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FOREWORD 

A systematic study of spin-atabilized rockets at the U.  S. 

Naval Ordnance Test Station has provided,   among other things, 

pitching moment and normal force coefficient data on short bodies 

of revolution.    These data were for 5   ,   7-    and 9-caliber body 

lengths at a Mach number of 0.26,   and included runs with and 

without spin.    An attempt to explain the nonlinear coefficients 

ff>r angles of attack up to 30 degrees and with zero spin has 

resulted in the method presented here.    The success of this 

theory at low »peed prompted its extension to high speed flow. 

This study has been supported by NOTS Local Project LP 701. 

This report has been reviewed for technical adequacy by Dr. 

Henry T.  Nagamatsu,  personal services contractor to NOTS,  of 

the California Institute of Technology,  Pasadena. 

dynamics Branch 

This memorandum is transmitted for information pui poses 
only.    It does not represent the official views or final 
judgment of the Naval Ordnance Test Station,   and the 
Station assumes no responsibility for action taken on the 
baais    of its contents. 
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ABSTRACT 

A method is developed which accurately predicts for blunt- 

based bodies of revolution the normal force coefficient and the 

pitching moment coefficient for angles of attack far beyond the 

range of potential theory      This method is based on the principle 

of superposition of the results of potential theory and the viscous 

force on a cylindrical body due to the transverse component of 

flow.    In contrast to previously used methods,  the viscous cross 

force is assumed not to be in a steady state,  but in a transient 

development along the body. 

This method is compared with experimental data for both 

subsonic and supersonic flows and with both laminar and turbulent 

axial boundary layer.    The deviations between theory and experi- 

ment are in most cases an order of magnitude »mailer than for 

a previous method due to Allen and Perkins. 

IV 

t^-waou 



TM   998 

INTRODUCTION 

The aerodynamic design of aircraft rockets is somewhat 

unique in that the most practical body shape from other design 

considerations usually is a cylindrical shape with a blunt base 

and a moderately blunt nose.    Very little good theoretical infor- 

mation is available on the lift and pitching moment for bodies of 

this type,   except at very small pitching angles.    For this reason, 

a considerable number of wind-tunnel tests have been made by 

the Naval Ordnance Test Station to build up a fund of information 

for design purposes. 

While examining some of these data for the purpose of 

correlation between tests and with available theory,   it was found 

that certain subsonic test data on short bodies at large angles of 

attack differed widely from any theoretical predictions available. 

The theory of Max M.ink (Ref.  1) was found to give good results 

at small angles; this is satisfactory,   since his is a linearized 

potential theory,  and is not expected to be valid for large angles. 

A theory proposed by H.   Julian Allen (Ref.  2),  which has enjoyed 

a measure of success for supersonic flow data,   grossly over- 

estimates the effects of viscous crossflow £t low subsonic speeds, 



TM-998 

where it would at firat be expected to be at its beut. 

The theory of Allen has been carefully examined,   and a 

completely new version of hia method is presented here.    The 

problem of viscous crossflow has been reformulated with results 

quite different from his.    His universal use of Munk's results for 

the linear potential theory contribution is questioned,   and a 

revision of this policy is recommended.    The results of a number 

of wind-tunnel tests by NOTS are presented in support of this new 

theory,   showing excellent correlation.    The predictions of Allen's 

theory are included for comparison,  and the results of Munk's 

linear theory included as a sort of reference line,  without in 

tending a comparison. 

This method is found to give formulas for certain cases that 

would appear to make it more difficult to use for engineering 

design purposes than Allen's method.    It is shown,  however, 

that considerable simplification can often be effected for this type 

of application,   without seriously impairing the accuracy.    An 

important result of this method is that it provides a means of 

extrapolating the results of testa at low Reynolds numbers,  with 
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completely laminar boundary layer,   to high Reynolds numbers, 

with fully developed turbulent boundary layers.    This is a 

valuable asset for design work when test facilities are limited. 

THEORY 

Historical Development 

The classical work of Munk (Ref.  1) is now so well known that 

the results of his theory may be quoted without detailed explana 

tion.    He found that the lift force distribution along the body of 

an airship is given by 

dF =   £y.(k2 - k,)~sin 2<Xdx (1) 

which integrates to zero along the body of the airship,  but for a 

body of revolution with a flat base of area S„,   gives 

L =   y dF =  £H_ (k2 - k, )Sß sin 2a (2) 

For a long slender body,  k2     k1   is almost unity,  and if there is 

no boattail--so that the base area Sg is the reference area for 

defining lift coefficient--this coefficient is usually approximated 

as 
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CL = za (3) 

Munk realized that his linearized potential theory would apply 

only at small angles of attack,   and that it would fail at large 

angles,   chiefly due to viscous effects.     There was apparently 

little interest at that time in developing a theory for large angles. 

Recently Allen (Ref.  I,   i,  4) has developed a method for pre- 

dicting lift,   pitching-moment,     fid the drag increment due to yaw, 

that has enjoyed considerable success with slender bodies of 

revolution at supersonic speeds. 

Aiien has assumed that the viscous contribution to lift is 

independent of the contribution of the potential flow,   and writes 

the lift coefficient and pitching moment coefficient as the sum 

of two terms: 

>B 
CL = (kj ~ kl )~Ä~8in 2 a C08"2" +   ^CD   ~A"-sin2aco9a    (4a) 

CM  =[ 
V  - SR(i - *) , 
 5: El](k2 - k,)sin 2acosJZ- 

+    HCn -f-(xm - xc)sin2a (4b) 
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where the first term is always the result of Munk's theory, 

modified by the results of Ward (Ref.   5),  v/ho showed that the 

potential cross force is directed midway between the normal to 

the axis of revolution and the normal to the wind direction. 

Drag coefficient increments are not being treated in this report, 

"o Allen'H drag formula is omitted.    The quantity Cj->     as used by 
c 

Allen refers to the steady-state drag coefficient of an infinite 

cylinder in a flow normal to its axi«.     This   was found by Allen 

to be Crj    =1.2 for a wide range of Reynolds numbers correspond- 

ing to the usual range of crossflow Reynolds numbers being con- 

sidered.    The factor    T\ corrects this cylinder crossflow drag 

for the finite finenei i ratio     Values of  r\   have been tabulated 

by Goldstein (Ref.  6).    The xm is the (arbitrary) point about 

which pitching moments are measured; xc is the axial position 

of the centroid of the planform area A   . and the factor sin   a r p. 

arises from the transformation of dynamic pressures from the 

cross velocity V sir. 3   to the free stream velocity V . 
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Since his theory is only approximate,   Allen simplified his 

formulas by making the approximations si.i a = a ,   k 2     k,   = 1, 

cos a - 1.    This re8ulte in 

SB A
c      -A CL = 2(-2-)a+   nc^^a' (5a) 

CM = 2[- 
V -SB(i.xm) m' 

Ja *   nCD_(^-)(xm    xc)a2     (5b) D-^ A  A*m 

and his theory is used in essentially this form.    J.  A    F.  Hill at 

the Naval Supersonic Laboratory,   Massachusetts Institute of 

Technology,   used Allen's results in 1950 (Ref.   7),  but modified 

them to include boundary layer displacement thickness in the 

potential theory term,  thus changing the effective values of 

both Sg and V  .    He also observed that Allen's assumed value 

of Crj    = 1.2 is not appropriate if the axial boundary layer is 

turbulent,   even though the crossflow Reynolds number corresponds 

to a laminar boundary layer. 
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The Viscous Cross Flow 

In the theory presented in this paper we shall replace the 

use of the lift coefficient C^, by the normal force coefficient 

Cj^      This will not change the firBt (potential theory) term of 

equation 4a,   and will eliminate the factor of cos a  in the second 

(viscous) term of this equation.    It also eliminates the necessity 

of Allen's assumption that the component of axial drag involved 

in the hft force may be neglected.    This assumption would be 

invalid for the angular range of interest here.    As Hill has pointed 

out in Ref.   7,  Allen's equation (5a) would be more appropriate 

for the normal force coefficient Cjyj for comparison purposes here. 

Allen 's fundamental equation for the viscous cross flow is 

apparently quite correct if properly interpreted.    He writes the 

viscous contribution to the cross force from a cylindrical element 

of length dx as 

dF = 2rCD     pVc   fix (6) 
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where r is the body radius at the point x,  and V    is the cross 

velocity,   as shown in Fig.   1.    The quantity   p   is the usual mass 

density,   and CQ    is the drag coefficient of a circular cylinder at 

the Reynolds number 

2rV. 
Re, (7a) 

and the Mach number 

Mc = (7b) 

with the kinematic viscosity   v and speed of sound a evaluated in 

the   undisturbed flow.    Then,   since 

Vc = U »in a (7c) 

it follows that 

2 dF = 2rCn q sin   a** (8) 

in terms of the dynamic pressure   q pir of the free stream. 
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\ 

U oos a 

d (1 oaliber) 

FIG.  1.    GEOMETRY FOR BODY OF REVOLUTION 
WITH ANGLE OF ATTACK  a . 
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Since the drag coeificient of a circular cylinder in a cross 

flow is usually given for the two-dimensional case of an infinite 

cylinder,  Allen adds a parameter    f],  which represents the 

reduction in drag coefficient of a cylinder due to its finite length. 

Then if the moment coefficient for a body of diameter d,   referred 

to a point xm, 

M. 
'M = 

qAd 
(9a) 

and the normal force coefficient 

'N 
N 

qA 
(9b) 

we find the increments in these coefficients,  due to viscosity, 

to be 

ACN = 2f1a
A
in2g 

n A A c 

'0 1' Cr> dx (10a) 

and 

AC      _ 2 nsin   a 
M Ad 

cD.(xm     x)dx *-Dc^m (10b) 

10 
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which lead to the final terms of equations (4a) and (4b).    These 

terms are entirely due to viscous effects,   since Crj    always 

vanishes for a true potential flow. 

Evaluation of Parameters 

The departure of the theory of this report from that of Allen 

lies principally in the evaluation of the parameters of equations 

(10) and of the potential theory.    It was well known to both Allen 

and Hill that the coefficient Cp    should not be the steady state 

drag coefficient,  as used by them,  but should be related to the 

transient effect found by Schwabe (Ref.  8).    The results of 

Schwabe's experiments are reproduced here as Fig.   2.    This 

curve represents the drag coefficient for a circular cylinder 

moving crosswise in a fluid when started impulsively from rest, 

as computed from the observed flows.    For a cylinder of 

radius r, ,   it is found that the drag coefficient rises rapidly from 

V   t zero   until the parameter      c       is about 4 .    A very slow increase 
ri 

continues until,  when this parameter reaches a value of 9,   the 

drag coefficient is 2.07,   or twice the steady-state value of about 

1. 0 for the Reynolds number of the experiment. 

11 
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Referring to Fig.   1    we .nay consider a plane lamina   of air 

of thickness dx moving along the body axis with speed U cos a 

and across the body with speed U sin  a .    At the nose of the body, 

this lamina suddenly begins to flow about a circular cylinder of 

variable radius r.    A potential cross flow will exist at the nose, 

with a gradual development of viscous cross flow along the body. 

Schwabe's parameter becomes 

V"c U sin a x x ... 
—-t -     7i —7-   =  — tana (11) r r U cos a r *   ' 

In order that equations v10) may be integrated readily,  it is 

advisable to approximate Schwabe's results by a simple function. 

This function was first chosen to be a linear increase of drag 

V.t Vct 
coefficient from 0 at        - 0     to 2.0 at    —- = 4,  and to remain 

r r 
V   t constant at 2.0 until        c    = 9 .    No information is given by 

r 

Schwabe of the transition back to the steady state for larger 

values of his parameter.    It may be seen from Fig.   3,   however, 

that this parameter range covers most body lengths and angles 

of ?ttack of practical interest. 

I 3 



TM-998 

o 
I  ^ 
(H 

1 
1 

ZSI tan a   =    3 
2 ß. tan a =    6 
2 i tan a s    9 

(LIMIT OF THEORY) 

              . 
1   \ 

30 

i 
\   \ 

i 

-i- 
1 

_. _   i . 
i l 

\ 
\ 

20 
1 

1 
\ 
\ 
\ 

\ 
1 l 

\ \ \ 

\ 

10 \ 
^ \ 

V 
\ 

s 

\ \ 
^ 

T v 

■»* *«" 
""—  —. 

o [ ■■■*-- 

10 20 30 40 50 

ANGLE OF ATTACK, a,  DEGREES 

FIG,   3,     RANGE QF APPLICATION OF 
PRESENT THEORY. 

60 



TM   998 

The linear approximation works quite well,   but yields un 

wieldy expressions for angles greater than that for which 

JC   tan a  - I,   since the factor tan a appears as a limit of Integra 

tion.    The experimental curve by Schwabe resembles a portion of 

an arc tangent curve,  which suggests the use of such a function. 

The evaluation of the integrals obtained appears to yield more 

complicated formulas than the present problem deserves.    The 

Taylor expansion of an arc tangent function 

, x3        x5 
y = tan"    x = x     —*- + ~~T~ +      -  - (12) 

suggests that the same result may be obtained by integrating 

term by term,   except that the factors containing tan a   separate 

out immediately this way.    The limits of applicability of this 

theory,   due to a change in flow conditions at large angles,  renders 

the use of terms beyond the fifth power questionable,   so that a 

truncated arc tangent of the form 

3 5 
CD     = A1 - tan a + B' -5-tan3 a + C;^ytan5a +   -   -   - (13) 

will be sufficient for practical purposes. 

15 



TM-998 

The cylinder cross flow drag function may be integrated for 

specific body shapes. Since the integral is multiplied by sin a, 

we may simplify the results by using 

sin^a  tan a   =   a-*   +  fL-   +   -  -   - (14a) 
15 

sin2a  tan3a   = a5    + 2a       +  -  - - (14b) 
3 

sin2 a  tan'a   = a7    +  -  -  - (He) 

so that,   to terms in   a' ,   the normal force and moment coefficient 

increments will be of the form 

ACN = —_-L[DNa3+ ENa' + FNa7] (15a) 

2CD 
A<=M   =nrlDMa3 + EMa' + FM

a?] (15b) 

where Cp    is the steady-state value of the cylinder cross flow 

drag coefficient.    The particular functions obtained for some 

typical body shapes will be derived in AppenHix A.    It has been 

16 
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found that the linear term in Eq. 13, leading to a cubic in normal 

force coefficient and moment coefficient, is sufficiently accurate 

for much of the data in this report. 

It is also necessary to choose an appropriate value of the 

parameter r\ for the transient phenomenon being considrred.    The 

fact that    f)  is different from unity for the steady state is prin- 

cipally due to the distortion of flow near the ends of a cylindrical 

body.    A lamina of fluid will not remain in a plane,  but will flow 

in such a way that the total flow will meet less resistance.    In the 

case of the transient development being considered for a blunt- 

based body of revolution,   this effect will not have time to develop 

at the base before the flow leaves the body.    A distortion may 

develop at the nose,  but the viscous force contribution at the nose 

is very small,  and the effect may usually be neglected.    For these 

reasons,  the factor   n,  will be replaced by unity. 

If a body does not have a blunt base,  that is has boattail,   the 

above argument will fail,   since considerable distortion of the 

cross flow planes will occur in a region where the viscous effects 

17 
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lire greatest      For this case,   the value of   r\  may differ signifi- 

cantly from unity,  which is ov.e reason the present report is 

restricted to blunt-based bodies. 

An interesting feature of the results in Eq.  15 is that the 

expressions for the coefficients become odd functions,   so apply 

directly to both positive and negative angles.    Allen's quadratic 

formulas can only apply to negative angles of attack if they are 

considered to represent absolute values of the coefficients. 

There remains the problem of determining the appropriate 

value of (k 2 ~ ki )•   the factor in Munk's theory representing the 

difference in apparent mass for longitudinal and transverse 

motion of the body.    Munk includes a table of values of k2 - k, , 

originally computed by Lamb (Ref.   9,  p.  155).    These values 

were computed for ellipsoids of revolution,  but do not neces- 

sarily apply to cone  cylinder or ogive  cylinder combinations of 

the same fineness ratio.    Munk states that the values may be 

used for airship det>ign if the ellipsoid has the same length and 

volume,   or if Volume^   has the same value.    This will not be 

as good an approximation for a cone-cylinder,   but in the absence 

of better methods will  serve as a method for correcting what is 
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already a correction factor.    AB an example of the difference this 

correction makes for short bodies,  a cone  cylinder of 5 caliber 

total length and 2 caliber head length is found to be equivalent to 

an ellipsoid of 11 calibers total length.    The value of k2 - k,    for 

5 calibers is 0.836,  while for 11 calibers it is 0.95.    Experimental 

evidence favors the latter vlue. 

Boundary Layer Corrections 

Hill has pointed out in Ref.   7 that the boundary layer may 

necessitate two corrections to the theory of Allen,   one in the 

viscous flow term,  and one in the potential term.    His modified 

form of Allen's theory does not eliminate the fundamental difficulty 

and principal source of error,  but this type of correction may not 

in general be neglected in a precise theory. 

Allen'« viscous cross flow term assumes that the cross flow 

is completely independent of the axial flow,   and will therefore 

depend only on the cross flow Reynolds number (Eq.   7a) and Mach 

Number (Eq.   7b).    There is good experimental evidence,   how- 

ever (Ref.   6,   p.   431),   that the critical Reynolds number for the 

decrease of the drag coefficient of a cylinder from the laminar 

19 
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flow value to the turbulent flow value changes rapidly with the 

turbulence level present in the stream.    It seems logical that if 

a cross flow in this range of Reynolds numbers encounters a 

turbulent axial boundary layer,   that the proper drag coefficient 

Cn    to use will be that for a turbulent cross flow.    The coefficient wc 

appears to change by a factor of about 3,  and the steady state 

values of Crj    that will be used here will be 1. 2 for the case of 

completely laminar boundary layer,   and 0. 35 for (almost) com- 

pletely turbulent boundary layer. 

The effect of boundary layer on the potential theory term 

arises from the fact that the flow is displaced as though the body 

shape were changed.    In particular,   the effective base area Sg 

and volume V will be greater.    The important boundary layer 

parameter will be the displacement thickness 

6* 

Ö 

)dy (16) 

20 
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For laminar boundary layer this thickness may be found approx 

imately from 

6* A 07) x        NTRT 

where 

A   = 1.73 + 0.48M2 (18) 

The turbulent boundary layer displacement thickness,  as shown 

by Prandtl from the seventh power law 

u y . 
■fr8*)" (19) 

is given by 

6* K 
T = /o  i0,2 (20) 

(Re) 

where K - 0.046 for incompressible flow on a flat plate.    Flat 

plate data from the Daingerfield supersonic wind tunnel indicate 

an approximate value of K = 0. 08 for a Mach number of 1. 56, 

whicn is of interest in i.his  report.    Hi!! has computed the 

21 
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fractional increase in base area from Sg to Sg' and approximate 

formulas for the fractional increase in volume from V to V, 

based on the assumption of constant diameter and fully turbulent 

boundary layer.    These are,  for the laminar case 

1  = 4. 
N/~RTd       d 

/In ♦ -J=../2 
sTRTd    T 

(21) 

V 2   nd3        A   X1 fi ♦ 3       A     /T 
\/Red 

4 ^TIVd (22) 

and for the turbulent case 

IS.'. 1,4 K_(/)0-6[it 
K LÄf-*\ 

>B 
(23) 

v    l    9  /o. \o.a ^T'     u    IT ,„    ,0.2 hr'      J 

(Red) (R«d) 
(24) 

22 
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Supersonic Potential Flow 

Allen ha» assumed that the normal force and pitching moment 

may be found by the simple addition of the potential flow solution 

and the viscous cross flow solution.    The logical application of 

this principle will use the best available potential flow solution. 

For subsonic flow,   the theory of Munk,   corrected for boundary 

layer,   gives excellent results.    For supersonic flow,   however, 

Munk's theory does not apply,   except possibly in the limiting case 

ol bodies with extremely long,   slender noses. 

A much better approximation to the potential flow solution 

1 ">r supersonic flows is obtained by the second-order theory of 

Van Dyke (Ref.   10).    This theory has been applied recently to the 

calculation of pressure distributions,   normal force coefficients, 

nnd pitching moment coefficients for a series of tangent-ogive - 

cylinder combi nations (Ref.   11).     These must necessarily be 

computed for a finite number of discrete supersonic Mach 

numbers,   so a method of interpolation is desirable      In Fig.   4 

and 5.   the values  of dCjsj/dd    and dCj^j/da    for   a =  0 degrees 

s computed in Ref.   11 are plotted as a function of   p  - v ^i "  j 
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with ogival head length aa a parameter.     The»« values were 

computed for a total body length of 14 calibers,   and do not change 

appreciably with increase in body length beyond 9 calibers.    It 

may be Been that interpolation may be made along smooth curves 

for the moment coefficient slope,  while the interpolation is linear 

for the normal force coefficient slope.    No particular significance 

has been attached to this linear relation,  except for a convenient 

method of interpolation. 

EXPERIMENTAL VERIFICATION 

The theory described above is compared with Allen's method 

and with experimental data in Appendix B,   Fig.   6-19.    The extra- 

polation of Munk's linear potential theory in the form CN = 2d 

2V, and C] a   is included as a reference line for demonstration Mß --£ 

of nonlinearity.    The exact body shape was not used in commuting 

theoretical results.    For the tangent ogives,   the circular arc was 

approximated by a parabolic arc,   as explained in Appendix A.    The 

secant ogives for the short bodies were approximated by '"ones. 

The contribution to the viscous cross force from the head is  so 

small  that the error involved in these approximations  is negligible. 

lb 
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Short Bodies in Subsonic Flow,   With Turbulent Boundary Layer 

The moment coefficient for the 5 caliber body (Fig.   6) shows 

very little nonlinearity up to 10 degrees,   but in the range from £0 

to iO degrees a slight curvature is shown.    The agreement with 

experimental data is everywhere excellent.    Allen's method 

grossly overestimates the nonlinear effects.    The normal force 

coefficient \Fig.   7) shows a similar agreement between the 

present theory and experiment,  with overeat.mation by Allen's 

method      No definite conclusions may be drawn from the center of 

pressure,  except that both nonlinear theories predict the rearward 

shift with large angles of attack. 

The moment coefficient (Fig.   8) and the normal force co 

efficient (Fig.  9) for the 7 caliber body again show an excellent 

agreement between the present theory and experiment,  Allen's 

method again being high.     The center of pressure shows a larger 

rearward shift with angle,   with slightly better agreement for the 

present theory than for Allen's method. 

The correlation of the present theory with experiment for the 

9 caliber length is also remarkably good (Fig.   10,   11).     The 

results  lor center  of pressure are more  distinct in this  case. 
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Comparing the low   angle results here with those in Fig.   7 and 

Fig    9,  it seems likely that the boundary layer corrections are 

inadequate.    This deviation is not serious,  however,  considering 

the BCT.rii tivity of center of pressure to small errors in forces 

and moments . 

It is noteworthy that Allen's method,  based on subsonic 

theory and data,   shows a greater deviation from experiment at 

these low speeds than for low supersonic speeds.    It may be 

argued that it is not a fair comparison to correct for the apparent 

mass factor,  boundary layer thickness,  and for the fact that 

sin 2 a  differs from 2a    in presenting the results of the present 

theory,  but not in Allen's formula.    Such corrections in Allen's 

formula,   however,  would account for only a small part of the 

error shown,   and the formula is used just as used for large angles 

by Allen and Perkins (Ref.  4). 

Turbulent Boundary Layer at Supersonic Speed 

Data .ire presented for three different bodies of revolution at 

;i Mach number M  - 1   56 in Fig.   12   17.     The Reynolds  numbers 

for these tests were such that the boundary layer was probably 



TM-998 

turbulent  [or must of the body length,   except for the 10 caliber 

model      Schlieren pictures have indicated a boundary layer transi- 

tion about 5 calibers from the nose. 

The agreement with experiment is better on the average for 

the prrsent theory than for Allen's method.     The apparent agree 

mt-nt between his method and the data is probably fortuitous,   being 

the result of two or more errors tending to cancel.    This is espe- 

cially true for the longer bodies,  where the initial slope for the 

experimental data is considerably greater than for Allen's theory, 

which has the same initial slope as the linear potential theory. 

The agreement between the present theory and experiment is 

good for center of pressure, where deviations of the order of half 

a caliber may be within experimental error. 

Larunar  Boundary Layer at Supersonic Speed 

One body shape has been selected for which the boundary 

la>er probably remains laminar at the test Mach number of 2.87 

and Reynolds number of 3.72 million.    It was also chosen because 

Van Dyke's second order theory applies to it at this high Mach 

mimbfr       For this body,   of length 14   calibers and head length 

29 
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i.b calibers     the corrections for displacement 'Sickness of the 

laminar boundary layer are small compared to the turbulent 

thickness at Mach 1.56,   but are included for completeness.    The 

value Cn    '-" 1   I is used in contrast to Cn    * 0. 35 for all the 

previous curves. 

The failure of Alien's formu'a is quite apparent in Fig.  18 

and 19     For the true laminar case shown,  his combination of sub- 

sonic potential theory and quadratic viscous term falls far short 

of the experimental data,   even for angles up to 8 degree«.    A 

comparison of Fig.  18 and 19 with Fig.  16 and 17 shows the striking 

difference in nonlinear effects between laminar and turbulent 

h   undar y layers. 

PRACTICAL ENGINEERING APPLICATION 

It has been shown that the present theory agrees well with 

experimental data over a wide range of Mach numbers,   Reynolds 

numbers    and body shapes.    For practical  use.   it is desirable to 

br able to simplify the equations whenever possible.     The complete 

equations may be given as 

JO 
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CN - ( — )       sin a cos a COH £ + —-—lDNce t ENa> f F^']   (25a) 
u    0 

dC M 
2C, 

CM-(~rtcT^     «inacosacos J+-J 
Os 0 

^m„3 [DMa^EM0'^^7]     (25b) 

dC N dC M 
The   —-—    and       ,a        are given by Munk'a theory at subsonic 

dQ «u 

speeds,  after correcting for the apparent mass factor and the 

boundary layer thickness,   and for supersonic speeds are found 

from Van Dyke's second order theory,   with boundary layer cor- 

rections added.    The D,   £,  F coefficients are computed as shown 

in Appendix A,   and Crj    is 1.2 or 0.35 as the axial boundary layer 

is laminar or turbulent,   respectively. 

Figure 20 shows a comparison of the normal force coefficient 

Cj^,   an computed by the complete equation with various approxi- 

mations,   for the 9 caliber length body at subsonic speeds.    It is 

found that the combined corrections for boundary layer thickness 

and apparent mass factor may be omitted for this case with little 

loss in accuracy.    These corrections tend to cancel,   and are of 

the same o^der of magnitude for body lengths of 5 to 7 calibers. 

W 
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For very short bodies the (k2   - fc^  ) factor will dominate and for 

very long bodies,   with k2   - k,s 1      the boundary layer correction 

will become   important. 

The use of 2 sin a cos a cos y  - sin 2a cos ~   * 2a    is shown 

to be valid up to 10 degrees,  and has been used this way for all 

figures for which the angle of attack a was less than 8 degrees. 

Approximations obtained by dropping the seventh power term,  or 

both fift i and seventh powers,   show that the cubic equation is 

quite accurate for 2 Je tana < 3,   the quintic equation holds to 

li. tan u = 6    and the seventh power is good to 2 £tan a = 9,   the 

limit of application of this theory (see Fig.   3). 

The case of turbulent axial boundary layer in supersonic flow 

is shown in Fig.   21.    Normal force coefficients are plotted for a 

14 caliber length body with 2.5 caliber nose length for the complete 

equation (but with sin 2 a = Za) and with approximate formulas. 

The neglect of boundary layer thickness begins to be significant, 

if an accurate estimate of normal force is desired,   but may be 

sufficiently good for rough estimation purposes.     The curves are 

approximated very well by a cubic equation,   in agreement with 

the criterion of the last paragraph.     The errors due to boundary 

J2 
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layer thickness will increase with Mach number and body length, 

and the errors due to shortening the polynomial expression in- 

crease with body length,   for a given angle of attack. 

Comparisons are also made for the case of laminar boundary 

layer (Fig.  II) on a 14 caliber body.    The results of shortening 

the polynomial are similar to those found in the last paragraph. 

For the laminar boundary layer,   the effects of displacement 

thickness are small in comparison with similar effects of a 

turbulent boundary layer,  and may usually be neglected. 

It is found that for a special case of subjonic flow, with 

moderate length bodies and a ^ 10 degrees,   the formulas 

cDcr. 
CN = 2a ♦ 0.49—~»a3 (26a) 

CMB =^a+0.49 
Cn X 

3A 
(26b) 

w here DN = 0.49 ^    ,   Dj. = 0.494-     have been substituted, 

give good approximations to the normal force and pitching 

moment coefficients.    These formulas will not always be  suffi- 

cient for large angles,   very long bodies,   for supersonic flows, 

ii 
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or for the ram» of veiy thick turbulent boundary layer,   but the 

corrections for thesp canes are usually simple to apply.    The 

value of CJJ, must be chosen as 1.2 or 0   35 as the axial boundary 

layer  is laminar or turbulent,   respectively. 

In the case of supersonic flow,   there are some body shapes 

and Mach numbers for which Van Dyke's theory does not apply. 

This theory is still useful if experimental data at small angles 

of attack are available.    Slopes 
dC N and 

dC M at a = 0   may 
da da 

be measured and   used in Eq    lb in place of the slopes from Van 

Dyke's theory.    This technique will be valuable in extrapolating 

wind tunnel data for small models to free-flight conditions with 

large models      Care should be taken to note the boundary layer 

conditions of the wind   tunnel tests ar.d free   flight applications. 

CONCLUSION 

A method has been developed for the estimation of normal 

force coefficients and pitching moment coefficients for blunt- 

based bodies of revolution at large yaws       The equations  reduce 

to 

H 
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CN = Za + 0.49 
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2V_     .  ..CDc^_, 
CMß  ^^a + 0-49-3Ä 

for subsonic speeds if a < 10 degrees,  2jgtan<x 1 3 ,  as long as the 

boundary layer thickness does not increase the base area appre 

ciably.    Van Dyke's theory should be used for the linear term in 

supersonic flow,  and a higher order polynomial is needed if 

2j0tanCl 2 3 . 

The method is also useful for extrapolation of small-yaw 

data to large yaws and to different Reynolds numbers.    As far as 

is known,  this is the first adequate theory that has been developed 

for this purpose. 

The results presented here have only been applied in the Mach 

number range from M = 0 to M - 2.87 and for a limited range cr 

Reynolds numbers.    Further investigation will be made,   especially 

in the high Mach number range.    The results of a more complete 

investigation will be described in a later report. 
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Appendix A 

CALCULATION OF NONLINEAR  TERMS 

The experimental measurement by Schwabe of the development 

of cross drag coefficient for a circular cylinder (Fig.  I) resembles 

an arc tangent function,  except at small values of the argument, 

where contributions to normal force in the present theory will 

usually be quite small in comparison with the linear term.    The arc 

tangent function may be integrated directly,  but results in compli- 

cated formulas.    A Taylor expansion of the arc tangent,  which is 

an infinite series containing only odd powers,   converges quite 

slowly.    Such a series may be truncated,  however,   so that it rep- 

resents the function over a limited range of the argument with the 

use of a few of the leading terms,   if the coefficients of these terms 

are properly adjusted.    The representation of Schwabe's data was 

chosen to be of the form 

:D    = A'~ tana  + B'^3~ tan3a  + C'^ir-tan'o (1A) 
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By a least squares procedure,   A',   B1,   and C were evaluated 

giving 

x    ta~5n J. n   finnn5x     t*~5t CD    = 0.49-tan a  -  0.0056^ytan,5a + 0. 00003iy tan'a        (2A) 

This function   is compared with Schwabe's data in Fig    2. 

For computation of viscous cross flow effects,   one must 

evaluate the integrals in the expressions 

AC 

ACM 

N = |-8in2a / r CDC 

sfiinV r 

dx 

r CD   (xm *x)dx 

(3A) 

(4A) 

where Cr^    is given by (1A) multiplied by the steady-state value, 

since the steady   state value   in Schwabe's experiment was about 

unity.    This procedure assumes that the shape of the curve found 

by Schwabe always applies,   and only the absolute magnitudes 

change with Reynolds number.     These integrations have been 

carried out for bodies with conical and parabolic ogival heads on 

^ 
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cylindrical bodies,   where the body length is Ji- calibers and the 

head   length is h calibers.    The radius r for the generating 

curves of the heads are given by 

2h 
(5A) 

calibers for the cone and 

r = h 
x 

Th2 (6A) 

for the parabola.    The parabola is a close approximation to a 

circular tangent ogive,  and is much simpler to integrate than the 

exact function. 

It is sufficient to perform the integrations for the case of a 

steady state Cn    of unity,  and apply a correction factor outside 
c 

the integral.    The integral for the normal force coefficient for a 

cone -cylinder is 

l    r CD    dx = A,;~ tan a + B'L£U ♦ hu ]tan3( 

+ 16C[^-   +  -p]tan5< (7A) 
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and for a parabolic-ogive-cylinder 

/r CDcdx . A'^itan     + B'l^ + ^L   + log Zjtan^a 

+ 16C'["T  +l41Un?a (8A) 

For the moment coefficients about a point xm caliberB from the 

nose of   he body,  the integral for the cone-cylinder is 

J r CDc(xm -x)dx = A't^-™-  . ^l]tana+ B'[(jeuf h*)x; m 

(-§- ♦ -rr)]tan3a+ l6C'[f>$- + ^)xm 

-(^I + l^OWa (9A) 

and for the ogive -cylinder 

/ r C Dc("m - x)dx = A'[^21 - ^Jtana + B'[(*u + 2JÜ + log z)^ 

At?   .   36h5        / ,      , p6     ,u 
-   <— + -5— + I6h log h)]tan3a + 16C'[(£- + ^)xm 

-(4-* Tl)]tan5a (IOA) 
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These expressions simplify for the case   xm - Ji ,  for the 

moment coefficient CMO>   to 

rCDc(i-x)dx = Altana + B'^+ih1*   -^-]tan3a 

+ 16C'[^ + ^-     ~-]tan5a (11A) 

for the cone,  and 

/rCD   (Jt - x)dx = A'4- tan 0+ B't-^-i ■~i-+ Jtlog 2 

|7      Äh*     h7 
I6h log hjtan'a + l6C'[^-+^- + ^tan'a    (12A) 

36h5 

for the ogive. 

The powers of tan a will combine with sin   a  to give,  to 

seventh degree terms. 

sin2a tan a = a3 + Sfl  + - - - (13A) 
15 

2 *        <      2a? 
m' a tanJa = a5   + —^—   +  (14 A) 

4! 
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sin2 a tan* a = a7 + (15A) 

These may be substituted in Eq.   3A,   4A,   7A,   and 11A to give, 

for cone-cylindera, 

2CDC     A,02 

+ (16C (&**$■  £) *'-£{*'***■£} 

♦wiVi (17A) 

where CD    is now the steady-state value of the cylinder cross 
c 

flow drag coefficient. 

A similar substitution for ogive-cylinders yields from Eq. 

JA,   4A,   8A,   and 12A 
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^CD„ .  A,02 

ACN = -_ll^|_a3 + B'(|U   ♦ !£- + lo8 *)a' A 2 4 

A1!2 

♦  -To-)*17] (ISA) 

2C \CM„ .. !l2fc[Ail «3 t B,(i> + li!L t ilo, z     ?«£ 
•MB -- -fr~l——    '"'T   ~J 

♦ MiL + i l0| 2 . 3*Sl  . l6h lo, „J   + *£tf      (i,A) 

Many of the terms in 16A through 19A may be neglected, 

especially for h< <x. 

As an example of the use of the above equations,   the viscous 

increments for a 7 caliber cone-cylinder, X - 7 and h = 2,  become, 

with CD    = 0. 35 

2   8 
AcN * ~- [12a3 - 13. 5a5 + 1. 22a7] (20A) 

-4 i 
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7    ft 
ÄCMß = -r^— [28a3 - 19.35a5   -1.55a7] (21A) 

The ogive-cylinder with Jl  ■ 14,  h ■ 3.5,   gives 

A CN = ^[48a3 -  216a5 + 460a7] (22A) 

AcMfl . ^~[224a3   -  591a5 + 824o7] (23A) 

9.6 
The front multiplying factor must be changed to   —^—  for a 

laminar boundary layer. 
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Appendix B 

COMPARISON OF THEORIES WITH 
EXPERIMENTAL DATA 
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FIG.   6.     PITCHING MOMENT COEFFICIENT FOR A 
SECANT-OGIVE-CYLINDER AT M  = 0.26. 
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Re  - 4.2 x 106 
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FIG.  7.    NORMAL FORCE COEFFICIENT AND CENTER OF 
PRESSURE FOR A OECANT-OGIVE-CYLINDER 

AT M = 0.26. 
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A SECANT-OGIVE-CYLINDER AT M = 0.26. 
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FIG. 10.    PITCHING MOMENT COEFFICIENT FOR A 
3ECANT-OGIVE-CYLINDER AT M   =0.26. 
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FIG.  12.    PITCHING MOMENT COEFFICIENT FOR A 
TANGENT-OGIVE-CYLINDER AT M  = 1.56. 
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2.5 CALIBER HEAD LENGTH 

Re  = 4 x 10 6 

52 



TM-998 

3 

0.4 

c? 

0.2 

  THEORY OF THIS REPORT     • 
— ALLEN'S FORMULA  (EQ.  5) 
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FIG.  13.     NORMAL FORCE COEFFICIENT AND CENTER 
OF PRESSURE FOR A TANGENT-OGIVE-CYLINDER 

AT M = 1.56. 
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THEORY OF THIS REPORT 
— ALIEN'S FORMULA  (EQ.  5) 
— LINEAR POTENTIAL THEORY 
O    EXPERIMENTAL DATA 

a,  ANGLE OF ATTACK,  DEGREES 

FIO.  H*     PITCHING MOMENT COEFFICIENT FOR A 
TANQBNT-OGIVE-CYUNDER AT U = 1.56. 
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Re  = 5.6 x 106 
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  THEORY OF THIS REPORT 
- — ALLEN'S FORMULA  (EQ.  5) 
  LINEAR POTENTIAL THEORY 

O EXPERIMENTAL DATA 

2 4 6 
a,   ANGLE OF ATTACK,  DEGREES 

FIG.  16.    PITCHING MOMENT COEFFICIENT FOR A 
TANGENT-OGIVE-CYLINDER AT M = 1.56. 
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FIG.  17.    NORMAL FORCE COEFFICIENT AND CENTER 
QF PRESSURE FOR A TANGENT-OGIVE-CYLINDER 

AT M = 1.56. 
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a,   ANGLE OF ATTACK,  DEGREES 

FIG.  18.     PITCHING MOMENT COEFFICIENT FOR A 
TANGENT-OGIVE-CYLINDER AT M ^ 2.87. 
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ilG.  19.     NORMAL FORCE COEFFICIENT AND CENTER 
QF PRESSURE FOR A TANGENT-OGIVEi-CYLINDER 

AT M ■ 2.37. 
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FIG.  20.    NORMAL FORCE COEFFICIENT FOR A 
NINE CALIBER BODY,  USING DIFFERENT 

APPROXIMATIONS.. 
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    -    CUBIC EQUATION 
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FIQ.  21.    NORMAL FORCE COEFFICIENT FOR A 
FOURTEEN CALIBER BODY WITH TURBULENT 

BOUNDARY LAYER,  USING DIFFERENT 
APPROXIMATIONS. 
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FIG.  22.    NORMAL FORCE COEFFICIENT FOR 
FOURTEEN CALIBER BODY WITH LAMINAR 

BOUNDARY LAYER,  USING DIFFERENT 
APPROXIMATIONS. 
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NOMENCLATURE 

A Reference area for defining coefficients 

Ap Planform area of body 

A'.B'.C       Polynomial coefficients (Eq.   13) 

Dc 
Cn Drag coefficient of cylinder in a crossflow   ———y uc pV c* 

2    AP 
L 

C^, Lift coefficient   —-jr 

Mp 
CM Pitching moment coefficient  M B qAd 

Cwg Pitching moment coefficient about base 

N 
Cjyj Normal force coefficient    —-r- 

D, E, F Polynomial coefficients (Eq.   15) 

Dc Crossflow drag on a cylinder 

K Parameter for turbulent boundary layer (Eq.   20) 

L Lift force 

M Mach number 

M Mach number of crossflow 

Mp Pitching moment 

N Normal force 

Re Reynolds number 
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Re KeynoldH number of croasflow 

S Cr )■■ -sectional area of body at station x 

Sl4 Cross-sectional area at base 

Sß' Base area,   corrected for boundary layer 

U Free stream velocity 

V Volume of body 

V Volume,  corrected for boundary layer 

Vc Velocity of croasflow 

a Speed of sound 

d Diameter of r idy ( = 1 caliber) 

h Head length in calibers 

kj  - k1 Apparent mass correction from Munk's theory 

JL Fineness ratio (body length in calibers) 

g uu Dynamic pressure     p — 

r Body radius at station x 

t Time in seconds 

u Local axial velocity in boundary layer 

x Axial coordinate in calibers 

xc Axial position of body centroid 
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x_ Center of moments m 

a Angle of attack 

P ^MT~T 

6 Boundary layer thickness 

o* Boundary layer displacement thickness 

A Paramek • for laminar boundary layer (Eq.  17,  18) 

r\ Drag correction factor for finite length cylinder 

V Kinematic viscosity of air 

p Air density 
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