16.18)

Since any \ satisfying 6.18 also satisfies 6.16, it

follows that 6.18 is a lower bound on the yleld load for any

type of loading.
full strength under

A= 1 in Eq. 6.18 and solving for H (Fig,

In particular, the height necessary to restore

these conditions is obtained by setting

6.2, dashed curve).



Bll-22 36

H=\7§h(1+%§), 1f£§ N
7 (6.19)

He2nh —20t%  yrB
Jaod‘*)‘l’bo-ao ao

7. Bevelled ring reinforcement for a circular hole[61].

As an example of a non-cylindrical reinforcement, let us con-
sider the bevelled reinforcement shown in Fiz, 7.1. Since the

section of the hub ABCC'B'A' does not possess any vertical

T e

S LY T 3
Ul :

- ot

Figo 7.1 )
Bevelled hub.

T
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line of symmetry, it i1s convenient to take moments about the
line BB' which separates the level from.the sloping portion,
Assuming that the outermost section ylelds in tension, Egqs. 5S.ka
take on two different forms depending unon whether the neutral
axis 1s to the right or left of BB'., Thus, if n 1s positive we

have
N=2k[L q°/c = 2Hn - Hb + (H + h) ¢/2 },
(7.1a)
M =2k [« 2L °/3c + H o2 = Hb2/2 = He2/6 - he?/3 1,
while 1f n is negative, the resultants are
N=2k[-2Hnp =Hb+ (H+Db)c],

M = 2k[ Hy? = Hb>/2 = He2/6 - he°/3 7. (7.1b)

It is convenient to write Fgs. 7.1 in terms of dimen-

sionless variables defined by
2= NL/2ke HZ,
v = ML2/2ke? H3,
A = L(Hb - He + Le/2)/e 12
B = L2(Hb?/2 + Ec2/2 - 1.c2/3)/c H3,
4 - Ln/cH (7.2)
Equations 7.1 then become

u=8 26 -, v=-23¢g4+¢>-8,§&30, (".3a)
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W=-26 -A v =E -B <O. (7.3b)

Similarly, the two possibilities which produce compression at

the outermost surface lead to

il

U=-E +20 44, v=2/3E -8 +38,£>0 (7.3c)
Uu=2&E+A V=~ E2 + B; £E <O (7.34)

The curve defined by Egs. 7.3a has a cusp at § = 1,
Therefore, it defines v as a double valued function of u for
u >A -1, while no real v is defined for u < A - 1, However,

since
0 LELLL/H K1

only one branch of the curve has physilcal meaning. In the case
of 7.3a, it is readily verified that the algebraically greater

branch is significant, so that, solving 7.3a for v we obtain
V=vy == (2/3+A+B+u)+2/3(1+AH+ w372, (7.4a)

Similarly, only the lower branch of Eq. 7.3c is significant so
that

Vo = (2/3 4 A+B=u) -2/3 (1 +4A- u)3/2. (7.k4c)
Finally, Zqs. 7.3b and d yield single-valued functions
vy = (A + w2/ - B, (7.14D)

vg = = (A = w4+ B, (7.4d)
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The interaction curve corresponding to Egs, 7.4 is shown in

Fiz, 7.2, It 1s evident t-at the domain of safe stress result-
ants 1s defined by

Vhb< VK Vg (7.5)

Fig. 72

Domain of safe stress resultants for barelled hub,
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Next, we determine u and v in terms of the applied load
from Eqs., 5.8, If the slab is under equal biaxial tension,

Ty = Ty = 1 and Fgqs, 5.8 furnish

y

N = 2kAh(a + B) = 2kAh(a + b + ¢), M = M(O) (7.6)

obviously the best choice for the redundant moment is M(0) = O,
so that each section is thus stressed in pure tension., There=-

fore, we must have
N £ 2% (Area) = 2k (bH + ch + Le/2), (7.7)
Comparing 7.6 and 7,7 we obtain

bH + ch + Lc/2
M G e (7.8)

for safety in biaxial loading.
In uniaxial tension Ty = 0, Tx = 1 Egs. 5.8 furnish

W=DAg v=Y+ENE, (7.9)
where in addition to Eq. 7.2 we have introduced the notations
D =Lh (a + b+ c)/e H2,
F=I°h(a+b+c)a+b-c)2c?H3,

Y = N(O)L2 + x12/2ke® B3
¢ = sin® o, (7.10)

The substitution of 7.9 into 7.5 yields the four inequal=-
ities
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=(2/3 + A+ B +DM) +2/3 (1 +4A+DN)32. vy - EN¢ < O,
~(2/3 + A+ B D) +2/3 (1 +4-DN)324 v BN < O,
1/4(A + D\Q)® =B - ¥ - EN{ < O,
1/4(A = DAC)2 = B = ¥ + ENL < O, (7.11)

Inequalities 7,11 must be satisfied for all values of { in

0 £8 1. The enforcement of this condition will lead to cer-
tain inequalities not involving {., Each of these latter can
then be solved for the redundant quantity Y, The elimination
of Y then leads to various inequalities containing N as the only
unknown, and the desired value of A is the largest one satisfy-
ing these inequalities,

Unlike the examples in the previous section, the functions
of { on the left-hand side of 7.11 may attain their maximum value
at an interior point of the interval 0« t‘S 1. Therefore, it
is not feasible to obtain a general solution to 7.11, For par=-
ticular numerical valuss of the parameters, however, a solution

can, of course, be obtained, For the particular case

H

2k, h = 10, L = 1%,

a =24, b =11, ¢ = 20, (7.12)

Levin and Hodge [6] obtained the result A = 0,98, For the
same example, 7,8 shows that A = 1 in biaxial tension, so that
the cutout is restored to at least 98% of full strength under

an arbitrary uniform load,
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8.

etric convex reinforcement for a circular cutout

-y -

:

:

The techniques illustrated in the previous sections can be used,
in theory, to find the yield load corresponding to any shaped
cutout. However, if the hub profile is at all complex, the
interaction curve will, in general, be too complicated to handle
analytically. Rather than resort to straight numerical computa-
tions, it may be desirable to approximate the interaction curve,

In the first place, we observe that if the approximate
domain of safe stress resultants lies entirely within the true
domain of safe stress resultants, then any lower bound obtailned
by the approximate curve will be a true lower bound for the
problem., If this is the case, the approximation will be called
safe. Since, in the present chapter, we are only concerned
with obtaining lower bounds, it is most desirable to know
whether or not a given approximation has this property. Ve
shall Show that if the cross-section of the hub 1is symmetric
and convex, that a simple parabolic approximation will always
be safe,

To this end, let us refer the hub profile to Carteslan
axes X, y which are the axes of symmetry, and let us take
moments about the y axis (Fig. 8.1). Due to symmetry we need
only consider the first quadrant of the hub. In this quadrant
let

y = £(x) (8,1)

be the equation of the hub., The boundary may contain vertical
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'(

¢

or horizontal segments, but otherwise we assume that f is con-
tinuous and momotonically decreasing.
If x = { is the division between the tensile and conm-
pressive regions, ILqgs, 5.4 and 5.5 may be replaced by
X o L
= bk || £f(x)dx = J f(x)dax
- /2 d

’

= 8k ‘J cf(x)dx
o)

- Ll-k_‘ . (802)

Ip e
= kaJ xf(x)dx
Vo

4 N /2
I xf(x)dx -J xf(x)dx
1Y 8/2 4
Due to symmetry, it is necessary to consider only the first
quadrant of the stress-resultant plane, so that the absolute
value signs in 8.2 may be dispensed with. Let

: 0 8/2 d/2
No = 8kJ . f(x)dx, Mg = BkJ‘o xf(x)dx (8.3)
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be the maximum force and moment, respectively, and define
dimensionless resultants

4
.J f(x)dx . Itxf(x)dx
N M 0

v=J =O ._.._.,-..’“=—=-—Vr-————-—. (8.h-a,b)

No 1872 Mo
J f(x)dx J xf(x)dx
o o

The true interaction curve in the v, @ plane 1s then obtained
by eliminating { between Egs, 8.4,
Let us approximate the curve 8.4 by the parabola

p = l - v2o (805)

It follows from Eq., 6.3 that 8.4 reduces to 8,5 for a hub with
rectangular ssction., For any other section, we wish to show
that the curve 8.5 always lies below the true curve 8,4,

To this end, let us fix a value of ¥ and take v as de-
fined in terms of { by ®q, 8.4a. For the true curve p = By is
given by 8,4b, while for the approximate curve, it follows from
8.5 that

| 4 &/2 2
p.=p.=1..v2=1-[Jf(x)dx/\r f(x)dx ). (8.6)
A 0 0

Therefore, if we define

8(L) = pp = 1y (8.7)

we wish to show that g({) is equal or greater than zero for

0 L% LY2,
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Under the assumptions on f it can be shown that 8.1

g(0) = g'(0) = g(¥/2) = 0, g'(¥/2) L O, (8.8)

and that g'({) has not more than two roots in the closed in=
terval 0 £ { < &/2, Since g({) is continuously differentiable
1t follows that there is a stationary point at £ = O and one
interior stationary point, This latter must be a relative max-
imum of g, from the last condition 8,8, Therefore, since g

is zero at the endpoints and has no relative minimum, it is
cverywhere non-negative,

The preceding result may be stated in words by saying
that i1f safe stress resultants can be found for a rectangular
section they can be found for any other hub section with the
séme b; No and My. Thercfore, a safe approximation for any
symmetric conve:: scction can always be found in terms of a
rectangular section and the analysis completed as in Sec. 6.

In particular; it 1s easily shown [9 ), that under equal

biaxial tensions 2kMh per unit length, we must have

N<M z4/[na+ ¥)], (8.9)

where A is the total area of the section, and h the thickness

of the base slab, Under uniaxial tension 2kAh we must have
N < min (xl, kz), (6.10)

where A\, is given by 8.9 and

-

8.1 Detalls may be found in[ 9].
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Moz h [N 24 (aNg/Mig)? - (alp/Mg) ], (8.11)

Finally, it follows.from the analysis of Sec, 3 that a lower
bound on the cutout factor is given by 8,10,

In [9] the above analysis is used to discuss a toroidal-
type reinforcement for a circular cutout., In that example 1t
1s shown that the error introduced by approximating the inter-
action is negligible., In general, however, no such conclusion
has been obtained,

9. Design of narrow reinforcement for full plasticity.

If the reinforced cutout 1s to be subjected to only one type
of loading, then it may be possible to desigh a cylindrical
reinforcement for the cutout so that it will, 1like the "one
horse shay" reach the yleld stress at all points simultaneously.
In other words, for a given a(®) wc wish to choose the rein-
forcement 3(®) so that thc Equality 6.3 will hold at all points
of the hub, rather than the Inequality 6.k,

Since the general theory becomes quitc complicated [ 7] ’
we shall here illustrate it by considering a circular cutout

stressed in uniaxisl tension.9'1

Further we wish to design
the reinforcement so as to restore the slab to full strength,
Thus Tx = 1, Ty = 0, A =1 in Egs. 5.8, so that the resultants

aro

N() = 2kh(a, + b) sin? o,

M(8) = M(0) + kha(ag + 8) sin® . (9.1)

- o @ =

9.1 ?Pcs?rsic idea for this examplc was suggested by J.M. English
15]) .
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We shall verify a posteriori that the quantity sin @ 1s
an inereasing function of 0, so that N and M are both a max-
imum at @ = %2, Therefore, if 6.3 is to be everywhere valid,
M(8) must bec everywhere less than zero except at © = /2 where
it will equal zero, i.e., the cutout will yield in pure tension

there, With M(@) ncgative, Eq. 6.3 may be written

- 21 M/k + (N/2k)° = B 8, (9.2)
At 6 = 0 Tigs., 9.1 and 9,2 show that
N(0) = O,
21 M(0)/k = - HZ 8.2, (9.4)

while at © = %2 they furnish
N(®/2)/2k = h (a + &) = H &,
2H M(W2)/k = - H° 82 4 2Ihag (ay + &) =0,  (9.5)

where & 1is the valuc of b at 6 = %2, Eliminating 8, betwecn
Tgs. 9.5 we obtain

H 2 a02 + 602 (9.6
h 3,° )

Finally, the substitution of 9.1, 9.4, and 9.6 into
Eqs 9.2 shows that

[(1 + 2a°2)2 - sinu 6] p2 + 2a, sin2 e[ (1 + 2a°2) - sin® @] p
- [(1 +2a,2)% = 20,2 s1n20(1 + 2a,7) + a2 stnt 0 1 =0, (9.7)
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wherc we have used the dimensionless varlables
p () = OY by, do = 8gP g (9.8a)

Introducing the further abbreviation

2

£(0) = sin® @ / (1 + 28,°), (9.8b)
we may writc the solution of Eq., 9.7 as
‘ 5 .
_ @ f 1 -2 a7 £f/(1 + f)
p=s - 1+ f + \|——— 1 - .\2 ’ (909)

where the positive root is chosen since p must be positive,

In Figs. 9.1 and 9.2 we have sketched curves showing the
shape of the reinforcement for the cases 8, = 1 (H = 3,00 h)
and 8 =2 (d = 1.50 h) respectively, In each figure, the dot-
ted curve shows the circular reinforcement to full strength for
the same value of H, computed from Eq., 6.13, Finally, Fig. 9.3
shows similar curves for a square cutout under various loadings.

The detalls for this latter case may be found in[7].
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III. UPPTR BOUNDS FOR WIDE SLABS

10, Discontinuous velocity fields. The results

— . - e .

presented in the previous chapter were concerned with a narrow
relnforcement so that the hub might reasonably be approximated
by a curved beam, Actually, the range of application of such
techniques is rather limited, since if the ratio H/h becomes
at all large there 1is serious question as to the carrying
capacity of the hub, while if the ratio 8/a becomes large the
hub 1s not well approximated by a beam,

A more reallstic analysis in the case of wide unrein-
forced slabs or slabs with wide reinforcements is to approx-
imate the actual stress state by plane stress, In this and
the two succeeding chapters, we shall consider the problem of
finding the yield load of unreinforced slabs, assuming a state
of plane stress., We shall use both of the Drucker-Greenberg-
Prager theorems in order to obtain both lower and upper bounds,
The accuracy of the answer will be determined by thé relative
closeness of these two., In cases where the lower bound is far
below the upper bound, the problem must be regarded as still
unsolved,

A very simple type of velocity field which 1s quite use-
ful is to assume that the slab consists of two rigid parts,
and that motion occurs by the rélative sliding of these two
parts. In the present section we shall develop a general
formula for computing the internal rate of dissipation of

energy for such a motion (see also [16]).
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We consider two sections of material separated by a
common plane surface of areca A, with one surface in motion
relative to the other with a tangential velocity A'vt (Fig.
10.1a). As mentioned in Sec., 2, such a discontinuous velocity
field must be considered as the limit of a suitably chosen
continuous vélocity field, Let us choose coordinate axes so
that the x axis 1s normal to the plane of sliding, and the y
axls is in the direction of sliding, and consider the con-
tinuous motion defined in ¥ig, 10.1lb., As in Tig. 1O0.la,
region 1 is at rest while region 3 moves upwards with velocity

Avt. In the transition region 2, we define the velocity field

V:: = V‘Z = 0’ Vy = <X/b) AVt. (10.1)

Observe that this field is incompressible, and that the com-
bined vclocity field is continuous in region 1, 2, and 3.
Since the velocity ficlds in regions 1 and 3 are each
constant, the strains are all zero, Therefore, energy 1s
dissipated only in region 2. In region 2, the absolutely
largest principal strain rate has the constant value Avt/Qb.

Thereforc, Eq. 2.2 yields
d@& = 2k J;z ( Avi/zb)dv =X ( Avt/b) Vo = kAdvy (10.2)

independently of the value of & . Therefore, it follows that
Bq. 10.2 must also be valid for the limiting discontinuous

case, d = O,
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11. 81liding out of plane[2]. A simple upper bound
for any plane slab may be found immediately by considering a
shear out of the plane at 45°, Consider, for example, such
a shear across the x axis of an unreinforced slab (Fig. 11l.1).
Since the plane of sliding is at MSO to the plane of its
height will be h{ 2., Further, since the sliding takes place
along the weakest section AB, the sliding plane consists of two

rectangles, each of length 1 - a Therefore, it follows from

0.
Eq. 10,2 that the total internal rate of dissipation of energy

is e
D; =k 2hTZ (1 - 8a5) v (11.1)

The external rate of dissipation of energy is computed
from Eq. 2.3, Since there is no motion in the x direction, the
loadé Ty do no external work., The projection of the velocity
vector in the direction of the load Ty is v/y2, so that in
view of 2.3,

By = J‘Sz kAT, (v/(2)ds =2 V2 k h A\ Ty Ve (11.2)

According to Theorem 2, an upper bound for the load N\ is ob-

tained if [, and [y are equal, Thus
NI, K1 - 8. (11.3)

Since the average stress across AB is 2kkmy/(1 - a5), Eq. 11.3
shows that this stress cannot exceed the yield stress. This is
in marked contrast to the yilelding of notched bars under con-

ditions of plane strain [14, Sec. 33].
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12, Sliding in plane., The concept of rigid parts
sliding along planes can also be used for the case where the

plane of slidinz 1s perpendicular to the slab. As an example,
consider an annular slab of inner radius a and outer radius 1,
sliding along four symmetrically placed lines in the plane, as
indicated in Fig., 12.1, The slab is under uniaxial tension in

the y directiont Ty =0, T, = 1,

y

Due to symmetry, we need consider only the first quadrant
of the slab, In this quadrant the x and y components of velocity

are
Vx = = A, Vy = 0 in region 1,

Ve = 0, V, = B in region 2. (12.1)

y

However, it is more convenlent to refer the motion to the dir-
ections n and t, normal and tangential to the line of discon-

tinuity AB in Fig, 12,1, Fguations 12,1 must then be replaced
by

'

m=-Asiny, Vg = - A cos ¥ in region 1,

Vja = - Bcosy, Vg = B sin y in region 2, (12.2)

The constants A and B in %gs. 12.2 are not independent, since
the normal components of velocity must be the same in the two

regions. Thus
B = A tan ¥,

and the discontinulty in tangential velocity 1s readily computed
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Fig. 12.1

Sliding in plane of annular slab.
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to be
AVy = A sec v . (12.3)

Substituting 12,3 into 10,2, we see that the internal rate of
dissipation of energy is

LDy =%XhlLAsevy, (12.4)

where L is the length of AB.

The external rate of dissipation of energy is given by
/2
xﬁe =\rﬂ 2k ANsin@Bhdoe=2k ANhA tan vy cos B. (12,5)

An upper bound on M\ is then obtained by equating 12.4 and 12,63

L
N STy R (12,6)

Note that both Eqs. 12,4 and 12.6 represent one-quarter of the
total energy of the slab so that they may be equated.

The line of sliding AB has two free parameters which are
conveniently taken to be the angles @ and P as indicated in

Fig. 12.1. In terms of these angles we have

-L=\[1-2acos(3-a)+;§“9

(12,7)
sin v= (sin P - a sin @)/L.
Substituting 12.7 into 12,6 we obtain
2 2
N ¢ L=2acos (B-a)+a” (12.8)

= 2cos P(sin BP~asin a) *
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Any values of a and 3, subject to certain obvious geome-
tric restrictions, will furnish an upper bound for A, In
particular, if AB is assumed to be a radiel line, a = P and
the right-hand side of 12,0 becomes (l-a)/sin 2 B. Since this
can never be less than l-a, sliding alonz a radial line can~
not furnish a better upper bound then sliding out of the plane
(Sec. 11).

Obviously the best upper bound of the type considered
is obtained by choosing aand Pso as to ninimize the right-
hand side of 12.8, To this end, let

u=1-2acos(B-a) + a2,
(12,9)

v =cosP (sin P - a sina),

If f(u,v) = X is to be a minimum, then

2v
of _ v 8a/81 - u dv/e of
3 = 172 = J5-=o,573-=o
so that
Y - A - A (12.10)
or
5 :
-2 a cos E-q%-&a . 2 sin(f -a 2 g sin (B -a)
sIn PcosP -~ asin acosp " cosp cosa - cos 4+ a sinasinfB*

(12.11)

Equating the last two and first two members of the continued
equality 12,11, we obtain



a cos Bcosa - asinf sin a = cos 2 B,
(a2 + cos 2 B) cosa + sin2 B sin a=2 a cos B, (12.12)

Fquations 12,11 may be formally identified with simultaneous
linear algebraic equations in cos @ and sin a and solved to

yield

cosa =2 cos B (cos 2B + a2) ,
a(2cos2B +1+ a2)

sina = o~ cos2 2 B 2 (12.13)

P - N

-~a sin B(2 cos 2 B+ 1 # a%) )

Substituting 12.13 into the identity sin? g + cos® g = 1

and introducing the notation
4 ; cos 2 B (12,14%)
we obtain, after some simplification,
1-2a2) (€2 +a2¢ =82 =0,

Since a must be actually less than one, the second factor must

vanish, so that

L= (a/M) (-a £\ a2 + 8 ). | (12,19)

Now, 1t follows from Eq. 10 that the minimum value of
f is

f=1/2 > 1/2 3v/8a tan p - tan a, (12,16)

Replacing ¢ and B in Eq. 12.16 by their values in terms of {
as given by Eqs. 12,14 and 12,13, we obtain finally
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2
A =._J;_C%f;£LJ__? .
L= TN (12.17)

where { 1s given in terms of a by fgq. 12.15., It is readily
verified that the upper sign in 12,15 will furnish a lower
value of f and hence 1is the correct choice, In Fig, 12.2 we
have sketched the upper bound on A as a function of a. Before
accepting thils result, it was necessary to find B and a from
Eqs. 12,14 and 12,13 and verify that they were geometrically
admissible angles. This was found to be the case for all
values of a. Observe that for all values of a we have obtained
an improved result for this case over that obtained in Sec, 11,

as shown by the dashed line in Fig., 12.2,

13. Bending in plane, A totally different type of
yielding is suggested by the approximate analysis of the pre-
ceding chapter., If the slab were to be replaced by a curved
beam, the beam would fail by means of yield hinges. That is,
there would be certain sections of the beam where there would
be a concentrated rotation and extension [17] (or, equivalently;
an off center rotation [18] ), with the remainder of the bean
remaining rigid, Therc must be just enough of these yleld
hinges to form a mechanism,

Let us, then, consider such a yield hinge from a plane
stress viewpoint., Choosinz the y axis to be normal to the
beam at the yield hinge, and the plane of bending to be the
X,y plane, consider a rotation about the point A in Fig. 13.1.
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"Yield hinge" in plane stress.

The rigid portion of thc beam, region 3 will rotatc about the
point A with an angular vclocity é. Therefore

uy = - o (y - 1), vy = 0 x (13.1)

where u3 and v3 are the velocity components in the direction
of the x and y axes, regpectively. In region 1 u must equal
zero along AB by symmetry; and must be continuous with u3 along
AC, Similarly, v must be continuous along AC, and there 1s

to be no shearing strain in the vertical direction., Such a

velocity field is given by

Uy = =0 xcota, vy = é (y -=4) tan a. (13.3)
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Similar considerations show that

u, = ® x tan P ; Vv, = (L -y) tanB . (13.3)

There are no strains in region 3, while in region 1 the

principal strailn rates arec

e, = - O cot a, €. =0 tan a , €, = o (cot @ - tan a ), (13.4)

X Y

Observe that the axlal velocity w is thus not strictly con-
tinuous., However, for a sufficiently thin slab its action 1s
reasonably neglected, Separate analyses must be made for
greater or less than W4, For definiteness we shall take

a < %%+ so that the absolutely largest principle strain rate

has the value
max| € | = © cota. (13.5)

Substituting 13.5 into 2.2, we find that the internal rate of
dissipation of encrgy is

£, M2k dhcota n (13.6a)
where A; is the arca of region 1. Similarly, if B <n/,
P(2)=2 Kk 6h cotp Ay (13.6b)

Since,Ch‘3) = O the total internal energy is the sum of the
two Eqs. 13.6.
As an example, consider a squarc hole in a square slab

under uniaxial tension (Fig. 13.2). The velocity of the rigid
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Figo 13,2
"Bending" velocity field for square slab with square cutout.

part of thec material 1is

u=Q0(y -a-= c); vee-O(x-a-~f). (13.7)

In this case, the area of region 1 1is
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A, =1/2 b2 tan a,
1 9

so that
L, 2 xn v’ (13.8)

independently of the angle a.,

Since we seek the lowest possible upper bound, we
generally desire to choose the paramcters of a problem so as
to minimize the internal and maximizec the external energy dis-
sipation rates, Since ,Ol(l) is independent of a, we may
therefore choose aso as to maximize‘ﬁg. In view of Eq. 2.3,

it nl

L% =! 2kANhvdx=2k%k\h vdx (13.9)
|
¢ o {{ o

so that we wish to choosc v as large as possible. Since
vy =-9 [tan a (y = a =¢c) = (a + f) ]

is 1css than v3 along the top surface, 1t is advantagecous to
make region 1 as small as possible, i,e., to choose the limit-
ing case a= 0, Therefore, we may use 13.7 in the entire

integral 13.9 to obtain
O, =2kAho(a+f-1/2), (13.10)

The total internal energy dissipation rate is given by four

terms similar to 13.8:

Ly =kné 82 +c?+a® 4

2

=khO[b ¢ (1L-a-b2+£+(L-a-527. (13.11)
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Therefore an upper bound is given by

P -a-02+24Q-0-02 505

a+2¢f =1

A<

for any geometrically admissiblce cholce of b and f,
Since the denominator is independent of b, the best

choice is

which locates the hinge at the midpoint of the section, There-

fore, 13,12 becomes

2 2
N hg = Mo +f§;(l-a-f)

)
R (13.132)

If a <1/3, the minimum value of A, occurs for f = 1 - a, i,.c.,
the hinge 1s at the outer edge, However, for 1/3 < a, xo has

a relative mininum at

£=1/2(1L +\ 2 = %a + 322 = a, (13.13b)

With this value of f, the resulting %b represents the best
upper bound of the type considered, Figure 13,3 shows that we
have obtained an improvement over the result of Sec, 11 for

all a > 1/3,
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IV, LOWER BOUNDS FOR WIDE SLABS
1%, Discontinuous stress fields Lll. As we have seen in the

previous chapter, it is not difficult to construct upper bound s
for the ylelding of slabs with cutouts. However, the determina-
tion of statically admissible stress fields is, in general, more
difficult.

In the case where we are concerned primarily with uni-
form loads on rectangular boundaries, it is often possible to
construct a diséontinuous stress field consisting of several
regions of constant stress separated by straight lines of dise
continuity. This approach has also been used for problems in
plane strain [14, Sec. 331

We shall find it convenient to define the stress field
in terms of the principal stresses and a representative angle,
To this end, let @ be the smallest non-negative angle between
the x axis and a principal directiony let s be the principal
stress across the element inclined at @ to the x axis, and let
r be the other principle stress in the plane of the slab. Let
w be the reduced mean normal stress and X the reduced principal
stress difference:

w=(r + s)/Zk, X=(r - ska. (14.1)

Let N and T be the normal and tangential stresses
across an element inclined to the x axis at an anglea. In terms

of the new variables
£= we= y cos 2(0 - a), -ﬁ: « X 8in 2(0 - @), (14,2)

Across any line of discontinuity, these exterior components of
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stress must be continuous, but the remaining interior component
of stress may be discontinuous, Thus, if “kj 1s the angle
between the x axis and the straight line of discontinuity sepa-

rating regions k and J, we must have

1

wy = Xy cos 2(0j - akj) W, = X cos 2(, - akj)’
(14, 3)

Xy sin 2(0J - akj) X 310 208y = a4

Any stress field which satisfies 1%.3 and the stress
boundary conditions will be in equilibriums If it is to be
statically admissible, it must also satisfy the yield condition.

In terms of the present variables this may be written

max[HE1, &

2kl, Ixl] < 1. (1l )

As an example, let us conslder a square slab with a
square cutout under uniform uniaxial tension. The assumed dis-
continuous stress field is shown in Fig, 14,1, Symmetry demands
that the principal directions in regions 1, 3, and % be parallel

to the coordinate axes, so that
Ol = 03 = °’+ = 0, (1""05&)

Due to this symmetry we need consider only the first quadrant of
the slabe In regions 1, 3, and 4 the stress normal to the bound-
ary must be in equilibrium with the load, so that

8, = 2k\, & =0, ry = Os (1l 5b)

There will be three pairs of Eqs. 14,3 corresponding
to the three lines of discontinuity in the first quadrant, Since
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a23 = n/4 these may be written

wy = X, cO8 2(93 - 055)

fl

r
1
5) (1 = cos 20,,) + M1 + cos 2a,,),

r
w, = X, cos 2(03 - a2h) (E%)(l - cos 2a

2 )9

2l

RLS”

Wy = Xp sin 26, = 3, (14.6)

2

r
- - -—1
X, sin 2(8y = a;5) = (M = =2)sin 2a. 5
Ty

s
X5 cos 202 5 *

The geometry of the stress field 1s entirely determined
by the choice of the parameter x (Fige. 1l4.1)s Indeed, we have

— - = -z. °
tana =1 -x, tana, 1-Z (14 7)

Therefore, Eqs. 14,6 may be solved for the six unknown quantities

in terms of x:

tan 20, = %cﬁ,
A 2 2
o =-1-3 ; Sl
__A - 28
Y =13 (1 x 1y
i Aa (1448)
2k (1 - all-x) '
rn, _ Aa
2k~ (1 - a)(1 - x)'!
i YO S
2k l -2
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As a check on the computations it may be verified that the result-
ing stresses satisfy overall equilibrium requirements across the
x and y axes.

The problem, then, is to determine the largest value
of N for which k.4 will be satisfied in each of the four regions,
In each region, that inequality which would be violated for the
smallest value of N will be called the governing inequality. In
the present example it may be determined by inspection in each
region, The four governing inequalities obtained by substituting
14,8 into 14.% may then be written

xa < (1= a)(l = x), (1449a)

A Vx© + ba® < x(1 - a), (14, 9b)
A<1l=-a, (144 9c)

Na < (1 - a)(x - ad (14, 9d)

Since x/Vx2 + 4a® 1s always less than 1, Inequality 14.9c is
obviously satisfied whenever 14, 9b is, so that 14,9 are equiva-

lent to
N<(l - a)(l - x)/a, (14, 10a)
2 2
N <x(1 - a)/\/x + L4a (14, 10b)
A S (1 - a)(x - a)/a. (ll-l-.lOC)

Subject to the geometric restriction a { x {1, we may choose x
in 14,10 so as to obtain the maximum possible value of A\« While
x may be formally eliminated from the inequalities as in Sec. 6,

the resulting functions of A\ cannot be handled in closed forms
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Therefore, the following procedure seems more appropriate.

The general character of the right-hand sides of 1410,
considered as functions of x in the interval a < x £ 1 is inde-
pendent of a. Thus 14,10a is a straight line falling from
(1 - 2)%/a at x = a to 0 at x = 1, while 14,10c is a straight
line rising from X O to (1 = a)°/a in the same interval, Finally,
14, 10b is monotonically increasing and positive in a £ x £ 1.
These curves are sketched in Fig. 14.2. We must distinguish two
cases depending upon whether curve (b) passes above or below the
intersection of (a) and (¢)s In the former case, we must take x
as the intersection of (a) and (c) in order to maximize A\, while
in the latter case x is chosen as the intersection of (b) and (c).

After some computation [3] we find

x=%(L+a), A= -a)/e, If & > 0,443,
(14, 11)
a = — X1 = x) . >\=.(JL-1&Q-§)., 1f a < O.l43,

V(3x - 2)(2 - x)

The resulting lower bound on the collapse load is shown in Fig,
14,3, Also shown is the result for biaxial tension which will be
obtained in Sec. 18,

15, Stresg functiong.e While the method of discontinuous constant
stress fields 1s easy to apply in a few examples, it does not
adapt itself to non-rectangular domains. A second technique,
which holds great theoretical promise although an efficient means
of exploitation is yet to be found, is to construct a stress
function. As is well known, if the stress components are derived

from a stress function ¢ by meansg of
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2 2
02 - - .3 (15, 1)
Oy = ';y'é’ Oy '2;2’ Txy T~ Bxay’ ’

then the equilibrium equations 0.2 are satisfied identically.
For the elastic problem, ¢ must satisfy the biharmonic equation

L L,
" a:E ) ahw -
V\b: +2—T—+—-E-O’ (1502)
ax ax 3Y2 8y

and the boundary conditions. However, Eq. 15.2 is derived from
Hooke's law and does not apply when we seek only a statically
admissible stress field. For such a purpose we may choose gny
function ¥ which satisfies the boundary conditions.

Once ¢ 1s chosen, the stress components are determined

from 15,1, The principal stresses are then given by [19, Sece 9)

N ;
dl dx 4+ O \/<ox - g 2 5
‘, - _____Zz + —Tl/ T (15.3)

By definitely identifying °1 and 02 ag indicated by the signs in

15,3, the yileld condition 1,1 then states that
max[d,, = 05y 91 = o2] £ 2k, (15.4)

If 15.4 is everywhere satisfied, then the constructed stress
field 1s statically admissible and will furnish a lower bound on
the loads, More generally, if the load is expressed in terms of
the parameter A, any value of A\ which satisfies 15,4 is a lower
bound,

The stress function may be used advantageously with
other coordinate systems, Thus, in polar coordinates r, @ the

stress components defined by
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v 8%
O = % Br +'f§'35i '
d =-a—2—1bé ’ (1505)
© or
__ 98 %,
Tre - T Br % _3

will satisfy the equilibrium equations identically. The princi-

pal stress are then given by equations analgous to 15.4:

¢ ¢ 6 =0
c,1 =_1.L..2t__9.i \// ) +'t: (15.6)

9%

As an example, let us consider the annular slab (Fig.
12.1) for which an upper bound was found in Sec. 12. For uniaxial
tension the boundary conditions on the stresses are

at r=a: d_=0 T = 0
S (15.7)

"
-
Q
it

at r kM1 - cos 20), 7T.g = kKA sin 29.

r
In view of the dependence of the boundary conditions upon @, we
are led to try a stress function of the type

Y = £(r) + g(r)cos 20 (15, 8)
where f and g are to be determined. It then follows from 15,5
that the stress components are

_f£r , re! - e

g = cos 20,
r by r2
oe = " + g" cos 20, (15.9)
. .o, m'-¢g
O e sin 29,
r

where primes indicate differentiation with respect to r,
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Substituting 15.9 into 15.7 we obtain the boundary conditions for
f and g:

£'(a) = g(a) = g*(a) = O,

(15,10a)

£1(1) = kN, g(1) =4 kA, g'(1) = I\

Next, let us consider possible discontinuous stress
fields derived from stress functions. As previously discussed,
the normal and tangential stress must be continuous across any
curve, but the other normal stress need not be. For the annular
slab, 15.8 implies that the stress function is analytic as a
function of @, hence the only possible curve of discontinuity is
a circle r = r,« Across such a circle, . and " must be con=-
tinuous, but g may exhibit a jumps It follows from 15,9 that
f and g must be continuously differentiable but may have discon-

tinuous second derivatives. Thus,
t(pt) = £1(p~ +y - 1ipt) = ot(p”
£ (rk) f (rk), g(rk) g(rk), glir,) = ¢ (rk). (15.11)

Subject to Eqs. 15,10 and 15:11, we can choose any
functions f and g« Once these are chosen, the principal stresses
are determined by 159 and 15,6 and A i1s then taken to be the
largest number such that the yleld inequality 154 is valid at
all points of the slab.

The difficulty with using the method described above is
that even when the functions f and g are chosen as simply as
possible so as to satisfy the boundary conditions 15,10, the re-

sulting values of o. and ) become quite complicated, so that an

1
analysis in closed form becomes impossibles In the remaining sec=-
tions of this chapter we shall indicate two possible methods of

alleviating this situation which are currently being investigated,
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1641
16, Numerical techniques. ’ As indicated in the previous sec=

tion, even a simple choice of the functions f and g in Eq. 15.8
will lead to a complicated function of r and © when substituted
into the yield condition 15.4%, To obtain a lower bound for the
load, it is necessary to find that point in the slab where the
left hand side of 15,4 achleves its maximum, However, for complex
functions this cannot be done 1n closed form and it becomes
necessary to use numerical techniques.

A primary disadvantage of numerical methods is that a
separate problem must be solved for each value of the cutout
radius a, However, if an efficient means of utilizing modern high=
speed computing machines can be devised, this drawback becomes less
gserious,

In the present section we shall discuss some preliminary
steps which have been made in this conmnection, and indicate
possible extensionss The problem has only recently been looked
into, and the results and suggestions are purely tentative. In-
deed, it is impossible to say whether such techniques will ever
prove useful,

As a first step, let us replace f and g in Eqs. 15.8 by

two new functions each, defined by

£'(r)

KM(r)[1 + (1 = ¢)B(r)],
(16.1)

KXC(r)[1 + (1 -r)gD(r)].

g (r)

Substituting 16,1 into the boundary conditions 15,10, we see that

16T The results of this section were obtained by E. Levin,
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B and D are entirely arbitrary (provided, of course, that they
remain finite throughout the slab), and that A and C must be such

that
A(a)

L]

C(a) = C'(a) = 0, (16.2)

A1) =1, ©(1) =42, CH1) =1

For any A and C satisfying 16.2, we express successively
the stress function ¢ (Ed. 15.8), the stress components o, )
Thg (EAse 15.5), the principal stresses ¢,y g, (Ed. 15.6), and
the yileld condition (15,4) in terms of the four functions A, B,

C, D and the angle ®. The result will be three inequalities which
may be written
)\Fl[A, B, C, Dj 0] £2,
NF,[A, B, C, D3 0] <2, (164 3)
NF4[4, B, C, D; 0] <2

The constant A must be such that all three Inequalities 16«3 are
satisfied at each point of the slab. Any choice of the functions
A, B, C, D, together with sufficient computations, will furnish
such a A The problem then is to choose A, B, C, D so as to ob=
tain the largest possible value of N,

Without going into the details of computation, it is
evident that since 9 depends upon the second derivative of f and

gy the values of F;, F,, and F, will depend upon B and D, even on

3
the boundaries r = a, r = 1, However, a minor change in the defi-
nitions 16,1 will eliminate this. Let us, then, replace 16.1 by

the definitions
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KMA(P)[1 + (1 = r)2(r -'a)B(r)], (16.1)

INC(r)[1 + (1 = 2)3(r = a)D(r)]s

£'(r)

g (r)

The advantage of this 1s if A and C can once be chosen so that the
maximum value of 2kFi'gg_§ng_hgggggg1g§ appears to give a reason=-
able value for A, an attempt can be made to adjust low values of
F4 in the interior by manipulating B and Ds Therefore, in decid-
ing upon the "best" functions A and C, it is necessary to consider
only values at the boundaries r = a, r = 1,

At the inner boundary r = a, it follows from the bound=
ary conditions that ¢, and v are both zero, so that the yield
inequality becomes

'GQI.S 2k,

Replacing o° at r = a by its value in terms of A and C, we obtain

- 2 < NAY + C" cos 20) < 2, (164 5)

Inequality 16.5 represents a necessary restriction on A and C,
Since the middle member is linear in cos 20, the extreme values
are at © = 0 and @ = /2, If the assumed stress fileld is to be
at all close to the actual one; % will be algebraically greater
at © = 0 than at @ = n/2, so that C should be positive at r = a,
As an example, let us consider the particular case

a= %, and take simple polynomials satisfying the boundary cone
ditions:

A=+ @G3r-1), B=0, D=0,

(1646)

¢ = (3r - 1%(2 - r)/8,

Since only a preliminary analysis is intended, the resulting



B11-22 a4

functions Fk are evaluated numerically for a coarse mesh in r and
©. The results on the boundaries are given in Table 16,1

0 0 30° 50 60° 90°
r=a2a Max Fi 50 25 30 38 1, 50 0. 38 2¢ 25

r=1 Fl ) Oe 75 1, 8‘4‘ 2o % 1, 77 0. 25
F, 0s75  L73 228 2,57 2,25
Py 0 011  =0,22  =0,80  =2,00

Table 16,1
Values of max Fy on the boundary for Eq. 16.6.

Since the maximum value of F occurs at the inner boundary at

@ = 0, 1t follows from 16.3 that a peceggary restriction on \ is
A < w2y = 0,38 (164 7)
m (] [ L}

That this stress field cannot furnish a "good" lower
bound can be seen as followss Actual plastic yilelding cannot
take place until a plastic region extends continuously from at
least one point on the inner boundary to at least one point on
the outer boundary, since otherwise there will be a determinate
elastic structure renainiiay which can sustaln a greater loade A
necegsary condition that this be the case 1s that max Fy has the
same value on both tne inner and ouuar boundaries, which is far
from the case in Table 16.1.

Therefore, as an improvement, let us keep the same

value of C, but take A identically zero on the inner boundary.
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Thus, let 2
A=Q3r-1)"/M, B=0, D=0,
(16.8)

C =(3r - 1)2(2r - 1)/8.

The values on the boundaries are then given in Table 16.2,

0 0° 30° 450 60° 90°
r=a maxFy 375 1.88 0 1.88 = 3.75
Fy 2,25 20 T4t 2,83 2655 . L75
F> 2425 293 3kl 3.71 3.75
Fy 0 0,19  =0,59 =l,16  =2,00
Table 16,2

Values of max F; on the boundary for Eq. 16.8.

In this case, the maximum boundary value of 3.795 occurs on the
inner boundary at @ = 0° and © = 90°, and occurs on the outer

boundary at ® = 909 The corresponding necessary restriction on

Ais
A 5317'3 = 0,53, (1649)

In Sec. 12 an upper bound for this problem was obtained, Setting
a =% in Eq. 12,17 (or reading from Fig., 12,2) we find that
A = 0,59 1s an upper bound. Since 16.9 1s reasonably close to
that upper bound it would appear that we have obtalned a reason-
ably close solution gn the houndary.

However, 16,9 1s only an upper bound on the lower bound,
To obtain a true lower bound for the assumed function; we must
compute max Fy throughout the slabs The results are shown in
Table 166 3
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> @ ©°° 300 450 60° 90°
1/3 3475 1,88 0 1,88 3.75
1/2 3438 3¢ 52 3. 56 3.08 1,88
2/3 3¢30 3. 80 3092 3426 s 56
5/6 2.63 4. 70 5011 Lo 3% 1,88
1 2425 2493 3el41 3671 3.75
Table 16.3

Values of max Fy; in slab for Eqs. 16, 8,

The maximum value for the mesh considered is 5.11, occurring at

r =2, 0 = 45%, Therefore, 1t follows from 16,3 that
A < 0639 (16.10)

The next logical step 1s to keep the values for A and
C given by Eqs, 16.8, and to try non-zero values for B and D in
an a ttempt to reduce some of the high values in the interior.
Due to limitations of time, we are unable to include any further
results of this technique in the present report,

It should be pointed out that 16,10 represents only a
crude approximation, due to the large mesh size used, However,
it appears reasonable to use a large mesh to obtain information
as to "good" functions A, B, C, and D, Once this is done, the
results should be computed for a much smaller mesh to obtain a

~more preclse location and valuation of the maximum value of Fi‘
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17. Approximate vield conditionge An alternative to a completely

numerical approach to a statically admissible stress field 1is to
consider an approximation to the yileld condition sufficiently
simple so that analytic techniques may be employeds It follows
from Eqs. 15,6 and 15,4 that the actual yield condition consists
of the three inequalities

u+ Vo 4 % < 2k, (17.1a)
wu+ W o+ af < 2k, (17.1b)

2 2
v + 7 Sk, (17010)

where we have introduced the notations
u = (o, + d4)/2, v = (o, = 0g)/2 (17.2)

If we sketch the surfaces represented by the equality signs in
17,1 in a Cartesian space with coordinates u, v, and t, we obtain
a surface which may be described as follows:s The u axis is an
axis of rotation; for |u|l < k the surface is a cylinder of radius
ks for k £ Iul's 2k the surface is a pair of right circular cones
capping either end of the cylinder with vertices at u = + 2k,
The first octant of such a surface is sketched in Fig. 17.1.

Since we are concerned with finding a lower bound on
the yleld load, we shall consider only approximations to Fig. 17.1
which 1lie wholly within the actual yield surface. If this 1s done,
then any lower bound obtained using an approximate yield condition
will be a true lower bound for the problem,
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—_— ¥V

/ Fig. 17.1

u
Yield surface,

The difficulty with using the actual yield condition 1s
primarily due to the fact that the stresses contain both sin 20
and cos 290 (see Eqss 15.9) and hence by the time @ is eliminated,
the resulting functions of r have become quite complex, There=
fore, we seek an approximation which will simplify the dependence
on 6 Since T is the only stress component which contains sin
20, wvhile u and v contain only cos 20, we would like to separate
17.1 into inequalities containing only < and those not containing
T, Geometrically, this means that we wish to inscribe a right

¢ylinder or prism with generators parallel to the v axis'in
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Fige 17,1,

As the simplest such inscribed prism, consider a hexag-
onal prism oriented the same as the trace of the true yleld sur=-
face in the u,v plane and bounded by the planes t = % k/\/Z,
Analytically this 1ls described by the inequalities

%] < 2 vl < x/\/2
©liwvE, V2, (17.3)

- - LK),
0,5 (2 &E)k, 0y < (2 V_z_k)

The choice of k/\/2 as the height of the above prism
was entirely arbitrary and there 1s no assurance that it will
produce a reasonable approximation. To obtain a better approxi-
mation, let us consider separately the cylindrical and conical
portions of the yield surfaces, In the cylindrical portion (Eq,
17.1c), it 1s sufficient to let T and v satisfy

vl = x cos B, Ivl < k sin B, (17.4)

In the most general case, P can be a function of r and @, but

such generality would destroy the simplicity desireds A reason-
able basis for choice would be to divide the slab into a finite
nunber of regionss In each such region let the numerically
largest values of v and © be denoted by kAv, and kktn respective-
ly. In each region; P is then chosen so that the two inequalities

17,4 are equally restrictive. Thus, for the correct choice of B
kK\v, = k cos B, kAt =k sin B,
hence f is given by

B = tan~l l":ﬁ , (17, 5a)
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and the cut-out factor must satisfy
N < sin B/rn. (17.5b)

In the conical section, we construct an approximating
prism by first inscribing a pyramid in the cone, and then a prism
in the pyrémid. Since, in the only examples considered thus far
the most restrictive part of the yield condition corresponds to
the cylinder, the weaker approximation under the cone appears
reasonable.s Analytically, then, we note that 17.la, b will both

be satisfiled if
ful + |v] + |¢] < 2k

Therefore, we demand that
lul + |v] < 2kay |7] < 2K(1 - a). (17.6)

The parameter a is determined in the same way as the parameter B

in Eqe 17.% In particular, i1f a is constant throughout some

reglion, then + vV
B & @B __ (17.7a)
Un + Vp + 7
and
B2, (17, 7b)
w, + v,

If Eqs. 15.9 are substituted into 17.3, each of the
resulting inequalities are linear in either sin 20 or cos 20,
Since all inequalities must be satisfied for all values of @, it
is thus necessary and sufficient to satisfy them at the extreme '
values. Therefore, the quantities U vn; T appearing in Egqs.
17,5 and 17.7 are independent of ©,

Let us assume for simplicity that each of the regions

is a complete annuluss In terms of the functions f and g
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appearing in Eqs. 15,9, we then have

]
Ival =3 £ =00l + Flen - £ b &,

' 2
vl = 1% - =31 (17,8)
u, + v, = max( l%;l + Igg - %;l, £t + |g"l ],

The possibility of investigating the annular slab by
these approximate yield conditions is only now being investigated,
Unfortunately time has not permitted the inclusion of any examples
of the technique 1llustrated by Eqs. 17.4% through 17,8, In the
only example worked out so far by means of Eqs, 17.3 (see Sec. 21),
the resulting lower bound is disappointingly lows However, at
least part of the reason appears to be due to the choice of stress
function, rather than to the use of an approximate yield condi-
tions. Further investigations of this approach are being under=-

taken and will be reported on elsewhere,
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V. EXAMPLES
18. Square glab with sguare cutout. We have already considered

this problem in uniaxial tension in Secs. 13 and 14, Therefore,
it follows from Seces 3 that we need only find a lower bound in
equal bilaxial tension in order to find a bound undér any loading.
As in the case of uniaxlal tension, it is useful to consider a
plecewise constant stress field, as shown in Fig. 18.1l. Due to
symmetry, it is here necessary only to consider one-eighth of the
slabs Thus we seek to determine the stresses in regions 1, 2;
and 3 of Fige 18.1ls Symmetry at once determines the value of ©

in each region:

¢ Fig, 18.1

Square slab in biaxial tension,
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n
©,=6;=0, 0, =g, (18,1)
while the boundary conditions show immediately that

sl = 21{)\, 83 = Q. (1802)

Applying Eqs. 14,3 to each of the two lines of discone-
tinuity and using 18,1 and 18.2 we obtain

r
(Ei)(l - cos 2012) + M1 + cos a12) =W = X sin 20, 9

r
(3%)(1 - cOS8 2023)

r
(N = -2-%()sin 2a,,

W - sin 2a,.,
2" % 23 (18.3)

n

X, cos 2a12,

r
- (E%)51n 2055 = Xp COS 2a53

These equations are easily solved for the four unknown quantities,

the results being
2\ 2\ tan a

- - - . 23
X2 tan a13 - tan a23 y 9 tan Gy5 = tan a23 ?
(18e4)
2
Ty \ 1 - tan &5 tan dp3 ry \ 1 - tan 023
2k~ tan alz(tan a,o-tan a23)’ 2k tan a23(tan ay,-tan a2§7

The two angles appearing in 18.4 are not independent, but may
both be expressed in terms of the cutout half-side and the para-
meter x, Thus, from Fig, 18,1,

tan ¢, =1 -x, tanay, = - (x - a)/a, (18.5)

Substituting 18.5 into 18,4 we obtain
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_-2)\9. w = 2\ X - 2 y
Xo =TT - a)x’ 2 - 8lx
(18.6)
T 1~-x+a r 2a - X

R s 1 6 ey LA Sl c-aary 1 6 eury S

The value of A must now be determined so that all of
14,4 are valid. The governing inequality in regions 2 and 3 may
depend upon the values of x and a, so that on first analysis we

must solve the following five inequalities:

%= M reeae < b (1572)
;% = X‘(x f ;7?: mary IS 1 (18.70)
- ;13: A e < b (18.7¢)
_;% = A <1, (18, 7d)
- .;% = ;T%bg'if <L (1847e)

It is convenient to distinguish two cases, depending upon the
sign of x - 2a. If x - 2a 19 positive, it is evident that all

of 18,7 will be valid 1f 18,7a is. However, the largest A allow-
able by 18.7a occurs for the smallest allowable x, which in this
case 1s x = 2a. Since this case can also be considered under the
hypothesis that x -« 2a is non-positive, it suffices to examine

1807 for
X = 2a $Oo

Inequalities 18.7b and 18.7d are then obviously valid
if the others are, so that we seek the largest A such that
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r’ - -
LL—JML—-Kll ey ’ (18083)
AL <<'§% )
(1 - a)(x - a)
58 - X . (18080)
L

Considering the right hand sides of 18,8 as functions of x, it

is evident that all three are monotone and positive in the inter-
val a £ x < min(2a, 1) under consideration. Since the right

hand sides of 18,8a and 18,8c are decreasing functions of x,
while 18,8b is increasing, the situation may be discussed quali-
tatively as in the case of uniaxial tension, Figs 4.2, The
optimum choice for x will be the intersection of 18,8b with
either 18,8a or 18,8c, whichever yields the lower value of \.

After some computation it can be verified that

x=1f+2a-\a-a?+a1,

)"':']'._}_E [\/(l-a)2+a2-a],

for %(VE -1) <a<l; (18.9)

x:%[1+3a-\/(l-a)2+8a2]1
k:t}a[l+3a-\/(l-a;é+832]7

forOSaS-&(\/g-l).

The resulting function of N is shown as the dashed
curve in Fig, 14,3, Since the solid curve, representing the
lower bound in uniaxial tension is everywhere below this curve,
it follows that the lower bound obtained in Sec. 14 (Eqs. 1ll4e1l)
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is safe for any loading.

In Figs 18.2 we have redrawn this lower bound, together
with the upper bound determined in Sec. 13 (Egss 13.13). For
a <:%, a better upper bound is given by the method of Secs 1lls

Setting T, = 1 a;, = a 1n Eq. 1l.3 the latter becomes

y

A S l ~ a. (18010)

Therefore, for a given value of a, the cutout factor\ must lie
in the narrow reginn between the two groups of curves in Filg.
182, For practical purposes, we would appear to have solved

this example to a reasonable degree of accuracy.

19, Square slab with a slit [5) In the previous example we

were able to obtain a lower hound very close to the upper bound
by using a plecewise constant stress fields In the case of a
square slab with a slit we can do even better than that and
obtain the actual yield load.

The discontinuous stress fleld for uniaxial tension 1is
shown in Fig. 191, The method of solution 1s similar to that
used in Sec. 14 and the results are as follows (for details of

the computations see [5]):

®; =0, s, =2kA, = 2kha/(1 - x),

Ty

ot
o
s
n
©
n

2a/[x + a(l - a)],

2
wy = AMx - a(l - a))/[a + x(1 - a)], (1941)
Xy = = {[x + a(l - a)]2 + 14-82}1/2/[84'1(1-3)]’

03'—'0, r3=0’ 33
=0 38 =0, 1y

2k)\/(1 - a)’
- 2k\a/x.
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on yleld load of square slab
with square cutout.
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2k\
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¢ Fig., 19.1

Square slab with a slit-uniaxial tension.

Substituting 19.1 into l4.% and determining the governing in-

equality in each region ws obtain finally

ANa <1~ x,
N»/[x +al-a)F + ha2.$ a + x(1 - a),
(19.2)
k S 1 - 8.,
A < x
It is readily verified that if we choose
(19.3)
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then A=1-a (19.4)

will satisfy all of 19.2 so that 1 - a 1s a lower bound on the
yield load,

That 1 - a 1s also an upper bound for uniaxial tension
follows from the analysls of Sec. 11, provided we assume the
idealized "slit" to be equal in width to the thickness of the
slab,

Since the slab is not symmetric with respect to 1its
dlagonals, we must consider both biaxial tension anmi uniaxial
tension in the x direction in order to show that 1 - a is the
cutout factor. The latter 1s trivially true since in this case
the slit has no effect and the slab would support a load A = 1,
The case of blaxial tension can be handled with a piecewise con-
stant stress field as in the previous example (see [5]). However,
it is interesting to construct an entirely different statically
admissible stress field as followss

We divide the slab into three regions as indicated in
Flgs 19.2. The region interior to a circle of radius a (region
1) we take to be stress free, while the regions exterior to a
unit circle (regions 3) are assigned the equal biaxial stress

field.

6, =0, =0d_ =

y 0, =065 =2kN, T =0 (19, 5)

Region 2 adapts itself naturally to polar coordinates, and we

consider the stress field

Q
]

r = 2kM1 - a/r)/(1 - a),
(19,6)

2kV(1 - a), Tro = 0,

Q
n
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Fig, 19.2
Square slab with a slit-biaxial tension.

Observe that 19,6 furnishes continuous tractions with the stress

fields in regions 1 and 3, and satisfies the equilibrium equation
-C{ll-,(ror) -6y =0 (19.7)

in region 2, It remains only to satisfy the yleld condition 1l.1.
Since the principle stresses are in the coordinate directions
and satisfy

dg 29, 20 (19.8)
this means that we require

g = 2kM(1 - a) £ 2k, (19.9)
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or
A<1l=a (19, 10)

in agreement with 19 s

The preceding types of stress and velocity fields can
also be applied to slits in rectangular slabse If the direction
perpendicular to the slit is the longer dimension, we again ob-
tain A = 1 - a as the cutout factor. Indeed, the same upper
bound applies as before, while a statically admissible stress
field may be constructed as indicated in Figes 193 Region 1
is constant stress

o =0, o =2kNy T =0

&)

—— e e o e e - -

q‘ —__—..--‘l_—_

- i
qJ Fig. 19.3

Rectangular slab with a slit.
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while region 2 is the same plecewlise constant stress field con=-
sidered for the square slab,

If the shorter side is perpendicular to the slit, the
upper and lower bounds obtained no longer coincides. A few re-
sults are known [20], but they do not provide good approximations

and will not be reviewed here,

20, Square slab with a circular cutout Li_. An important

corollary to the first Prager~Greenberg-Drucker theorem is that
the yield load of an elastic-perfectly plastic body cannot be
lowered by the addition of material adjacent to a stress free
boundary. Indeed, it is merely necessary to assign a zero state
of stress to the new material and complete the stress field as if
it were not there, It was thls idea which we used in finding a
blaxial lower bound in the previous section.

The example under consideration can be regarded as a
square cutout, with additional material added to change it to a
circle, as indicated in Figs 20.1ls Therefore, it follows

Fige 20.1

Square slab with circular cutout,
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immediately that the lower bounds obtained for the square cutout
in Secs. 1% and 18 are also lower bounds in this case,

The solution of Sec. 13 also provides an upper bound
for the present example, To be sure, if we take the regions of
bending to have any finite width, then Eq. 13.8 is no longer
valid. However, in Sec. 13 we purposefully chose one of the
angles to passing to i1ts limiting value of zero, and left the
other three angles (B, y, and & in Fig. 13,2) undetermined, In
the present application let all four angles be arbitrarily close
to zeros, In the limit we again obtain Eqe 13.11 for the inter-
nal rate of dissipation of energy. Since the external energy
dissipation rate is unchanged it follows that Eqs. 13,13 are
valid in this case alsos Therefore, upper and lower bounds on

the yield load are again given by Fig., 182,

2l. Agnular slab, In the examples previously considered we have
been able to obtaln upper and lower bouhds which were reasonably
close together. However, for an annular slab this is yet to be
done, and the best upper and lower bounds obtained so far differ
considerably from each others This i1s unfortunate from a practi-
cal viewpoint, because probably the most common type of reinforced
cutout is a circular hole with an annular reinforcement. There~
fore, if we could solve the annular slab problem, we could use
the method of Sec. 4 to solve the slab-independent reinforcement
problem. Further, as we shall see in the next chapter, the only
direct methods evolved so far for the reinforced slab depend
heavily on the results of the unreinforced cutout problem,

In view of the importance of the annular slab, it seems
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worthwhile to discuss such meager results as have been obtained
so far, Inconclusive as these may be. The methods used have been
discussed in some detail in previous sections, and we shall here
merely collect fhe resultse

We first of all observe that the case of equal biaxial
tension can be easily disposed of, by considering the stress

field [1]

2kM(1 - 8)/(1 - a)
°r S AT (21, 1)

i

o 2kN/(1 - a), T, = O,

(4] re

Observe that this is the same stress field used in region 2 of
Fig. 19.2 for the slab with a slit. Therefore, just as in Sec. 19
we obtain a lower bound of N = 1 - a for equal biaxial tension,
Also, using sliding out of the plane (Sece 11) we obtain
N =1« a as an upper bound so that the cutout factor in equal
biaxial tension is
A=1 = a, (2142)

It remains, therefore, to consider uniaxial tension,
Upper bounds for uniaxial tension can be found by the methods of
Secss 12 and 13+ Equations 12,15 and 12.17 provide an upper
bound which 1s less than 1 = a for all values of a, thus showing
that the 1limit in unlaxial tension is definitely less than in
equal biaxial tension., However, for large values of a, the con=-
cept of bending, as illustrated in Sec, 13 provides a still lower
upper bound. Since the results obtained for the hollow square
slab (Fige 13.2) were independent of the angles a, B, y, b we
may, as in the previous section, set each of these angles equal

to zero and hence Eqs.s 13.13 are valid for the annular slab as
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well., As a matter of fact, since for the annular slab an in-
crease of a or y from zero would decrease the total internal rate
of dissipation of energy in regions 1 and 4, (Figs 13.2) respec=-
tively, a still lower upper bound could be obtained by variation
of these angles, This has not been done, however, In Fig, 2L.1,
the upper curve shows the resultant upper bound obtained by tak=-
ing the lower value of A\ as given by Eqs. 12,17 or 13,13,

For any stress function, a lower bound may be obtained
using Eqss 1743+ R. K. Froyd has used these equations with

stress functions defined by

2
' = = X\ + - +
R Srren AR soT iy,
£1 = 2K\ [r + 118 ], r] (21.3)
l-2a 2 | +
rigfergl
= kA + - 2
g = il-—%)-z[l__'iér +2ar-a]J
%— (1+a)° 1+a
Considering only the case a 2_% he obtained a lower bound
2
)\S__L'_é.___._, .l_(_a_(_.]é,
V2 (1 + 3a)

xsﬂJ"j)_Ll'éﬁ, %$a$6V§'5+“97-68V§ 2 0,78,

V2 a(3 - a) 4 V2
) (21 14)
A< L:ﬁ%_}%Lm_tS}UW'M <a<l
2 4 2 - T

The resulting lower bound 1s sketched in Fig, 21.1,

For the particular case a = % E. Levin has considered
numerically the stress function defined by
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A
N
1.0 ”\
. \.\‘
009 u \
0.8 | \ |
' (BEqo1241
07 - \ (Eqe.12,17)
0.6 \\
0.5 |- - S
5 (Eq.2106)x " = (EQo2105)
Okt + |
A(Eqel13,13)
0.3t ~
0.2 (Eqe2Lokt \
Ool - \\
e L L ! L L i MJM_’ a
0 0.2 O.k4 0.6 0.8 1.0
Fige 21,1

Upper and lower bounds for annular slab.
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£1 = kn (r - 4),
3 5-% LT S.%’
g = (k3r - 1,
f'=k)\(r-%), |
»2 ¢ T 52, (21 5)
g =k\(r-d), \J 3
N
f' = kA(3r - 2),
L 5 <r<l
g :k)\(r-l). (E“ =
"

The worst point was found to occur at @ ==n/4%, » = 2/3, The
result 1s subject to some question, of course, as a rather course
mesh was used. However, since the functlons involved are simple
ones, 1t appears reasonable that the worst point would be at the
end point of an interval in r, so that Levin's result may be ten-
tatively accepteds It would, however, be desirable to check it
analytically, at least using the approximate yield condition,
Levin's result is considerably higher than any bound so
far obtained for an arbitrary value of a, Therefore, for a a
little less than 1/3, the best bound available at present 1s to
combine 21,5 with a stress-free region for r <1/3. This accounts
for the horizontal portion of the lower curve in Fig. 21. 1,
Finally, for a less than about 0,265, the best lower
bound has been obtained by inscribing a hollow square in the
annuluse That part of the annulus exterior to the square is taken

to have a constant stress state, while that part interior to the

cutout in the square is taken to be stress-free, Within the
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hollow square, the discontinuous stress field of Sec. 14 is used.
Since the exterior side of the square is V2 in length, while a
length 2 was assumed in obtaining Eqs. 14,11, the result for the
present case is

Ap(8) = Ag(aVe) (21.6)

where ks is the cutout factor for the square as given by Egs.
14,11 (Eq. 14,11b is the applicable one in the range of interest
for a), and A, 1s the desired cutout factor for the annulus.
Figure 21,1 shows the best upper and lower bound core
responding to each value of a, As previously admitted, the
solution is by no means satisfactory and the investigation is

being continued in the hope of obtaining better bounds.
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VI, REINFORCED CUTOUTS

22, Reinforcement to full strength. In Sec. 4, a method was
Indicated by which a reinforcement for full strength could be

designed on the basis of the analysis of the hub alone. In-
tuitively, one might expect that such an analysls would always
be conservative, and that a consideration of the stresses in the
base slab would lead to substantially reduced hub dimensions.
However, as we shall see, this 1s not always the case,

As an example, let us consider a square slab of half=
side 4 with a circular cutout of radius a, reinforced by concen-
tric circular cylindrical rings of outer radius b The thickness
of the hub is H, and the slab is subjected to equal bilaxial ten-
sions 2kNFige 22.1). Ty

T
i)

y

/
\ \

ke— 4 d

N

. & =
H h g2 . 7z,
4 = <3
N
b —3pe—D
Fig. 22,1

Slab reinforced by rings
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Consider first the radially symmetric stress field [1]

Qa
H

2k(1 - %), dg = 2k, a<rgb

Q
ft

2k{1--§[1-%<1-%>i}, dg =2k, b<rgl, (22,1)

Q
t

2k, 6g = 2k\y T > Db

Observe that this stress field satisfies the equilibrium equation
(Eqe 19.7) in each of the three regions, and the boundary condi-
tion o, = O at r = 0, Further, at the hub boundary r = b the
traction per unit length is
2kH(1 - &
( b)

computed from either side. Finally, the tractions applied at
r = 1 will be in equilibrium provided that

A=1 '§ + (%)(b - a)/d. (22,2)

Therefore, Eqse 22,1 furnish an equilibrium stress field., If we
impose the additional condition that

H b
E<g3 (2243)

then at all points of the reinforced slab
6, 205 20 (22.4)

so that the stress field 22,1 is statically admissible, It
follows from Theorem 1 that
»21 -4 @b - a)a, (22, 5)

Next, we may construct a kinematically admissible

velocity field based on sliding out of the plane, as in Sec., 11,
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An elementary computation then shows that 1 =« b + (H/h)(b « a)
is also an upper bound for the yield load N\ Therefore, the load
and hub thickness are related by Eq, 22,2,

If the reinforcement is to be designed for full strength,
then we may set A\ = 1 in Eq., 22,2 and obtain

_ b
% = =2 (22,6)

This result is independent of the dimension d which
characterizes the slabe Indeed, the same result could have been
more easily obtained by the method of Sec. 4% For a plane annular
slab of inner and outer radil a and b respectively, the yield
load under biaxial tension is easily shown to be [1],

)\'_'1"%. (2207)

Substituting this into 4.1 yields 22.6 immediately.
Although reinforcement to full strength is independent
of d, the same 1s rnot true if we wish to reinforce to some value

less than full strengths Solving 22,5 for H/h, we obtain

b _le=A
deo-B--l=bg (22,8)

In Fig. 22,2 we have sketched H/h as a function of 4 for the
particular case a = 1, b = 2 for different values of A Observe
that for any value of N <1 a sufficiently large value of 4 brings
the slab to the required strength without any reinforcement

(H/h = 1)0



Bll=-22 112

H/h

200 [

leS5—

1;0 —

0e5

| | | | q
0 1 2 3 L 5
Fig. 22.2

A\ 4

Reinforcement to less than full strength.

23, Wide sguare reinforcement. As a second example of direct

computation of reinforced cutouts, consider a square reinforce=-
ment of a square coutout in a square slab (Fig., 23.1), The state
of stress in the hub, as well as in the base slab, 1s to be
approximated by plane stress,

Let us consider a piecewise constant stress field,
dividing the base slab into four regions as in the previogs sec=
tion, and dividing the hub into four similar regions (Fige. 23.1).
In each of regions 1, 3, 4, 5, 7 and 8, symmetry demands that the
principal directions be the coordinate directions so that
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| o
1 ® ‘
f ,,_———"’””'—_ﬂ-¢—~’—"——’i" ®
y
<) /
A @/
3 %
X )
[
a
_JLij_;g_L_L cutout hub base slab
|
Fig; 23;1

Wide square reinforcement of square slab
with square cutout.
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Q. =0, =90, =0_=0, =0, =0, (23013.)

Equilibrium with the applied boundary tractions determines

4]
]

2kh, s 0,

7 (23, 1b)
Oe

o]
]

y =0 Ty

Next, 1f we denote oy in region 3 by 2kt, and define

Rt

as the ratio of base slab height to hub height, equilibrium

between regions 3 and 5 furnishes

sy = 2k, Sg = 2kp N (234 1c)

In an example such as the present one which contains several
regions, it is desirable to linearize the equilibrium equations

between adjoining regions (Eqs. 14¢3) by defining
u =y cos 20, Vv =y sin 2o, (23.2a)

Using the further notation

the situation in each region is given in Table 23, 1.
Since we have already satisfied the boundary conditions
at the inner and outer boundaries and between the hub and base

slab, there are a total of twelve Eqs, 14,3 as follows:
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Reginn e p d W X u v
2 ®2 P 9% Yy Xa U2 V2
3 0 Py B P3 ¥k Py B Py 0
4 0 0 oy, oy -0y -0, 0
5 0 Ps BN Pyt HN Ps = BN pe - BN O
6 ¢ PG 9 Wy Xg U /3
7 Y Py 0 Py Py Py Y
|
Table 23,1
Stress quantities in Fig. 23.1.
recions 1,2: (p; + A) = (py = MOy = wy = usCy = v,5q,

(py = M) = uy8; = V09
regions 3,2: (py +p) - (p3 - p,)C3 = wy = ul, - VoS3
regions 4,2: 0 = W, =~ V,,
regions 5,6: (p5 + pn) - (pg - pnig= wg - uCe = VgSs

(Pg = BN)Sy = ugSs = VeCsy
regions 7,6: p7(1 - C,) = wg = uglyp - V¢S,

p7s7 = u687 - V6C7,
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regions 8,6: dg = Wy = Vg,

-08=u6,

where we have used the symbols

C, = cos 2a12, Sl = gin 2a12,
C3 = cos 2032, S3 = sin 2a32, (23.4)
Cg = cos 2“56’ Sg = sin 2“56’
C7 = cos 2“76’ S7 = gin 2076.

Equations 23.3 separate into two groups of six equations
each, the first six equations containing p,, Py Oy Wy Uny
and v, as unknowns; the second group containing Py Prs g9
wey Ug and vge The equations are easily solved with the use of

the trignometric identities

cos 2a = (1 - tan®a)/(1 + tanza),
(234 5)
sin 2a = 2 tana/(1 + tanza).
Further, it follows from Fig, 23,1 that
tan a,, =1 =y tan a., = 1 = y
12 ! 32 B! (23.6)
= - - - 2‘
tan dg = 1 %, tan o, =1 - &,

After some computation, then, we finally obtain

A=,

Py =1 T -9’
=M=p ., __Db_

P3®F =y T-0

_ A~ pb
°’+'1-b’

_A-pb  A=p  p
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A - ub
ug—-l-b’
= _oh = b
V2—-2-—-§—!'-0 -b’

©
Ul

it
1 {or
ml

[ 4
o
"F

=)
E]

p - —&L.-—Ej—]——- 9
7 b-a a-=-x
68= b-a“'q )
W = X = 2a b
6 x 'b-al““
g = = R pn,

- 2 b
Ve =~ 3? b-a th

Next, we compute the governing inequality in each

region. However, we first record the elementary inequalities
0<a<x<bgyc<l,
0<n<l, (23.8a)

0 p<A< 1.
Taking 23.8a for granted wherever they are needed, we see that in
region 1, p and ¢ are both positive and ¢ < 1 is included in
23.8a so that the governing inequality is

= Aep Db
pl—l-yl-bS].o (23¢8b)

In region 2, |yx| is easily computed from the identity

Ixl = V2 + v2

and 1t can be shown that for any values of the parameters
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Ix] > lwle Therefore, the governing inequality is

2 2 2
|x2| =-1——_J:—5 ﬁ - pb)” + (-2}-]9) (N =p) <1, (23.8¢)

In region 3, on the other hand, we have ¢ > 0 > p for any values

of the parameters, so that the governing 1lnequality 1is

= Aop
|x3l 03 = p3 =k *

T 1 = < L (23.84d)

Since p = O in region 4, the governing inequality is

- A=
(5’+ = T—:‘%’b S 1. (23089)

Finally, similar arguments for each of the four regions of the

hub lead to the governing inequalities

abpn

%% T = a)b - x) = g1 (23.8¢)

b
Ixg! = ” " 1 +-&2- (23.8¢)
-r7 =b-ax-a<l’ (23.81’1)
g = pnb < 1. (23.81)

8 b=a=

Inequalities 23,8 may be considered in either of two
wayse On the one hand, for given values of a and b we may wish
to determine the maximum value of n(= h/H) which will restore
the slab to full strengthe As far as the present type of stress
field is concerned, the situation is similar to that encountered
. in the previous section in that we obtain no improvement over the
result obtained by applying the theory of Sec. 4 to the example
considered in Sec. 18, To see this, we need only consider In=

equality 23,8, With A\ = 1, this becomes
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l-p-bSl-ba

Since b must be positive and p < 1 it follows that p = 1. There-
fore, the applied boundary tractions are transmitted directly to
the hub, as stated.

A second problem is to find the yield load of a given
reinforced slab. That i1s, given a, b, and n, find the maximum
A satisfying Inequalities 23,8, Since there are three parameters
in the problem, it 1is impracticable to obtain any general results.
However, a solution is easily obtained for any particular value
of the parameters.

As an example, consider a reinforced slab with a = & ’
b = %, n= % (observe that for a circular hole this would provide
full strength)s Since Inequalities 23,8¢ and 23.81 are conse-
quences of 23.8c and 23.8g, respectively, we must consider the

six inequalities

Nep <1 -y, (23.9D)
v =897 4 0= 2420 < 1, (23.9¢)
p+ (= p)(y - %) <1, (23,94)
b <2 - k4x, (23.91)
m \/—1_:5 _<_1; (23.9g)
p <x - 1, (23.9h)

Since p < N\ it is obvious that a larger value of Kk
will always allow a larger value of A in Inequalities 23.9b, cCo

An elementary calculation shows that the same result is valid for
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23,9d, Since these are the only three inequalities which contaln
A and y, while the remaining three are the only ones which con-
tain x, it follows that we wish to determine x in 23.9f, g, h so
as to maximize p in those inequalities. An analysis similar to

that used in Sec. 14 shows that we must choose

x=3, u=4 (23,10)

With this value of p, the first three Inequalities
2349 become

L ER? (23,11b)
2 \/(’* -9+ O - %)z/yz <1, (23.11c)
NSy 4. (23,11d)

These inequalities are again similar to those considered in GSec,
14, Let us try the value of y for which 23.,11b, d are both

equalitles.s Then
y =2, r = 4. (23.12)

It 1s readily verified that these values also satisfy 23,11lc so
that we have obtained the best value of A for the considered
stress field,

By way of comparison, the method of Sec, 14 together
with the results of Sec. 1% would furnish a lower bound of A\ = %o

The upper bound obtained by considering sliding out of
the plane is easily seen to be A = 1, corresponding to full
strengths However, by using a bending type vaeloclty field as in
Sec. 13, we can show that full strength is not attaineds For

simplicity, we shall assign convenient values to the hinge centers-
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by varying these values we could presumably reduce the upper
bound still furthers Thus, with reference to Fig. 13.2, take

b = %, ¢ =.&, d=0y7f= E. Observe that this locates the top
hinge at the junction of hub and base slab, and the lower hinge
at the outer edge of the slabs The internal energy dissipation
rates are given by Egs, 13.6, where h must he replaced by H = 2h

in areas corresponding to the hub.s The resulting total is

By = @) + @) +0+ (%) Jkh® = 15 kho/16,  (23.13)

Since the external rate of dissipation of energy 1is still given
by 13.10, we have
. [}
Dy = 216 +& - 3) = ko), (23, 14)

Comparing 23.13 and 23.1% we obtain the upper bound

A g%g. (23.15)

2%, Wide gslabg with narrow reinfor ntge If the hub 1s suffi-
ciently narrow to be approximated by a curved beam, as in Chaps
II, then the methods of Chaps, II and IV can be combined to fur-
nish a lower bound,

As an example, let us consider a circular cutout with
an annular cylindrical reinforcement subject to uniaxial tension,
We divide the base slab into several regions as indicated in
Fig. 24,1, Regions 1 through 5 constitute the base slab and
region 6 is the hub, The stress distribution in the hub is ex=
pressed in terms of stress resultahts, as 1n Chape IIs The stress
distribution in regions 1 through 4 is similar to that discussed

in the base slab in the previous section. The component of stress
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Fig, 24,1

Square slab with narrow annular reinforcement,
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dy is 2\k 1n region 1 to be in equilibrium with the applied load,
while in region 3 it is 2kp where p is a constant to be deter=-
mineds In region 5, the stress ls determined by regions 3 and L

to be

o, = 0,

x = 2kpy T, = O

% Xy

Therefore, it follows that the hub is acted upon by a uniformly

distributed vertical force of magnitude 2kph per unit 1qngth.
The forces acting upon regions 1 through 4 are exactly

the same as those acting on the corresponding regions in Fig,

23«1, considered in the previous sections Therefore, the same

stress distribution will subsist and hence the same governing

inequalities. From Eqs. 23+8b through e we have then

%-}-5 —— <1, (24, 1a)
-+ @200 - w? - 02 (244 1b)
p+H T-E-E*sl, (24, 1c)

A= pb <1 = b,
The last of these inequalities i1s a consequence of 24,1b and
hence will not be considered further. Region 5, of course, does
not add any new inequalitiese The inequalities in region 6 are
obtained from Eqs. 6,12, replacing A by pe Thus

b

pd 2o, (2%, 2a)
b < Ve =1, (24, 2b)

Next, we observe that the left hand sides of 24,1la and

¢ are decreasing functions of u for all values of y and b, while
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the same will be true for 24.1b if
y <b(2 = b)/(1 - b). (24, 3)

It is found that this is generally the case, so that we shall
assume that the left hand sides of all three Inequalities 24,1
are decreasing functions of pe¢ It follows that since p 1s bound=-
ed only from above by inequalities 2#.2, we should choose p to be
the largest value permitted by these equations. Then p becomes

a known quantity and inequalities 24,1 are to be solved, deter-
mining y so as to maximize A\, It should be pointed out that if

b and y should turn out to be such that 24,3 is reversed, this
will not lead to an invalid result,since for any choice of p and
y a legitimate lower bound on A is obtained. It merely means
that the best possible lower bound for the given data would not
be obtalned,

With p fixed, then, the general character of inequal=~
ities 24,1 1s the same as that illustrated in Fig. 14,2 for in-
equalities 14,10, Thus, depending upon the values of the para=-
meters, the best value for y will be the intersection of 24, lec
with either 24,1a or 24,1b., After some computation it is found

that
A > min(h, Ay), (24, 4)
where 5
R (%'}ﬁ) Ll_g_b.)._ . (2Y4, 5a)

and xz is defined implicitly by
2
[ 0= W)™ 0y, - )
L e (1 -7 0y - )

5 - (24, 5b)
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A convenient upper bound for the above example is ob=

tained by considering sliding out of the plane:
A<1=b+ (b-a), (2L6)

Other upper bounds can also be obtained by considering bending as
in the previous section. Some specific examples will be given in
Sec. 26,

The same approach can be used for any shaped hub. In
each case p is obtained by the methods of Chap, II, and A is
then given by 24.u4, Thus, for a square cutout with a square

reinforcement, it follows from 6.18 that

q | 5 -a +Va2 + 4p°

p =min £ !
!_\/E(a'l“b)’ h 2(8."'6)

As an example, let us consider the reinforced slab for which a

=

Ni. (2, 7)
4

plane stress bound was found in Sec. 23, With a =& = 1/k,

H/h = 2 Eq, 24%.7 furnished p %( VS -~ 1) = 0,62, Substituting

this into 2k, 5a we obtain Ay = 0,76, It 1s easily shown that Aj

is greater than A, in this case, so that
)\ = 0076 (2""'08)

is a lower bound. Comparing this with Eqs. 23.12 and 23.15 we
see that thils type of approach gives a value between the upper

and lower bounds furnished by the plane stress approach,
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Fige 24,2

Square slab with narrow hollow square reinforcement.
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29, Other loading conditions, Up to now we have been consider-
ing only the situation where a uniform load has been applied to

the boundary, However, in applications, it may be that only the
resultant load is known, and not the load distribution. In the
present section we shall discuss thls situation more generally.

In the first place, we observe that an assumption must
be made that the load intensity per unit length is nowhere greater
than 2kh, since otherwise the material of the slab would fail
locallys Secondly,it is evident that the dlab is generally stronger
if the load is applied near the edge of the slab, away from the
cutoute Therefore, we may consider two extreme cases as indicated
in Fig. 25.1. In each case, a vertical load of intensity 2kh
per unit length is applied over a length ¢ in each quadrant. 1In
Fig. 25.1a the load is at the outer edge, and in Fig. 25.1b at
the center, In either case we may define a design problem: to
determine a reinforcement which will support a given load span cj
or an analysis problem: to determine the maximum ¢ for a given
slab.

Let us consider first an unreinforced slab with an

outer load applieds For the case ¢ = 1 ~ a_ a statically admis~

o
sible stress field may be trivially constructed as indicated in

Fig. 25 2. Region 1 is stress free, while in region 2

2Ke

Q
1]
L)
n
o
Q
]

Therefore, it follows that 1 - a, is a lower bound for ¢, On the
other hand, a kinematically admissible velocity‘field consisting
of sliding out of the plane shows that 1 = a5 1s also an upper
bound, so that in thils case
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| (b)

Fig, 25,1
Extreme load distributions.
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>

' Fige 259.2 -
Statically admissible stress field for extreme load.

c =1 - aoo (2501)

As an.application of this type of analysls, consider a
test slab which is clamped perfectly rigidly at either end (Fig.
25.3)s If the clamp is perfectly rigid and indefinitely strong
then any equilibrium stress field in the clamp is statically
admissible. Such a stress fleld can always be found for any pre=-

scribed boundary stresses, for example, the elastic solution.

¢ |elamp

I Fig. 2503
Statically admissible stress field for clamped slab,
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Therefore, in Fige 25.3, let the stress field in the clamp be such
that it is in equilibrium a total 1lnad of 2kA on AB (in whatever
manner it is actually applied), no load on EC, and a uniform load
2kA/(1 - a,) on CD, The other sides are stress free and there

are no shearing tractions. Rezion 1 is taken as stress free,
while in region 2

dy = Ty T 0y o, = 2kA/(1 = ao)-

The above stress field will be statically aimissible for the

entire assembly of clamp and slab provided that ¢_ in region 2 is

less than the yelld stresss Thus a lower bound er Ais 1 - age
Since it follows from Eq. 11,3 that this is also an upper bound,
we have

A=1-= ag (25.2)
Therefore, for a perfectly rigid and strong clamp the collapse
load is determined.

In actual practice, the clamp may not be perfect, so
that 252 is not exacts While conceivably the actual load as it
reaches the slab could be as indicated in Fig, 25.1b, in practice
this seems most unlikely, so that the true collapse load is prob-
ably somewhere in between 25.2 and the uniform load analysis cone
sidered 1n the preceding section,

For a reinforced cutout the analysis is not quite so
trivials As a matter of fact, for reinforcement to full strength
the present viewpoint offers no improvement, However, for analy-
sis under a given load less than full strength, modifications of

the above procedure can certainly be used to advantage.

As an example, consider the reinforced slab discussed
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in the previous section, pulled in uniaxial tension by a perfect
clamp (Fig. 25.4%)s The stress distribution in the slab is the
same as in Fig. 25.3, where the length ¢ is chosen so that the
tractions transmitted across AB onto the slab are 2kh per unit
length. The base slab stresses are then statically admissible,
and it remains only to consider the hub,

The hub 1s subjected to a horizontal force of magnitude
2kh per unit length for 04 < 6 £ n/2 and to no force for O 0 <6
The resultants may be computed by equations analogous to 5.8,

and 1t is found that

N(8) = 0, M(Q) = M(0), 0 <@ <9y,

n (25.3)
N(@) = 2khb(sin @ - sin 6;)sin 8,
M(®) =

M(0) + khb(sin 6 - sin 01)(a sin @ =« b sin Ol)j

Using the notations

¢ = sin 0, Cl = sin 01,
n = h/H, a = a/b, (25.4)
Y = 2HM(0)/kh%b?,

and substituting 25.3 into 6.3 we obtain the yleld inequalities
¥+ @) =gt - g + (€ - T <A - (@59

Inequality 25,9 must be satisfied for all g £¢ S n/2, and Y is
to be chosen so that ¢, is a minimum, It follows from Fig. 25.4
that the resultant load on the quarter is given in terms of {; by
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2kMh = 2kAe = 2kh(1 - bly),
so that the reinforced cutout factor is
A=1- btl. (25.6)

The solution of inequalities 25,5 is not simple, even
numerically for specified values of n and a and no examples have
been computed as yetes Possibly some of the techniques for the
1limit analysis of arches [17] can be used to advantage.

A somewhat simpler (although 1n general not as good)
lower bound can be obtained by assuming full yield stress in
region 2a (Fig, 25.%) as before, but a constant traction 2khp in
regions 1 and 2bs The hub analysis 1s then identical with that
in Sec.s 6, except that M is to be replaced by p. Thus, from
Eqs. 6,12,

. )
b= hta + o a2
v - 3
p =H a + 2% 2 ir - < 2
h(a + &) a

Since the total load 1s
2khN = 2kh(1l - a - &) + 2khu(a + &),

the cutout factor is

b
N=l-(asd) s 1 2 3 2,
n a-=
(25.8)
N=1a-(a+d)+[Va®+ 282 - al/n 1if 3‘5 2e
a
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26. Compari with experi o« The only known experiments on
the yileld loads of slabs with cutouts were carried out at the
University of Washington by Vasarhelyi and Hechtman. These ex-
periments are described in [21], and it is of some interest to
compare the experimentally observed results with the theoretical
results here obtained.

A total of 23 specimens were tested involving slabs
without cutouts, with cutouts, and with reinforced cutouts, A
variety of cutout and reinforcement shapes were considered. In
each case, the slab was 36" in width, and had a gauge length of
36" so that the base slab was essentially square. All specimens
were 1/4" thick, and were made of a plain-carbon semi-killed grade
steel in an as rolled conditions

We shall here consider only those slabs with circular
cutouts reinforced with concentric annular rings, although the
methods of this report could be used to obtain a theoretical
result for all the specimens testeds 1In order to avold possible
experimental difficulties in determining the yleld stress, we
shall identify the cutout factor as the ratio between the yield
loads of the slab considered to the same base slab without cutout
or reinforcement, Further, we shall define the yield load as the
load for which a marked increase in deformation rate first occurred
In [21] this is called "general yielding". In each case the slab
continued to sustain greater loads, indicating the existence of
strain-hardening. Finally, we shall use the hub-base slab analy=-
sis, regardless of the actual welding process by which the rein-

forcement was attached,
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The comparative results are given in Table 26.1. The
dimensions of the slabs and reinforcements and the numbering of
the specimens are taken from [21], using the notation of Fige 25.k4.
Experimental results are taken from Table 4 of [21]s For two un-
cut slabs the general yielding load was found to be 380,000 and
390,000 poundss Since the lower value corresponded to a higher
value of the temperature than was used in any of the other experi-
ments, we have here used 390,000 pounds as the yield loade The
uniaxial cutout factor N is thus the yleld load for the slab in
question divided by 390,000,

In each case we have used the "beam" approach to deter=~
mine a lower bound, The lower bound for uniform edge load is
determined from Eqs. 24,2 and 24.4, while the lower bound for
uniform edge velocity is obtained from Eq., 25,8, Finally, the
upper bound is obtained by congidering sliding out of the plane
(Sece 11) and is given by

x=1-(a+b)+%. (264 1)

Lower Bounds
Specimen Dimensions Uniform Uniform Experimental Upper

Number a ) n Load Velocity Value Bound
5 ¢ /72 1/8 0.62 0u 7l 0. 83 0. 86
6 & 1/72  1/% 0,62 00 7 0. 83 0.79
11 2 1M 172 0.8 0. 87 0,92 1,00
12 ‘& 1/8  1/2 0.6k O 74 0.85 0. 88
17 £ 15/14% 1/2 0,62 0,73 0483 0.85
18§ 3/72 14 062 04 7 0.87 0. 88
Table 26.1

COMPARISON OF RESULTS
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