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ABSTRACT

Some results of the study of operators and their representation

in terms of basic operators are presented. It is shown that the

generalized expansion in terms of the basic functions satisfies a least

square requirement which is independent of the representation of the

operators. The notion of representatives and matrix elements of the

second kind is introduced together with the idea of transformation

functions of the second kind. A representation of operators is set

forth very similar to the Fourier Integral expansion but with the

Fourier coefficients manifested as functions of the displacement opera-

tor (3.27), (3.36) or as functions of the space-time operators (3.33).

(3. 35). A reduction of the solution of a linear operator equation to the

solution of a partial differential equation is effected. Consideration

Is given to a definition of an averaging process for operator fields and

the probability distribution of operators relative to the averaging

process. The averaging process is also independent of the representa-

tion of the operators.

Operator identities are obtained by considering the invariance

properties under tensor and/or similarity transformations of arbitrary

functions of operators. These identities are used to study the question

of the existence and structure of conservation equations for operator

or non-local fields. In the limit of - number fields conservation
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equations exist but for operator fields another operator equation

besides the field equations must be satisfied. The former is always

satisfied for 2 - number fields. An example which leads to conserva-

tion equations is considered.

In order to make some connection of the theory with possible

experiments some consequences of the interaction of a non-local

photon with a constant electromagnetic L H field are considered. The

interaction is shown to vanish in the limit of local-fields independently

of the magnitude of the coupling constant ey so that the results obtained

could be traced directly to the assumption of a non-local field. An

exact solution for the non-local field is obtained as a sum of non-

local plane waves containing the four vector * It is shown that

this vector in conjunction with the coupling constant plays two roles.

In one it is involved in the expression for an electric dipole moment:

' ~ and in the other in an expression for a magnetic dipole with

moent .k I where is the propagation

vector. This identification gives significance to the C- numbers

appearing in the theory. The equivalent mass/a- averaged over

orientations of % for which ,Ak ) C) turns out to be of order

+.OX /O-2(S'A)'electron mass, where is the number of

Bohr magnetons: /5 ~ ,A.the wave length and LS an

upper limit to the magnitude of the external field in Gaussian units.

An order of magnitude masure of the optical properties of the region
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containing the constant E, H field which affects the non-local photon

ois I tI I -3.2 Xic" ' Y [ 3), where Yb is an upper limit to

the index of refraction. For pronounced measurable effects, say.

I ,i i .I * (/ attains a value of /0 electron

masses,



I. INTRODUCTION

1. Notation and Fundamental Commutation Relationship

In this report we shall use the formalism described by Dirac

in his treatise on Quantum Mechanics. (1) Throughout our investiga-

tion we will choose our units such as to render > i J I

and C = I , where A is Planck's constant and C the velocity of

light. In view of this choice of units the commutation relationships

between the contravariant space-time four-vector operators

and the covariant four-vector energy-momentum vector are

where for any two operators, A and 13

[A, B - A B - 3A.

The subscripts and superscripts take on the values 0, 1, 2, 3. The

value sero assigned to , in eor will denote the temporal

and energy component of the four-vectors 041 or respectively;

while the remaining values for," will denoU the spatial and momentum

components respectively. I is the well lVown Kronecker delta



function defined by

C1.))

We may pass from a contravariant or covariant representation to a

covariant or contravariant representation of theme vectors through

the intermediary of the flat-space metric tensor 9/t"' V. o$

defined by

14(144

For if we bear in mind the summation convention of Tensor Analysis

In the same manner any superscript or subscript may be raised or

lowered in a tensor expression by suitable multiplication by either

the T or0, .
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2. Matrix Elements of F
In this section we shall tabulate for future reference some

matrix elements of various combinations of the operators X and

-PA 0 In the notation of Dirac 1 . the matrix elements of a func-

tion of the displacement operator f (pJ in a representation

with the ' diagonal are given by

where for brevity we write and to mean the set*P'1'j fg• I p 1 -P

and /2)"l" ~p , respectively; while (P'. 0 )standls

for the four-dimensional Dirac function

Upon making use of the identity

a1 5 (a-b)= - (c4-b) .8)

and (1.1) we can write

At.t

<f r P> II
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where ~ j' ))denotes the derivative of c~ with

respect to f Now ifF~p can be written as a double power

series in the operators V4 and we can show upon repeatedly

applying (1.9). (1.6) and the rules of matrix multiplication,

<ftI h 0 - (1.10)

On the Qther hand in a representation with the diagonal

The transformation function which enables one to go from a repre-

sentation with the / '5 diagonal to one with the ' J diagonal is

well known to be

I y*

< 1 1 % >e

Y" > d Z'( ' If"? *
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For the, special cabeF PA * I th

being C - numbers, that is, those numbers which commute with all

of the operators appearing in the analysis, application of (1. 10)

yields

ip, e /JYI ,,i> 5 (p'-.p"-k). (1.1,,

Similarly,

3, Frml w sion o F(~
In some previous work(2) it was shown that there exists a

formal expansion of operator functions of the operators -PA and

Z/u which satisfy the commutation relations (1. 1) in terms of

certain basic operator functions defined by

(1,16)

where

(1, 17)
(pt) d 3



In terms of these basic functions we could write the formal expansion

F (p, Y)QIJ (TF(fJ), . )U, (1.18)'

who re (to ajon of, ,, and the symbol (Tr A
denotes the trace of the operator A . Consequently, the expansion

coefficients are independent of the representation of the operators.

Now, the expansion could be generalized in the following

manner by considering our basic functions to be of the form

vi, k, Z _- A, (1.19)

where we shall require that the Y' 'S also form a complete ortho.

gonal set satisfying

k, or (1.20)

We shall now show that

T,. ( 'hh! k , k1) ,

" T (V v., ,., , -- :,- )=,T r r,,(X) 924 ,,,.." -2)

ST,, V* t'."f,, (.P- '), '. *z)
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upon using the cyclic property of the trace:

T(A8BCTr(5CA)= Tr (CAG). Hence

But,

upon using (1. 12). Consequently,

oT

so that upon making use of (1. 17) and (1. Z0). (1. 21) follows.
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Now if we take as our criterion of approximation to the

operator fuactionF p, z) the smallness of the. number

C a.
tr h V & 7,)(F(fI}Z ' V4 7(l A

it is readily seon that > >0 is least if the coefficients cak
in the expansion Of FP, z) satisfy

STr . p~c ( F,) (1.23)

as we so* upon applying (1.21). Thus our expansions satisfy a

"least square" requirement if in approximated by the

expansion

F , Tr__ -,(Fl.,x) vI , ,) Vn,, (1.24)

t12 denotes summations or integration@ over Atand/or

We may further generalize the expeanion by noting that the

argument of the in (1. 19) may be changed to f o where

i s any C- number.



IU. PROPERTIES OF BASIC FUNCTIONS

4. Representative of the Second Kind (R. S.)

In Quantum Mechanics the representative of a ket I 0> is

obtained by scalar multiplication by a complete set of basic bras.

The set of numbers obtained in this manner is called the representa-

tive of the ket I a, > . The representative of an operator A is

obtained by multiplying on the left by a member of the basic bras,

say,. and then on the right by the basic ket IX> . The set

(A I A I A , > constitutes the representative of the operator A

or the matrix elements of A in a representation with A diagonal.

We shall refer to these representatives as representatives of the

first kind.

The representative of the second kind (R. S.) of the operator

F (, ,, shall be defined as the set of numbers

--- (F U ,, (2.1)

where Uo is the adjoint of the basic operator U.Knowl -
edge of the set of numbers (Z. 1) is equivalent to knowledge of the

operator F , since we have from (1.18)

(fZ TJ( Tr F t,,, ,, d k'. z(.Z)
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in the sense of a "least square" requirement. More generally we

may take the R. S. of F relative to the basic functions V

defined in (1-3) to be

T. (FV ) .3)

The R. S. of V relative to the basic functions V is

T #, y tl 5MM1 el l,24

as we see from (1.21) and we note that these R.S. 's are real num-

bers. In (2.4) and (2.2) the notation implies that the W,'S are dis-

crete and the k 15 are continuous. In any stage of the analysis we

may consider the fl 2S and the k -J to be either continuous or die-

crete but shall use a notation which implies discreteness for ease

in manipulation, it being a simple manner to effect changes in our

expressions in any particular case.

Now if A and 8 are two operator functions of the f '5

and 1 'S we have

(Tr (A ))* J( IA1 I9 h>pB

-J1 'IA I ( I ) ,.

=r(BA)-WTr (A B3). 02,5)
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In a similar manner we may show that

(T (A C))*r (C BA)

In view of (2.5) we have the following -relationship between the R. S.

of F relative to the basic functions Vk and the R.S. of F
relative to the basic functions

The equations establishing -the connection between the rep-resezta -

tives 4Rj S.) of F and F and the R.,S. of and F respec-

tively are

F T- ( , V A.8)

It is seen that the second equation of (2 8) may be obtained by taking

the adjoint of both sides of the first equation and applying (2. 5).

S. Transformation Function of Second Kind: T.F.S.

If we have two complete rsto of basicbras (U i and (.U



a ket IA) winhe o r eoao. ve (aX I A> s < I A>,
so that

/ AA (2.9)

since

1j 4, >(,k I IA ><A' 1 (2.10)

(Z.9) shows that either representative of I A) can- be expressed in

terms of the other representative and the coefficients (A! I >

or </U'4 / Al > . These latter numbers are called transformation

functions in Quantum Mechanics.

Now let us consider two sets of basic operators V l '

and Wn,  which satisfy

(2. 11)

Tr ( W , W t , myb e i t o

An operator function F may be expressed in terms of either set as
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or

F-- _ Tr (FWY ,, )W ,k, (2.13)
x' k

Now if in (Z. 12) we replace by W we obtain

WyeL kk71

Upon putting (2. 14) into (2. 13) there results

FIZ Tr (F '')'{r (WAV,) , (.5

Consequently, if we multiply both sides of (2.15) by V and

take the trace, we have using (2.11)

TrF'j,)= -)( -' (VV)-,kV) (2. 16)

The interchange of the W 05 and V 'a appearing in (2.16) gives

F ( W I, Tr (F )-(V ,V, ,,). (2.17)

iv.
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(2. 16) and (2.17) establishes a relationship between the R.S. of F

relative to the set of basic functions and the R.S. of F'
relative to the set of basic functions W involving the

expressions

The quantities in (2.18) are defined to be transformation functions

of the second kind: T. F. S. These transformation functions satisfy

Ti (,,, V,f,)- (T(V., ', (2.19)

as we see when we apply (2. 5).

These T. F. S. 's are seen to satisfy also

~.L ~ )n! )Tr(Mw V P

#,,*# Tr (w., V,. eY (V W11,C) (2.21)

which may be verified by replacing F in (2. 16) an d (2. 17) by

itand WA.. , respectively and using (Z. 11).
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. Matrix Elements of the Second Kind; M.E.S.

Let us consider the expansion of the operator F - in
n~A

terms of the set of basic function& Upon replacing F in

(2.13) byW, F we obtain

Fz T (vv F A.,,,, ) W (2.22)

If we now multiply (2.22) on -the right by and then. trace both

sides of the equation we obtain

T, (W, ,, F G' )=2 %I1 , F ,)T (WA,k. G' ), (2.23)

where G is another operator. If is now replaced by

G , (2.23) yields

-'T (VVI,, G , .,l
LIITrW A F WnIA T(W ,,G W) (2.24)

which is analogous to the law of matrix multiplication in Quantum

Mechanics

(JI FG Ix"--tr21<(A!.'IF/'") W"'IGIA."> (2,25)



16.

As a result we shall define the matrix elements of the second kind:

(M..E..S.) of an operator, F , say,. relative to the set of basic

functions W to be

r ( w., , F W ,,t, 1) (Z.,Z6)

From (Z.3) we see that the M.E.S. of F is merely the R.S. of

the operator W AO F relative to the set of W 3 or the R.S. of

F W ,., relative to the set of W . The adjoint F of F
has for its M.E.S.

Tr (W?,I! F W , 71, ) (.,

so that from (2.6)

Tr (W,, FVK,,n > (Twn, k v/.,)* 2.Z

which is the conjugate complex of the transpo sed M.E. S. of F

i F is hermitian then

Tr (W.h F W.*k. IP W .k; V,4

(Tr (W.,,, F W4,,29)



11.

which is analogous to the property of the matrix elements of a

hermitian operator F

I F > = <," I F tp'>' (2.30)

The M. E. S. of F relative to the V -5 may be obtained

from the M.EiS. of F relative to the WS through the intermediary

of the TF,S.' defined in (Z.18)

-( , W A)(W ,,F V,,,,o,, 1'

(2. 31) may be verified by noting that (2. 16) implies

2jU( V.,, ,)Tr(W,FW ,,, ,Y-T(,, F, (2.32)

and that

Tr(V F ) , TFV (2.3

which follows from (2.17) upon interchanging the role played by VV
and V therein.
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We must note that knowledge of the MES. of Fenables

us to infer eithe'r VI,,F or V- V 4 so that if posses ses

an inverse then F is accordingly determined. The M.E.S. of

F is a function of four sets of numbers while the R.S. of F
is a function of two sets. Consequently in principle it would be

simpler to represent via the R. S. of F rather than through

the ME.S. of F'
However, we may utilize knowledge of the M.E.S, of F

to determine F by means of the expression

F. Tr ( W 71 "F)r(W .,k F W4(234

(2. 34) follows by noting that

by (2.22) and that

K Tr (W ,, (2.36)

which is obtained by putting F= / in (Z. 13)
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7. The Basic Functions, 4 rj ew /(4/).4d

Lot us define the basic functions as

where a is any C- number.' This set satisfies

Tr, (X k0h .,k)= ,5 (n'- rn') (k'-k") (Z.37a)

where 4 i (7- :) and A (k'-A")are four-dimensional Dirac func-

tions defined similarly to 5 (P f)in (1, 7). We may verify

(2.37a) in the following manner:

1-%.j

wh(Z. 38)

which becomes upon making use of

eik (2.39)
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nA' AC'Ok,

Consequently, (2. 37) follows because

from (1. 14),

° " "</-, =/4r "" (c), (2.41)

and A = (

We could have obtained (2. 37) by making use of the expres-

lions obtained in section (1-3). It would have been merely necessary

to make the identification
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It is seen that this identification assures us that the orthogonality

conditions set forth in (1. 17) and (1.20) are satisfied. However,

the procedure we have followed serves merely for verification of

the more general results d (I-3) and to indicate explicitly the

manipulations in obtaining the results. It is to be noted that the

set of X S when used for expanding Z)i. a natural extension

of a Fourier Integral of C- number functions.
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III. LINEAR OPERATOR EQUATIONS

8. Matrix Element. of A~fzU 3f u
In order to expedite our considerations of linear operator

equations we shall have need for explicit expressions for the

matrix elements of A( ,O~U8 (f) ) in terms of the matrix

elementsof U . Nowif isa C- number we have

which becomes upon using (1. 14)

= _P l k I U L P N X,( .2

If we differentiate both sides of (3.2) partially with respect to

we obtain

j-2  ('-k( p> (3.3)

Ifwenow set 0 (3.3) reduces to
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In a similar manner we may show that

4 "41. f U If (3.5)

Now,

as we see from (3.4) upon replacing U there by fr O and noting

that Cp j~ ' P'(p I I Repeated application of (3.6)

suggests that if A can be expressed as a power eeries

involving the 3' and the X "..

IA (p2L)U Lp"XA (f C U -F>. (3.7)

If we consider <.liUk2P1 I~f'



Z4'.

Y ue f j, J > <,P., U I,,, f >1;;

when we api .~ I2>= ~ p 1  and '(3. 5)i t3.86) also

suggests that it F3(p z )can te expressed all a power seriis

involving the - -'5 grd Z "5 thift

where is the complex Conjugate of the"4djoing of

For exampl if

.. " ,. since Z andf are he.rspti.
SL for this case would become the opier'tor

Consequently,

COA 0 "(P I. ,,.,o,



uipon applying (3.7) first -with U replaced by Ui B (f),I nd then

applying (3.9) for the latter operator. Thus if the operators Al

and B are known (3. 10) enables us to express the matrix ele-

ments as a product of two differential operators acting on

In a similar manner we can show that in a representation

with the 613 diagonal

< ' IACp, z)UB (,, ,) I Z" >

A(-i'x-, .) '( , "<.l~ . .,

(3. 11) could also be obtained by making use of the transformation

functions <Zs' If')and (P1 / '> defined in (1.12).

We could also note here that

. (3, 11a)

since the asterisk in 1 was introduced to neutralise the appear-

ace of the asterisk acting on C- numbers in forming B(.f )
in order to be consistent with our work leading to (3.9).
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9. General Linear Operator Equation

The most general way in which the operator U may occur

linearly is in an equation of the type

-_Aj U .-C ,,.,

whe r, the A IS (3 and C are presumed to be known oper-

ator functions of the -f 'S and the X '5. We shall call (3. 12) a

linear inhomogensous operator equation for the unknown operator

U . If we take the matrix elements of both sides of (3. 12) in

a representation with the f '5 diagonal and apply (3. 10) to each

of the expressions A U f in the summand of (3,12) we obtain

i 'C I "> (3.12a)

On the other hand if we take the matrix elements of (3. 12) in a repre-

sentation with the Z ,S diagonal we obtain upon using (3. 11)

4M

vx I C I I,61>. (3.13)



(3. 12) ad (3. 13) are partial differential equations for the matrix

element. YfI I U If"> and , 10UE respectively. Conge-

quently, if we can solve (3. 12a) or (3. 13) br the matrix elements

the operator U is determined. For if we know the matrix ele-

ments of U we have

~ >J~p' U ~(3.14)

which is the R.S. of U relative to the set of basic functions

satisfying (Z. 11). But upon replacing F by U in (2. 13) we have

U T f' U ,,> ), w, h. .

U-Ti f~filu'Pix(3.16)

upon substitution of (3.14) in (3.15). In precisely the same way we

have in terms of the matrix elements of U in a representation

with the 16 -S diagonal,

Ul " " ,, ')V , Ud'd . (3.17)

In principle, then. we have reduced the solution of the linear

operator equation (3. 12) to the solution of a linear inhomogeneous
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partial differential equation involving eight independent variables,

namely, the four 25 plus the four f '.5 or the four -'S plus

the four " 'S depending upon whether (3.12) or (3.13) is taken

under consideration. (3.16) and (3.17) furnish us explicit expres-

sions for the operator U in terms of the eight operators 9/"

and fl * . It is at once apparent that the solutions (3.16) or

(3. 17) are independent of the representations for the operators

and f due to the circumstance that the trace of an operator

is independent of the representation. Moreover, the solutions

(3.16) or (3.17) do not depend essentially upon the nature of the

basic functions just so long as they form a complete set satisfy-

ing orthogonality conditions of the form exemplified by equations

of the type (2.11).

10. Solution Utilizing the Basic Functions XI,,

If in (3.16) we replace the basic functions n, Ol by the

basic functions h we find that we shall have to evaluate the

matrix elements jNow from (2.37)

27r)

(3.18)

so that
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as We 600 upo& applying (1. 14) and the laws of Matrix multiplication.

Consequently

(3.20) is independent of the C- number. .

But

UUI,,, > X,,, f (3.21)

Upon substituting (3.20) in (3, 21) we have

(3.22)

or

U~i 7f~,' U 1A ~> ~ d~Y(3. 23)
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But, recalling that denotes either integration or summa-

tion we have if ?1 and A are continuous so that

(3. 24) is formal in character since we are treating as a C-

number when actually it is an operator. Nevertheless, if we take

the matrix elements of the left side of (3.24) in a representation

with thf ' diagonal and then integrate we see that the operator

c~ f- Y)has matrix elements I (- 'Lp M>
\y (f'f% 5 (f"..--') Jwhich is consistent with

(pif~~lplE.. /(,p,~$( p ) Consequently, (3. 23)

becomes

', 3..)

Now here again even though f is an operator we may show that it

is not inconsistent to make use of the familiar property of the

function

f I p')J (f~a)c~tp =Ja),(3.216)
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so that (3. 25) becomes

u -=f f u> e .- j ,,,(3,27)

We must emphasize that CP) U ?kis now to be considered a

function of the operators f" with matrix elements

(f I U -0 ,.,> r ,J ("> U, .,, (3.28)

(I UIf -k') is obtained from >f( I" by the simple pro -

cedure of replacing F' and respectively by -f and f-k.
it is readily verified that the trace of the left side of (3.27) is

identical to the trace of the right hand side, and this provides an

additional check on our assertions regarding the consistency of our

manipulations.

Examination of (3.27) reveals the striking resemblance of

the expansion to the familiar expansion of the C- number Fourier

integral expansion and thus would provide a suitable starting point

in studyin'g departures from C- number fields.

It would appear from the structure of our basic functions

i that we could obtain a similar expression equivalent to

(3. 27) with the roles of Y,"' and f interchanged. To show that

such is the case we would have to start with (3.17) instead of (3.16)
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and evaluate our matrix elements in a representatiot *4th thes

diagonal. In place of (3.19) we will have

<A~~~( ~ r)2e4 ~ '$ ~it '-~.2(3. 29)

so that

(x"IXnk, I '> X, ,

But U can also be written as

- f "IU)z><,>X dZ t1. 31)

upon replacing the basic functions W by the basic functions

XWiA' in (3.17). If we introduce (3.30) in (3.31) we obtain

U ,,/ )&1 , e " 4;A Y,0 '.. ,.2)

Again recalling our convention regarding to denote Inte-

gration or summgton we have upon using the integration interpreta-

tion of * ii?,V4
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71" -px < y/jIy (3.33)

in much the same manner that (3. 27) was obtained. Here also we

must point out that 4C~2i 16> is an operator function of Z~

and is obtained from the C number (Y,' I U 1 J ) by replacing

k/. by K- and 16 by Z . We should also note that although

the exponential part in the integrand of (3, 27) appears on the right

the exponential part of the integrand of (3. 33) appears on the left

hand side. This is so because the -'S do not commute with the

Z '5 . We may however write (3.33) with the exponent on the right

in the integrand by making use of

eit/kt/ .)~ C ~ 4~7Pk.1?9 (3.34)

so that we have also

=f + >(3.35)

Similarly, by making use of (Z. 39). (3. 27) may be written as

~fE/k~'>pk'I/U/-p> dJ' (3.36)
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The expressions (3.35), (3.33), (3.27) and (3.36) are quite

general and are independent of whether U in a solution of the

linear operator equation (3, 12) or not. Aside from this, the work

that we have done in this section indicates in a simple manner the

role played by the matrix elements of U satisfying (3. IZa) as

being essentially of the nature of Fourier coefficients which in

general however are operator functions of P or Yl depending

upon whether the expansion (3.27) and (3.36) or (3.33) or (3.35)

is used.

11. The Operator Equation AS -S B : 0

It is of interest in connection with our work on operator

equations to give consideration to the operator equation

AS - SB -0 (3.3)

If S possesses an inverse then (3.47) can be said to arise

from a similarity transformation

A(3.38)

so that the solution of (3.37) for the operator 5 can be connected

with the problem of finding the operator 5 which defines a
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similarity transformalon if tho original operator Bad the opera-

tor A resulting from such a transformation are known. More-

over, if the operator S i. unitarys S- S , th.en (3,31) is a

unitary transformation and the problem is equivalent to finding the

unitary operator S if the operator 8 and the operator A
resulting from the unitary transformation are given explicitly.

If we restrict ourselves to the case with the operators

and I functions of the operators and ,?Y4satisfying the

commutation relationships given by (1. 1) we have. from (3. 12a).

the equivalent partial differential equation for the matrix elements

of S in& representation with thef 'S diagonal

[Ay(f -13 IF) Y 3 0. (3.39

(3.39) is separable in the sets of variables and s o that

we could assume a solution for the matrix elements of S to be

of the form

cpit = P' (.i) .pq ,,.,o
<'p P, '(3.40)

whore as indicated is a function of. aIone and a func-

tion of alone. Consequently. (3. 39), is equivalent to the two

partial differential eqoations
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[A( A-.4,

and

- = (3.4Z)

for the functions F' and P respectively. A is a C- number

which we can now use to label the P"3 . The general solution of

(3.39) is

where C4 (A) is an arbitrary function of A . It would appear

then that there exists an infinite number of operators S satisfy-

ing (3.37).

Example: -

As an example let us consider the operator equation (3.37)

with

(3.39) becomes
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- 4:3k)(3.45)

Consequently,

(f )S pX (3.46)

where 51 is an arbitrary function of the indicated arguments and

the summation convention is being used in the exponential. For

simplicity we may choose this arbitrary function to be (2 -') $0

that denoting S corresponding to this choice by So * (3.46)

becomes

('1 S. If> e (3.47)

Now

0Si/~ y > (7) (3. 48)

Hence

I SSI o I f,, (-je1 e, d+p

e P -, (3.9
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which implies t

So eo . (3.50)

Similarly we may show that

So 5 0- 1.,,,

But if we interchange the r6tea played by A and B in (3.37)

we obtain assuming that S possesses an" inverse S) , 3,4)

with the primed and twice primed expressions interchanged and

L replaced by - I. so that we ican write

I S.- I ">-( )"e --j,.,

(p ' I s-' Ip" > :(2ir)" e"'f44'Y
0 J3.53)

Comparing with (3. 47) and (3. 48) we conclude

s o- (3,54)

so that in view of (3.50k and (S. 51) the operator SO is unitary,

Hence we may write
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16-

(3. 55

Now lot us compute so 0

,4~0

J~~~lI?5~~~ Iits~.~1~ 4)'4 IV

but from (1. 14), (3,47) and (3,48) the above may be written as

(#~ - pt I< e , ; ,)

whiCh implies

S(3.56)

so that
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S. 0 S (3.57)

If in (3.44) we replace by S and proceed in the

same manner we find that (3.47) becomes

,p'I SO< "21 ( )- -
, ,(3. 58)

<fp'lhp I",> C,}- /

Moreover, we may show that is unitary. Consequently,

c-c .v S (3.59)

and similarly to (3.57).

oS (3460)

In a straightforward manner we may also show that the matrix

elementB of are

(3.61)



so that the square of the unitary operator 50( has the same matrix

elements as the reflection operator. We may also show the S
anticommutee with f^ and )/ 0

1Z. Symbolic Formalism, Transformation Operator.

I ,A and B are operators the transformation bp.rator

T (A, B) is defined by

T (A, B) X A X B, (3.6z)

where X is another operator. Now

T(A)6)T (A, )X v T(A, )A X B=T(A2 F)X

- A2X B (3.63)

(3.63) suggests

T,-(A,B)T,-,(A," ):T,,,(A,) T(Am ), 5Yh n (3.64)

for positive integer fl and fl, . Moreover, if A and 3
possess inverses A" a nd respectively we may consider

(3.64) to hold for ?t, and &l any positive or negaive integers,
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If A 3 * , and D are operators, then the product

of the two transformation operators T(A,) and T(C, D)cti g
on an operator X is

T(A,B)T(CP) X , T(A ) C X D

-/ CXDB

-T(A ;D B) X. (3.65)

Consequently,

T(A, B)T(C D) = T (A C I1h ). (3.66)

If we have a third transformation operator T( E l F) we have

T(A, B)(T(., ,D) T ( C, F)) im

T(A,8)T(CE.FD)=-(ACE)FDB). (3,67)

But



43

(T(A) F)-7 (C) D))-7 (E) F.) .,,

T(AC)TiB)T(EF)-T (AC ,FDB), (3.68)

which is the same as the right hand side of (3.67). Thus the trans-

formation operators satisfy the associative law of multiplication.

In genera T(A, B3) does not commute with (C)I))
unless [A, CJ- 0; 1,3-DI 0 . No simple addition laws

seem to exist for the sum of two transformation operators. How-

ever, we may note

T(A+ B, C+D)=T(A,( ),T(A,I),T(B, C)+1 (6,D). (3.69)

Now if 6., andb are any two operators at least one of

which possesses an inverse, say (Z we have from a formal

identity due to Feynman

(C.. -- (3.70)

If we replace and b by T(A, F3) and T(C,D) respec-

tively (3.70) becomes



I
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T(A B)T(C, D)]-'

T' (A) B)-T '(A) )T(C, D)T-(A) IB)

+T-(A, B)T(Ce D)-F-'(A, B)T((jD)T" (A, 8). 43..,71

Upon t king use of (3.6b) and assuming tht T(A, B)pss....s

MTA) I8)+T(C) P,)]" 1 =T(A) 1 6')-T(A"'(A)' B-1 D67")
(372

tT&''A'C'A" B-I3BLD B')- (3.72)

(3. 72) may be used to effect a formal solution of the operator

equation

AUB-KUD= E )3.73

for the unknown operator U , since (3.73) can be written as

fT(AB)+T(()D)JU = _ (,74)

so that



U~r -.T(A, 8).T (rC.,-)]-_'

A , -E B-1- (A- CV -E B-ID)B-1)

+ (A-'CA-'CA-'E B-'1 B-)-.. .3.75)

The U so obtained is clearly not the general solution of (3.73).

To obtain. the general solution we need to add the solution of the

homogen.ous equation A U B+CUL= in#The usefulness of this

method of course will depend upon. whether the series (3. 75) con-

verges or not.
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IV. AN AVERAGING PROCESS DEFINED FOR OPERATOR FIELDS

13. Yukawa Variables

If we consider the matrix elements of an operator U in a

representation with Z diagonal, say 0/1 1 U I"> , we note that

they depend upon eight sets of numbers comprising the four space -

time components of X 1and X * I . Without any loss of generality

we might consider 011 U I>" to be a function of X t4  and

whore

(4.1)

so that

-" X + r- U(XY-) (4.2)

XAA and will be referred to as Yukawa variables. In the present

stage of development is identified to be the center of mass coordi -

nate and r/P4 and coordinate referring to the internal structure of the

field specified by U (X, r) M For the present we shall not attempt

to give a physical interpretation to these Yukawa variables but shall

be simply content to study some mathematical consequences.
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14. Local and Non-Local Fields

A field or function U is said, by definition, to be a local field

or function if it satisfies the commutation relationship :' ) U) C

otherwise the field or function is non-local. From this definition It

is apparent that if U contains the displacement operator as

well as the space-time operators Z/1 it will in general not commute

with the &because of (1.1) so that our operator functions are

non-local functions. We note that if UL is a local function

<X'IUJ ,"> = UL (') e ('- l) (4.3)

If we express (4,. 3) in terms of the Yukawa variables defined by (4.1)

we obtain

\4, I U, I :=- UL WX , (4- ..4)

Consequently,

J 4J->4 UL (X). (45)

(4.5) suggests an averaging process for operator functions which have

the property that under the averaging process the average of a local

function (function of %/') is the C- number obtained by replacing
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by the Yukawa variable . In the next section we shall

study some properties of this avsraging process.

15. The Averaging Process, Moments, Probability Distributions

The average of a non-local function U will be defined to be

U(X) given by

The right hand side of (4,6) reduces to (4,5) for local functions. In

general we note that U (X) is a function of the so-called center of

mass coordinate of the operator function U ,

If U can be expanded in terms of the basic functions

described in (II-7) we have from (2, 37) with L = I

'k

for our basic functions, so that

whence,



S(2--2 ' (r + '

but since,

we have from (4.6)

U(X i!(ux~I, ,,)(~t2eL AnIS e((,)J.1r

However,

/ '' = (2 '7r)-2 ' z  (4 '(/, /),.12)

so that

(ziD)-Tr (UX,,, )=



50.

Consequently, upon introducing (4. 13) in (4. 11) we obtain

U(X)(,.-t)~jfp'IU Ip'_k')e' C d '" f,(4.14)

which from (2.41) and the properties of the functions reduces to

U(x)=J- e (4.15)

upon replacing ( )by(,f (4.15) presents a convenient

expression for computing U (X for special forms.

We will. now show that if U is hermitian then U(X) is

real. Now,

J

= - lU !+ Y ,x*> e "x ,d/"k I

<- X U Ya ej4W

(U . .. ),(4.16P

Hence, if U" U, (he rmiticity), U (X is real.
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The average of U will be real if U is hermitian and is

obtained by replacing U in (4.15) by U to obtain

We shall define U(X) to be the moment relative to the

averaging process defined in, this section. Now from the theory

of statistics we can state that if the moments relative to a certain

averaging process are known then the probability distribution can

be ascertained in the following manner. Let us define

M k4: U) (4 ' ,,18),

to be the characteristic function of U relative to our averaging

process. The probability distribution of U is

,P(U)- T o -(4.19)

In order that (4.19) be satisfactory we must show that the moments

implied by (4.19) are the same as those given by (4.17):

U" P(U)d U= U" (X) 4.0
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Upon putting (4.18) in (4.20) and using (4.15) with U replaced by

we obtain

rIe 'XI p _<kJ U (4. 21)

But,

"C"j_ U e- U.G-  tU

(r" r,< $(C-t), (4,22)

where eS (t) is a one dimensional Dirac function. Consequently,

(4. 21) becomes

+-00)(00 U1 P(U) U =

+00 (Yz , k" (4.23)t

Upon integrating (4.23) by parts fl times with respect to and

making use of the integral property of the d- function we obtain
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_"Ou =(~ U-fo I';' "d

U"L ,(4.Z4)

from (4.17). Thus (U) possesses the property envisioned, namely.

that stated in (4.30), It must be emphasised that knowledge of P(U)
is not equivalent to the knowledge of the operator U

Another equivalent form for U(X) may be obtained by intro-

ducing the reflection operator - R (3.61) with matrix elements

< I R Lf,> , (4.5)

We will show that

U(X)> /6Tr URC yXA, (4.26)

Now,

/6 T

./@IU l~f' > '4,i lf
16f(? 1 u I - > F*k.
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The above consequently verifies (4. Z6) so that (4. I) and (4.6) may

be written as (4.26), Our ability to write U(X) as a trace indicates

Ilat U (X) is independent of the representation of the operators

Y, and . Moreover, we may state that $ u s = U if

commutes with Re i fA in (4.26),

)6. U(X) for Special Foms

In this section we will calculate U(X) for various forms

maing use of (4.15). If we replace U in (4.15)y f (f)byZ

we may readily show that

)(4.27)

and in a similar fashion we can show that

--/4 /'p j1Y~ " 4. 8)

(4. Z7 and (4, Z8) enables one to compute expressions of type

f(*P)AI .I and "KJZnf() by

simply differentiating both sides of (4.27) and (4,28) partially with

respect to kr..,,, and then setting the ,4
equal to sero. For example



~A~j~)* ~J~) ±A~f 0)4 (4. Z9)

To compute i1'3 z t is easier to appeal to (4.6),

Straightforward calculation yields

(X + rz) (4.30)

In a similar fashion

(4, 30) and (4.31) are useful for calculating expressions ci type

or P, respec-

tively, This is effected by differentiating both sides of (4.30) and

(4,31) with respect to C') Aa C and then setting the

I S equal to zero.

'w771-
(4.32)
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follows from the above prescri, a

Let us now consider eU. From (4.26) we may

write

6 TP (4.33)

which becomes upon-using the cyclic property of the trace

u~ Urn /6 Tr u e,-J (4.34)

Consequently,

el''U=. U(X+ K), (4035)

(4.35) has. the same basic structure as (4-.30) so that proceeding in

the same manner as we did:to obtain (4.32) we obtain

2., L....,p- "-- C )U W,
/% (4,.36)

Ud ,. ,dxO-, ! ..6,,'l UW

The second equation of (4.36) follows in a similar; fashion by noting

that
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6 /Tr ud ~ txf

U (×_ - ).
]~

General expressions for L and U ,,,z . -"' n

of the type (4.36) when the f " 5 are replaced by the Y, '5 do not

seem to exist. However, we may obtain some useful expressions

in the following manner. From (4. Z6) we may write

- TU (4.37)

We alo have

1Tr URex

=/6Tr Rex( ')

e eL ,(XX _XA# U (4.38)
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if we recall RjfW- ( -x){ G )R, .~A
;6 T k k) (2. 39). the properties of the trace and comparison

with (4.37). (4.38) establishes the identity

U ' + ' U =2 XIOL U (4,.39)

as we see upon differentiating both sides of (4.38) partially with

respect to k and then setting the A 'S equal to zero. Further

partial differentiations with respect to and subsequent evalua-

tion with the A'S zero lead to identities of type similar to (4.39).

If in(4. 39) U i s replaced by UJi+ V Ev U I1+
we obtain

Ee UI++ LF X14A V-U (4.40)

Now if in (4.38) we replace U by e U and

then replace the k "S by their negatives we obtain

U (4.41)

Upon differentiating both sides of (4.41) partially with respect to

and then setting equal to sero we obtain

S- X/, U + ,-(4.42)
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Upon using (4.42) in conjunction with (4.39) we may also write

U, =X/", U - YZ [Z/ G 7 _. (4.4,,,

Proceeding further in this manner we may establish relationships

between Z Y ' 2 U and the commutators of the Z '

with the U and similarly for U /'of or

Before going on to the next section let us examine a conse -

quence of the second line of (4 38) with X -'- , /" on

the left side

/Tr U~ -(.4

It will be noticed that (4.44) contains aside from a normalization

factor the adjoint basic functions defined by (2. 37) if we replace

by and set a x 0. Consequently, (4.44) may be

written as

J-,""-'X4 ' 24(.r) T UR X . (4.45)
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But Tr U K X k is the representative of the second kind of

relative to the set of basic functions so that from (Z. 2)

with the US replaced by the X 13 .

UR 2(lrf EA ( X) AdjI d+X > (4.46)

which becomes upon noting that Z

~(4.47)

(4.47) implies that knowledge of U kimplies knowl-

edge of the operator U •

17. The Probability Distribution of Operators Relative to the

Averaging Process

It is of some interest to carry out the averaging process of

(IV-15) for operators whose properties are well known. In par-

ticular it will be instructive to consider those operators for which

it would be possible to obtain closed expressions for their probability

distributions under the averaging process. Amongst such operators

are included any local function of the space-time operators and any

non-local function of the displacement operators only. In the former

case we must conclude from (4.30) with C - 0 , that the moments

of I7 ZJ'are equal to 7z. which implies from
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(4. 18) that MR(t, (Y-)) is equal to A4P 21-t9 (X) which tells

us according to (4,19) that

P( (z)) -r (t) - (A)). (4.48)

In the latter case for non-local functions of the displacement oper-

ators alone, say If (fP), we conclude from (4.27) with A0
and (4.18) in conjunction with (4.19) that

(4.48) implies that measurements of a local function lead to one and

only one value--if indeed we might make an association of our

averaging process with anything corresponding to physical reality

in this stage of the development. The implications of (4.49) are

also similar but we observe that for this case the distribution of

centers about which is devoid of reference to the dis-

placement operator. This is to be contrasted with the results of

(4.48) where the distribution of centrs about which

depends upon our external Yukawa variable X^

These results which are direct consequences of our averaging

process for the extreme cases of a local function and a non-local

function which depends solely upon the displacement operators are to



a certain extent plausible. Let us now consider what happens when

we treat the non-local function L 3 defined by

L ~ (4.50)

Now,

L U

- z.ff 17K),U]l, (4,.51)

as we see upon applying (4.36) and (4.42). If we apply (4.36) to

the last two terms of'(4, 51) we finally obtain

Lx )-, ;_ w 4, 5,

Consequently,

.:-. x,) - €-,y~ L, , y'i(4.53)

Now from (4. 52) we so at if U o. Moreover,
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if we put U . L3 therein and make use of the well known relations

and recall that ,and a are respectively equal to Ind

c2
from (4.5). we may verify that 5 - T for we then have

dX, J , (4.55)

The fact that L- is non-positive indicates that the averaging3

process as developed above is not a good one. We shall, however,

investigate the averaging process further.

It is well known that the spectra of an operator is invariant

under a unitary transformation. The question arises as to what

changes are brought about on the probability distribution of an oper-

ator relative to our averaging process if it is subject to a unitary

transformation. A further inquiry might be made an to the condi-

tion that the probability distribution be unaltered. Let us give our

attention to any operator U . Now if S is a unitary operator

S then from (4. Z6)

S -= IFr (4,.56)
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so that it is at once apparent that the probability distribution of U

is indeed subjqct to change and that it will be invariant if S com-

mutes with U or wthRe If we assume that the

unitary operator $ may be written as

S = e 3 (4.57)

where 3 is hermitian, we may state that the probability distribu-

tion of U is invariant if commutes with U or with

R . X 9 . , . Let us investigate the latter possibility.

implies upow.taking, the adjoint and recalling that S

,A) (4.59)

(4.59) is consistent with (4.58) since R "?" : +

Now since ( I , (4.58) or (4.59) implies

fm R (4.60)
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This latter equation tells us that

~ e L~ ~R (4.61)

since anticommutes with R . (4.61) yields equivalently

~ (4.62)

which tells us that the probability distribution of U mill be in-

variant if

or

(z + _P ),(4.63)

from the property of the reflection operator R and (3,34), (4.63)

can be satisfied if 9 is an even function of the '15 only. This

result is quite general so that we can state that for any operator

U) U and consequently the probability distribution of U will be

the same for the operator i~4~y Ut ~) ~I ig% e p.
where ,A (f) is an even function of the f ,5 .

We shall now undertake to investigate the second possibility

for the invariance of the probability distribution of any operator
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For this ca we must have

[0, 3 0'(4, 64)

so that 9 will depend upon the operator U under consideration.

To effect a solution of (4.64) we could appeal to the work of Part II

section 11. However, we may effect a solution by inspection by

noting that the hermitian expression.

! a U,_ u )lU > <U , (4.65)

whe re the a-S are real and U I U)'< 1 are the eigen -kets and

eigen-bras corresponding to our operator U , satisfies (4.64).

The operators I U'> (U' I form a mutually commuting system.

(4.65) may be written as

.U (4.66)

where

We note that each of the 'S satisfies
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(4.68)

U, 0i, U4 U0 . o o,,.

where ?'L is any integer. This is due to the property; <$1 U >

Sus ()# which is satisfied by our eigen-bras and kets, (4.68) enables

us to write

=LU I02 (4.69)

Coneequeutlyq

(4.70)

as we see upon using (4,68) again. Now if A in any operator we

may readily show that

AS A +" S a (471)
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In general

-. + I -C05 a (U 9-Cosa (XU )+ cos (&c()o(') A~
UP~

1I M

(4, 7Z) would enable us to compute the change of A brought about

by a unitary transformation which renders U and consequently

the probability distribution of U invariant. The first type of

transformation exemplified by the unitary operator ( f L )
leaves all A invariant so that only the second case with our uni-

tary operator given by (4.70) is of importance in ascertaining

changes in the probability distribution of operators induced by uni-

tary transformations which render U invariant.

18. Examination of Results

The results that we have obtained particularly that one which

pertains to the non-positive nature of where is given by

(4, 50) does not appear to be reasonable. This leads us to venture

the statement that the averaging process is perhaps incorrect,

From (4.26) the density operator function is
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(4.73)

WO our results are intimately related to this identification.

Now there exists a striking anlogy between our averaging

process and the averaging process which is used in Quantum

Statistics ( I) where

and

If we introduce (44 74) in (4. 18) and (4,19) with the operator LI
replaced byTrf, U we obtain upon using (4.70)

P P PM I )(4.76)

a very reasonable result, which may be interpreted to mean that

measurements of £ q lead to any one of the eigen-values of

namely, the Ph . The introduction of (4.73) into (4.18) and (4.19),

however, leads to divergent results since the trace of any even

power of f is infinite. It is believed that our averaging process
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I
I

should possess the same kind of consistency as that exhibited by the

density operator defined in (4.74) so that if we accept this

test for consistency we must conclude that f given by (4.74) is

defective.

Indeed, it may not be amiss to redefine our averaging process

and use (4 74) in place of (4,73) with our I 'l'> denoting an arbitrary

complete set of basic kets. It does not seem that one would be able

to choose such a f which would have properties similar to that

exhibited by (4, 5). If such were the case our formalism would make

no reference to the Yukawa variables (4. 1) and subsequent averaging

over the internal variable r . The averaging process seems to be

inconsistent with the notion of eigenvalues of operators so that this

may be cited as an objection to the averaging formalism in the present

state of development of the theory. It may be necessary to resort to

the f given by (4.74) with P, denoting the probability distribu-

tion of the Th which could stand for the collection of Quantum num-

ber denoting the momenta and the mass. The kets 1"il'> can be

associated with the basic kets of a four dimensional harmonic

oscillator, for example. It is planned to pursue this line of thought

further.
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Y. VARIATION PRINCIPLE FOR OPERATOR FIELDS

19. First Operator Identity

Lot us consider the trace G of an operator function (fA)

of a set of operatorslA with A 1, 2of.,

GO Tr .(JA1

If each of the A 5i subject to an arbitrary variation SJA

(operators in general) the first variation of C may be witten as

G=Tr F A (J ) jA(.)

where the FA may be calculated if the explicit form of L (JA) is

specified, Moreover, in (5.2) we are using the summation conven-

tion for the indices A , Now if the variation jfA arises from an

arbitrary infinitesimal similarity transformation: U--J e ue -

fA S.3)

4f f is an arbitrary infinitesimal operator. In (5.3) we have denoted

the change of JA under the infinitesimal similarity transformation

by J, AJI Upon replacing iJA by fA given by (5. 3) in (5. 2)

we obtain to first order
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5 _~rA i~±~ TriJ~A (5.4)

But G is invariant under a similarity transformation. G in

(5.4) denotes the "change" of Gunder the similarity transformation.

Consequently, since 5, G= 0, and since 0 is an arbitrary

infinitesimal operator we must conclude that

[}AFA] o (5.5)

The above equation establishes an identity (the first identity) between

the coefficients FA appearing in (5. Z) and the f A , (5. 5) would

enable one to construct identities corresponding to any function of

the operator fA I namely, L (1A). This result is quite general

and we will have occasion to use it in later developments.

20. Integration of Operators

In order to make connection with certain mathematical opera-

tions in current physical theory it is convenient to introduce an

operation which enables us to integrate operators. Such a type of

integration may be brought about by introducing a four-vector space -

time number into our definition in the following manner1 eA p )d C, (5.6)
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where A (~ )represents an operator and dC corresponds to

any combination of the products of dC) J C) c c and d C3.
For example let us consider the operator (N defined by

where (f is a space-like surface in the C- space. The operator

N ( t- ] given by (5.7) is in general a function of the surface

so that

j N [f ) J e7- (5.8)

where the left hand side of (5.8) is the functional derivative of N [r- •

If If,N J = C) then NfEr] is independent of 0F . Thus,

Cpr , N Y1 0 = provides us with a useful criterion for the inde -

pendence of surface integrals of type (5.7) upon the shape of our

surface. Furthermore, this example indicates that our definition of

integration enables us to take over most of the properties of integrals

o~curring in the C- number formalism.
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31. Infinitesimal C- Number Transformations

A covariant vector operator, say i5A * is an operator

which transforms like

A, (c) = (d c A (5.9

under the C- number transformation

co" Z -&- (o CCK ). (5.10)

(5.9) establishes the relationship existing between the "components"

of our covariant vector for different C- number coordinate systems.

In general a mixed tensor operator, say I Az transforms like

T ,'""~ 7;' P , 4'"¢" c
(do C CP /L , ,

(5. 11) is merely the conve*Ional definition of tensor transformations.

If we consider the transformation (5. 10) to be an infinitesimal

C- number transformation

c -(5. + , ,
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where is an arbitrary C- number function of the 0 C then

the first order equations corresponding to (5.11) become

tfirstorder r

2: " ( ) ', 'e, ,-
foratin f or C nmbe cordnat msh ysem efi ob

H[owe ver,

- '= (C) (5.14)

to first order, where in (5.13) and (5.14) we are using ( .to

denote partial differentiation with respect to o C , The first varia-

tion of the tensor TA Al .. which arises from an infinitesimal de-

formation of our C- number coordinate mesh system is defined to be

Oro O K 2 ' ,,C .

T 5, . (5.15)

'0 
C C ;* ,
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as we see upon introducing (5. 14) in (5, 13) and redefining our dummy

indices. It is not difficult to show that cr T: is a tensor

if 5,44 is a vector. Indeed (5.15) may be written as

6( ,,5.16

where ( ), denotes covariant differentiation defined with respect

to a set, 0 V of Christofel symbols. We observe that this

set is quite arbitrary and may be calculated using any metric tensor.

Generally the set 0 Rz can correspond to any linear connection.

-r Coca.I
Now if , 1 - .. is a mixed tensor of weight one (tensor

density) the transformation equations will be similar to (5.11) with

the exception of a factor on the right hand side which is the Jacobian

of the transformation (5. 10). For an infinitesimal transformation

15.,) the Jacobian J-(VOC) or JoC) works out to be up to

the first order

(S. 17)

'-7
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Proceeding in a fashion similar to that which lead to (5, 15) after

noting that the transfofmation (6. 11) is multiplied by J- o .

on the right hand side we obtain

- 0 T .; ; ,. "-

(5.18)- V -6

for the change of our tensor density of weight one corresponding to

an infinitesimal deformation of our C- number mesh system.

Examination of (5.15) and (5. 18) shows that we may write

$A - J'MT 0  O (5.20)and

In (S.19) and (5.20) we have replaced the collection of indices

by capital letters as indicated. The W-Lk, appearing in the last two

equations are constants which may be calculated for any collection

of indices.
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22. Second, Third and Fourth Operator Identities

Letus consider a Lagralgian density function L ( I A) of a

set of operators fA . If we subjoct the to a variation A,

then

_.e F-A JA C ,5.1

whoere and G'are operators in general. These latter quan-

tities can be calculated if the form of L (J)is given. Here again

the capital letters refers to collection of indices and the summation

convention in wed.

Now, if can be expressed as a sum of polynomial func-

tions of the operators JA we have upon noting that for any operator r

[F ,AfAz-. fA ,j-1-,IAlJA 2J,±+fA I f, JfA,.. N,

while

SfA, f..IAN (f,)f A l (IA)j' ,f,. ,

that*

*See 5. 39) for more general argument and a simpler and more useful
version.
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Lrj rr7JA]@(.

(S. Za) will be referred to as the segovid identity.

If we introduce L in place of L in (5. 1) we eeclude by

comparison with (S. Z) and (5, 5) pon using the cyclic property of the

trace that the first identity takes on the form

[JA G9 FeA 0 (,5 )

in terms of the F and GB appearing in (5.21). (5.22)is an iden-

tity and does not depend upon any particular physical interpretation.

Now lot us consider the invariant

oI L ( c) C (5.23)

Where we have denoted by o L ( c) the expression

(5.24)

= L (OJA (IC))

where quantities with symbol 0 ( ) denote the Lorents (flat space)
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components. (S. 23) in conjunction with (S. 24) is an example of into-

gration of operators as exemplified by (5.6). Now if we take the

first variation of (5.23) we have upon using (5.21), where L C .. )

is obtained from o L (o C) via (. I).

=J F~ (c),;JA (c) G(Qd c. (5.25)

If our variations are due to an arbitrary variation of our C- number

mesh system, then according to (5. 18)

which may be transformed into a surface integral

o L(oc) 5Ad (0c). (5.27

Consequently, if the arbitrary C- numbers / appearing in (5. IZ)

are chosen such as to vanish on the surface - then 5  I ;) o

This corresponds to the circumstance that our C- number mesh system

is chosen to be subject to infinitesimal deformations within the surface



S7" bounding V and vanishing on the surface.

But the second equation of (5. 25) in conjunction with (5. 19)

with TA ' fA , implls that

Fe 0 (1oc).C GC~,

+,F (o of, (oCC) F G(c) / d c. (5,28)

The above may be written as

~~~ (0 C) 01f(0 0C c) } 11Jo(

wc[w, *v oFA &C) o -(C)o G(c)JV S'd (0c). (5.29)

Now if our arbitrary infinitesimal deformation is chosen to vanish on

the boundary (r bounding V then (S. 27) shows that Syn I M 0
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which would imply in view of (S. 29) that only the volume integral

would survive which in turn would have to vanish on account of the

arbitrariness of the deformation vector within the volume.

We conclude, consequently, that

A~,r[ F-'(Mc) of c (0 ) cG6( .)

A~ (S.30)
-o F (00C -ojA (0Q), G G( C) o,,.o

(5. 30) is an identity. But all of the symbols in (5. 30) which involve

(0 C) are obtained via unitary transformations of the type (5. 24).

Consequently, (S. 30) may be written as (the third identity).

%rrflG D (S.31)

Again we emphasize that (5.31) is an identity. 45.31) and (S. 22) are

the priacipal identities of this piece of work and have as yet nothing

whatsoever to do with physics. We shall presently make contact with

physics after considering an example.

Let us consider the operator

L A' a

whersk A/and ,.are respectively contravariant and covariant
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vectors while C is a scalar density.

L l)B A- ) C+A'AB 0SC)

If the variations are of the type given by (5.15) md (5.18) then the

above may be written as

~L +(A7V '~ -A(LB

=(A~)C,

so that in the volume integral of 5 L (compare with 5.29) has for

the coefficient of zero, which we wished to show. To illustrate

(5. 22) we have on comparison with (5.2) and (5.5) to show that

[A~,P C] +[BL C&At"I +C A/3 >oCJ~fL3/4.
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Evaluation of the commutators show that such is indeed the case.

These examples should give us confidence regarding the general

results obtained, namely those summarized in (5. 31) and (5. 22).

As a summary we have from (5.22), (5.21a) and (5.31) the

first, second, and third identities given by

\Ai G" FA I o,

[F- L F8 (5, 32)

. pf F, f cG "I-, F fA GB= 0,

respectively, where F is any operator andF and Gare

defined through (5.21)

SL FA S A C (S.33)

and further where the W '5 are defined by (S. 19)

I -Jf Z -- oWA,,JY'. (5.34)

(S. 34) shows that Av Fte fc G ' appearing in the third
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equation of (5,41) is mierely the coefficient of in L given

by (5. S3) if the variations arise simply from an infinitesimal C-

number transformation given by (5.12), namely

A 8W JV 8 (S.35)

Upon combining the second and third identities of (5.32) with r
replaced by , we conclude that

i[A U~)Fc 'f G8-< LI c). (5.36)

These identities especially those obtained using the trans-

formation properties of tensors are useful. However, we had to

appeal to our integration formalism and there may be simpler ways to

obtain the results independently of any reference to our integration

formalism. The first expression of (5. 32) is quite general, the

second expression can be put in a more useful form by noting that

5Tr FL= (Tr(r LL r) (5.37)

which from (5. 21) and cyclic property of the trace may be written as

S T FL =-r (L F +G"FF -A fA), (5.3,S)
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so that we conclude upon comparison with the work which led to (S. 22)

that (the fourth identity)

[F, L r F . ]; (5.39)

for any operator . This result is independent of the customary

consideration regarding the invariance properties of L and could

be made the starting point for construction of Charge-Current

Densities and Stresai-Energy-Momentum-Tensors. In the following

section we shall use (5. 39) as starting point and determine what con-

ditions must be satisfied for the existence of Conservation equations.

23. Question of the Existence of Conservation Equations

In certain cases it is not too difficult to construct no2-local

stress-energy momentum tensors by inspection or by comparison

with well known local field expressions for the stress-energy-momentum

tensors. For these cases the operator field equations involve com-

mutators of the fields with the displacement operators . The

question arises as to the construction of the stress -energy-momentum

tensor when the operator field equations involve the operator fields

and the displacement operator in an arbitrary way. Some time ago( 3 )

an identity was discovered which had as a result shown the existence

of a non-local vector function A"which satisfied a conservation
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equation 1 . We may be able to use a generalization

of this identity (the fourth identity) (5.48) to study the structure of

conservation equations.

From (S. 22) and (5.39) we have upon replacing f by

in the latter the two equations

(5.40)

L L +#LJA, G FlaA]_
Now if we identify /.O- 0,/ 3 to be the displacement

operators flC and the rest of the A -S to be collection of indices

specifying the fields, say A , then (5.40) may be expressed as

' - [f A' G FA']_
(5.41)

p 1 'L +G%" F8 1 JA' ,G fFA']

where ,i&? is the flat space metric tftbot 4 The first equation of

(5.41) would imply the existence of the conservation equation

o, (5.42)
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if the field equations

i GB FAD" O (5.43)

are satisfied, where

N'E G F . (5.4

On the other hand if (5.43) is satisfied, we cannot in general be

assured that

0) (S. 4'

1f G (5.46)

where the stress energy-momentum tensor is

T"V- r '.L + G f t1"- Fr' (5.47)

(5, 46) and (5.43) may be simultaneously satisfied if the fields are local

I
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fields. Another version of (5. 46) can be written as

te C,, -FA']_ --[fr, G6Lp; r ]G]f, or

(5.48)

tif A, - ']

if (5.43) is satisfied.

We conclude that there exists a vector operatorN w(5.44)

and a tensor operator-1 t  (5.47) which satisfy conservation

equations (5.42) and (5,45) if

G1 8 F O2) (Field Equations) (5.49)

implies

Ij,, G ,- A-']
{A', p F 0 (5.50)

also. It does not seem to be possible to make any further significant

reductions on this phase of the problem.

Applitation of this method to the simple case of the Lagrangian

L_+ L+ UI
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*iiich invoile t singl* scalar field U $Ad e6vbmuitot or anti-

commutator expressions

1[ A3 AS t ) B(5.5,)

shows that if (5.49) is satisfied. namely,

then (5.50) is satisfied. -+'_ turns out to be

T/4 - Irt )U, Ij_ - ult -¢ I l A. UI+-,-_

yv~u ± /~ J~-(5.53)

while I/ works out to be

NLU) LUP +iti. (5.54)
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VI. PHYSICAL INTERPRETATION OF OPERATOR FIELDS

24, Introduction

It is appropriate to close this initial phase of the investigation

of the theory of operator fields by suggesting a possible interpreta-

tion of the C- numbers appearing in the expansion of operator fields

of type utilizing the basic functions Xn, kt defined by (2. 37): in

particular the C - number n' which in the following we shall denote

by . . A clue regarding an interpretation is given to us by exam-

lining the result of a novel feature of a variation principle for non-local

fields (5. 42, 5.44) ( 3 whereby the existence of a divergence -less four

vector is shown. It was also shown that it is possible for a (real)

hermitian non-local field to give rise to an operator for the net number

of quanta with either positive or negative integer eigenvalue. (4)

This property suggests that even a real field in operator field theory

has associated with it a four-current vector. Only for complex

fields is it possible to construct four current vectors with the customary

properties for local fields in present theories. Since even real non.

local fields imply the existence of particles with charge, one would

expect that such a field could be in interaction with external local

electric and magnetic fiehs. The structure of the interaction must

be chosen in such a way as to be non-existent in the limit of the local

field case. This would imply that even a real non-local field has the



potentiality of manifesting properties of non-real local fields in inter-

action with an external E H field. For the sake of simplicity the

case for a constant external electromagnetic field is considered,

while the non-local field is taken to be of the electromagnetic type.

One way to introduce an interaction of the type contemplated

above is to replace the displacement operator fOk by the operator

?WfrA (6.1)

where is a coupling constant, C the velocity of light and

the external local vector potential. Such a replacement assures us

that the commutator expression

[p~uL.- [A~UY (6.2)

is devoid of terms containing the coupling constant if U is a

local function. As a consequence of the definition of P we find

that the 1,A. do not commute amongst themselves:

C~c. -A L3 C6.3)
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where is the assymmetric external electromagnetic field

strength tensor.

25. The Field Equations

The field equations for our non-local electromagnetic field in

interaction with a given external local LH field may be obtained in

the same manner as the commutator equations for an electromagnetic

field in an earlier piece of work( 5 ) by merely replacing the 1 by

P/. in the commutator equations for Maxwell's Equations to obtain

, 'V.i 4)i P, 1FY~ + ~- P, 0) (6. 5*
F14F

where

The above equations reduce to the ordinary equations if the A'S are

local independently of the value assigned to the coupling constant.

IA.
Now let us consider the came where the are the vector

potentials for a constant local external E5 H field. For such a case

*(6. 5) is only valid for a constant E- 4 field. In general this equa-
t.ion would be non-homogeneous.
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the A may be written as

ZC (6.7)

where the C Sure C- numbers depending upon the external field

strength. E and , and the Z'S are the space time operators.

The proper identification of the C 'Swhich lead to the constant

H field follow upon making the identification

C4.0 = ,,M - 9 , 2 z 3

0 S F 52 3(6. 8

Crs F.- r- .7 F I" 5 3

where the FgS are the constant external field strengths. For the

case under consideration here we conclude, that [.,F.11is
a C- number an we see from (6.3). This observation coupled

with (6,4) enables us to write

[pot ,Av (6.9), ,,
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providing we take as our supplementary condition on the A 'S

,Al] =o (6.10)

Now let us seek a solution of (6.9) of the form of a non-local

plane wave defined by

where 2& jr and kV, are C- numbers. The introduction of

(6. 11) in (6. 9), (6. 10) and (6.5) lead to the equations restricting the

above C- numbers if we make the observation that

(k + C C, U qr(6.12)

which is a consequence of our fundamental commutation relationship

F(6.13)

The result (6.121 implies from (6.10) snd (6.9) the following relation.
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ships existing between the inumbers a ad k

-7 (6,14)

C(6.16)

From (6.6) we may write

F V, 0Me 7
/#14 IIA(6.17)

where the C"numbers /Ware given by

~ (6.18)

Them* results enable us to state as for the classical treatment of

Maxwell's equation that upon identifying F ,,raccording to the scheme

F 0  ~F, c E5,. 5 1.)2j3
(6.19)

13 Z 23 ]
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the vector K S 5 23 is perpendicular to the vector

and . Furthermore, upon using the scheme (6.19) with the

F 'S replaced by J 'S and Es by CS and 1. by As we find

that the vector .1 is perpendicular to k s all of which is in com-

plete agreement with the properties of a plane wave solution of

Maxwell's equations with the exception of the finding that the ordinary

propagation four-vector k is to be replaced byK given byAA1ve4by

(6.14). The general solution of (6.9) will of course correspond to a

sum over I and I subject to the restrictions (6.14), (6.15) and

(6.16). The coefficient of a4in (6.11) forms a set of basic func-

tions aside from a normalization factor. (6) These are essentially

the Xnkl given by (2.37).

26. Mass Equivalent of Non-Local Photon

The results that we have obtained would enable us to consider

the polarization effects of the non-local electromagnetic field in

interaction with the constant external ,, field. It would be more

interesting, however, to coiksider the consequences of the relation-

ship (6.16). If we define the equivalent mass/4A through the

equation

AA C 6.0
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then (6.20) in conjunction with (6.14) and (6.16) implies that

,~2cb= -c, '+ QCb.+ ±2 CL k+b,, (6.21)

where

60= Co. = -a
(6.b ()

in vector notation.

(6.21) together with (6.20) or direct appeal to (6.14) yields

o - + b 1 (6.Z3)

which may be interpreted to indicate that when a non-local photon is

in an electric field there is a contribution to the energy of the nature

of a dipole term, namely - 8 so that we may

attribute to a non-local photon the electric dipole moment •

This identification has as a consequence given physical significance

to the C- numbers ( appearing in our expression for a non-local

plane wave. It would appear then that a non-local photon would be
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subject to deflections in an inhomogeneous electric field as a con-

sequence of its electric dipole moment and the massive properties

which it would possess by virtue of (6.21) in the presence of a con-

stant electric field and consequently also in an inhomogeneous one.

To consider the effect of our H "  field, we may expand ko given by

(6.23) in a power series in the 04'S. Upon retaining terms which

containH to the first power and making use d (6.22) we find

,-4.

cates that our non-local photon possesses a magnetic moment:

(~4 (~X Y1 h I .Thus, we would also expect a non-local

photon to be subject to a deflection in an inhomogeneous magnetic

field. We note that the dipole moment and magnetic moment are

perpendicular to one another while the propagation direction / I
is perpendicular to the magnetic moment vector.

In general we will not be able to say that/L >0 unless

certain conditions are satisfied. We shall investigate the situation

on the basis of the expression (6.24) for kc which provides us with

first order correction terms in terms of the first powers of our

eteral F field. Upon introducing (6,24) into (6.20) we obtaino N~rn)
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to the desired order (the upper signs in (6.24) is taken),

~ 1k11(6.26)

Consequently, in order that/44A> 0 , the dipole moment vector

81 must be orientated in such a way as to be intermediate to

those positions corresponding to the extreme cases of perpendicularity

and tsodirectionality to the vector F defined by

F~ c k~2 JxW H~ ] (6.27)

In the former case/J. Ca'would attain its smallest value zero while

in the latter it would have its maximum value, namely V/1.. I IF I
If we average14 over those directions for which/_A- 0 we obtain

E-"-+ X k1 -. )(6. 28)

which would provide us with an estimate of the equivalent mass of a
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rion-local photon in an external H, H field.

Let us now make an estimate as to the order of magnitude of

<1k > . Now, upon making the substitution

%F/II 2--+ Y (6.29)

in (6. 28) to indicate the magnitude of the external effects of the field

as measured in Gaussian units we find that

(,U Ym #'S :Q IYe ''IAI k (6. 30)

where e is the electron charge, Th its mass, the magnetic

moment of a Bohr magneton, and A. the wave length of our non-local

photon. However, we must have on the basis of the assumption of the

validity of the expansion which lead to (6.24)

where A..¢ denotes the Compton wave length and we have assumed

the rough numerical equivalence between I FI and P~ -Y?) HalIf we tak /0-  . --% ... , Ify C- o o ,.
1fwetkeAe. and FV)IZ O" Gauss,

(6.31) implies that if C/O00 .wC . the expansion (6.24) is valid.
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These results would show that if we take to be the order of

magnitude of a Compton wave length that a / electronic

masses which would correspond V0 . V On the other hand

if is of the order of an electronic radius<, > 3 X

electronic masses 5, /f E. V.

27. Equivalent "Index of Refraction" of E, H Region

In order to gain a tough idea as to what could be expbcted to

occur when anon-local photon impinges upon a region possessing an

E) H field we may assign to the region an equivalent index of

refraction

f2C (6.32)

(6. 32) is obtained by making an analogy with optical theory and using

our expressions for kor given by (6.24) which in turn may be ex-

pressed in terms of F defined in (6.27). (6.32) indicates that if

0 , the "wave velocity" would be greater in a region con-

taining the E) H fields than in one devoid of such fields. Moreover,

we note a dependence of n upon the direction of propagation
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relative to the orientation of our external A field and upon the wave

length which enters into our expression (6.32) in such a way as to show

that one can expect ) to deviate from unity in a manner directly

proportional to the wave length. If/A( 0 , then } > I which

implies that the "wave velocity" is greater in a region not containing

the E) N field. In this case also, the region would possess aniso-

tropic properties with Y) deviating from unity linearly with increasing

wave length.

28. Summar,

In order to indicate conveniently the order of magnitude of the

e~fects implied by the existence of a non-local photon in interaction

with a constant external E) H field, let us define

13. (6.33)'

as measured in Gaussian units and put

-- (6.34)

which is the number of Bohr magnetons 7r '4r- h) expressed

in terms of our coupling constant and the vector which appears in

our non-local plane wave (6. 11). The inequality (6.31) takes on the
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form

AUBA < -2-~fC~ (6.35)

where B , u. denotes the value attained by B ',in (6. 33) when

is perpendicular to defined in (6.27). A is the wave length--

of our non-local photon, Y I the electronic mass and (.! the charge.

Introducing (6,33) and (6.34) into (6.30) and (6.32) we obtain

~~( ii~ Ye)(S0- YA~ (6.36)

hI-, I (e% 2P 2) ,Lr 6. (6.37)

(6.35), (6.36), and (6.37) become upon introducing the numerical

values of e- , M , C ,and 9.

~ x /o03 > ,Ak 6 :J

<'> rv 4,o x /0D (6.38)

B.2

(6.3)3,2 x o -' (AX 8)o

(6. 38) shows that for pronounced measurable optical effects, say
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I T- I 1~ 0, some of the non-local photons would have to

possess an equivalent magnetic moment of the order E 3
Bohr magnetons. U such were the case then Ym would attain

a value of order /O/A electron masses.

These effects, of course, would vanish in the limiting case

of local fields: % = C) , independently of the value assigned to the

coupling constant 9 . Consequently, it would appear that non-local

field theories could be examined in the light of experiments which are

implied in this work if we assume that our procedure for introducing

an interaction is correct and that the photons existing in nature are

non-local. In the same way, we can consider other non-local

"particles": "neutral" or "charged" in interaction with a constant

EjH field of the type considered here.
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