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PREFACE

During the past two years the author has been asso-

ciated with Contract N7onr-35810 between the Office of Naval

Research and Brown University, first as Visiting Professor of

Applied Mathematics at Brown University, and later as consul-

tant. During that time, problems of uniform slabs with cut-

outs and reinforced cutouts have been studied. The following

report is a survey of those results which have been obtained

by the theory of limit analysis. Some additional results in-

volving complete solutions [4, 8] 03 are not included. How-

ever, all other results obtained are either included in detail

here, or specific reference is made to a previous report.

With these exceptions, then, the present survey supersedes the

"B.11" reports (1-9] listed in the references.

This survey report is being issued at this time pri-

marily because the contract supporting it is about to expire,

rather than because the subject may be regarded as fully under-

stood. For this reason, many of the results presented are

admittedly incomplete. However, it has seemed worthwhile to

indicate possible lines for future attack, rather than to limit

the report to entirely solved problems.

The author would like to take this opportunity to

express his appreciation to B. Levin and R. K. Froyd, graduate

students at the University of California, Los Angeles, for

0.3 Numbers in parentheses refer to the references collected
at the end of the report.
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their assistance throughout the past year and a half. In addi-

tion to results for which they are directly responsible [5j 69

9 ], they have helped considerably with many of the concepts

and calculations throughout the report. The author also wishes

to thank the staff at the Graduate Division of Applied Mathe-

matics, in particular Professors W. Prager, H. J. Weiss, and

P. S. Symonds for their many useful suggestions and helpful

criticisms throughout the past two years.

Philip G. Hodge, Jr.

Los Angeles

May, 1953
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INTRODUCTION

The problems to be discussed in this report are best

exemplified by an example. Let us consider first a thin plane

slab of thickness h, made of a homogeneous material, and loaded

in its plane by uniform tensions of magnitude 2kWhTx , 2kXhTy

per unit length applied along the boundary of the slab (Fig.

O.la). As X is slowly increased from zero, there will be some

critical value kI  for which the slab will be no longer serv-

iceable.

We shall return to a more precise formulation of X1

shortly. First, however, lot us consider a second slab iden-

tical with the first except that it contains a centered cutout

(Fig. O.1b). If this slab is also loaded with tensions 2khTx,

2kkhTy and X is slowly increased from zero, the critical load

X2** will, in general, be less than X1** , since material which

formerly carried part of the load has been cut out. Finally,

if thin reinforcing rings are welded to either side of the slab

(Fig. O.1c) the critical load X ** will be increased over the3
unreinforced slab.

The design problem implicit in the preceding paragraph

is two-fold. First, to design the reinforcing rings so that the

slab with the reinforced cutout has the same critical load as

the original whole slab (obviously one cannot, in general,

reinforce the slab to more than original full strength). Second,

if design to full strength is impracticable, to determine the

actual strength of the final reinforced cutout slab.
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In order to approach those problems, it is first

necessary to obtain a more precise idea of the critical load

X**° To this end, let us consider more closely the bohavior

of the unreinforced slab in Fig. 0.lb. As X is increased from

zero, the material will first be everywhere elastic. The rela-

tion between the applied load and any particular displacement

will be linear, and if the load is removed the slab will return

to its original undeformed state. This will continue until X

reaches a value X, , at which point the slab will become plastic

at the most highly stressed portions A (Fig. 0.2a). Further

(Contained plastic
deformation)

Fig* 0.2a

Partially plastic slabs.

increases of the load will no longer be related linearly to

displacements, and an unloading would produce residual stresses

and strains.

For certain applications, it may be that this non-

linear bohavior with residual stresses and strains, would render

the slab no longer useful. However, the deformations at this

point are still small, and there is no tendency for them to in-

crease rapidly. Therefore, it may be that further increases in
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load are acceptable. In this case, regions of plastic material

will begin to form about the points A (shaded regions in Fig.

O.2a, 0.2b), and possibly to start at other points. However,

(Contained plastic
deformation)

Fig. 0.2b

Partially plastic slabs.

there will still be a constraining framework of elastic material,

so that the slab can stand further increases in load. As X

is further increased, those plastic regions will grow, until

for some critical value X** , tho elastic framework is no

longer able to constrain the plastic flow (Fig. 0.2c); even if

(Unrestricted plastic
fow)

Fig. O.2o
Partially plastic slabs.
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the material in the elastic regions were replaced by rigid

material the overall deformations of the slab could still in-

crease to large values. If the material is perfectly plastic,

the plastic regions can support no further load, so that the

slab as a whole may deform indefinitely. For a strain-harden-

ing material somewhat greater loads can be supported, but a

relatively large increase in deformation will accompany a com-

paratively small increase in load. Typical load displacement

curves for both types of material are shown in Fig. 0.3.

Throughout this report, we shall assume that the

material is perfectly plastic and incompressible. For such

a material we can specify the requirements of a "complete"

solution of the problem corresponding to any value of the slow-

ly increasing load. Assuming the slab to be in a state of

plane stress, such a solution will consist of determining three

stress components Ox' 0 y xy and three velocity components

Vx9 Vy9 v. all as functions of x and y. The stress components

must everywhere satisfy the yield inequality

F(dx, t t ))s0 (0.1)

where F is a given function for the material, and the equil-

ibrium equations

I~ *YT. 8T
"3 +O= 0 + O. (0.2)

04. This last restriction is not vital to the general conclu-
sions but considerably simplifies the mathematical pre-
sontation.
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displacement

(a)

load

(Strain-hardening

mIAterial)

displacement

(b)

Fig. 0.3

Load displacement curves*
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The velocity components must satisfy the condition of incom-

pressibility

+ .,. + o . (0.3)fj oz

Where the strict inequality holds in 0.1, the mator-

ial is said to be elastic and must satisfy Hooke's law:

8vx  ev
E x . - 1/2 dy , E y ,, y - 1/2 8x

G ; + =t 4xy 04

Together with Eqs. 0.2 and 0.3 this provides the necessary six

equations. Where the equality holds in 0.1 the material is

said to be plastic, and must satisfy the plastic potential

stress strain law

oP/ d OF/8o0,
Eov1 8x) - -x  t 8 y) -- (Ty-'

OF/ Xy
G (8V x8Y + ov/ox) - X

Equations 0.1, 0.2, 0.3 and 0.5 provide the necessary six equa-

tions in the plastic case. In addition, the stress components

must be in equilibrium with the applied loads, and certain

continuity conditions must be satisfied in the interior of the

slab. These latter conditions determine the position of the

boundary between the elastic and plastic regions.

A cursory examination of Eqs. 0.1 through 0.5 in-

dicates that the problem of finding a complete solution is
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extremely difficult, since not only must we solve six equations

in as many unknowns, but some of the equations are non-linear,

and a free boundary must be determined. The only known.solu-

tions are in cases where symmetry or other restrictions reduce

the number of independent and dependent variables. An example

of such a solution is given in (1+). In general, however, Eqs.

0.1 through 0.5 have defied solution, to date.

Although the determination of a complete solution

appears impossible, we can use recent theorems by Drucker,

Greenberg, and Prager [ 10, 11 1 to determine something about the

critical load ** . A precise formulation of these theorems

will be given in the first chapter. However, the basic ideas

behind them may be stated as follows. In addition to consider-

ing %** as the maxim load which the slab can withstand with-

out yielding indefinitely, we may also consider it as the

minimum load for which increased deformation becomes possible

with no increase in load. Using this viewpoint, it can then

be shown that by considering essentially only those equations

which contain stresses alone we can obtain a lower bound on the

collapse load, while considering only the equations which con-

tain velocities we can obtain an upper bound. If the two

bounds are equal, we have the actual value of the collapse load,

but even if this is not the case we may be able to obtain

bounds sufficiently accurate for engineering purposes.

The body of this report will be concerned with the

application of the theorems of Drucker, Greenberg, and Prager

to the problem of analysis and design of slabs with both
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unreinforoed and reinforced cutouts. In Chapter I, we shall

state the theorems precisely and indicate the precautions

which must be used in applying the results to actual situations.

Also we shall show that for a symmetric cutout it is necessary

to examine only uniaxial and uniform biaxial loadings to de-

duce certain results concerning any type of uniform loading.

Finally, we shall discuss certain relationships between the

reinforced and unreinforced cutouts.

In Chapter II we shall be concerned with problems of

narrow reinforcing rings which may be reasonably approximated

by curved beams. Various shaped cutouts and types of rein-

forcements will be considered. Chapters III and IV are con-

cerned with different methods of finding upper and lower bounds,

respectivelyg for slabs with unreinforced cutouts, while Chap-

ter V gives examples of these techniques as applied to various

shaped slabs and cutouts. Finally in Chapter VI we consider

slabs with reinforced cutouts and compare some of the results

with experimental data.
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I. BASIC CONCEPTS

1. Mathematical Model. In connection with some of

the results which will be presented in later chapters, the

question may well be raised as to whether the assumptions made

are "realistic." The subject of what constitutes a realistic

assumption is a most important one, yet one which is often

neglected in the arguments generated pro and con when a new

theory is presented.

The first point which must be emphasized is that no

mathematical theory can be entirely realistic. Consider for

example the uncut slab in Fig. O.la, and compare an actual slab

being stressed in a testing machine (in uniform tension, say).

This actual slab is not a perfect rectangle, since there will

inevitably be minor cuts and irregularities along the edges;

by the same token the faces are not perfect planes. The applied

load can be only approximately uniform. Any mathematical

analysis must moreover assume kmowledge concerning the physical

properties of importance, in particular in this case concerning

the yield stress function and the post-yield behavior of the

metal. It Is well known, however, both that these properties

are highly complex and that they may vary appreciably for

specimens cut from different points of a structure, because of

unavoidable differences in treatment during the manufacturing

process.

Since it is practically impossible and in fact un-

desirable because of the tremendously complicated nature of

the analysis, we do not oven attempt to give a completoly

realistio mathematical aoount. Instead, we begin our
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mathematical analysis by postulating a mthematica model.

For the example considered in Fig. O.la, the mathematical

model consists of a perfectly rectangular slab with perfectly

plane faces acted upon only by perfectly uniform forces ap-

plied precisely at the edges. In general, a mathematical model

singles out those features of the physical problem which are

considered important by the investigator, replaces them by

corresponding mathematical idealizations, and ignores all fea-

tures considered unessential. Once the mathematical model has

been chosen, one operates on it according to the laws of math-

ematics, in order to predict the results of certain experiments.

These experiments are also carried out for the original physical

problem, and the two results are compared. If this comparison

is satisfactory for the purpose for which the results are in-

tended, and of course for a sufficient variety of tests, the

mathematical model is deemed satisfactory.

Suppose, however, that the comparison of results is

unsatisfactory, Even in this case, the model may be used to

advantage in any of several methods. It may be that although

the results are not satisfactory in all generality, tey are

useful in a more limited context. Thus, a mathematical model

of a metal which specifies a linear relation between stress

and strain is inadequate for very large stresses, but highly

satisfactory for sufficiently small ones.

Alternatively, the experience gained in formulating

and comparing the model may suggest ways of specifying a

better model and may suggest the mathematical techniques
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necessary to work with the more complex model. And finally,

the crude model may, when supplemented by suitably chosen

experimental results, enable one to make better predications

than the experiments alone could lead to.

With the preceding discussion 1.1 as background, we

shall formulate appropriate mathematical models for slabs with

cutouts in the following chapters. However, there are certain

general features which are common to all cases. First, that

part of the slab which is not covered by the reinforcement

(and which we shall refer to as the base slab) is assumed to

be in a state of plane stress. The reinforcement together

with that part of the slab covered by the reinforcement will

be called the hub. The state of stress within the hub will be

differently specified for different applications, but in all

cases the tractions transmitted to the hub from the base slab

will be assumed to be uniformly distributed over the total

thickness of the hub. Observe that this assumption may depart

rather far from reality if the reinforcements are thick com-

pared to the slab.

Finally, it will be assumed that the material of base

slab and hub is perfectly plastic, incompressible, and satis-

fies Tresca's yield condition [13 lof maximum shearing stress:

F(Ox, 0y' XY- max ri 01 1,12 1, 1 1 - 62 1- 2k1O (1.1)

1.1 For a more complete treatment of the subject of mathe-
matical models, see, for instance, Ref. 12, Sec. 1.1.
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where U 1 and d2 are the principle stresses in the slab. A

perfectly plastic material is one which behaves elastically

for stresses less than the yield stress, flows indefinitely

under constant yield stress, and cannot support stresses greater

than the yield stress. The stress-strain curve for such a

material is given in Fig. 1.1a while Fig. l.lb shows a graph-

ical representation of Tresca's yield condition. In Fig. l.lb,

states of elastic stress are represented by points witbin the

hexagon ABCDEF, and the material cannot support stresses repre-

sented by points outside of t'e hexagon. Points on the hexa-

gon represent plastic states of stress t A is uniaxial tension,

B is equal biaxial tension, G is pure shear, etc.

d

2k Fig. L.la
-Stress-strain diagram

-C B

2k

Fig. l.lb D A

Yield condition 
Tk

E -2k- F  2k

Fig. 1.1

Perfectly plastic material
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2. The Druo'cer-Greenberx- rgxer Theorems. As pre-

viously stated, the basic concept behind the theorems of

Drucker, Greenberg, and Prager is to determine the smallest

load for which an increase in deformation can occur with no

increase in applied load. T'is load will be referred to as

the yield 12 and the structure will be considered safe if

the acting load is less than the yield load. Subject only to

the additional qualification that loads up to this value can

be considered to be applied to the undeformed boundary, certain

significant results have been obtained. It is beyond the scope

of the present report to reproduce the proofs of these theorems;
2 .

we shall merely state the results insofar as they a-ply to t e

problems under consideration.

First, then, let us consider a stress field (i.e., a

set of three functions d., , y) which satisfy the equations

of equilibrium (7,qs. 0.1) and the Tresca yield restriction (1.1).

If any such stress field is called sttica admissible , then

the first theorem may be stated as follows:

Theorem l. Theveld load is the largest load for

which there exists a statically admissible stress

field.

It follows from Thin. I that = load for wlich a

statically admissible stress field can be found must represent

a lower bound for the yield load. Further, it should be noted

that no explicit requirements of continuity were made. Of

2.1 Both theorems were originally proved for a Prandtl-Reuss
material in ilane strain ( 10 1. Complete proofs for these
oases are also given in F 14 1, Sees. 33 and 39. They have
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course, equilibrium implies that the tractions across any

element must be continuous, but it will frequently be useful

to consider stress fields across which the remaining stress

component (the inteiorcomponent of stress i+, p. 155] )

exhibits a finite Jump.

The second limit analysis theorem is concerned with

velocity fields which satisfy the equation of incompressibility

(Eq. 0.3). Let such a velocity field be considered as produc-

ing purely plastic strain rates, and define a stress field by

the stress-strain law (Eqs. 0.5 with the stress rates equal to

zero). The resulting internal rate of dissipation of energy

has been shown [lI to be given at each point by

D = 2k max C e I (2.1)

where max I £ I denotes the absolutely largest principal com-

ponent of plastic strain rate. The total internal energy is

defined by

D T~dv 2k Lmaxi Idv. (2.2)

Also, if v represents the vector velocities of points on the

boundary, and F the applied force on the boundary, the external

rate of dissipation of energy is given by

T F & v ds. (2.3)

2.1(Cont d. lso been proved for the general perfectly plastic
solid LiI . A detailed account for the case of a m teial
satsfying Tresca's yield condition may be found in [i .
Also, see ElJ for a more thorough discussion as applied to
states of plane Stress.
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With these preliminaries, an incompressible velocity

field will be called -kinematically admissible if the internal

rate of dissipation of energy does not exceed the external rates

The second theorem then reads as follows.

Theorem 2. The yield load is the smallest load for

which it is Possile to find a kiematicnl l y admis-
sibl e velocity field,

It follows from Thm. 2 that AU load for which it is

possible to find a kinematically admissible velocity field is

an upper bound on the yield load. Further, it follows from

Thins. 1 and 2 together that the yield load is the unique load

for which it is possible to find both a statically admissible

stress field and a kinematically admissible velocity field. It

will be observed that in this case also no explicit requirements

of continuity were stated. It follows from the incompressibil-

ity of the material that the normal component of velocity must

be continuous across any surface, but the tangential component

may exhibit a finite .Jump. The appropriate internal energy

dissipation may be evaluated by a limiting process. This pro-

cedure will be illustrated in Chapter III.

3. Arbitrary uniform edge loads. For the main part

of this report we shall be considering loadings of the type

given in Figs. 0,1, i.e., a uniform tensile load of magnitude

2khTx per unit length on the sides normal to the x axis, and

a uniform tensile load of magnitude 2kthTy on the remaining sides.
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If we consider first Fig. O.la, and take X = 1 , it is evi-

dent that for the uncut slab the resulting stress field will

be constant:

ox =2k Tx, ay =2k Ty,x T  O. (3.1)

Since the principle directions are those of the coordinate

axes, it follows from 1.1 that the stress field 3.1 will be

statically admissible only if

max [ TxI, T y I, ITx .Ty ] I (3.2)

Therefore, if we consider a load space with coordinates T., Ty,

the load point must lie in the hexagon ABCDEF (Fig. 3.1). This

hexagon will be called the domain of-safe loads.

Let us next consider the same slab with a cutout (Fig.

O.lb). Obviously the domain of safe loads in this case will be

some region R wholly contained in the hexagon ABCD1F. For

reasons which will be elaborated on in the next section, we are

not as interested in the actual region R as we are in the largest

hexagon A'B'C'D'E'F'similar and similarly placed to ABCDEF which

is contained in R. In othor words, we seek the largest number

) such that if Tx, Ty is a safe load for the uncut slab, then

the loads XTx9 XTy are safe for the slab with cutout. Such a

value X will be termed the outout factor.

With this definition of a cutout factor, we can show

that for a slab which is symmetric with respect to the x and y

axes, only a few different types of loading need be considered

in order to establish a lower bound on X . To this end,

suppose that a statically admissible stress field S1 can be
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constructed for the uniaxial tension load (Xo, 0 ), that a

statically admissible field S2 can be constructed for the

uniaxial tension load ( 0, Xo ), and that a statically admis-

sible stress field S3 can be found for equal biaxial tensions

( 0, X0o). It can then be shown that a statically admissible

stress field can be constructed for any load point lying in

the hexagon determined by XOl If, in addition, the slab is

symmetric wit' respect to the line y = x, then the existence

of S2 can be deduced from S1 . The proof of this result follows

from the convexity of the load domain and the yield surface.

Details may be found inr 21 , r 7 ], or [10 ].

For a reinforced slab, the same results are generally

valid. In particular, if the slab is to be reinforced to full

strength, the dimensions of the reinforcement must be such that
).*= 1.

+. Reation sbetween reinforced and unreinforoed

cutouts. For certain types of application, it is desirable to

design a reinforcement for a cutout which will restore the slab

to full strength, independently of the base slab dimensions.

The only method of guaranteeing this, is to choose a constant

stress field in the base slab, since such a stress field will

satisfy the boundary conditions along any parallel boundary.

Thus, the determination of a statically admissible stress field

in the base slab is trivial, and it remains only to consider the

hub.
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If the hub is of constant thickness H, then it may

itself be considered as a plane slab. When loads 2khTx, 2khTy

per unit length are applied to the base slab, the same tractions

will be submitted to the hub, so that the stress on the hub

boundary is 2k(h/H)Tx, 2k(h/H)T y. Therefore, the analysis of

the reinforced cutout slab is reduced to an analysis of a plane

unreinforced slab.

It is basically for this reason that, in analyzing an

unreinforced slab we are more interested in obtaining the largest

possible load hexagon (Fig. 3.1) rather than the actual domain

of safe loads. For, once the value of X has been determined for

a slab of given dimensions and cutout, the thickness H of a hub

of the same dimensions and cutout necessary to restore a slab

of thickness h to full strength, independently of the dimen-

sions of the base slab is

H u h/ . (4 .I)

The principles underlying the above remarks remain

valid even if the surfaces of the hub are not plane. In this

case, of course, other means must be used to analyze the hub,

but if this can be done, Eq. 4.1 is still valid, provided that

the reinforcement is so designed that h/H = const.
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II. NARROW REINFORCEMNTS

5. oral theor. Consider a cutout of arbitrary

shape in a slab of thickness h, reinforced by arbitrary narrow

reinforcing rings (Fig. 5.1). It is desired to find a lower

bound for the cutout factor of such a slab, valid for any type

of uniform loading and independent of the dimensions of the base

slab.

In view of the results of Secs. 3 and 4, the analysis

of this problem can be reduced to the consideration of the hub

alone, loaded under uniform uniaxial or equal biaxial tensions.

In the present section we ma.e the stipulation that the dimen-

sions of a hub are such that it may be reasonably approximated

by a closed curved beam and that shear in the beam may be neg-

lected. Of course, such an assumption can be incorporated into

the mathematical model of the problem for any dimensions. How-

ever, the results predicted are likely to be reasonable only if

the reinforcement is reasonably narrow, and if the thickness

ratio of hub to slab is not so great as to seriously affect the

carrying capacity of the hub.

Let the hub be referred to polar coordinates r. 0 with

origin at the center of symmetry, if any - otherwise at some

interior point. Let the inner radius of the hub be denoted by

-'= a(6) (5.1)

and the radial thickness by& (8) so that the outer radius is

r a(B) + b(e)(.2
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Fig.a 5. 1

Slab with narrow huzbe
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The height of the hub at any point is then given by

H = m(e,8) (5.3)

We shall restrict our consideration to hubs whose

inner and outer boundaries are sufficiently near to circular,

so that a "cross-section" of t.,e hub may reasonably be considered

as a section 9 = const. (Fig. 5.2a). Within the framework of

beam theory, the stresses across any such section may be re-

placed by the stress resultants. Since shear is to be neglected,

at each section 9 we have an axial force N(O) and a bending

moment M(G). Let these moments be taken about an arbitrary

value r = b(O).

(Dimensions of cross section)

H(r,e)

Fig. 5*2a

Cross section of hub.
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The resultants N and M must be derived from the axial

stress 0 exerted across thi section. Since this stress cannot

be greater than the yield stress, the resultants will be sub-

ject to certain inequalities. To determine these inequalities,

consider the caso where the section is stressed to capacity.

Thus, in Fig. 5.2b, suppose the hub section to be stressed to

the yield limit in tension for T'r> and in compression for r > r

If the yield stress is denoted by 2k, the resultant force and

moment are

N(O) = dA =2k[ r -H d r + +H dr 1 (5.4a)
Sa 1b+1

(Fully plastic cross section)

bN

Fig. 5.2b

Cross section of hub.
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Jb+q ha+b

M() (b -r)A 2k[ S.(b-r)idr + I (b-)idr . (5.4b)
Va Ub+q

Equations 5.4 define N and M in terms of a parameter

q which may take on any valuo between a-b and a+b-b. Similarly,

if the regions in tension and compression are reversed, one

obtains the equations

b+ q a+6

N(9) = 2k[ aHdr + I -Hdr 1, (5 5a)
a b+q
- d +Xa+b

M(e) = 2k ( -(b-r)Har (5.5b)

If these curves are sketched in on N, M plane, the resulting

closed curve is called an interaction curve. Stress resultants

corresponding to safe stresses must lie within this closed curve.

The closed hub represents a structure with one degree

of indeterminancy, so that the forces and moments at any point

may be expressed in terms of the applied loads and a single

redundant. Let this latter be the moment at section 0 = 0. For

simplicity of exposition, we shall assume that the hub is sym-

metric with respect to the x and y axes, although the results

are easily extended. Equilibrium of the first quadrant in the

y direction then demands that

N(O) = 2kXhTy(a o + b0 ) (5.6)

where ao and bo are the values at =0 of a and 6 , respectively.
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Next, let us consider equilibrium of an arbitrary seg-

ment of the hub, OABCD (Fig. 5.3). For convenience we may re-

place the uniform loads on BC and CD by equipollent concentrated

forces

Fx = 2kkhTx (a +& ) sin e,
Fy = 2khTy C (a. + bo ) - (a + b ) cos 3 (5.7)

acting at the midpoints of BC and CD, respectively. Equilibrium

in the direction of N(9) then yields

N(8) = Fx sin - Fy cos + , N(O) cos 8

= 2kh(a + 6) Tx sin2  *TF cos 2 +T, (5.8a)

while moment equilibrium about !,= b furnishes

M(e) u M(O) - (bo - b cosO) N(O)

+ Fx (b - ) sin 0 + F [ ao + 0 + 2(a+)co. . -b cos 3
2

, M(O) + 2k~h(a4. )(b - a' )(T sin2 9 + Ty cos 2 )

- 2kXhTy (a0 + bo)(b 0 - a- + b- )

(5.8b)

The analysis problem now consists of the following.

Eliminate q between Eqs. 5.1 and between Mqs. 5.5 to find the

interaction curve, and express the fact that the point with co-

ordinates N, M must lie within this curve by means of inequalities.
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b

P'x

(a+b)sin e
l(a+b)sin 0

K *aOb + (a+b)cos 0]

Fig, 5.3

Equilibrium of hub segments
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Substitute Eqs. 5.8 into these inequalities to obtain inequal-

ities involving N(O), 9 , X and known quantities. M(O) is now

chosen so that X will be a maximum subject to the condition

that these inequalities be satisfied for all O< 91 3. Several2"

examples of how this is done, together with the application of these

results to design will be given in the remaining sections of this chap

6. Cylindrical rnR reinforementsr 22 7 If the

height H(O) of the hub is a constant it is convenient to choose

b to be the center of the section:

b = a + 1/26 (6.1)

Integrating Eqs. 5.+ and 5.5 we then obtain

N 2Mu1 M 2kH (2 q 2- (6.2a)

N = 21iq, M = + 2kH 4 q 2  (6.2b)

respectively. After eliminating q, Eqs. 6.2 can be combined to

give the interaction curve in the form (Fig. 6.1)

8 k H I M I + N2 = (2kH6) 2 . (6.3)

Therefore, safe stress resi'ltants must satisfy

8 k H I M + N2 < (2b) 2  (6.1)

As a first example, let us consider a circular cutout

with a circular reinforcement, so that a and b are each constant

(2 ]. In the case of biaxial tension, Tx = Ty = 1 Eqs. 5.8

reduce to
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M

2
kHb2/2

N

Fig. 6,o1

Domain of safe stress resultants for cylindrical hub.

N(Q) = 2kkh(a o + bo), MI'(Q) = M(O). (6.5)

Obviously the best choice of M(O) is zero, so that inequality 6.1+

becomes

2kXh (aO + bO ) < 2k1 o60. (6.6)

For given dimensions ao, 6o, H the maximum cutout factor for

equal biaxial loading is thus

Hba (6.7)S-h -ao + bo)'

with, of course, the stipulation that X < 1.

For uniaxial loading the result is not quite so trivial.

In this case, T. = 1, Ty Y 0 so that Eqs. 5.8 reduce to
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N(Q) =2k~h (a0 .. 6) sin2 9

M(Q) a M(O) + lc~h a0 (a0 + bo) sin2 0

Substituting these values into 6.4+ we obtain

8k!! I M(0) + lcAh a0 (a0 + 6bo) sin2 g

+ 1. k2 X2 h2(a0 .9.)2 sin+ 0 4 (2kHbo) 2 . (6.8)

The left-hand side of 6.8, considered as a function of sin:2 0,

obviously achieves its maximum value at one or both of the end-

points sin2 0 =o or sin2 9 1. Therefore, 6.8 will be satis-

fied for all 0 < 9 if and only if

8kH ( M(O) + kXha 0 (a0 + bo) J+ 1+ IC2 X2 h2 (a0  _' 0) (2kHbo) 2,

8kH (-M4(0) - kXha (a0 + b.) J+ 14. IC2 X2 h2 (a0 + bo) 2 < (2k~b )2~

8i~ M(0) (2kH6 0) 2

..81d M(o)S (2kH6 0 )2  (6.9)

Inequalities 6.9 are conveniently treated by a semi-

graphical approach in (2]J However., in view of the more complex

examples to follow, in this report, it is instructive to solve

them by a formal mathematical procedure. To this end, we first

solve 6.9 for 8k! M(0), obtaining

-(2kHbo)
2 - 8Xk 2 HhaO(a0 + bo) +9 19. k2 X2 h2 (ao, + b 0)2 S M4(0)

~(21c~f 0) 2 - 8k 2  hao(a+b) . k2 X 2 h2 (aO+ b )2

(6.10a)
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(2kHbo)2 < 8kH Mo < (2kHbo) . (6.10b)

Now, since M(O) is a redundant monent, we are not only free to

choose it as we wish, but we don't really care what it is. There-

fore, the only requirement we make of Inequalities 6.10 is that

the system of inequalities is not incompatible$ but actually

possesses a solution. A necessary and sufficient condition that

this be the case is that the left-hand side of each continued

Inequality 6.10 be less than the right-hand side. The resulting

four inequalities are all independent of M(O) and may be written

2 X2 h2 (ao + 60)2 <2 (116O)2, (6.11a)

- 2(hb 0 )2 - 2X11hao (ao + 6o ) + X2 h2 (ao + bo) 2O, (6.l1b)

.2 (hbo)2 + 2XHhao (ao + bo) + )2 h2 (a0 + 60) 2 < 0, (6.11c)

- (Hbo)2 _ (Hbo)2. (6.11d)

Inequality 6.11d is an identity, and since X is positive,

6.11b will be satisfied whenever 6.11c is. Therefore, X is the

largest number which satisfies 6.11a and 6.11c. Which of these

inequalities provides the dominating restriction depends upon the

ratio bo/ao. It is readily verified that

Hbo 0ZX- if 2

(6.*12)
H a- 2 o i aoH 0(o o 0 if 6 .0 2.
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Obviously, if X satisfies 6.12, it also satisfies 6.7.

Therefore, it follows from the results of Sec. 3 that X as given

by 6.12 is the cutout factor for a slab with a circular cutout

reinforced by annular rings of constant height.

In particular, if we want to design a reinforcement to

restore the slab to full strength, we may set 1 = in Eqs. 6.12

and solve for the necessary thickness H:
H = h ( + ao), if 60 > 2,

ao

(.6.13)

H = h ao + 0 if 0 < 2.
ao + 2-60 - ao ao -

Fig. 6.2 solid curve, shows H/h as a function of Lo
ao

As a second example, consider a square hole reinforced

by a square reinforcement. The hub to be analyzed is then

bounded by two similarly situated squares of half side ao and

ao + bo. The equations of the inner and outer boundaries in the

first quadrant are given by

a = ao sec , =bo sec 0 for O 9 < 7 -4A, (6.14a)

a = ao csc , 6 = bo csc Q for n/4 < 9 /2. (6.14b)

Consider first the case of biaxial tension. Due to

symmetry it is here sufficient to consider only the first octant,

0 _ 0 < n/4. Substituting 6.11+a into 5.8, and taking Tx = Ty = I,

we obtain



Bll-22 33

H/h

I Fig* 6.2
3.5 Reinforcement to full 8trength by

cylindrical hub.
______circular cutout with

circular reinforcement
------ square cutout with square

re inforcement
3. 0

2.0

1.0 1,5 2,0 2,5 3.0 /a0
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N 2kkh (a o + b0) sec 9,

M = M(O) + kXhao (ao + b0) tan2 Q.

The substitution of Eqs. 6.15 into the yield inequality furnishes

an expression which is linear in tan2 0. Therefore, the extreme

values must come at the endpoints 0 and i/A+ of the interval of

consideration. Further, it is obvious from 6.1- that both M and

N are increasing functions of 9. Therefore, the yield condition

6.4 will be satisfied for all values of Q if and only if

8k_1 M(/4) + [ N(iv4) J2 < (2k%5)2

- 8k M(O) + [ N(O) ] 2 < (27k6) 2 .

In view of Eqs. 6.15, these inequalities may be written

- (HS) 2 + X2 h2 (a o + bo)2 < 2H M(O)/k,

< (Hb) 2 - 2dliha o X (a o + b0) - 2 X2 h2 (a o + b0)2.

A necessary and sufficient condition that there exist an M(O) such

that the above inequality is true is that the left-hand member

be less than the right-hand. Solving the resulting inequality

for X we obtain finally

H -ao + a02 + 2 602-< a. +"6

Under uniaxial tension, we must consider both the first

and second octants. For 0 Q .nA, wo find that the extreme

values may occur at either end of the interval, and hence are

lead to
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2 H I M(O) I/k <H 2 bo2, (6.17a)

2 H I M(O)/k + Xhao(a o + b.) + + 2 %2 h2 (ao + b0)2 <H 2 bo2.

(6.1 7b)

In the second octant M is constant and N is an increasing linear

function of sin Q which leads to the two inequalities

211 [ - Mo/k - Xhao(a o + bo) ] _< H2 bo 2

2H [Mo/k + Xhao(ao + bo) ] +X2 h2 (ao + 5o)2 :< H2 2.

(6.17c)

Solving each of the six inequalities 6.17 for 211 M(O)/k we see

that Eqs. 6.17c are each automatically satisfied by one of the

other inequalities. The remaining four inequalities obtained

by eliminating M(O) will all be satisfied if

H _boa 2 V1

-a 0 + 1 J a2 +6.18)k _2(ao a2'

Since any X satisfying 6.18 also satisfies 6.16, it

follows that 6.18 is a lower bound on the yield load for any

type of loading. In particular, the height necessary to restore

full strength under these conditions is obtained by setting

X= 1 in Eq. 6.18 and solving for H (Fig. 6.2, dashed curve).
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H = h(l + ao), if -

H 2 a+ 6° 70 a"o )' (6.19)
H.2h _..t_ if <

~aod +4 Ko -a0  a0 -

7. Bevelled ring reinforcement for a circular hole[6 .
As an example of a non-cylindrical reinforcement, let us con-

sider the bevelled reinforcement shown in Fig. 7.1. Since the

section of the hub ABCC'B'A' does not possess any vertical

A B

L/2 D _

At BI

- .. a b

Fig. 7.1

Bevelled hub.
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line of symmetry, it is convenient to take moments about the

line BB' which separates the level from.the sloping portion.

Assuming that the outermost section yields in tension, Eqs. 5.4a

take on two different forms depending upon whether the neutral

axis is to the right or left of BB' . Thus, if I) is positive we

have

N =2k [L /c - 2Hr-H b +(H +h) c/2 19 (7-1a)

M =2k [- 2L q 2/3c + H q2 - {'2/2 - Hc2 /6 -hc
2 /3 1

while if q~ is negative, the resultants are

N 2k- 211j - H b +. (H + b) c/21

M =2k( Hr) - Hb /2 - He /6 - he /3] (r'ib)

It is convenient to write Eqs. 7.1 in terms of dimen-

sionless variables defined by

u= NL/2kc H2,

v = 14L 2/2kc2 H3,

A = L(Hb -Hc + Lc/2)/c H 2

B =L 2 (Hb 2/2 + He2 /2 - L~c2 /3)/c H3

C vIc (7.2)

Equations 7,1 then become
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u = - 2( - A v = 2 B, ( < 0. (7.3b)

Similarly, the two possibilities which produce compression at

the outermost surface lead to

u - (2 + 2( + A, v = 2/3 E3 - 2 + B, > 0 (7.3c)

u = 2 + A, v -2 + B, E < 0 (7.3d)

The curve defined by Eqs. 7.3a has a cusp at ( = 1.

Therefore, it defines v as a double valued function of u for

u > A - 1, while no real v is defined for u < A - 1. However,

since

0 < t <L/H <1

only one branch of the curve has physical meaning. In the case

of 7.3a, it is readily verified that the algebraically greater

branch is significant, so that, solving 7.3a for v we obtain

v = =- (2/3 + A + B + u) + 2/3 (1 + A + u) 3 / 2 . (7.4a)

Similarly, only the lower branch of Eq. 7.3c is significant so

that

vc  (2/3 + A + B - u) - 2/3 (1 A - u) 3 / 2 . (7.4c)

Finally, nqs. 7.3b and d yield single-valued functions

vb =(A + u)2/1 - B, (7.1+b)

vd=-(A - u)2/+ + B. (7.1+d)
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The interaction curve corresponding to Eqs. 7.1+ is shown in

Fig. 7.2. It is evident that the domain of safe stress result-

ants is defined by

Va< v < v ,

Vb < v _S vd.  7.

v

V = V= V0

V =V a

=VVb

Fig. 7.2

Domain of safo stress resultants for barelled hub.
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Next, we determine u and v in terms of the applied load

from Eqs. 5.8. If the slab is under equal biaxial tension,

Tx = Ty = 1 and i qs. 5.8 furnish

N = 2kkh(a + b) = 2kXh(a + b + c), M = M(O) (7.6)

obviously the best choice for the redundant moment is M(O) = 0,

so that each section is thus stressed in pure tension. There-

fore, we must have

N < 2k (Area) =.2k (bH + ch + Lc/2). (7.7)

Comparing 7.6 and 7.7 we obtain

X bH + ch + Lc/2
- + bc) ' (7.8)

for safety in biaxial loading.

In uniaxial tension Ty = 0, Tx = 1 Eqs. 5.8 furnish

u = D X , v = Y + E X t, (7.9)

where in addition to Eq. 7.2 we have introduced the notations

D = Lh (a + b + c)/c H2,

E = L2 h (a + b + c)(a + b - c)/2 c2 H3 ,

Y = N(O)L2 + xL2/2kc2 H3

= sin2 Q. (7.10)

The substitution of 7.9 into 7.5 yields the four inequal-

ities
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-(2/3 + A + B + DK) + 2/3 (1 + A + Dkt) 3 1 2 - Y - EXk < 0,

-(2/3 + A + B a DXC) + 2/3 (1 + A - DX) 3/2+ y + EXC _1 0,

l/(A + DXC) 2 - B - Y - Ek <O,

1/(A - DXC)2 - B - Y + EXC < 0. (7.11)

Inequalities 7.11 must be satisfied for all values of C in

0 S C . 1. The enforcement of this condition will lead to cer-

tain inequalities not involving C. Each of these latter can

then be solved for the redundant quantity Y. The elimination

of Y then leads to various inequalities containing X as the only

unknown, and the desired value of X is the largest one satisfy-

ing these inequalities.

Unlike the examples in the previous section, the functions

of C on the left-hand side of 7.11 may attain their maximum value

at an interior point of the interval 0 C < 1. Therefore, it

is not feasible to obtain a general solution to 7.11. For par-

ticular numarwlal values of the parameters, however, a solution

can, of course, be obtained. For the particular case

H = 24, h = 10, L = 19

a = 24, b = 11, a = 20, (7.12)

Levin and Hodge [6] obtained the result X = 0.98. For the

same example, 7.8 shows that X = 1 in biaxial tension, so that

the cutout is restored to at least 98% of full strength under

an arbitrary uniform load.
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8. §ymme tric convex reinforcement for a circular cutout

The techniques illustrated in the previous sections can be used,

in theory, to find the yield load corresponding to any shaped

cutout. However, if the hub profile is at all complex, the

interaction curve will, in general, be too complicated to handle

analytically. Rather than resort to straight numerical computa-

tions, it may be desirable to approximate the interaction curve.

In the first place, we observe that if the approximate

domain of safe stress resultants lies entirely within the true

domain of safe stress resultants, then any lower bound obtained

by the approximate curve will be a true lower bound for the

problem. If this is the case, the approximation will be called

safe. Since, in the present chapter, we are only concerned

with obtaining lower bounds, it is most desirable to know

whether or not a given approximation has this property. We

shall bhow that if the cross-section of the hub is symmetric

and convex, that a simple parabolic approximation will always

be safe.

To this end, let us refer the hub profile to Cartesian

axes x, y which are the axes of symmetry, and let us take

moments about the y axis (Fig. 8.1). Due to symmetry we need

only consider the first quadrant of the hub. In this quadrant

let

y M f(x) (8.1)

be the equation of the hub. The boundary may contain vertical
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y

/

Ct Fg8 , ,//

___ 7" 'TT\'

' / • / 7 , "\\ , \

S// /

I Fig. 8.1

or horizontal segments, but otherwise we assume that f is con-

tinuous and momotonically clecreasing.

If x = C is the division between the tensile and com-

pressive regions, Eqs. .4 and 5.5 may be replaced by

-4k f(x)dx f(x)dx =8k of(x)dx

b/2' C/2

M = JCxf(x)dx - xf(x)dx 8k jxf(x)dx . (8.2)
1/2 C 0

Due to symmetry, it is necessary to consider only the first

quadrant of the stress-resultant plane, so that the absolute

value signs in 8.2 may be dispensed with. Let

0  b/o12 1b(283No = 8ki 0 f(x)dx, Mo = 8k °0 xf(x)dx (8.3)
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be the maximum force and moment, respectively, and define

dimensionless resultants

. f(x)dx 0 xf(x)dxN = 72-"--' '* = M. Jofxd e 15/-oxfxdx ' (8.4a,b)

The true interaction curve in the v, & plane is then obtained

by eliminating C between Eqs. 8.4.

Let us approximate the curve 8.4 by the parabola

= 1 - v2 . (8.5)

It follows from Eq. 6.3 that 8.4 reduces to 8.5 for a hub with

rectangular section. For any other section, we wish to show

that the curve 8.5 always lies below the true curve 8.4.

To this end, let us fix a value of C and take v as de-

fined in terms of C by Eq. 8.4a. For the true curve L = T is

given by 8.4b, while for the approximate curve, it follows from

8.5 that

L= i =1- 2 _1 -C f(x)dx x)dx (8.6)
A U0  sojX

Therefore, if we define

9(t) PT - (8.7)

we wish to show that g(t) is equal or greater than zero for

0 4 /
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Under the assumptions on f it can be shown that 
8.1

g(O) = g'(O) = g(6/2) = 0, g'(b/2) 0, (8.8)

and that g'(t) has not more than two roots in the closed in-

terval 0 C. 6/2. Since g(C) is continuously differentiable

it follows that there is a stationary point at C = 0 and one

interior stationary point. This latter must be a relative max-

imum of g, from the last condition 8.8. Therefore, since g

is zero at the endpoints and has no relative minimum, it is

everywhere non-negative.

The preceding result may be stated in words by saying

that if safe stress resultants can be found for a rectangular

section they can be found for any other hub section with the

same b, No and o". Therefore, a safe approximation for any

symmetric convex section can always be found in terms of a

rectangular section and the analysis completed as in Sec. 6.

In particular, it is easily shown [9 ], that under equal

biaxial tensions 2kXh per unit length, we must have

A/[ h(a + b)] (8.9)

where A is the total area of the section, and h the thickness

of the base slab. Under uniaxial tension 2kXh we must have

X < min (Xl, X2 ), (8.10)

where X is given by 8.9 and

8.1 Details may be found in[ 9).
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=> 2 [ + (aNo/4.Mo)2 - (aNo/)+Mo)]. (8.11)

Finally, it follows from the analysis of Sec. 3 that a lower

bound on the cutout factor is 'given by 8.10.

In [9] the above analysis is used to discuss a toroidal-

type reinforcement for a circular cutout. In that exar:ple it

is shown that the error introduced by approximating the inter-

action is negligible. In general, however, no such conclusion

has been obtained.
9. _ of narrow reinforcement for full plastic iy.

If the reinforced cutout is to be subjected to only one type

of loading, then it may be possible to design a cylindrical

reinforcement for the cutout so that it will, like the "one

horse shay" reach the yield stress at all points simultaneously.

In other words, for a given a(G) we wish to choose the rein-

forcement b(G) so that the Equality 6.3 will hold at all points

of the hub, rather than the Inequality 6.4.

Since the general theory becomes quito complicated [ 7 ,

we shall here illustrate it by considering a circular cutout

stressed in uniaxial tension.9"1 Further we wish to design

the reinforcement so as to restore the slab to full strength.

Thus Tx - l, Ty - O, = = 1 in Eqs. 5.8, so that the resultants

are

N(Q) -2kh(a o + 6) sin 2 0,

M(G) = M(O) + khao(ao + 6) sin 2 9. (9.1)

9.1 The basic idea for this example was suggested. by J.M. English
C 15 J
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We shall verify a fLosteriori that the quantity b sin 2 g is

an increasing function of 9, so that N and M are both a max-

imum at = /2. Therefore, if 6.3 is to be everywhere valid,

M(G) must be everywhere less than zero except at 0 = 7E/2 where

it will equal zero, i.e., the cutout will yield in pure tonsion

there. With M(G) negative, Eq. 6.3 may be written

- 21T 1/k + (N/2k) 2 = H2 b2 .  (9.2)

At 0 = 0 7qs. 9.1 and 9.2 show that

N(O) 0,

2H M(O)/k - H2 602, (9,4)

while at 0 7V2 they furnish

N(O/2)/2k = h (a + bi) = H 51,

2H M(2)/k = - i2 602 + 2 1 Oa0 (a O + 61) = 0, (9.5)

whore b is the value of 6 at 0 = 7V2. Eliminating bl, between

2qs. 9.5 we obtain

H 2a 02 + o2

h . 2  (9.6)

Finally, the substitution of 9.1, 9.4, and 9.6 into

Eq. 9.2 shows that

E(l + 2o2) 2 - sin4 g] p2 + 2a° sin2 0[ (I + 2 ao2 sn 2 0] P

22 2 2 2 2 n4
-[1 + 2% )a . 2%O sin 9(1 + 2ao + a0 sin 0 1 (9.7)
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where we have used the dimonsionless variables

p (9) b(Q)/be, % = ao/ o0 . (9.8a)

Introducing the further abbreviation

f(G) = sin 2 Q / (1 + 2ao2) (9.8b)

we may write the solution of Eq. 9.7 as

Sf +1 - 2 C%2f/(i + f)
= " 7 +--'- 1 - L";;_~ +\,.. (9.9)

where the positive root is chosen since p must be positive.

In Figs. 9.1 and 9,2 we have sketched curves showing the

shape of the reinforcement for the cases bo = 1 (H = 3.00 h)

and bo = 2 (H = 1.50 h) respectively. In each figure, the dot-

ted curve shows the circular reinforcement to full strength for

the same value of H, computed from Eq. 6.13. Finally, Fig. 9.3

shows similar curves for a square cutout under various loadings.

The details for this latter case may be found in [7 1.



Fig* 9.1

Full reinforcement for circular cutout, S 0 le1



:.~ 1-2250

Fig, 9.2

Full reinf'orcement for circular cutout, So= 2.,



- - - -S -(b)

(b) ie
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III. TPPR T3OUNDS FOR WIDE SLABS

10. Discontinuous velocLty fields. The results

presented in the previous chapter were concerned with a narrow

reinforcement so that the hub might reasonably be approximated

by a curved beam. Actually, the range of application of such

techniques is rather limited, since if the ratio H/h becomes

at all large there is serious question as to the carrying

capacity of the hub, while if the ratio b/a becomes large the

hub is not well approximated by a beam.

A more realistic analysis in the case of wide unrein-

forced slabs or slabs with wide reinforcements is to approx-

imate the actual stress state by plane stress. In this and

the two succeeding chapters, we shall consider the problem of

finding the yield load of unreinforced slabs, assuming a state

of plane stress. We shall use both of the Drucker-Greenberg-

Prager theorems in order to obtain both lower and upper bounds.

The accuracy of the answer will be determined by the relative

closeness of these two. In cases where the lower bound is far

below the upper bound, the problem must be regarded as still

unsolved.

A very simple type of velocity field which is quite use-

ful is to assume that the slab consists of two rigid parts,

and that motion occurs by the relative sliding of these two

parts. In the present section we shall develop a general

formula for computing the internal rate of dissipation of

energy for such a motion (see also [16]).
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We consider two sections of material separated by a

common plane surface of area A, with one surface in motion

relative to the other with a tangential velocity A vt (Fig.

10.1a). As mentioned in Sec. 2, such a discontinuous velocity

field must be considered as the limit of a suitably chosen

continuous velocity field. Let us choose coordinate axes so

that the x axis is normal to the plane of sliding, and the y

axis is in the direction of sliding, and consider the con-

tinuous motion defined in Fig. lO.1b. As in Fig. lO.la,

region 1 is at rest while region 3 moves upwards with velocity

Avt. In the transition region 2, we define the velocity field

v_ =v z =0, vy = (x/b) Avt. (10.1)

Observe that this field is incompressible, and that the com-

bined velocity field is continuous in region 1, 2, and 3.

Since the velocity fields in regions 1 and 3 are each

constant, the strains are all zero. Therefore, energy is

dissipated only in region 2. In region 2, the absolutely

largest principal strain rate has the constant value Avt/2b.

Therefore, Eq. 2.2 yields

i = 2k j ( Avt/26)dv = k ( Avt/b) V2 = kAfvt (10.2)

independently of the value of b . Therefore, it follows that

Eq. 10.2 must also be valid for the limiting discontinuous

case, b = 0.
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Trace of continuous velocity field.

Fig. 10.1
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11. Sliding out of jlane_[]. A simple upper bound

for any plane slab may be found immediately by considering a

shear out of the plane at 450. Consider, for example, such

a shear across the x axis of an unreinforced slab (Fig. 11.1).

Since the plane of sliding is at 450 to the plane of its

height will be h f - Further, since the sliding takes place

along the weakest section AB, the sliding plane consists of two

rectangles, each of length 1 - ao. Therefore, it follows from

Eq. 10.2 that the total internal rate of dissipation of energy

is -

k 2h T2-(1 - ao ) v (11.1)

The external rate of dissipation of energy is computed

from Eq. 2.3. Since there is no motion in the x direction, the

loads Tx do no external work. The projection of the velocity

vector in the direction of the load Ty is v/2, so that in

view of 2.3,

Ae = s 2 kTy (v/ V-)ds = 2 \- k h X Ty V. (11.2)

According to Theorem 2, an upper bound for the load X is ob-

tained if De and b-i are equal. Thus

X Ty 4 1 - ao (11.3)

Since the average stress across AB is 2kXTy/(l - ao), Eq. 11.3

shows that this stress cannot exceed the yield stress. This is

in marked contrast to the yielding of notched bars under con-

ditions of plane strain [l14, Sec. 33 ].
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Sliding out of plane.



B11-22 57

12. Si.idin iane. The concept of rigid parts

sliding along planes can also be used for the case where the

plane of sliding is perpendicular to the slab. As an example,

consider an annular slab of inner radius a and outer radius 1,

sliding along four symmetrically placed lines in the plane, as

indicated in Fig. 12.1. The slab is under uniaxial tension in

the y direction: Tx = O Ty = 1.

Due to symmetry, we need consider only the first quadrant

of the slab. In this quadrant the x and y components of velocity

are

Vx - A, Vy 0 in region 1,

Vx  0, V = B in region 2. (12.1)

However, it is more convenient to refer the motion to the dir-

ections n and t, normal and tangential to the line of discon-

tinuity AB in Fig. 12.1. Bquations 12.1 must then be replaced

by

Vm - A sin y, Vt = - A cos Y in region 1,

Vm = B cos y, Vt = B sin y in region 2. (12.2)

The constants A and B in ,qs. 12.2 are not independent, since

the normal components of velocity must be the same in the two

regions. Thus

B = A tan Y,

and the discontinuity in tangential velocity is readily computed
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to be

A Vt = A see y. (12.3)

Substituting 12.3 into 10.2 9 we see that the internal rate of

dissipation of energy is

1 = k h L A see y , (12.4)

where L is the length of AB.

The external rate of dissipation of energy is given by

)% =PJ2 k X sin Q B h d Q = 2 k X h A tan y cos P. (12.5)

An upper bound on X is then obtained by equating 12.4 and 12.6:

X < 2 sin L Y (12.6)

Note that both Eqs. 12.4 and 12.6 represent one-quarter of the

total energy of the slab so that they may be equated.

The line of sliding AB has two free parameters which are

conveniently taken to be the angles a and P as indicated in
Fig. 12.1. In terms of these angles we have

L - 2 a cos ( - ) + J

(12.7)
sin y= (sin - a sin a)/L.

Substituting 12.7 into 12.6 we obtain

1 - 2 a cos (.- )) + j 2k <2 cos 0 (sin P- a sin a (28
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Any values of a and 9, subject to certain obvious geome-

tric restrictions, will furnish an upper bound for X. In

particular, if AB is assumed to be a radial line, a = P and
the right-hand side of 12.() becomes (l-a)/sin 2 3. Since this
can never be less than 1-a, sliding along a radial line can-

not furnish a better upper bound then sliding out of the plane

(Sec. 11).

Obviously the best upper bound of the type considered

is obtained by choosing aand so as to minimize the right.

hand side of 12.8. To this end, let

u = 1 - 2a cos( P - a) + a2 ,

(12.9)
V = Cos P (sin P - a sin a).

If f(u,v) = 2 is to be a minimum, then
2v

a' = 1/2 A- u By , 0
'ra V2

so that

- "a = (12.10)

or

s 2 a cos(. _-a)_ + a 2  2 sin(B -a) .2 asin ac

in cos - asin -acs cos c = cos 2P + a sinasin "

(12.11)

Equating the last two and first two members of the continued

equality 12.11, we obtain
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acosp cosa .. asinp sin a =cos 2 P,

(a 2+ cos 2 0) cos a + sin 2 P sin a= 2 a cos P3. (12.12)

Equations 12.11 may be formally identified with simultaneous

linear algebraic equations in cos a and sin a and solved to

yield

Cos a = &Ls-L-J..Qp..Li.. a2*)

a (2 cos, 2 j3 + 1 + a 2)

sin a =cos
2 _2 P - a2  (12.13)

-a sin P(2 cos 2 P+ 1 + a)

Substituting 12.13 into the identity sin2 a + cos 2 a 1

and introducing the notation

=cos 2 P (12.14+)

we obtain, after some simplification,

(1 - a 2) (2C 2 + a 2 C - a 2) 0.

Since a must be actually less than one, the second factor must

vanish, so that

C= (a/4) (-a i Caf - 8-). (12.15)

Now, it follows from Eq. 10 that the minimum value of

f is

f =1/2 =1/2 8U8 = tan~ tan a. (12.16)
v 8vf Oc

Replacing a and P in Eq. 12.16 by their values in terms of
as given by Eqs. 12.14+ and 12.13, we obtain finally
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< f a .2a (12.17)

where C is given in terrs of a by Eq. 12.15. It is readily

verified that the upper sign in 12.15 will furnish a lower

value of f and hence is the correct choice. In Fig. 12.2 we

have sketched the upper bound on X as a function of a. Before

accepting this result, it was necessary to find P and a from

Eqs. 12.14 and 12.13 and verify that they were geometrically

admissible angles. This was found to be the case for all

values of a. Observe that for all values of a we have obtained

an improved result for this case over that obtained in Sec. 11,

as shown by the dashed line in Fig. 12.2.

13. Bendingin __plane. A totally different type of

yielding is suggested by the approximate analysis of the pre-

ceding chapter. If the slab were to be replaced by a curved

beam, the beam would fail by means of yid hinges. That is,

there would be certain sections of the beam where there would

be a concentrated rotation and extension [171 (or, equivalently,

an off center rotation [18] ), with the remainder of the beam

remaining rigid. There must be just enough of these yield

hinges to form a mechanism.

Let us, then, consider such a yield hinge from a plane

stress viewpoint. Choosing the y axis to be normal to the

beam at the yield hinge, and the plane of bending to be the

x,y plane, consider a rotation about the point A in Fig. 13.1.
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Fig* 12.2

Upper bound on yield load of annular slab*
________sliding in plane

sliding out of plane
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Y

o k

Fig. 13.1
"Yield hinge" in plane stress.

The rigid portion of the beam, region 3 will rotate about the

B C

point A with an angular velocity 0. Therefore

u3 =- (y -Z),v 3 = x(13.1)

-- A3a

where u3 and v3 are the velocity components in the direction

of the x and y axes, respectively. In region 1 u must equal

zero along AB by symmetry, and must be continuous with u3 along

AC. Similarly, v must be continuous along AC, and there is

to be no shearing strain in the vertical direction. Such a

velocity field is given by

ux ota, vI = (y - ) tan a. (13.3)
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Similar considerations show that

u = x tan P , v2 - @ (- - y) tan . (13.3)

There are no strains in region 3, while in region 1 the

principal strain rates are

ex = - Q cot a I F= Q tan a z = C (cot a - tan a ). (13.4)

Observe that the axial velocity w is thus not strictly con-

tinuous. However, for a sufficiently thin slab its action is

reasonably neglected. Separate analyses must be made for

greater or less than 7V4. For definiteness we shall take

a <( n+ so that the absolutely largest principle strain rate

has the value

max I e =Q cota. (3. )

Substituting 13.5 into 2.2, we find that the internal rate of

dissipation of energy is

2 k 6 h cot a A, (13.6a)

whore A1 is the area of region 1. Similarly, if P <irA,

29(2)w 2 k Q h cot A A2 . (13.6b)

Sinceji (3) = 0 the total internal energy is the sum of the

two Eqs. 13.6.

As an example, consider a square hole in a square slab

under uniaxial tension (Fig. 13.2). The velocity of the rigid
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b

a

___....- a f d

Fig. 13.2

"Bending" velocity field for square slab with square cutout.

part of the material is

U = Q (y - a - c), v = - (x - a - f). (13.7)

In this case, the area of region 1 is
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A1 = 1/2 b2 tan a,

so that

J/ki() h b2, (13.8)

independently of the angle a.

Since we seek the lowest possible upper bound, we

generally desire to choose the parameters of a problem so as

to minimize the internal and maximize the external energy dis-

sipation rates. Since M() is independent of a , we may

therefore choose a so as to maximizeO e" In view of Eq. 2.3,

: 1 '1

be 2 k X h v d x = 2 k X h v d x (13.9)

so that we wish to choose v as large as possible. Since

Vi = - & [tan a (y - a - c) - (a + f) ]

is loss than v3 along the top surface, it is advantageous to

make region 1 as small as possible, i.e., to choose the limit-

ing case a = 0. Therefore, we may use 13.7 in the entire

integral 13.9 to obtain

= 2 k X h 4 (a + f - 1/2). (13.10)

The total internal energy dissipation rate is given by four

terms similar to 13.88

S=k h Q(b 2 + c2 + d2 + f 2)

k h [b 2 + (l - a - b)2 + f + (1 - a - f)2 ]. (13.1)
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Therefore an upper bound is given by

22 22
< b 2 +(-a-b) f + (1- a -f) 2  (13.12)2 a+2 f- 1

for any geometrically admissible choice of b and f.

Since the dcnominator is independent of b, the best

choice is

b a
2

which locates the hinge at the midpoint of the section. There-

fore, 13.12 becomes

x x % = L_.2 = a) 2 + f2 + (1- a - f)2  (1313a)0 <o=- 2 a + 2 f .. .. 11.1a

If a <1/3, the minimum value of Xo occurs for f = 1 - a, i.e.,

the hinge is at the outer edge. However, for 1/3 < a, Xo has

a relative minimum at

= 1/2(1 + \E2 - 4a + 3a2  - a. (13.13b)

With this value of f, the resulting X represents the best
0

upper bound of the type considered. Figure 13.3 shows that we

have obtained an improvement over the result of Sec. 11 for

all a > 1/3.
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Fig* 13.3

Upeer bounds for square slab with square cutout.
_________bending

-------------- sliding out of plane
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IV* LOWER BOUNDS FOR WIDE SLABS

11I. Discontinuous stress fields [31. As we have seen in the

previous chapter t it is not difficult to construct upper bounds

for the yielding of slabs with cutouts* However, the determina-

tion of statically admissible stress fields is, in general, more

difficult.

In the case where we are concerned primarily with uni-

form loads on rectangular boundaries, it is often possible to

construct a discontinuous stress field consisting of several

regions of constant stress separated by straight lines of dis-

continuity This approach has also been used for problems in

plane strain [i , Sec. 331.

We shall find it convenient to define the stress field

in terms of the principal stresses and a representative angle*

To this end, let 0 be the smallest non-negative angle between

the x axis and a principal direction, let s be the principal

stress across the element inclined at 0 to the x axis, and let

r be the other principle stress in the plane of the slab. Let

w be the reduced mean normal stress and X the reduced principal

stress difference:

w = (r + s~2k, X = (r - ,4k. (l t f.l)

Let N and T be the normal and tangential stresses

across an element inclined to the x axis at an angle a. In terms

of the new variables

= w- x cos 2(0 a), j = - x sin 2(0- a). (1M.2)

Across any line of discontinuity# these exterior components of
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stress must be continuous, but the remaining interior component

of stress may be discontinuous. Thus, if akS is the angle

between the x axis and the straight line of discontinuity sepa-

rating regions k and J, we must have

w, - xj cos 2(9, - ak) = wk - Xk cos 2(Qk - %j),
(14.3)

xi sin 2(Qj - ak) = Xk sin 2(Qk - aj)s

Any stress field which satisfies 14.3 and the stress

boundary conditions will be in equilibrium. If it is to be

statically admissible, it must also satisfy the yield condition.

In terms of the present variables this may be written

max V-. , _ t, 11i 1 _1 < . (14,))

As an example, let us consider a square slab with a

square cutout under uniform uniaxial tension. The assumed dis-

continuous stress field is shown in Fig. 14.1. Symmetry demands

that the principal directions in regions 1, 3, and 4 be parallel

to the coordinate axes, so that

0. : =3 = 'k = O0 (14.5a)

Due to this symmetry we need consider only the first quadrant of

the slab* In regions 1, 3, and 4 the stress normal to the bound-

ary must be in equilibrium with the load, so that

sl = 2kX, s = 0 r 3 = 0. (14.5b)

There will be three pairs of Eqs. 14.3 corresponding

to the three lines of discontinuity in the first quadrant# Since
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Discontinuous stress fields.
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a 23 iV4 these may be written23

w2 -X(2 cos 2(93 - a12 ) = (rl)(1  - cos 2a + X(l + cos 2a

2  cos 2(93 -a 2 ) = (2 l)(1 - cos 2a

W2 " X2 sin 292  s11 (14.6)
- 2k'

X2 sin 2 (92  a 12 ) = )sin 2a12,

x. sin 2( 2 - a2 ) - (r-)sin 2a21

-X 2 cos 2 2  2k

The geometry of the stress field is entirely determined

by the choice of the parameter x (Fig. 14.1). Indeed, we have

tan a 2 = 1 - x, tan a2a = 1 -A. (14.7)

Therefore, Eqs. 14.6 may be solved for the six unknown quantities

in terms of x:

tan 2Q2 =2
x

X2 = 1- a x

X -l
w2 1 a x

r Xa

2k (1 - a)(l - x)'

2k (- a)( - x)'

s

2k 1 a
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As a check on the computations it may be verified that the result-

ing stresses satisfy overall equilibrium requirements across the

x and y axes.

The problem, then, is to determine the largest value

of X for which 14,4 will be satisfied in each of the four regions.

In each region, that inequality which would be violated for the

smallest value of X will be called the gverning inequality. In

the present example it may be determined by inspection in each

region. The four governing inequalities obtained by substituting

14.8 into 14.4 may then be written

%a < (1 . a)(l - x), (14.9a)

x x 2 + 4a 2 < x(l - a), (14.9b)

X < 1 - a, (14.9c)

%a < (1 - a)(x - a). (14.9d)

Since x/ X + 4a 2 is always less than 1, Inequality 14.9c is

obviously satisfied whenever 14.9b is, so that 14.9 are equiva-

lent to
X < (1 - a)(l - x)/a, (14.10a)

2  a2
X <x(l - a)/Vx + 4a (14,lOb)

X < (1 - a)(x - a)/a. (14.10c)

Subject to the geometric restriction a < x _ 1, we may choose x

in 14.10 so as to obtain the maximum possible value of X. While

x may be formally eliminated from the inequalities as in Sece 6,

the resulting functions of X cannot be handled in closed form.
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Therefore, the following procedure seems more appropriate.

The general character of the right-hand sides of 14.10,

considered as functions of x in the interval a < x < 1 is inde-

pendent of a. Thus 14, 10a is a straight line falling from

(I - a) 2/a at x = a to 0 at x = 1, while 14.10c is a straight

line rising from k 0 to (1 - a)2/a in the same interval, Finally,

14. lOb is monotonically increasing and positive in a < x < 1.

These curves are sketched in Fig. 14.2. We must distinguish two

cases depending upon whether curve (b) passes above or below the

intersection of (a) and (c). In the former case, we must take x

as the intersection of (a) and (c) in order to maximize X, while

in the latter case x is chosen as the intersection of (b) and (c).

After some computation [3] we find

x = . (1 + a), =(l -a)2/2a, if a > 0.4431
2

(14. 11)

a = - x(l - x)- ) (I.- a)(1 - x) I if a < 0.443.

\(3x - 2)(2 - x)

The resulting lower bound on the collapse load is shown in Fig.

14.3. Also shown is the result for biaxial tension which will be

obtained in Sec. 18.

l. Stress functions. While the method of discontinuous constant

stress fields is easy to apply in a few examples, it does not

adapt itself to non-rectangular domains. A second technique,

which holds great theoretical promise although an efficient means

of exploitation is yet to be found, is to construct a stress

function. As is well known, if the stress components are derived

from a stress function * by means of
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Lower bounds for square slab with square cutout.
______uniaxial tension

------ biaxial tension



Bll-22 78

x 2 yxy 8 x8y

then the equilibrium equations 0.2 are satisfied identically.

For the elastic problem, * must satisfy the biharmonic equation

ax ax8 y 8y

and the boundary conditions. However, Eq. 15,2 is derived from

Hooke's law and does not apply when we seek only a statically

admissible stress field. For such a purpose we may choose

function * which satisfies the boundary conditions*

Once * is chosen, the stress components are determined

from 15 1. The principal stresses are then given by [19, Sec. 9)

( +2 (5 3)

By definitely identifying o I and a2 as indicated by the signs in

15.39 the yield condition 1.1 then states that

max[01, - 022 d1 - d2) < 2k. (5. )

If 15.4 is everywhere satisfied, then the constructed stress

field is statically admissible and will furnish a lower bound on

the load. More generally, if the load is expressed in terms of

the parameter X, any value of X which satisfies 15,4 is a lower

bound.

The stress function may be used advantageously with

other coordinate systems. Thus, in polar coordinates r, Q the

stress components defined by



Bll-22 79

r r Or r2 89

Or2

will satisfy the equilibrium equations identically. The princi-

pal stress are then given by equations analgous to 15.4:

= r2 - V .r +, 2 ". (15.6)

d2

As an example, let us consider the annular slab (Fig.

12.1) for which an upper bound was found in Sec. 12. For uniaxial

tension the boundary conditions on the stresses are

at r = a: dr = O, Ir@ = O; (15.7)

at r = 1: dr = kX(l - cos 29), ur() = k sin 20.

In view of the dependence of the boundary conditions upon @0 we

are led to try a stress function of the type

* = f(r) + g(r)cos 29 (15.8)

where f and g are to be determined. It then follows from 15.5

that the stress components are

dr=..E + rgtr2- 4g cos 29,
rr r 2

i = f"t + g" cos 29t  (15.9)

=2 rg'g sin 2,

rQ r

where primes indicate differentiation with respect to r.
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Substituting 15.9 into 15.7 we obtain the boundary conditions for

f and g : f'(a) = g(a) = g'(a) 0 (15.a)

f'(l) = k%, g(l) = k1)

Next, let us consider possible discontinuous stress

fields derived from stress functions. As previously discussed,

the normal and tangential stress must be continuous across any

curve, but the other normal stress need not be. For the annular

slab, 15.8 implies that the stress function is analytic as a

function of 9, hence the only possible curve of discontinuity is

a circle r = rks Across such a circle, or and cre must be con-

tinuous, but d may exhibit a jump. It follows from 15.9 that

f and g must be continuously differentiable but may have discon-

tinuous second derivatives. Thus,

fI(r) + f'(r;), g+)=g , g'(r+) =g'(r")* (15.11)
k k'~r) ~) k = k

Subject to Eqs, 15,10 and 15.11, we can choose any

functions f and go Once these are chosen, the principal stresses

are determined by 15.9 and 15.6 and X is then taken to be the

largest number such that the yield inequality 150+ is valid at

all points of the slab.

The difficulty with using the method described above is

that even when the functions f and g are chosen as simply as

possible so as to satisfy the boundary conditions 15.10, the re-

sulting values of o1 and o2 become quite complicatedg so that an

analysis in closed form becomes impossible* In the remaining sec-

tions of this chapter we shall indicate two possible methods of

alleviating this situation which are currently being investigated.
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16.1
16. Numerical techniques. As indicated in the previous sec-

tion, even a simple choice of the functions f and g in Eq. 15.8

will lead to a complicated function of r and 9 when substituted

into the yield condition 15*.1 To obtain a lower bound for the

load, it is necessary to find that point in the slab where the

left hand side of 1594 achieves its maximum. However, for complex

functions this cannot be done in closed form and it becomes

necessary to use numerical techniques.

A primary disadvantage of numerical methods is that a

separate problem must be solved for each value of the cutout

radius a* However, if an efficient means of utilizing modern high-

speed computing machines cmn be devised, this drawback becomes less

serious.

In the present section we shall discuss some preliminary

steps which have been made in this connection, and indicate

possible extensions. The problem has only recently been looked

into, and the results and suggestions are purely tentative. In-

deed, it is impossible to say whether such techniques will ever

prove useful.

As a first step, let us replace f and g in Eq. 15.8 by

two new functions each, defined by

f'(r) = kXA(r)C1 + (1 - r)OB(r),

g (r) = kXC(r)[l + (1 -r) D(r)].

Substituting 16.1 into the boundary conditions 15.10, we see that

16.1 The results of this section were obtained by E. Levir
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B and D are entirely arbitrary (provided, of course, that they

remain finite throughout the slab), and that A and C must be such

that
A(a) C(a) = C'(a) = 0,

(16.2)

A(1) 19 C() , C'(1) l .

For any A and C satisfying 16.2, we express successively

the stress function * (Eq. 15.8), the stress components d, '

Ir (Eqs. 15.5), the principal stresses i, d2 (Eq. 15.6), and

the yield condition (15.'4) in terms of the four functions A9 Bt

C9 D and the angle Q. The result will be three inequalities which

may be written
kFI[A, B, C, D; G] <2,

XF2 (A, B, C, D; Q] <29 (16.3)

XF3 [A, B, C, D; @] <2.

The constant X must be such that all three Inequalities 16.3 are

satisfied at each point of the slab. Any choice of the functions

A, B, C, D, together with sufficient computations, will furnish

such a X. The problem then is to choose A, B, C, D so as to ob-

tain the largest possible value of X.

Without going into the details of computation, it is

evident that since a @ depends upon the second derivative of f and

g9 the values of Fl, F2 , and F3 will depend upon B and D, even on

the boundaries r = ap r = 1. However, a minor change in the defi-

nitions 16.1 will eliminate this. Let us, then, replace 16.1 by

the definitions
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f'(r) = kIA(r)(1 + (1 - r)2(r -a)B(r)], (16.1)

g (r) = kC(r)[l + (1 - r)3(r - a)D(r)].

The advantage of this is if A and C can once be chosen so that the

maximum value of 2kFi on the boundaries appears to give a reason-

able value for X, an attempt can be made to adjust low values of

Fi in the interior by manipulating B and Do Therefore, in decid-

ing upon the "best" functions A and C, it is necessary to consider

only values at the boundaries r = a, r = 1.

At the inner boundary r = a, it follows from the bound-

ary conditions that or and T are both zero, so that the yield

inequality becomes IdQ1 _ 2k.

Replacing s at r = a by its value in terms of A and C, we obtain

- 2 < (A' + C" cos 2Q) < 2. (16.5)

Inequality 16.5 represents a necessary restriction on A and C.

Since the middle member is linear in cos 29, the extreme values

are at 0 = 0 and 0 = %/2. If the assumed stress field is to be

at all close to the actual onet o@ will be algebraically greater

at 0 = 0 than at 0 = 7E/2, so that C should be positive at r = a.

As an example, let us consider the particular case

a = , and take simple polynomials satisfying the boundary con-
3

ditions: A = (3rr - 1), B = O, D = O(
2 (166)

C = (3r - 1)2(2 - r)/8.

Since only a preliminary analysis is intended, the resulting
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functions Fk are evaluated numerically for a coarse mesh in r and

0. The results on the boundaries are given in Table 16.1

9 0 300 1+50 600 900

r = a Max Fi 5.25 3.38 1.50 0.38 2.25

r = 1 F1 075 1.8+ 2.06 1.77 0.25

F2  0.75 1.73 2.28 2.57 2.25

F3  0 0.11 -0.22 -0.80 -2.0

Table 16.1

Values of max F1 on the boundary for Eq. 16.6.

Since the maximum value of F occurs at the inner boundary at

0 = 0, it follows from 16.3 that a .LMZY restriction on k is

x 2 o.3.(16. 7)

5.25 = 0.38. 167

That this stress field cannot furnish a "good" lower

bound can be seen as follows. Actual plastic yielding cannot

take place until a plastic region extends continuously from at

least one point on the inner boundary to at least one point on

the outer boundary, since otherwise there will be a determinate

elastic structure rerainiig which can sustain a greater load* A

M&MaZX condition that this be the case is that max Fi has the

same value on both the inner and ou's-r boaundaries, which is far

from the case in Table 16.19

Therefore, as an improvement, let us keep the same

value of C, but take A identically zero on the inner boundaryo
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Thu s, let A = 2r - )2/ 4 1 B = , D = 0 9

A =(3 -l)/ +, =O, =O,(16.8)

C = (3r- 1)2 (2r - 1)/8.

The values on the boundaries are then given in Table 16.2.

0 00 300 1+50 600 900

r = a max Fi 3.75 1.88 0 1.88 3.75

F1  2.25 2.71+ 2983 2. 55 1.75

F2  2.25 2o93 3.1+1 3.71 3.75

F3  0 -0.19 -0. 59 -. ,16 -2.00

Table 16.2

Values of max Fi on the boundary for Eq. 16.8.

In this case, the maximum boundary value of 3.75 occurs on the

inner boundary at 0 = 00 and 0 = 900, and occurs on the outer

boundary at 0 = 900. The corresponding necessary restriction on

Xis
= 0.53. (16.9)

In Sec. 12 an upper bound for this problem was obtained. Setting

a =.I in Eq. 12.17 (or reading from Fig. 12.2) we find that
3

=0.59 is an upper bound. Since 16.9 is reasonably close to

that upper bound it would appear that we have obtained a reason-

ably close solution on the boundarv.

However, 16.9 is only an upper bound on the lower bound.

To obtain a true lower bound for the assumed functions we must

compute max F1 throughout the slab. The results are shown in

Table 16.3.
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Q 00 300 450 600 900

1/3 3.75 1.88 0 1.88 3.75

1/2 3.38 3.52 3.56 3.08 1.88

2/3 3.30 3.80 3.92 3.26 o.56

5/6 2.63 4.70 5.11 4.34 1.88

1 2.25 2.93 3.41 3.71 3.75

Table 16.3

Values of max Fi in slab for Eqs. 16.8.

The maximum value for the mesh considered is 5.11, occurring at

r 9 = 1+450. Therefore, it follows from 16.3 that

X < 0.39. (16. 10)

The next logical step is to keep the values for A and

C given by Eqs. 16@8, and to try non-zero values for B and D in

an attempt to reduce some of the high values in the interior.

Due to limitations of time, we are unable to include any further

results of this technique in the present report.

It should be pointed out that 16.10 represents only a

crude approximation, due to the large mesh size used. However,

it appears reasonable to use a large mesh to obtain information

as to "good" functions A, B, C, and D. Once this is done, the

results should be computed for a much smaller mesh to obtain a

more precise looation and valuation of the maximum value of Fi .
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17. ADDprximate yield conditions. An alternative to a completely

numerical approach to a statically admissible stress field is to

consider an approximation to the yield condition sufficiently

simple so that analytic techniques may be employed. It follows

from Eqs. 15.6 and 15.4 that the actual yield condition consists

of the three inequalities

2
u + 2+ v 2k, (17.la)

-u + + < 2kv (17.1b)

V- +2 t < k, (17.lc)

where we have introduced the notations

u = (or + V)/29 V = (or = d )/2. (17.2)

If we sketch the surfaces represented by the equality signs in

17.1 in a Cartesian space with coordinates u, v, and T, we obtain

a surface which may be described as follows. The u axis is an

axis of rotation; for lul < k the surface is a cylinder of radius

k; for k I lul 2k the surface is a pair of right circular cones

capping either end of the cylinder with vertices at u = + 2k.

The first octant of such a surface is sketched in Fig. 17.1.

Since we are concerned with finding a lower bound on

the yield load, we shall consider only approximations to Fig. 17.1

which lie wholly within the actual yield surface. If this is done,

then any lower bound obtained using an approximate yield condition

will be a true lower bound for the problem.
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Fig. 17.1

Yield surface.

The difficulty with using the actual yield condition is

primarily due to the fact that the stresses contain both sin 29

and cos 20 (see Eqs. 15.9) and hence by the time 9 is eliminated,

the resulting functions of r have become quite complex. There-

fore, we seek an approximation which will simplify the dependence

on g. Since T is the only stress component which contains sin

20, while u and v contain only cos 20, we would like to separate

17. 1 into inequalities containing only r and those not containing

. Geometrically, this means that we wish to inscribe a right

cylinder or prism with generators parallel to the ov axis'in
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Fig. 17.1 .

As the simplest such inscribed prism, consider a hexag-

onal prism oriented the same as the trace of the true yield sur-

face in the u,v plane and bounded by the planes r = + k/V2.

Analytically this is described by the inequalities

I'r _k/V 2", I vi _k/\, (17.3)

r.(2 - )k, 0< (2 -- k).

The choice of k/V\ as the height of the above prism

was entirely arbitrary and there is no assurance that it will

produce a reasonable approximation. To obtain a better approxi-

mation, let us consider separately the cylindrical and conical

portions of the yield surface, In the cylindrical portion (Eq.

17.1c), it is sufficient to let v andv satisfy

lvi = k cos Ot ITI S k sin P. (17.)

In the most general casef P can be a function of r and 0, but

such generality would destroy the simplicity desired A reason-

able basis for choice would be to divide the slab into a finite

number of regions# In each such region let the numerically

largest values of v and -z be denoted by kXvn and kX n respective-

ly. In each region, P is then chosen so that the two inequalities

17*4 are equally restrictive. Thus, for the correct choice of

kXvn = k cos, kXn = k sin ,

hence Is given by
Vn

tan"1 , (17.5a)
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and the cut-out factor must satisfy

X < sin P/n'r (17, 5b)

In the conical section, we construct an approximating

prism by first inscribing a pyramid in the cone, and then a prism

in the pyramid. Since, in the only examples considered thus far

the most restrictive part of the yield condition corresponds to

the cylinder, the weaker approximation under the cone appears

reasonable. Analytically, then, we note that 17.la, b will both

be satisfied if
Jul + Jvl + lrl < 2k.

Therefore, we demand that

lul + lvl l < 2ka, InI 2k(l - a). (17.6)

The parameter a is determined in the same way as the parameter

in Eq. 17.4. In particular, if a is constant throughout some

region, then a Un + v n  t (17.7a)

Un + Vn + ;n
and

X < 2a . (17.7b)

Un +Vn

If Eqs. 15.9 are substituted into 17.3, each of the

resulting inequalities are linear in either sin 29 or cos 2G.

Since all inequalities must be satisfied for all values of 9, it

is thus necessary and sufficient to satisfy them at the extreme

values. Therefore, the quantities Un, vnI tn appearing in Eqs.

17. and 17.7 are independent of 9.

Let us assume for simplicity that each of the regions

is a complete annuluso In terms of the functions f and g



BIl-22 91

appearing in Eqs. 15.9, we then have

IV f fil .ljg"l - 0 + 1+ L
InfI r f 2 r r2'

I' = - 1, (17.8)
n r r

=~~~ ra E 4 C If"I + 1Ig111,

The possibility of investigating the annular slab by

these approximate yield conditions is only now being investigated.

Unfortunately time has not permitted the inclusion of any examples

of the technique illustrated by Eqs. 17.o+ through 17.8. In the

only example worked out so far by means of Eqs. 17.3 (see Sec. 21),

the resulting lower bound is disappointingly law, However, at

least part of the reason appears to be due to the choice of stress

function, rather than to the use of an approximate yield condi-

tion. Further investigations of this approach are being under-

taken and will be reported on elsewhere*
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V. EXAMPLES

18. Suare slab with sauare cutout. We have already considered

this problem in uniaxial tension in Secs. 13 and 11+. Thereforet

it follows from Sec. 3 that we need only find a lower bound in

equal biaxial tension in order to find a bound under any loading.

As in the case of uniaxial tension, it is useful to consider a

piecewise constant stress field, as shown in Fig. 18.1. Due to

symmetry, it is here necessary only to consider one-eighth of the

slab. Thus we seek to determine the stresses in regions 1, 2t

and 3 of Fig. 18.1. Symnetry at once determines the value of Q

in each region:

T a12

r-X7a23

~xj
ta

Fig, 18.1

Square slab in biaxial tension
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= 0 ,9 (18.1)

while the boundary conditions show immediately that

SI = 2kX, s3 = 0. (18.2)

Applying Eqs. 14.3 to each of the two lines of discon-

tinuity and using 18.1 and 18,2 we obtain

( k)(1 - cos 2a12) + X(1 + cos a12 ) w2 - X2 sin 2

( 2)(1 - cos 2a ) = sin 2

223 =2 23  (18.3)

(%- )sn 2 12 =X2 cos
2ka12

- (- )sin 2a23 = cos 2a23.

These equations are easily solved for the four unknown quantities t

the results being

2% 2X tan a23
X2 = tan a - tana W2 tan a -tan 23

13 23 12 23a a (8o+(18.4)

2r 1tar1 - tan c2
1 -tan 2 tanc 23  23

2k tan a12(tan a12-tan a23)' 2k tan a23(tan al2-tan a23)

The two angles appearing in 18.4 are not independent, but may

both be expressed in terms of the cutout half-side and the para-

meter x. Thus, from Fig. 18.19

tan a12 = 1 - x tan a =- (x - a)/a (185)

Substituting 18.5 into 18.1 we obtain
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2%a w 2a x - a
- 2 (1 - a)-2'

(18.6)
r l-x+a 1 2a-x
2k (1- x)(l- a)' 2k (x- a)(1- a)"

The value of X must now be determined so that all of

14.4 are valid. The governing inequality in regions 2 and 3 may

depend upon the values of x and a, so that on first analysis we

must solve the following five inequalities:

= (1 - x)(i - a) I, 1 (18.7a)

r~ x-.2a
r x - a < 1, (18.7b)

2k (x- a)(1 -- <1, (18.7c)

< I (18.7d)

2k 1 a

X2 2%a <1 1-e2k x(l - a5 1, (l8.7e)

It is convenient to distinguish two cases, depending upon the

sign of x - 2a* If x - 2a is positive, it is evident that all

of 18.7 will be valid if 18,e7a is. However, the largest X allow-

able by 18.7a occurs for the smallest allowable x, which in this

case is x = 2a. Since this case can also be considered under the

hypothesis that x - 2a is non-positive, it suffices to examine

18.7 for
x - 2a <0 0

Inequalities 18.7b and 18.7d are then obviously valid

if the others are, so that we seek the largest X such that
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l-_x)+ (18.8a)

2a'
i-a) (x -a) (18o80)

2a -x

Considering the right hand sides of 18.8 as functions of x, it

is evident that all three are monotone and positive in the inter-

val a _ x I min(2a, 1) under consideration. Since the right

hand sides of 18.8a and 18#8c are decreasing functions of x9

while 18,8b is increasing, the situation may be discussed quali-

tatively as in the case of uniaxial tension, Fig. 14. 2. The

optimum choice for x will be the intersection of 18s8b with

either 18.8a or 1808c, whichever yields the lower value of X.

After some computation it can be verified that

x =-1 [1 + 2a - \/(l - a)2 + a ],
2

1 a) 2 + - a],

for (1V -l) _a<; (18.9)

x=a [1 + 3a - (1- a) 2 + 8a 2 ]

+8a 2 l,

for 0< a < (V9 - 1).

The resulting function of X is shown as the dashed

curve in Fig. I.o3. Since the solid curve, representing the

lower bound in unlaxial tension is everywhere below this curve,

it follows that the lower bound obtained in Sec. i4 (Eqs. I4.li)
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is safe for any loading.

In Fig. 18.2 we have redrawn this lower bound, together

with the upper bound determined in Sec. 13 (Eqs, 13.13). For

a < 1, a better upper bound is given by the method of Sec. 11,
3

Setting Ty = 1, ao = a in Eq. 11.3 the latter becomes

X < 1 - a. (18.10)

Therefore, for a given value of a, the cutout factor% must lie

in the narrow region between the two groups of curves in Fig.

18.2. For practical purposes, we would appear to have solved

this example to a reasonable degree of accuracy.

19. Square slab with a slit C5) In the previous example we

were able to obtain a lower bound very close to the upper bound

by using a piecewise constant stress field. In the case of a

square slab with a slit we can do even better than that and

obtain the actual yield load.

The discontinuous stress field for uniaxial tension is

shown in Fig. 19.1. The method of solution is similar to that

used in Sec. V+ and the results are as follows (for details of

the computations see [5]):

91 = O1 Sl = 2 rI1 = 2kka/(l - x),

tan 202 = 2a/[x + a(l - a)),

w2 = Xx - a(l - a)]/(a + x(l - a)), (19.1)

X2 - . { Cx + a(l - a)]2 + )i+a21/2/a+x(l-a)],

03 = 0, r3 = O  s3 = 2kX/(l - a),

0 :Or s4 = 0, r= = - 2kXa/x.
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1.0

0.9

0.7

0.6

0. 5 Eq. 11. 3

Eq. 4i+.u \

0.2

0.1

0 0.2 0.4+ o.6 0. 1.0

Fig* 18.2

Upper and lower bounds
on yield load of' square'slab

with square cutoult,
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2k%

x

a1 --

Fig. 19. 1

Square slab with a slit-uniaxial tension.

Substituting 19.1 into 14.4 and determining the governing in-

equality in each region we obtain finally

%a < - x,

x+ a( _ a)] 2 < a + x(1- a),

(19.2)
X <l-a,

%a < x.

It is readily verified that if we choose

x = 1 - a + a , (19.3)
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then X 1-a (194)

will satisfy all of 19.2 so that 1 - a is a lower bound on the

yield load.

That 1 - a is also an upper bound for uniaxial tension

follows from the analysis of Sec. 11, provided we assume the

idealized "slit" to be equal in width to the thickness of the

slab.

Since the slab is not symmetric with respect to its

diagonals, we must consider both biaxial tension and uniaxial

tension in the x direction in order to show that 1 - a is the

cutout factor. The latter is trivially true since in this case

the slit has no effect and the slab would support a load X = 1.

The case of biaxial tension can be handled with a piecewise con-

stant stress field as in the previous example (see [5)). However,

it is interesting to construct an entirely different statically

admissible stress field as follows.

We divide the slab into three regions as indicated in

Fig. 19.2. The region interior to a circle of radius a (region

1) we take to be stress free, while the regions exterior to a

unit circle (regions 3) are assigned the equal biaxial stress

field.
d x = y = r =  d = 2k%9 o = 0 (19.5)

Region 2 adapts itself naturally to polar coordinates, and we

consider the stress field

dr = 2kX(l - a/r)/(l - a),
(19.6)

0 0 = 2kV/(l -a), TrQ = 0,
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/a

Fig. 19.2

Square slab with a slit-biaxial tension.

Observe that 19.6 furnishes continuous tractions with the stress

fields in regions 1 and 3, and satisfies the equilibrium equation

d.rr(rcs) - 0 = 0 (19.7)

dr r

in region 2. It remains only to satisfy the yield condition 1.1.

Since the principle stresses are in the coordinate directions

and satisfy
0 > O (19.8)

this means that we require

0 = 2kk/(l - a) < 2k, (19.9)



Bll-22 101

or
X < 1 a (19.10)

in agreement with 19o11,

The preceding types of stress and velocity fields can

also be applied to slits in rectangular slabs. If the direction

perpendicular to the slit is the longer dimension, we again ob-

tain X = 1 - a as the cutout factor. Indeed, the same upper

bound applies as before, while a statically admissible stress

field may be constructed as indicated in Fig. 19.3. Region 1

is constant stress

0 = 01 = 2k = 0

2k

T t t

Ctt

Fig. 19.3

Rectangular slab with a slit.
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while region 2 is the same piecewise constant stress field con-

sidered for the square slab,

If the shorter side is perpendicular to the slit, the

upper and lower bounds obtained no longer coincide. A few re-

sults are known (201, but they do not provide good approximations

and will not be reviewed here.

20. Square slab with a circular cutout [3]. An important

corollary to the first Prager-Greenberg-Drucker theorem is that

the yield load of an elastic-perfectly plastic body cannot be

lowered by the addition of material adjacent to a stress free

boundary. Indeed, it is merely necessary to assign a zero state

of stress to the new material and complete the stress field as if

it were not there. It was this idea which we used in finding a

biaxial lower bound in the previous section.

The example under consideration can be regarded as a

square cutout9 with additional material added to change it to a

circle, as indicated in Fig. 20.1. Therefore, it follows

I

Fig. 20.1

Square slab with circular cutout.
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immediately that the lower bounds obtained for the square cutout

in Secs. 14 and 18 are also lower bounds in this case.

The solution of Sec. 13 also provides an upper bound

for the present example. To be sure, if we take the regions of

bending to have any finite width, then Eq. 13.8 is no longer

valid. However, in Sec. 13 we purposefully chose one of the

angles to passing to its limiting value of zero, and left the

other three angles (Pt y, and 6 in Fig. 13.2) undetermined. In

the present application let all four angles be arbitrarily close

to zero. In the limit we again obtain Eq. 13.11 for the inter-

nal rate of dissipation of energy. Since the external energy

dissipation rate is unchanged it follows that Eqs. 13.13 are

valid in this case also. Therefore, upper and lower bounds on

the yield load are again given by Fig. 18.2.

21. Annular slab, In the examples previously considered we have

been able to obtain upper and lower bounds which were reasonably

close together. However, for an annular slab this is yet to be

done, and the best upper and lower bounds obtained so far differ

considerably from each others This is unfortunate from a practi-

cal viewpoint, because probably the most common type of reinforced

cutout is a circular hole with an annular reinforcement. There-

fore, if we could solve the annular slab problem, we could use

the method of Sec. )+ to solve the slab-independent reinforcement

problem. Further, as we shall see in the next chapter, the only

direct methods evolved so far for the reinforced slab depend

heavily on the results of the unreinforced cutout problem.

In view of the importance of the annular slab, it seems
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worthwhile to discuss such meager results as have been obtained

so far, inconclusive as these may be. The methods used have been

discussed in some detail in previous sections, and we shall here

merely collect the results.

We first of all observe that the case of equal biaxial

tension can be easily disposed of, by considering the stress

field [1 ]
dr = 2kr(l r - a),(21.1)

d9 = 2k%/(l - a), rG = 0.

Observe that this is the same stress field used in region 2 of

Fig. 19.2 for the slab with a slit. Therefore, Just as in Sec. 19

we obtain a lower bound of X = 1 - a for equal biaxial tension.

Also, using sliding out of the plane (See. 11) we obtain

X = 1 - a as an upper bound so that the cutout factor in equal

biaxial tension is
X = 1 - a. (21.2)

It remains, therefore, to consider uniaxial tension.

Upper bounds for uniaxial tension can be found by the methods of

Secs. 12 and 13. Equations 12.15 and 12.17 provide an upper

bound which is less than 1 - a for all values of a, thus showing

that the limit in uniaxial tension is definitely less than in

equal biaxial tension. However, for large values of a, the con-

cept of bending, as illustrated in Sec. 13 provides a still lower

upper bound. Since the results obtained for the hollow square

slab (Fig. 13.2) were independent of the angles a P, y, b we

may, as in the previous section, set each of these angles equal

to zero and hence Eqs. 13.13 are valid for the annular slab as
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well. As a matter of fact, since for the annular slab an in-

crease of a or y from zero would decrease the total internal rate

of dissipation of energy in regions 1 and 1+, (Fig. 13.2) respec-

tively, a still lower upper bound could be obtained by variation

of these angles. This has not been done, however. In Fig. 21.,

the upper curve shows the resultant upper bound obtained by tak-

ing the lower value of X as given by Eqs. 12.17 or 13.13.

For any stress function, a lower bound may be obtained

using Eqs, 17.3. R. K. Froyd has used these equations with

stress functions defined by

f 0 g = - I+ a%): (r - a) 2  a <r <1+a

(2 - a) 2

1-a 1 + I (21.3)a 2J + < r < 1
2g = (1 + a) rl - -a r, 2ar - a]

(1 + a) +

Considering only the case a >1 he obtained a lower bound

< - ] "a 2  ,.- < a <2 ,

V2 (1 + 3a) 3- -2

<(1 + a)(1 - a)2, < _ a < 6 V2 - 5 + 97-68 V2 ,O0787
V2_ a(3 - a) 4 V2_

(21.4)
k< 4 (1 - ag) 2 6V -5 + y97-68 _2 < a < le

2 l+a )+ yr2

The resulting lower bound is sketched in Fig. 21.1.

For the particular case a = i E. Levin has considered
3

numerically the stress function defined by
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1.0 '

0.9

• \\ (Eqo12. 17)

0.7L

o.?F

0.2 F (Eq.21.2

o.5 (Eq.21.6)\_1 (q2."

0.4
/Eq 13 .13)

0.2(E

~ -~ a
0 0.2 0.4 o.6 0.8 1.0

Fig. 21.1

Upper and lower bounds for annular slab.
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f' I kX (r - 1),

3 < r< I

g = (k I )(3r- 1) 29J33

= k X (r - .1), 1 il215

g 2

= k (3r - 2),

g 2

The worst point was found to occur at @ = t/), r = 2/3. The

result is subject to some question, of course, as a rather course

mesh was used. However, since the functions involved are simple

ones, it appears reasonable that the worst point would be at the

end point of an interval in r, so that Levin's result may be ten-

tatively accepted. It would, however, be desirable to check it

analytically, at least using the approximate yield condition.

Levin's result is considerably higher than any bound so

far obtained for an arbitrary value of a. Therefore, for a a

little less than 1/3, the best bound available at present is to

combine 21.5 with a stress-free region for r <1/3. This accounts

for the horizontal portion of the lower curve in Fig. 21. 1.

Finally, for a less than about 0.265, the best lower

bound has been obtained by inscribing a hollow square in the

annulus. That part of the annulus exterior to the square is taken

to have a constant stress state, while that part interior to the

cutout in the square is taken to be stress-free. Within the
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hollow square, the discontinuous stress field of Sec. i is used.

Since the exterior side of the square is V! in length, while a

length 2 was assumed in obtaining Eqs. 14. 11, the result for the

present case is

XA(a) = %s(aV-) (21.6)

where Xs is the cutout factor for the square as given by Eqs.

14.11 (Eq. 14.llb is the applicable one in the range of interest

for a), and XA is the desired cutout factor for the annulus.

Figure 21.1 shows the best upper and lower bound cor-

responding to each value of a. As previously admitted, the

solution is by no means satisfactory and the investigation is

being continued in the hope of obtaining better bounds.
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VI. REINFORCED CUTOUTS

22. Reinforcement to full strength. In Sec. 4, a method was

indicated by which a reinforcement for full strength could be

designed on the basis of the analysis of the hub alone. In-

tuitively, one might expect that such an analysis would always

be conservative, and that a consideration of the stresses in the

base slab would lead to substantially reduced hub dimensions.

However, as we shall see, this is not always the cases

As an example, let us consider a square slab of half-

side d with a circular cutout of radius a9 reinforced by concen-

tric circular cylindrical rings of outer radius b. The thickness

of the hub is H, and the slab is subjected to equal biaxial ten-

sions 2k%(Fig. 22.1). ty

d

d

H h 4<1

ra -
a -1

Fig. 22.1
Slab reinforced by rings
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Consider first the radially symmetric stress field [1]

r = 2k(l -A)p o= 2k, a < r < br r

r =2k { )-1[ -(l 0bg , = 2k, b < r< 1, (22. 1)

d = 2k, d = 2k, r > b.r

Observe that this stress field satisfies the equilibrium equation

(Eq. 19.7) in each of the three regions, and the boundary condi-

tion o = 0 at r = 0. Further, at the hub boundary r = b ther

traction per unit length is

2kH(l - a)
b

computed from either side. Finally, the tractions applied at

r = 1 will be in equilibrium provided that

X = 1-I + (Jh)(b - a)/d. (22.2)

d h

Therefore, Eqs. 22.1 furnish an equilibrium stress field. If we

impose the additional condition that

Hl < b- (223)
h-b - a

then at all points of the reinforced slab

5r Z do 0 (22.)

so that the stress field 22.1 is statically admissible. It

follows from Theorem 1 that

X l - + (Bh)(b - a)/d. (22.5)

d h

Next, we may construct a kinematically admissible

velocity field based on sliding out of the plane, as in Sec. 11.
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An elementary computation then shows that 1 - b + (H/h)(b - a)

is also an upper bound for the yield load X. Therefore, the load

and hub thickness are related by Eq. 22.2.

If the reinforcement is to be designed for full strength,

then we may set X = 1 in Eq. 22.2 and obtain

4=.._b, (22.6)
h b-a

This result is independent of the dimension d which

characterizes the slab. Indeed, the same result could have been

more easily obtained by the method of Sec. I. For a plane annular

slab of inner and outer radii a and b respectively, the yield

load under biaxial tension is easily shown to be [1],

= 1- . , (22.7)

Substituting this into 4.1 yields 22.6 immediately.

Although reinforcement to full strength is independent

of d, the same is not true if we wish to reinforce to some value

less than full strength* Solving 22.5 for H/h, we obtain

11-= - h - -1 - d. (22.8)
h b -a b -a

In Fig. 22.2 we have sketched H/h as a function of d for the

particular case a = 1, b = 2 for different values of %a Observe

that for any value of X < I a sufficiently large value of d brings

the slab to the required strength without any reinforcement

(H/h = 1)o
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H/h

2.0
2.0 =0.95

go3

1X,0

0.5

I I _ _1
0 1 2 3 5

Fig. 22.2

Reinforcement to less than full strength.

23. Wide scuare reinforcement. As a second example of direct

computation of reinforced cutouts, consider a square reinforce-

ment of a square coutout in a square slab (Fig. 23.1). The state

of stress in the hub, as well as in the base slab, is to be

approximated by plane stress.

Let us consider a piecewise constant stress field,

dividing the base slab into four regions as in the previous sec-

tion, and dividing the hub into four similar regions (Fig. 23.1).

In each of regions 1, 3, 4, 5, 7 and 8, symmetry demands that the

principal directions be the coordinate directions so that
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1 .0 .... .... . ...... .. .. .. ..

ly

b

cutout hub base slaib

Fig. 23.1

Wide square reinforcement of square slab
with square cutout.
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91 = 3 = 9+ =5 = 07 = 98 = o. (23.1a)

Equilibrium with the applied boundary tractions determines

s1 = 2k%9 s7 = O9 (23.1b)

r+ = 0, r8 = 0.

Next, if we denote oy in region 3 by 21ql, and define

as the ratio of base slab height to hub height, equilibrium

between regions 3 and 5 furnishes

s3 = 2kfL, s5 = 2kL. (23.1c)

In an example such as the present one which contains several

regions, it is desirable to linearize the equilibrium equations

between adjoining regions (Eqs. 14.3) by defining

u = X cos 29, v = x sin 29. (23.2a)

Using the further notation

2k 2k

the situation in each region is given in Table 23.1.

Since we have already satisfied the boundary conditions

at the inner and outer boundaries and between the hub and base

slab, there are a total of twelve Eqs. 14.3 as follows:
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Region Q p 0 w X u v

1 0 p1  p +X pl 01

2 g2 P2  2 2 X2 u2  v 2

3 0 + L P3  p 3 - L 0

4 0 0 054 0 -4 0

5 0 P5  " q P5 + p9 "5 P5 ] 0

6 96 P6 06 U 66 X6  u6  v6

7 0 P7  0 P7  P7  p7  0

8 0 0 8 08

Table 23.1

Stress quantities in Fig. 23.1.

redions 1,2: (Pl + %) - (PI - X)Cl w2 - u2C1 - V2Sl,

(p1 - X)Sl = u 2 S1 " V2C11

regions 3,2: (p3 + [) - (P 3 - p)C 3 = 3 - u2 C2 - v2S3 f

(p3 - p)S3  - u3S3 " v2C3

regions 4,2: 4 =w2 " v2

" 4 U u29

regions 5,6: (p 5 + it " (p 5 " - W 6 - u6C5 - v6S,,

(P5 - -
) s= u6S5 - v6c5,

regions 7,6: p 7(1 - C7) = W6 - u6 C7 - v6S 7 v

p7S7 = u6 S7 - v6C7,
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regions 8,6: 08 w6 "v6

- d8  u 6 9

where we have used the symbols

CI = cos 2 1 2 ,  S1 = sin 2a 12,

C3 = cos 2a32, S3 = sin 2a32, (23.4)

C = cos 2a 5 6 , S5 = sin 2a,6 ,

C7 = cos 2a76, S7 = sin 2a76.

Equations 23.3 separate into two groups of six equations

each, the first six equations containing pl, P3, dO, w2 f u2 1

and v2 as unknowns; the second group containing p,, p7 , 68,

w6 , u6 and v6 . The equations are easily solved with the use of

the trignometric identities

cos 2a = (1 - tan2a)/(1 + tan 2a), (23.5)
22.5

sin 2a = 2 tana/(l + tan 2a).

Further, it follows from Fig. 23.1 that

tan a12 = 1 - y, tan a = I (3612n 32 (23.6)

tan a56 = 1- f, tan a = 1 .
2076 a

After some computation, then, we finally obtain
P- "L 0 -- b '

S1- 1-b'

b-yb

1 b
X- I b 2w2 1 b- -.-" b2 1.-b' -
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U2 ='1.b =

V2  = -2X-:-b
y 1 - b

P =  b b 1 -qx

7 b-a a-x'

0b (23.7)

8  =a
x .2a b

6 x b - a
b

u6  - a- q

vxb-2a b P.
v6 x b - a

Next, we compute the governing inequality in each

region. However, we first record the elementary inequalities

O < a < x < b < y < 1,

O <yq < 1, (23. 8a)

0< :< X < 1.

Taking 23.8a for granted wherever they are needed, we see that in

region 1, p and 6 are both positive and o < 1 is included in

23.8a so that the governing inequality is

i- -b < 1. (23.8b)
1 -y 1 - b

In region 2, iXi is easily computed from the identity

and it can be shown that for any values of the parameters
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JXi > Iwi. Therefore, the governing inequality is

Lb -2 + ( - )2< I (23.8c)

In region 31 on the other hand, we have o > 0 > p for any values

of the parameters, so that the governing inequality is

Ix3I = (I " P3 = P + % b <1 2,d
3 3  y - b 1 <b -

Since p = 0 in region 4, the governing inequality is

= -b < 1. (23.8e)4 1l-b -

Finally, similar arguments for each of the four regions of the

hub lead to the governing inequalities

ab q '(
5 ( - a)(b - X) , (23.8f)

jXj b, 1i +-4a2< it (23.89)

- r 7  = b 1 < 1,(23.8h)

d =Ipb < l. (23.81)

8 b-a-

Inequalities 23.8 may be considered in either of two

ways. On the one hand, for given values of a and b we may wish

to determine the maximum value of q(= h/H) which will restore

the slab to full strength As far as the present type of stress

field is concerned, the situation is similar to that encountered

in the previous section in that we obtain no improvement over the

result obtained by applying the theory of Sec. 1+ to the example

considered in Sec. 18. To see this, we need only consider In-

equality 23.8. With X = 1, this becomes
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1 - pb < 1 - b.

Since b must be positive and 0 < 1 it follows that p = I. There-

fore, the applied boundary tractions are transmitted directly to

the hub, as stated.

A second problem is to find the yield load of a given

reinforced slab. That is, given a, b, and q, find the maximum

X satisfying Inequalities 23.8. Since there are three parameters

in the problem, it is impracticable to obtain any general results.

However, a solution is easily obtained for any particular value

of the parameters.

As an example, consider a reinforced slab with a =

b = 2, 1 = 1 (observe that for a circular hole this would provide

full strength). Since Inequalities 23.8e and 23.8i are conse-

quences of 23.8c and 23.8g, respectively, we must consider the

six inequalities
% - 0 < 1 - y9 (23.9b)

p a) 2 +(- ,)2/y 2 ] < 1, (23.9c)

+ ( - V)/(y - ) < 1, (23.9d)

< 2 - 4x, (23.9f)

1+ -- <, (23.9g)

< )+x - 1. (23.9h)

Since p. < X9 it is obvious that a larger value of 11

will always allow a larger value of X in Inequalities 23.9b, C.

An elementary calculation shows that the same result is valid for
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23.9d. Since these are the only three inequalities which contain

X and y, while the remaining three are the only ones which con-

tain x, it follows that we wish to determine x in 23.9f, gI h so

as to maximize 0 in those inequalities. An analysis similar to

that used in Sec. 14 shows that we must choose

x= = . (23.10)

With this value of jig the first three Inequalities

23.9 become

222i C - y, C .)y z1 (23. llb)
2 (-X -- j)2 + (k )21y2 < i,(23.11c)

< y + . (23.11d)

These inequalities are again similar to those considered in Sec.

14. Let us try the value of y for which 23. llb, d are both

equalities. Then =5 X 23 (23.12)

It is readily verified that these values also satisfy 23.11c so

that we have obtained the best value of X for the considered

stress field.

By way of comparison, the method of Sec. 14 together

with the results of Sec. 14 would furnish a lower bound of X = -1
2

The upper bound obtained by considering sliding out of

the plane is easily seen to be X = 1, corresponding to full

strength. However, by using a bending type velocity field as in

Sec. 13, we can show that full strength is not attained. For

simplicityt we shall assign convenient values to the hinge centers-
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by varying these values we could presumably reduce the upper

bound still further. Thus, with reference to Fig. 13.2, take

b = i c = i, d = 0, f = 4. Observe that this locates the top
hinge at the junction of hub and base slab, and the lower hinge

at the outer edge of the slab* The internal energy dissipation

rates are given by Eqs. 13.6, where h must be replaced by H = 2h

in areas corresponding to the hub. The resulting total is

=~ )(~ +kh = 15 khL/16. (23.13)

Since the external rate of dissipation of energy is still given

by l3.lO we have

=2k~hL(J +~ J - ) = khQX. (23.14)

Comparing 23.13 and 23.14 we obtain the upper bound

X < (23.15)

24. Wide slabs with narrow reinforcements If the hub is suffi-

ciently narrow to be approximated by a curved beam, as in Chap.

II, then the methods of Chaps. II and IV can be combined to fur-

nish a lower bound.

As an example, let us consider a circular cutout with

an annular cylindrical reinforcement subject to uniaxial tension

We divide the base slab into several regions as indicated in

Fig. 24.1. Regions 1 through 5 constitute the base slab and

region 6 is the hub. The stress distribution in the hub is ex-

pressed in terms of stress resultants, as in Chap* II. The stress

distribution in regions 1 through 4 is similar to that discussed

in the base slab in the previous section. The component of stress
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1T

V 05
bI

al

Fig. 24+.:

Square slbb with nzarrow annular reinforcement,
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dy is 2%k in region 1 to be in equilibrium with the applied load,

while in region 3 it is 2kL where i is a constant to be deter-

mined. In region 5 the stress is determined by regions 3 and 4

to be
dx =0 y = 2kL vxy = 0.

Therefore, it follows that the hub is acted upon by a uniformly

distributed vertical force of magnitude 2k~h per unit length.

The forces acting upon regions 1 through 4 are exactly

the same as those acting on the corresponding regions in Fig.

23.1, considered in the previous section. Therefore, the same

stress distribution will subsist and hence the same governing

inequalities. From Eqs. 23.8b through e we have then

X - b < It(24.1la)
l-y

(X- b) 2 + ()2 (X- g)2 < (I - b) 2 , (24.1b)
y

y-b

-ib < 1 - b.

The last of these inequalities is a consequence of 24.lb and

hence will not be considered further. Region 5, of course, does

not add any new inequalities. The inequalities in region 6 are

obtained from Eqs. 6.12, replacing X by . Thus

a H --- b f(24. 2a)

a + b - (

Next, we observe that the left hand sides of 24.la and

c are decreasing functions of 1 for all values of y and b, while
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the same will be true for 24.lb if

y < b(2 - b)/(l - b). (24.3)

It is found that this is generally the case, so that we shall

assume that the left hand sides of all three Inequalities 24.1

are decreasing functions of li It follows that since t is bound-

ed only from above by inequalities 24.2, we should choose ji to be

the largest value permitted by these equations. Then p becomes

a known quantity and inequalities 24.1 are to be solved, deter-

mining y so as to maximize Xq It should be pointed out that if

b and y should turn out to be such that 24.3 is reversed, this

will not lead to an invalid result,since for A= choice of p and

y a legitimate lower bound on %is obtained. It merely means

that the best possible lower bound for the given data would not

be obtained,

With p fixed, then, the general character of inequal-

ities 24.1 is the same as that illustrated in Fig. 14.2 for in-

equalities 14.10. Thus, depending upon the values of the para-

meters, the best value for y will be the intersection of 24.1c

with either 24.1a or 24. lb. After some computation it is found

that X > min(%l, %2) ,  (24,4)

w h e r e 2+ ( 1 a " )  2  7 ( 2 4 , a )

2-p b (45a

and X2 is defined implicitly by

2 = b2 (X 2 ) (24. 5)
[1 -. b] (1 -b) 2 _(X t) 2 2.'
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A convenient upper bound for the above example is ob-

tained by considering sliding out of the plane:

_< - b + (b - a)(H). (24.6)

Other upper bounds can also be obtained by considering bending as

in the previous section. Some specific examples will be given in

Sec. 26.

The same approach can be used for any shaped hub. In

each case ji is obtained by the methods of Chap. II, and X is

then given by 24.4. Thus, for a square cutout with a square

reinforcement, it follows from 6.18 that

1 = min H6 H + (24.7).... V2a (a + (2h257.67)

L -j

As an example, let us consider the reinforced slab for which a

plane stress bound was found in Sec. 23. With a = 6 = 1/4,

H/h = 2 Eq. 24.7 furnished p, = .1( V3 - 1) = 0.62. Substituting
2

this into 24. a we obtain XI = 0.76. It is easily shown that X2

is greater than Xl, in this case, so that

X = 0.76 (24.8)

is a lower bound. Comparing this with Eqs. 23.12 and 23.15 we

see that this type of approach gives a value between the upper

and lower bounds furnished by the plane stress approach.
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Fig. 24+.2
Square slab w ith narrow hollow square reinforcement.
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25. Other loadin _cQnditions. Up to now we have been consider-

ing only the situation where a uniform load has been applied to

the boundary. However, in applications, it may be that only the

resultant load is known, and not the load distribution In the

present section we shall discuss this situation more generally

In the first place, we observe that an assumption must

be made that the load intensity per unit length is nowhere greater

than 2kh, since otherwise the material of the slab would fail

locally. Secondly,it is evident that the slab is generally stronger

if the load is applied near the edge of the slab, away from the

cutout. Thereforeg we may consider two extreme cases as indicated

in Fig. 25.1. In each case, a vertical load of intensity 2kh

per unit length is applied over a length c in each quadrant. In

Fig. 25.la the load is at the outer edge, and in Fig. 25. lb at

the center. In either case we may define a design problem: to

determine a reinforcement which will support a given load span c;

or an analysis problem: to determine the maximum c for a given

slab.

Let us consider first an unreinforced slab with an

outer load applied. For the case c = 1 - ao a statically admis-

sible stress field may be trivially constructed as indicated in

Fig. 25.2. Region 1 is stress free, while in region 2

0 y Iy 0 x = 2k,

Therefore, it follows that 1 - ao0 is a lower bound for c. On the

other hand, a kinematically admissible velocity field consisting

of sliding out of the plane shows that 1 - a o is also an upper

bound, so that in this case
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(a)

(b)

Fig* 25.1

Extreme load distributions.



Bl-22 129

1©
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c Ia. (25.1)

As an. application of this type of analysis, consider a

test slab which is clamped perfectly rigidly at either end (Fig,

25.3). If the clamp is perfectly rigid and indefinitely strong

then = equilibrium stress field in the clamp is statically

admissible, Suchastress field can always be found for any pre-

scribed boundary stresses, for example, the elastic solution,

D
-__ _ A

Iao _________ __

E

Fig. 25.3

Statically admissible stress field for clamped slab.
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Therefore, in Fig. 25.3, let the stress field in the clamp be such

that it is in equilibrium a total load of 2k% on AB (in whatever

manner it is actually applied)p no load on EC, and a uniform load

2kX/(l - a0) on CD. The other sides are stress free and there

are no shearing tractions. Region I is taken as stress free,

while in region 2

dy = 'rxyx 01 = 2k%/(l - ao).

The above stress field will be statically admissible for the

entire assembly of clamp and slab provided that oy in region 2 is

less than the yeild stress. Thus a lower bound for X is 1 - ao.

Since it follows from Eq. 11.3 that this is also an upper boundl

we have
X = 1 - ao. (25.2)

Therefore, for a perfectly rigid and strong clamp the collapse

load is determined.

In actual practice, the clamp may not be perfect, so

that 25.2 is not exact. While conceivably the actual load as it

reaches the slab could be as indicated in Fig. 25.1b, in practice

this seems most unlikelyg so that the true collapse load is prob-

ably somewhere in between 25.2 and the uniform load analysis con-

sidered in the preceding section

For a reinforced cutout the analysis is not quite so

trivial. As a matter of fact, for reinforcement to full strength

the present viewpoint offers no improvement. However, for analy-

sis under a given load less than full strength, modifications of

the above procedure can certainly be used to advantage.

As an example, consider the reinforced slab discussed
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in the previous section, pulled in uniaxial tension by a perfect

clamp (Fig. 25.4). The stress distribution in the slab is the

same as in Fig. 25.3, where the length c is chosen so that the

tractions transmitted across AB onto the slab are 2kh per unit

length. The base slab stresses are then statically admissible$

and it remains only to consider the hub.

The hub is subjected to a horizontal force of magnitude

2kh per unit length for @I < 9 < 7/2 and to no force for 0 <

The resultants may be computed by equations analogous to 5.8,

and it is found that

N(O) = 0 M(G) = M(O), 0 < < 911

N(G) = 2khb(sin 9 - sin 91 )sin Ot (25*3)
_< < n/2.

M(Q) = M(O) + khb(sin 9 - sin @ )(a sin @ - b sin @l)

Using the notations

=sin @, l = sin ,l

h/H, a = a/b, (25.4)

Y = 2HM(O)/kh
2b2,

and substituting 25.3 into 6.3 we obtain the yield inequalities

y + (2)( - C.l)(a. - C.l)l + (C. - tl) 2C2< (l - a2)/9 2 .

Inequality 25. 5 must be satisfied for all C1 j C < n/21 and Y is

to be chosen so that C, is a minimum. It follows from Fig. 25.4

that the resultant load on the quarter is given in terms of CI by
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2kkh = 2kkc = 2kh(l - bCl)

so that the reinforced cutout factor is

X = 1 - b 1 . (25.6)

The solution of inequalities 25.5 is not simple, even

numerically for specified values of 9 and a and no examples have

been computed as yet. Possibly some of the techniques for the

limit analysis of arches [17] can be used to advantages

A somewhat simpler (although in general not as good)

lower bound can be obtained by assuming full yield stress in

region 2a (Fig. 25.4) as before, but a constant traction 2kh. in

regions 1 and 2b. The hub analysis is then identical with that

in Sec. 6, except that X is to be replaced by . Thus, from

Eqs. 6.12, Hb i
ha+ 6) a-

2 (25-.7)
l a+2 6  -a 6

h(a + 6) a-

Since the total load is

2kh% = 2kh(l - a - 6) + 2khp(a + 6),

the cutout factor is

X 1 - (a + 6) + if - 2-

(25.8)

1 - (a + 6) + [a 2 + 262 - a]/q if L.<2.
a
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26. Comparison with experiment. The only known experiments on

the yield loads of slabs with cutouts were carried out at the

University of Washington by Vasarhelyi and Hechtman. These ex-

periments are described in [21), and it is of some interest to

compare the experimentally observed results with the theoretical

results here obtained.

A total of 23 specimens were tested involving slabs

without cutouts, with cutouts, and with reinforced cutouts. A

variety of cutout and reinforcement shapes were considered. In

each case, the slab was 36" in width, and had a gauge length of

36" so that the base slab was essentially square. All specimens

were 1/1+" thick, and were made of a plain-carbon semi-killed grade

steel in an as rolled condition

We shall here consider only those slabs with circular

cutouts reinforced with concentric annular rings, although the

methods of this report could be used to obtain a theoretical

result for all the specimens tested. In order to avoid possible

experimental difficulties in determining the yield stress, we

shall identify the cutout factor as the ratio between the yield

loads of the slab considered to the same base slab without cutout

or reinforcement. Further) we shall define the yield load as the

load for which a marked increase in deformation rate first occurred,

In [21] this is called "general yielding". In each case the slab

continued to sustain greater loads, indicating the existence of

strain-hardening. Finally, we shall use the hub-base slab analy-

sis, regardless of the actual welding process by which the rein..

forcement was attached#
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The comparative results are given in Table 26.1. The

dimensions of the slabs and reinforcements and the numbering of

the specimens are taken from [21), using the notation of Fig. 254.

Experimental results are taken from Table 4 of [21]. For two un-

cut slabs the general yielding load was found to be 380,000 and

390,000 pounds. Since the lower value corresponded to a higher

value of the temperature than was used in any of the other experi-

ments, we have here used 390,000 pounds as the yield load. The

uniaxial cutout factor X is thus the yield load for the slab in

question divided by 390,000.

In each case we have used the "beam" approach to deter-

mine a lower bound. The lower bound for uniform edge load is

determined from Eqs. 24.2 and 24.4, while the lower bound for

uniform edge velocity is obtained from Eq. 25.8. Finally, the

upper bound is obtained by considering sliding out of the plane

(Sec. 11) and is given by

k 1-(a + 6) + 5•(26.1)

Lower Bounds
Specimen Dimensions Uniform Uniform. Experimental Upper
Number a 6 1 Load Velocity Value Bound

5 1/72 1/8 0.62 0.74 o.83 o.86

6 1/72 1/4 o.62 0.74 0.83 0.79

11 1/4 1/2 0.84 0.87 0.92 1.00

12 1/8 1/2 0.64 074 0.85 0.88

17 15/144 1/2 0.62 0.73 0683 o.85

18 3/72 1/4 0.62 0.74 0.87 0.88

Table 26.1
COMPARISON OF RESULTS
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