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ABSTRACT

Some results of the study of operators and their representation
in terms of basic operators are presented, It is shown that the
generalized expansion in terms of the basic functions satisfies a least
square requirement which is independent of the representation of the

operators, The notion of representatives and matrix elements of the

second kind is introduced together with the idea of transformation

functions of the second kind, A representation of operators is set

forth very similar to the Fourier Integral expansion but with the
Fourier coefficients manifested as functions of the displacement opera-
tor (3.27), (3.36) or as functions of the space-time operators (3.33),
(3.35). A reduction of the solution of a linear operator equation to the
solution of a partial differential equation is effected. Consideration

is given to a definition of an averaging process for operator fields and
the probability distribution of operators relative to the averaging
process. The averaging process is also independent of the representa-
tion of the operators,

Operator identities are obtained by considering the invariance
properties under tensor and/or similarity transformations of arbitrary
functions of operators. These identities are used to study the question
of the existence and structure of conservation equations for operator

or non-local fields. In the limit of (- number fields conservation



iv

equations exist but for operator fields another operator equation
besides the field equations must be satisfied. The former is always
satisfied for C - number fields. An example which leads to conserva-
tion equations is considered.

In order to make some connection of the theory with possible
experiments some consequences of the interaction of a non-loca’l
photon with a constant electromagnetic E jH field are considered., The
interaction is shown to vanish in the limit of local-fields independently
of the magnitude of the coupling constant (? so that the results obtained
could be traced directly to the assumption of a non-local field, An
exact solution for the non-local field is obtained as a sum of non-
local plane waves containing the four vector % Y7 It is shown that
this vector in conjunction with the coupling constant plays two roles.
In one it is involved in the expression for an electric dipole moment:
g Z’ and in the other in an expression for a magnetic dipole with
moment 9/2 (%Xk)/! R| where E/ k1 is the propagation
vector, This i:lcntitication gives significance to the _~ numbers %‘S
appearing in the theory. The equivalent mass /(A, averaged over

orientations of for which /Uoz 2> O turns out to be of order
40X /10 ,2(():- /\)yzelectron mass, where J is the number of
Bohr magnetons: / g% l m%) e, A. the wave length and B an
upper limit to the ma;itude of the external field in Gaussian units,

An order of magnitude masure of the optical properties of the region



containing the constant E ) H field which affects the non-local photon
~%
is IM-11=32%/07"(A ¥ B), where "L is an upper limit to

the index of refraction, For pronounced measurable effects, say,

in-1l= , </u- J attains a value of (G~ A electron

masses,



I. INTRODUCTION

1. Notation and Fundamental Commutation Relationship

In this report we shall use the formalism described by Dirac
in his treatise on Quantum Mechanica.u) Throughout our investiga-
tion we will choose our units such as to render ’Fl 2 h am = / ,
and C = | | where h is Planck's constant and C the velocity of
light. In view of this choice of units the commut‘a.tiou relationships

between the contravariant space-time four-vector operators %,u,

and the covariant four-vector energy-momentum vegtor ﬂb are

[l"/l"J = Lpﬂ/ 7vv.J= o,
(1.1)

[p,, w]=-i 5%

‘where for any two operators, A and B R

[A)B] "-"-AB‘BA (1.2)

The subscripts and superscripts take on the values 0, 1, 2, 3, The
value sero assigned to S in Z/J’ or 'P/“ will denote the temporal

and energy component of the four-vectors Af'.'“ or p/a respectively;
while the remaining values for /u, will denole the spatial and momentum

components respectively, é"u: is the well 1mown Kronecker delts
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function defined by

St

n

o p2 Y,

:.'.///{'Lzl".'

(1.3)

We may pass from a contravariant or covariant representation to a

covariant or contravariant representation of these vectors through
V

the intermediary of the flat-space metric tensor r]’“’ or V’ '

defined by

=)’“"“r= ///u.:-'-V"‘O

“LMm=2v=1/23 (1.4

C, ALt £ Vo

For if we bear in mind the summation convention of Tensor Analysis

Pﬂz r”“b«’% ) Z/ua ’)/46. l" . (1.5)

In the same manner any superscript or subscript may be raised or

lowered in a tensor expression by suitable multiplication by either

the q/“'v or r’/uu" 5



2. Matrix Elements of F (‘D L Eﬂ' )

In this section we shall tabulate for future reference some

matrix elements of various combinations of the operators Z’u and

1
73,“_ . In the notation of Dirac( ). the matrix elements of a func-

tion of the displacement operator f (1/)“) in a representation

with the ﬁ‘ S diagonal are given by

p'lfplp=f (2o P p") (0.6

where for brevity we write P’ and P” to mean the set P‘:, R', ,/%') 1331

and 1)0", f),”) 2”7 P; , respectively; while é (P'-— P“)ltlndl

for the four -dimensional Dirac function

3 (70'. 70"); S o) --1%")5 & 13,")‘5 (o ) o (p/- ﬂ”)‘ (1.7)

Upon making use of the identity
avfa} o>(a-b) = —5’: é(a-b) (1.8)

and (1.1) we can write

<f>’l z"“f)") > +¢ l]’“‘r’ér, (»P’-— «)D”)) (1.9)
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where §1r p (f'- /P" ) denotes the derivative of é (P'—-zf)") with
respect to f)' v, Nowif F ( 12 f)) can be written as a double power
series in the operators 1'/“ and fr we can show upon repeatedly

applying (1.9), (1.6) and the rules of matrix multiplication,

PIFE 2P Flg i )5t p) o

On the gther hand in a representation with the Z'u' diagonal
(e iF(p, ,x ")iz"‘,F(z s, K)o (K -2"). aam

The transformation function which enables one to go from a repre-
sentation with the 70 ’S diagonal to one with the X °5 diagonal is

(zlp)=gn €95 = (pie)t (112
(1.12) snisties

[ 1p0d%p g 1zt = 5 - ),

Jepr e dr e (2 p*>= 5 (p'- p).

(1.13)
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For the special case F(f)l ):Z S © , with £ 'S
being C — numbers, that is, those numbers which commute with all
of the operators appearing in the analysis, application of (1,10)

yvields

<P g A e //J”> 5(/}7 70 _k). (1.14)

Similarly,
e P g >=S5(x -2"+¢). aas

3, Formal Expansionof I (p,Z)
7

In some previous work(z’ it was shown that there exists a
formal expansion of operator functions of the operators fﬂ and
l'a which satisfy the commutation relations (1.1) in terms of

certain basic operator functions defined by

U, =8, (p-4)e* .16
/ fo p) B (p1)dopt =S
(1.17)

D 0w O, O

é /ot ! gt ‘ "
n'n o, “nnl Cmnl “an

1)
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In terms of these basic functions we could write the formal expansion

F(P)}&)fzn:_ /(To'“ F(»P,Z)ka,)un,k, d‘*k‘) (1,18)

~
where U n'k' is the adjoint of Un, k' and the symbol (Tr A)
denotes the trace of the operator A . Consequently, the expansion
coefficients are independent of the representation of the operators.
Now, the expansion could be generalized in the following

manner by considering our basic functions to be of the form
/ ,
= ?N.' (f‘% ) y, (1 )2 (1.19)

where we shall require that the y/ 'S also form a complete ortho-

gonal set satisfying
Syt 5:, (‘Z')V;,,*(l')d4z'= 5/“,, or S(A'-F") (.20
We shall now show that

Te Vg Vg )= 8,0 Spon a.am

hn

T, Vo =T @, G- 0¥, (), )8, (p-&)

=T (2, (p-£)9,(p-5 )} ()Y, ()



upon using the cyclic property of the trace:

-‘;<ABC.)’:TV(BCA)=TF (CAB) Hence

S

Lo L= [P (408, (- XY, )Y S Ip DI

n"k

I, )Y )p>=
fplw Xz 1y, @Y @leXelpsd*yd e
/{f’/b')(t'lf’)%, ) ¥ @)d*x’ -
Jamr [, @RS (DI
upon usiag (1.12). Gonseguently,
Tr Ve Vg ) =
%ny/fﬁf(f )P, bp'- 4 )f(z ¥, @)d*p'd*z

so that upon making use of (1.17) and (1.20), (1.21) follows,



Now if we taks as our criterion of approximation to the

operator function F(of), Z) the smaliness of the number

-W(F(p,z)"z__a,h, - F(p L Zaw "k") (1.22)

n*R"

2
it is readily seen that E > O is least if the coefficients a/n, b

in the expansion of F LP, Z) satisfy

~I
R (Flp,x) Vn’lz')) (1.23)
as we see upon applying (1.21). Thus our expansions satisfy a
"least square' requirement if F ('P, Z) is approximated by the

expansion

Flo,p)=5 T (Flp )V p)Ve  a.ae
) , n R
nk'
[ /
Z-"h' k' denotes summations or integrations over /L’ and/or é
We may further generalise the expansion by noting that the
argument of the ?'S in (1.19) may be changed to ,fJ -C k ! where

C is any C- number,



II, PROPERTIES OF BASIC FUNCTIONS

4. Representative of the Second Kind (R.S.)

In Quantum Mechanics the representative of a ket L) ie
obtained by scalar multiplication by a complete set of basic bras,
The set of numbers obtained in this manner is called the representa-
tive of the ket l Q > . The representative of an operator A is
obtained by multiplying on the left by a member of the basic bras,
uy.< /\L’ and then on the right by the basic ket ' /l }) + The set
<A . ' Al A ) > constitutes the representative of the operator A
or the matrix elements of A in a representation with )\ diagonal,
We shall refer to these representatives as representatives of the
first kind.

The represenutivé of the second kind (R,S.) of the operator

F (f) Z) shall be defined as the set of numbera

T (FU

At

where Uh' k! is the adjoint of the basic operator Uh' k! Knowl.-
edge of the set of numbers (2.1) is equivalent to knowledge of the

opsrator F , since we have from (1.18)

h'k' nlk[

nk! ) (2.1)

Flp,x)=)_ (T-FU_,, U d*k’ | (2.2)
&
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in the sense of a "least aquare' requirement, Mare generally we

may take the R, S, of F relative to the basic functions Vm, 2

defined in (I1-3) to be

Tr (F Vm, » (2.3)

The R.S., of ¥

byt relative to the basic functions V)n’ is

LI

_(?.(Vm,ﬁ,,vm,(,)= ém,m,, ‘sz'z" , (2.4)

4 as we see from (1.21) and we note that these R,.S.'s are real num-
bers. In(2.4) and (2.2) the notation implies that the /2.'S are dis-
crete and the 'é ’5 are continuous, In any stage of the analysis we
may consider the 7L ’S and the £ 75 to be either continuous or dis-

,k ' crete but shall use a notation which implies discreteness for ease

in manipulation, it being a simple manner to effect changes in our

expressions in any particular case,
Now if /4 and B are two operator functions of the f 0]

and £ °5 we have

(T (ABY*~ 1A Lp) " d*pip71 B Lo *d* o7
- / W:’A‘ lp’)( P’ IB Ip"')c‘"/p‘d"/’a”’
='|7(§§)==Tr (Z E) (2,5)
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In a similar manner we may show that
(T-(ABC)* - T (CBA) @.6

In view of (2.5) we have the following relationship between the R,S,

P
of F relative to the basic functions vm_! Y and the R.S, of F
~/
relative to the basic functions vm, L
~ =~ »
Tr (FVm,,_,)s(Tr("’ Vm.,,)) : 2.7

The equations establishing the connection between the i'epruen'ta-
~ ~
tives (R.S.) of F and F and the R, S, of "‘ and F respec-

tively are

F-J3 T-(FV, OV,

‘ /
L ['A m' L

Fel T (FY,0 7,

(2.8)

It is seen that the second equation of (2.8) may be obtained by taking

the adjoint of both sides of the first oqﬁation and applying (2. 5).

3., Transformation Function of Sscond Kind: T.F.S.

If we have two complete sets of basic bras (A I and (/A’ ' ,
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8 ket ‘A) will have two representatives <A"A> M(ﬂ”/‘\),
so that
CATAY= > (A T D' TA)
;; /u’ /u’ ’ (2.9)

(1A =5 Quil XD IAY,

Z.l/u.></u, ’sz_f/l'><ﬁ,’ (2.10)

(2.9) shows that either representative of ’A Y canbe expressed in
terms of the other representative and the coefficients (A /-J-I >
or </ul / /1/ > . These latter numbers are called ‘tunoformation
functions in Quantum Mechanice,

Now let us consider two sets of basic operator; Vm, Y

and Wn, b which satisfy

T, M,.>= L

nm
(2.11)

Te (W W)= 5.0 Sy

An operator function F may be expressed in terms of either set as
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) \/m,e, s (2.12)
or

nk (2.13)

&
=

Now if in (2.12) we replace: F by \/\4’, X’ we obtain

2;_—5' tk’ " '>Vm’£’ , (2,14)

Upon putting (2. 14) into (2. 13) there results

W

= S
FNZ“. ‘vTr(FW.k,)Tr( AR ml' ! (2.15)
Consequently, if we multiply both sides of {2.15) by V , and

L
take the trace, we have using (2.11)

T(FV )= Tr(FW, DT (W, V). s

n'e

The interchange of the W 75 and V ’S appearing in (2,16) gives

/Z, lk}

T(FW..) Z;_Tr(FV Tr (V ). (@an
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(2.16) and (2.17) establishes a relationship between the R.S. of I

relative to the set of basic functions V and the R.S, of F

! zl
relative to the set of basic functions Wn’ k' involving the

expressions

TY(W T (V m' L n/z’ )o (2.18)

lkl m z J
The quantities in (2.18) are defined to be transformation functions

of the second kind: T.F.S. These transformation functions satisfy

_'; ( U ‘ )= (—rf’ (V W n k! ))* (2.19)

m'e’ y)

as we see when we apply {2.5).

These T.F.S.'s are seen to satisfy also

. _ ‘,_ ~ ~~
ém’m" éz!ﬂn - 4_ —rr (v)nl 'Y wﬂ.’k’ )Tr (wh'k' v”\,”l" ) (zo 20)

nlkl

3, .9 A"’Z Tr (Wn'k'vnde‘)ﬁ (VM,Q,AW:,J,,{~ ), (2.2

nn
me

which may be verified by replacing F in (2.16) and (2.17) by

Vmu gn and Wn" k" respectively and using (2.11),
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6., Matrix Elements of the Second Kind; M.E.S,

Let us consider the expansion of the operator W‘h’ F in
terms of the set of basic functions Wn, I Upon replacing F in

(2.13) by W k' F we obtain

o‘o F 'Z 7;' (W F W k" ) Wn;.k/, . (2.22)
n”klf
If we now multiply (2.22) on the right by G' and then trace both

sides of the equation we obtain

TW, FG)=p Tr(w, F W, T(W,,.G"), @2

h.”k ”" )

| '
where G is another operator, If G ie now replaced by

~J
G W g+ (2.23) yields

T, FGW,,,, )=

Z. -n” (W 'ﬁ” ).’;<W "k" 71."' k" )) (2.24)

n’ k" 'kl

which is analogous to the law of matrix multiplication in Quantum

Mechanics

(NIFGIAD=S (XNIFINY G e

A'U
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As a result we shall define the matrix elements of the second kind:

(M.E.S.) of an operator, F , say, relative to the set of basic

functions WLJ to be

Tr (W nk' .,*,,) (2. 26)

From (2.3) we see that the M.E, S, of F is merely the R.S. of
the 0perator W Wk F relative to the set of w ’S or the R.S. of
F W n k" relative to the set of W’ S, The adjoint , of F

has for its M,E,S,
o~ NS
Tr (Wn' " F W, ) ; (2.27)
so that from (2, 6)

Tr(W,k,,l}Nn,,k,,) ( (W,HFW.#,)) (2.28)

which is the conjugate complex of the transposed M.E.S. of F

1f F is hermitian then

T W, FW.,.)=T W, FW,..)

n

(TP W FW.., ) 2w
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which is analogous to the property of the matrix elements of a

hermitian operator F

<,P ‘ FbP“) = </P"‘ F LP') (2. 30)

The M,E,S, of F relative to the V’S may be obtained
from the M,E;S, of F relative to the W"»S through the intermediary

of the T,F.S,'s defined in (2,18):

‘Y‘ (V ' ,2“ ):
Z Tr ( mz' Wm)Tr(W FW ku/T'“(w )(z 31)

kn.k‘

{2.31) may be verified by noting that (2, 16) implies

D T W W, FW, T FW,,.), e

R ~K

and that

> TRl FW W,V

h'A 'k

)=Tr (I, FV.”) (2.33)

'l&d lll'l

which follows from (2,17) upon interchanging the role played by W

and V therein,



18,

We must note that knowledge of the M, E,S, of F enables
! 2! F or FV\{‘:’., 8o that if WM.'K' possesses

an inverse then F is accordingly determined, The M ,E,S, of

us to infer either W

F is a function of four sets of numbers while the R, S, of -
is a function of two sets, Consequently in principle it would be
simpler to represent F via the R.S. of F rather than through
the M,E. S, of F .

However, we may utilize km;wledge of the M,E,S, of F

to determine F by means of the expression

F=2" Tr(W

RE AR

n

)Tr (W k.I_W,,A,)W v (2,38

'kl

(2.34) follows by noting that

Wn'k‘ F: Z ‘T’: (Wnlkl F’Wn'%") Wn,f‘u 3 (2.35)

nu k”

by (2.22) and that
Z_‘W(w,‘,) =1, L e

which is obtained by putting F 3 / in (2.13),
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7. The Basic !\mctiono/é‘ﬂ’)" 6 " (6‘“ 1)6. “

Laet us define the basic functions Xn' PR L

X . = Hop @11 B eh/p) g S (2.3

n'k'

where 4 is any C~ number. This set satisfies

Tr (Xn,k‘ yw’k”): J (n’- n") 5 (k'-k") (2.37a)
where é (nl* n”) and 3 (k ’—/1 ”) are four-dimensional Dirac func-

tions defined similarly to é (f:fﬂ) in (1,7). We may verify

(2.37a) in the following manner:

Xn’ k! X n'k"

M O O ) o b
N - "
€ in <F/“' a.:},,, 1)) (2.38

which becomes upon making use of

et f lpkx),  am
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X X _://w,e-itavrtf“h,;,/z.—an?‘h”/z -k 5.,)
IAI

QiR

Consequently, (2,37) follows because

Tr z.c.'“’ﬁ lk ) 7 —

Jepler tulpndp (prleis 1prdp -
JERmSCRdp oS () S(k)
from (1,14),

feic”‘/“c/L,//D/:’ =/é'77'¢é(c.)1 (2. 41)
and é(k)’-é(‘&)

We could have obtained (2.37) by making use of the expres-
sions obtained in section (I-3). It would have been merely necessary

to make the identification
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9. (“P CRI2)—5 Yy €7 BB/
(2.42)

It is seen that this identification assures us that the orthogonality
conditions set forth in (1,17) and (1.20) are satisfied., However,
the procedure we have followed serves merely for verification of
the more general results d {I-3) and to indicate explicitly the
manipulations in obtaining the resuits, It is to be noted that the
set of X ’S when used for expanding F(P, 14) is a natural extension

of a Fourier Integral of (- number functions.
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lII, LINEAR OPERATOR EQUATIONS

8. Matrix Elements of A (/'P, L) U B (JP, K )

In order to expedite our considerations of linear operator

equations we shall have need for explicit expressions for the
matrix elements of A LP,E)UB (APJ Z) in terms of the matrix

elements of U . Now if l/?u isa (- number we have

(pled Ul [eple ™ 1534 U 1P, o

which bacomes upon using (1. 14

GprIe s U= S pmd g IULp'>
=(piklULp'>. 6.2

If we differentiate both sides of (3.2) partially with respect to k/u

2(49’!14"‘8"" UI70" <1>-/e/ Ulp')
-af (»P -k ULP"> (3.3)

If we now set 5“" = O, (3.3) reduces to
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iU lp'= iff;« <79"pr’ ). (3.4
In a similar manner we may show that -

plUe”lp') - -éa-iz priy lp*7. e
Now,

Ay AN __Q_ / "
('l p Ulp")- LMA(/ID Lp Ulp'>,
| - LJ}%& 73‘,’, (,F’/U Ip"} (3.6)

as we see from (3,4) upon replacing U there by lPIf U and noting
that <«P' ,fv_ =/PV,, </P' l . Repeated application of (3, 6)

suggests that if A (/f)) Z) can be expressed as a power veries

involving the P ’s and the X ’J,

plAGRIULpD<Alp iZ)(p'IULPD. o

If we consider (f)’/ U,t'“ - ’ f”> '
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PV > <1 U Lo g
:f:_ (— L '2"‘

)p,ii

)CP'/ U '2P“>) ﬁssl

when we apply /PV' ’P D= f‘:, ,‘,P"> and {3, 5); (3.8) also
suggests thit if B(P,K) can be expressed as & power ﬁeiiis

involving the P ’S und X S then
(pIUBLp»)1p>=B(p;-i 2. )(pIUlp), tim

where ’B\’*(f, E) is the complex conjugate of the adjoint of
B (f, K). For example if B(/P)Z)= ) Kp“f'/P X ,
B*(,P))L)a +'L»P]4 + X f , since X and f) aro;‘he;mm”;'

B *(/P)” - ;- 5}',,) for this case would become thé opérator
eooonf 9 A "
Consequently,

1A (pL)UB p,2) p =
A Cp; ta—%) ’BV*(,P')' —i;%.) <P'/U l’P”>) (3.10)
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upon applying (3.7) first with U replaced by U B (,P |4 )and then
applying (3.9) for the latter operator, Thus if the operators A
and B are known (3,10) enables us to express the matrix ele-
ments as a product of two differential operators acting on
piu Lp").

In a similar manner we can show that in a representation

with the £S5 diagonal

e'1Alp,2)UB (p,x) "2 =
A(l"' l)B <L .,,Z")<l [Ul2" ) ean

(3.11) could also be obtained by making use of the transformation
functions <Z' ‘P’) and <P/ ; Z’) defined in (1,12),

We could also note here that

~

B*(»p,*i—-) [8(70 )J
B2 )~ [B(%ﬂ,yﬂj

(3,11a)

~~4

»
since the asterisk in B was introduced to neutralize the appear-
ance of the asterisk acting on C- numbers in forming B (1), 7')

in order to be consistent with our work leading to (3,9).
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9. General Linear Operator Equation

The most general way in which the operator U may occur

linearly is in an equation of the type
¢

where the A s, B 'S and C are presumed to be known oper-
ator functions of the ,P ’S and the ¥ 'S, We shall call (3.12) a
linear inhomogeneous operator equation for the unknown operator
U « If we take the matrix elements of both sides of (3,12) in

a representation with the f) ’5 diagonal and apply (3,10) to each

of the expressions AL U B

v

2_A, (13; L;—‘%, ) gi*(fﬁ-ifi,,)(f' lULp) =

(f'/ C ,,/?'> (3.12a)

in the summand of (3,12) we obtain

On the other hand if we take the matrix elements of (3,12) in a2 repre-

sentation with the X ’S diagonal we obtain upon using (3.11)

AL WIB i )1l

[
v

(el Cle"). (3.13)
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(3.12) ad (3.13) are partial differential equations for the matrix

elements <f>' U LP“) and (Z' Ul Z") respectively, Conse-
quéntly. if we can solve (3.12a) or (3,13) Hr the matrix elements
the operator U is determined, For if we know the matrix ele-

ments of U we have
T (U ka,)J/(P',U "P”><'P“‘Wuﬁk"P>J4f'J4'P” (3.14)

which is the R.S. of U relative to the set of basic functions

satisfying (2,11). But upon replacing F by U in (2.13) we have

U= T (UW, )W, | B9

rR'k'

U= 5 [ UL I, IO W, d*p'd4p7, e

nR'

upon substitution of (3,14) in (3,15). In precisely the same way we
have in terms of the matrix slements of U in a representation

with the X ’S diagonal,
U5 e Ul [2OW,, dE 2", o

In principle, then, we have reduced the solution of the linear

operator equation (3,12) to the solution of a linear inhomogeneous
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partial differential equation involving eight independent variables,
namely, the four /P”S plus the four f" 'S or the four K5 plus
the four Ié" ) depending upon whether (3,12) or (3.13) is taken
under consideration, (3.16) and (3.17) furnish us explicit expres-
sions {or the operator U in terms of the eight operators ll’w
and f/“' . Itis at once apparent that the solutions (3.16) or
(3.17) are independent of the representations for the operators
l/“’ and ﬂ«’ due to the circumstance that the trace of an operator
is independent of the representation, Moreover, the solutions
(3.16) or (3.17) do not depend essentially upon the natu're of the
basic functions just so long as they form a complete set satisfy-
ing ort!xogonality conditions of the form exemplified by equations

of the type (2.11),

10, Solution Utilizing the Basic Functions A, b

If in (3.16) we replace the basic functions \/\4, &' by the
basic functions ab W find that we shall have to evaluate the

matrix elements <17"I Xnk, I/P > . Now from (2.37)

Xy = Ay €7 peebiy g b1 2"
n

(3.18)

< oy eﬁtlyx'“ e- nip,- a,k,.‘7/2)
h’

s0 that
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(17" Yh,k, f.)o’>= P S (f"-f’ +k’)€'Lhw(f’fl"aM) (3.19)

48 we see upon applying (1,14) and the laws of matrix multiplication,

Conssquently
X lp'> X, =
A ('Pl"'f)""k’)einw@"ﬂ‘/‘ gk b (3.20)

(3.20) is independent of the C~ number @ .

But

U5 Ul IR oo X, d'p'd*p" o.om

Upon substituting (3, 20) in {3,21) we have

U5 J[<p1ULe) Gty ) »
P (P”"P’v‘k’) et pligikir | p'd o' v

or

U‘%//@”U’PLAO (/16?)4)ez’n'r‘"(ﬁb-ﬂ"_)eik,;t/‘dqul (3.23)
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But, recalling that 2 nk' denotes either integration or summa-

tion we have if n’ and k ‘ are continuous so that

;_;_'( )—-7//( )d*n'd k'
]@"n'”%‘ﬁ?)d“n’z(nr)“é lp-p'). 0.2e

(3.24) is formal in character since we are treating ,P asa C—
aumber when actually it is an operator, Nevertheless, if we take
the matrix elements of the left side of (3,24) in a representation

with th‘f ’3 diagonal and then integrate we see that the operator
é (‘17-?') has matrix elements </P" 'é (17'17') l?) " > =

J ( '-f')é( " m) which is consistent with

(»P’/f (f),P "= ]( (PI)J (1) I*/P") . Consequently, (3.23)

U= J[G1U1p-£8 (p-p)€ 5P d 0"k, 1509

Now here again even though P is an operator we may show that it
is not inconsistent to make use of the familiar property of the J—

function

[ a)dp'f@, o
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so that (3,25) becomes
U‘*/CPIULP-/?’)QM/:""MJ”{'. (3.27)

We must emphasize that CP ’ U LP—k')ia now to be considered a

function of the operators 'ﬁ“ with matrix elements
pl<plU lp-k') lp' - pIU I.f'-k' Yo lp-p'). .

<P’ ULP ‘k') is obtained from C’?" J ’/P”) by the simple pro-
cedure of replacing ,/)' and /P” respectively by IP and f -k’
It is readily verified that the trace of the left side of (3.27) is
identical to the trace of the right hand side, and this provides an
additional check on our assertions regarding the consistency of our
manipulations,

Examination of (3,27) reveals the striking resemblance of
the expansion to the familiar expansion of the C~ number Fourier
integral expansion and thus would provide a suitable starting point
in studying departures from C— number fields,

It would appear from the structure of our basic functions
Xn; k' that we could obtain a similar expression equivalent to
(3.27) with the roles of ¥ ana ﬁ"’ interchanged. To show that

such is the case we would have to start with (3,17) instead of (3.16)
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and evaluate our matrix elements in a representation with the A

diagonal. In place of (3.19) we will have
el Yn. MRy Ao G R BT Gn TR S (g ') 13,29
so that
L IX e X, =
Koyt S (g x'-n') @ P @Ky

But U can also be written as

U=5 [[<e1U12" 1K, 110X d'd e 0

n'g!

upon replacing the basic functions M, k! by the basic functions

X’llhl in (3,17). If we introduce (3.30) in (3.31) we obtain

AY (LY 1 I n. ; ' ’i ‘v ]

U=erp/m“(z'l UledSlex-n) €7 P @8 X Uil 5.
u‘ [

Again recalling our convention regarding Z ok 0 denote inte -

gration or summation we have upon using the integration interpreta-

tion of Z-‘n’k’
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in much the same manner that (3,27) was obtained. Here also we
must point out that <7/‘7’1.'.|U ‘\ ]C) is an operator function of ¥
and is obtained from the ( ~ number (]él ‘U ’ J(a”> by replacing
r by £-J1' and L7 by K . We should also note that although
the exponential part in the integrand of (3,27) appears on the right
the exponential part of the integrand of (3.33) appears on the left
hand side, This is so because the f’S do not commute with the
| AN . We may however write (3, 33) with the exponent on the right

in the integrand by making use of
e f (pjz)é’én' = f(pr+n), oo
so that we have also
U=/(zH)fza—n’)em’ﬂﬂ“d*n'. (3.35)
Similarly, by making use of (2.39), (3.27) may be written as
U= [¢plULp-k > € 5" d* k'
S[eB T pek [ULPY IR o
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The expressions (3.35), (3,33), {3.27) and (3. 36) are quite
general and are independent of whether U is a solution of the
linear operator equation (3,12) or not. Aside from this, the work
that we have done in this section indicates in a simple manner the
role played by the matrix elements of U satisfying (3.12a) as
being essentially of the nature of Fourier coefficients which in
general however are operator functions of f) or ¥ depending
upon whether the expansion (3,27) and (3, 36) or (3.33) or (3,35)

is used,

11, The Operator Equation A S ~ S B =0

It is of interest in connection with our work on operator

equations to give consideration to the operator equation
AS-SB = o. (3.37)

!
If S possesses an inverse 5 then (3.47) can be said to arise

from a similarity transformation

AsSBS") (3.38)

so that the solution of (3,37) for the operator 5 can be connected

with the problem of finding the operator S which defines a
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similarity transformation if the original operator B and the opera-
tor A resulting from such & transformation are known, More-
over, if the operatar S is unitary: S" e S , then (3,38) is a
unitary transformation and the problem is equivalent to finding the
unitary operator S if the operator B and the operator A
resulting from the unitary transformation are given explicitly,

If we restrict ourselves to the case with the operators A
and B fuﬁctiom of the oporatorb f/)“" and 17“’ satisfying the
commutation' relationships given by (1.1) we have from (3, 12a)
the equivalent partial differential equation for the matrix elemente

of S in & representation with the f) *J diagonal

[A(p, af’) B*(P, )JCP,SL/J> O. 3.39

(3.39) is separable in the sets of variables P’ and f)” 80 that
we could assume a solution for the matrix elaments of S to be

<P'l S LP"> = P.(,P') Pu(f”), (3. 40)

Pn
where as indicated P is a function of f) alone and a func-
tion of 19 alone, Consequently, (3.39) is equivalent to the two

partial differential equations
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[A(/P;l;-%)‘-h]?'=o) (3.41)

and

[’BJ*(PZ-L;%")‘)L] P”:O] (3.42)

——

] "
for the functions f.’) and P respectively, /\ is a C~ number
which we can now use to label the P ’S . The general solution of

(3.39) is
CP"S ),P">= CL(/UBL' P)L d A , (3.43)

where ({ (/Uia an arbitrary function of )L . It would appear
then that there exists an infinite number of operators S satisfy -

ing (3.37),

Example: -
As an example let us consider the operator eguation (3,37)

with

A*Z/w) B-’-z/?/u (3. 44)

{3, 39) becomes
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94’" ’P/‘)(’P'S,’P> O. (3.45)

Consequently,
! "y _ v ./ -Lpt e
</P)S’/P>-—4)<f,ﬂ$ﬂ)e Pf, (3. 46)
where 50 is an arbitrary function of the indicated arguments and
the summation convention is being used in the exponential, For
simplicity we may choose this arbitrary function to be (277 so

that denoting S corresponding to this choice by S o+ (3.46)

<P‘| S 1p*? = (am)* @F" (3.47)
p go ’*P"> = am)? @A (3.48)
WIS, Lp= )€ PR g e

=2 (p-p), (3.49)
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which implies that

~
S5 =1. (3.50)

o

Similarly we méy show that
So S, =1, (3,51)

But if we interchange the roles played by A and B in (3.37)
| S , Y -1 .
we obtain assurming that S possesses an inverse S y (3.,45)

with the primed and twice primed expressions interchanged and

L replaced by -l so that we can write
CF’I S 4)“) - G@m)yre e 5 (3.52)
<P"§;' IJP'> = (7)™ 6-11’”1”7’ . £3.53)
Comparing with (3. 47) and (3. 48) we conclude

S"=§°§" ‘~S

o o J c 0 (3.54)

so that in view of (3, 50) and (3.‘5!) the operator SO is unitary,

Hence we may write
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(3.55)

P = S'we, S, .

Now let us compute S,, L/w So- ' .

(p'lS, €5 Lp") =
Jip1Slp>pIEs T Lptp 1S, 1p0dp Ly
But from (1.14), (3.47) and (3.48) the above may be written as

plS, e S lp'> =
. ¥ . L oA » v

(P € 5 5 . o R 44

5p-p) e nth

. Mo -1 v
506/ }‘e '50.136"‘.-6“# 9 (3.56)

s0 that
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~
So 14/4,, So = -aﬂ“ . 13.57)

-1
If in (3. 44) we replace 'ﬁ‘-" by £ ,)Dlu and proceed in the

same manner we find that (3, 47) becomes

\/’P'l S ‘{P”) A ,

PISlpGra @i ds
Moreover, we may show that O is unitary. Consequently,

L, - xS, P n 59
snd aimilarly to (3.57),

So( Jé/u. S‘: - OC-,’P/A : (3.60)

In a straightforward manner we may also show that the matrix

5 ~
elements of oc Are

P l&clp™> =48 (p'+p7) (3.61)
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so that the square of the unitary operator Sd has the same matrix
2
elements as the reflection operator. We may also show the Sd‘

snticommutes with ‘P/“‘ and Y/“ .

12, Symbolic Formalism, Transformation Operator.

If A and B are operators the transformation dperator

T(A, B) in aciand by
T(AB)X=AXB, (3.62
whore X is another operator, Now
TAB)T(ABX=TABAXB-T(A B)X
=A’XB (3.63)
(3.63) wuggests

T"ABT (AB:T™" @B -TA™" B™) 0.0

for positive integer /71 and /L . Moreover, if A and B
possess inversea A-" and B-‘ respectively we may consider

(3.64) to hold for M and 1 any positive or negative integers,
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If A . B , C , and D are operators, then the product

of the two transformation operators TCA ,B) and T(C, D)ccting

on an operator X ie

TABTCDX -TABRCXD
=ACXDB
=T(ACDB)X. (5.69
TA BT(CD=T (AL, DB. (3.66)
1t we have » third transformation operator 1 (E, ) we have
TAB(TCDTIEF)-

TABTCEFD-TACE FDB). e

But
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(T(A,BT(C,DYT(EF -
T(AC’DB)T(E) F)=T(ACE) FD B)) (3.68)

which is the same as the right hand side of (3,67). Thus the trans-

formation operators satisfy the associative law of multiplication.

In general T(A' B) does not commute with T(C ) D)
unless EA y C—J‘-‘-‘ @) : L.B, D] =0 . No simple addition laws

seem to exist for the sum of two transformation operators, How-

T(A* B, C *:D) =T(A ,C )*T(A,D)*T(B) O+T (B, D). (3.69)

Now if (I and b are any two operators at least one of '
which possesses an inverse, say Q , we have from a formal

identity due to Feynman
(a+b)'=a'-a'ba'+a ' ba ' ba '~ .-+ .10

If we replace A and b by T(A, B) and T(C ,:D) respec-

tively (3.70) becomes
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[T(AB)+T(C,D)]" -
T (A,B-T"(ABT(CDT (A,B)
T BBTENT ABTICDT (A B). o

Upon making use of (3,66) and assuming that T(A ) B) posseases

the inverse T(A-') B-' ) » (3.71) may be written as

[TAB+T(C, D) =T(A;' 8")-T(A'CABDB)
‘f'T(A.’(. A-‘CA—]‘ B“D B-! D B" )' o, (3.72)

(3.72) may be used to effect a formal solution of the opsrator

equation
AUB“’CUDf-E) (3.73)

for the unknown operator U , since (3.73) can be written as

[TA,B)+T(C, DU

L

t) (3.74)

e0 that
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U=[TAB)+T(, D' E
~A'EB'-(A'CA'EB'DB™)
+(A'CA'CA'EB' DB DB )= - . s

The U so obtained is clearly not the general solution of (3, 73),
To obtain the general solution we need to add the solution of the

homogeneous equation A U B+CU D=O .The usefulness of this
method of course will depend upon: whether the series (3,75) con-

verges or not,
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IV, AN AVERAGING PROCESS DEFINED FOR OPERATOR FIELDS

13, Yukawa Variables

If we consider the matrix elements of an operator U ina
representation with l diagonal, say <74' 'U '1./—”> , we note that
they depend upon eight sets of numbers comprising the four space-
time components of Zlﬂ' and ¥ "’ . Without any loss of generality

we might consider CZ'NUIE"> to be a function of X/u' and ¥

where

X2 o (et ™),
(4.1)
a3 Al 2
J

CelUle) ={X+xrlUIX-2¢2 = UK r) (a2

X/u and /" will be referred to as Yukawa variables. In the present
stage of development X’u is identified to be the center of mass coordi-
nate and /7% and coordinate referring to the internal structure of the
field specified by U (X 27 ) .(2) For the present we shall not attempt
to give a physical interpretation to these Yukawa variables but shall

be simply content to study some mathematical consequences.
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14, Local and Non-Local Fields

A field or function U is said, by definition, to be a local field
or function if it satisfies the commutation relationship (l"', U 1 =0,
otherwise the field or function is non-local, From this definition it
is apparent that if U contains the displacement operator P/‘" as
well as the space-time operators Z’“ it will in general not commute
with the K/u' because of (1.1) so that our operator functions are

non-local functions, We' note that if L isa local function
<7£"UL1 L”> = UL(Z') d (Z'-— A ), (4.3)

If we express (4. 3) in terms of the Yukawa variables defined by (4.1)

<L"UL'Z”>=UL(X)§<V). (4.4)

Jeely e d's - U 0. ",

(4.5) suggests an averaging process for operator functions which have
the property that under the averaging process the average of a local

function (function of LM) is the C- number obtained by replacing



-
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o
l’u' by the Yukawa variable X . In the next section we shall

study some propsrties of this averaging process.

15. The Averaging Process, Moments, Probability Distributions

The average of a non-local function U will be defined to be

U (X) given by

D(X)f/<X+%lUIX—%>d"r (4.6)

The right hand side oi\ (4,6) reduces to (4,5) for local functions., In
general we note that U (X ) is a function of the so-called center of
mass coordinate of the operator function U .

If U t,':an be expanded in terms of the basic functions

described in (Ii-7) we have from (2,37) with A = |
2 HinM(p -kl ) ik 2
X T (2 7T) e * ,“/ e ~ (4.7
n'k s
for our basic functions, so that

wIX, ) =Gry’ e AR S (o ent),

whence,
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<x+/r{ fxml ' X’%>= (2_“)-1 el-in,’f‘w,_-ig; riAtLh, x/“é (Hn,)
YO (4.9)
@) e S(r+ n'),

but since,

U=’Zk. Tr (U')?n.k,)X

I

k' (4.10)

we have from (4. 6)
U= 5 T R,y Nam €85 S 4
Jn'R

2 Vi k! XM
=n4\k7(277) zlr(UXn.&.)eL’“ . (4.11)

However,

~/

-2 5k etn'® (p, -k
ank' - (Z"ﬂ’) ze 1k, Z 2 ) (ﬁ, /&/z)) 6.12)
so that

(2w)* Tr (UYW )=
Gm)*[<p U1K, Lpdd pd ! =
Y [<PIULPRYE T B o s



50,

Consequently, upon introducing (4.13) in (4,11) we obtain
/\ b ;o Ip
) (2‘7> Z_</P k)@t e P Vdfu 14)
n'R’
which from (2.41) and the properties of the é functions reduces to
/ N VY
)= [(41UI-55) ebx" d ¥k a1

upon replacmg%( )by/( )qu; (4.15) presents a convenient

expression for computing U (X) for special forms,
We will now show that if U is hermitian then U (X) is

real, Now,

U00- (<5 101-5 > e i
<SS T B gk
,([<—%IUI by @ g )
([¢LIU -5 d )

- (Ux)" h16r

~ e
Hence, if U’U, (hermiticity), U (X) is real,
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n
The average of U will be real if U is hermitian and is

obtained by replacing U in (4,15) by U’L to obtain
P 0- [N 1-5€87 g0,

N
We shall define Un( x> to be the 1% moment relative to the
averaging process defined in this section., Now from the theory
of statistics we can state that if the moments relative to a cex;tain
averaging process are known then the probability distribution can

be ascertained in the following manner, Let us define
/'\
M U)=z e’ 4,18
2 D ( ’ )

to be the characteristic function of U relative to our averaging

process, The probability distribution of Q is

P(U)-‘-I'?F :oe'étg M(’L’)U)CHZ (4.19)

In order that (4.19) be satisfactory we must show that the moments

implied by (4,19) are the same as those given by (4.17):

(70 P U = UF (0. wan
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Upon putting (4.18) in (4.20) and using (4.15) with U replaced by

@M v we obtain
[= U PWd U -
x /"‘”u/ e e e Pt dU. wan

But,
+o ity W N (T oty
[ TUne - B e g U
«-00 -

=) js)z:» p) (’t) (4,22)

where 5 (’t) is a one dimensional Dirac function., Consequently,

(4.21) becomes

[TuPwdu-

-

I;ao/(%leiwl_%)ei%)(’zi)wﬁ%é(t)quld_t’ 4.23)

Upon integrating (4. 23) by parts n' times with respect to ‘t and

making use of the integral property of the é- function we obtain



/.;wUnP(U)JU=/<‘72IU"‘-'Z}eis;x'“d*k,
i UR (X)7 (4.24)

from (4.‘17). Thus P ( Q) possesses the property envisioned, namely,
that stated in (4.20), It must be emphasized that knowledge of P (U)
is not equivalent to the knowledge of the operator U .

Another equivalent form for U( X ) may be obtained by intro-

-~ 2 -
ducing the reflection operator Sd - R » (3.61) with matrix elements

<ﬁ' ’ R Lf)"> = é (/F’-v" «P“)- (4.25)

We will show that

V0O =/6 T URE*™ o .26

Now,

'f d‘tf)ld Po
=/é//(p"U‘-‘P”>ez"‘#ﬂié(fu_f,)dﬁpvcrrff

lo[<pIULpy e 7 H 4o
KIS 5y,
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The above consequently verifies (4, 26) so that (4.15) and (4, 6) may
~
be written as (4.26), Our ability to write U(X ) as a trace indicates
.
that U (x ) is independent of the representation of the operators
/\ P

X and f . Moreover, we may state that S U S-' = U if
s Al
S commutes with Re 2eX ‘ﬁ“‘ in (4,26),

16, U (X) for Special Forms

~
In this section we will ¢alculate U (X) for various forms
. AL
making use of (4,15)., If we replace U in (4.15) by f(f)ed;"x
we may readily show that
A -
f(.,p)@‘&“" '-‘f (b2)E" % R (4.27)

and in a similar fashion we can show that

/\ ‘ "
6‘@"”‘7’- (p) = (-84 )@ X" (4,28)

(4.27) and (4,28) enables one to compute expressions of type

/’:\“\\ /\
][(»P)L ATV Al PO D LT AL I 'lq"'f (/[J) by

simply differentiating both sides of (4,27) and (¢, 28) partially with

respect to kd, 3 k‘ i k_,n and then setting the k ’S

2."
equal to sero, For example



LLR

{F -4 B2 X 0),

‘“/“’ K:C)
/\‘ . (4.29)
X4 (p) = - Ki %ﬁ—) !k=o' +X*4 (0).
T

-
To compute e ¢ ﬂ“’g () itis easier to appeal to (4. 6),

Straightforward calculation yields

—
e f"‘g(l) :j (X + &2 ) (4. 30)

In a similar fashion

g(ﬁ)@ ﬁ“*(g(X-c/z). (4,31)

(4,.30) and (4.31) are useful for calculating expressions o type

’Paﬁ'ﬁx;' . ‘fa)vn,g (ZC) or (9&)4?’" ﬂz“ . ﬁn respec-

tively, This is effected by differentiating both sides of (4.30) and
(4,31) with respect to Ca('J C“ ",‘ o Cd"‘ and then setting the
C 7S equal to zero.

/’\ .
2R . g ()" e g (X),

(¢.32)

//\\ n
gup £ R4 (£)=(-55) s g0n),
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follows from the above prescription.
P ﬁ\

Let us now consider tep U . From (4.26) we may

write

CiPU = 16 Tr X RURE 2 sy

which becomes upon.using the cyclic property of the trace
N : |
ic e (X4 h )
EPU=16Tr Ure 40'““, (4.34)
Consequently,

i L
6“4’U = (X“' %) (4.35)

" (4.35) has the same basic structure as (4.30) so that proceeding in

the same manner as we did to obtain (4. 32) we obtain

/\
PP f)U (u)nmu

T - (4.36)
U‘ﬁ*’ﬂ;'ﬁ = (- u)nax‘* FY.aEY X"‘nUOO

The second equation of (4, 36) follows in a similar fashion by noting

that
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/} - -
Ue % - /6T Uer e Re A

= 16T URE™ e €3 X 1
N
= U (X-9%).
/\ g
General expressions for ,l“']t“-. S Al U and m"'

of the type (4.36) when the f) *S are replaced by the X ’S do not
seem to exist, However, we may obtain some useful expressions

in the following manner, From (4., 26) we may write

'/lz’\/“\‘ ' r 'y
e (J = 16 Tr €4 URE %

=/é Tr URezLMLﬁ" 62"5“7&”, (4.37)

‘We slso have

— g A
s~ 16 TrUeb-*"RE™ #

=/é7;‘ URQ—‘:%ZMQZ‘JX#ﬂ"
- (6T URE ¥t
=/6Tr UR@“XP& ik, (X2

Lk (2 XM -”)
= € bt U) (4.38)
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if we recall Rj- (z) = )f r) R) e‘s“'zﬁf (pr)e"wﬂ' =
} (Z:J 17-»& ) (2.39), the properties of the trace and comparison

with (4.37). (4.38) establishes the identity

/\

U v+ b2 U =2 X/u O) (4.39)

as we see upon differentiating both sides of (4, 38) partially with
respect to é‘-" and then setting the A 'S equal to zero. Further
partial diffore’ntiaﬁono with respect to é“" and subsequent evalua-
tion with the ,é ’S zero lead to identities of type similar to (4.39).
If in (4.39) U is replaced by U 2R D Ad U = [LV, U ]+ 5

we obtain

/\ .
[lﬁ, [ZV: UJ‘*_L. = L"X’u’XV U. (4.40)

‘ A 2
Now if in (4.38) we replace U by e /e U and

then replace the é ’S by their negatives we obtain

ed;“x" U 645‘“ ¥ m (4.41)

Upon differentiating both sides of (4, 41) partially with respect to

é/u, and then setting '4/1- equal to sero we obtain

S~ ~ 7
)< XU+ 5 e~ U] (4.42)
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Upon using (4. 42) in conjunction with (4,39) we may also write

P A~ —
U}é’“’ =XPU’yZ-(Z’“,U],. (4.43)

Proceeding further in this manner we may establish relationships

T

between L' K<z ... k%n U and the commutators of the X2 °S

/\_

with the U and similarly for U ) 2klD /X SEPREPED ‘AL
Before going on to the next section let us examine a conse-
!
quence of the second line of (4. 38) with X/“-—'-? - /2 X/“ on

the left side

/\M
e ox4) -

/( Tr UR 6“"7* w‘be-ixﬁb’o"‘, (4. 44)

It will be noticed that (4.44) contains aside from a normalization
factor the adjoint basic functions defined by (2.37) if we replace
WA by X ~ and set A =, Consequently, (4,44) may be

written as

T _
Vet (-X4)= 2°Gm)*TFURX, . e
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But T;' U R X Xk is the representative of the second kind of
relative to the set of basic functions X x k so that from (2. 2)

with the U'S replaced by the X 1,
N
UR- o [[ UGB (X)X, d'kd*X, et

F

/.\ﬁ
U=F(J{7‘r—)’//U6L5“x (-xﬁ.)Xxk Rc‘d'kc'“X (4.47)

>4
which becomes upon noting that E z

T Zand
(4.47) implies that knowledge of uet (X ) implies knowl-

edge of the operator U .

17. The Probability Distribution of Operators Relative to the
Averaging Process

It is of some interest to carry out the averaging process of
(IV-15) for operators whose properties are well known, In par-
ticular it will be instructive to consider those operators for which
it would be possible to obtain closed expressions for their probability
distributions under the averaging process., Amongst such operators
are included any local function of the space-time operators an;i any
non-local function of the displacement operators only, In the former

case we must conclude from (4, 30) with C=0 , that the moments

of g (Z)Jn’ are equal to [3 (74)] TL which implies from
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(4.18) that M(‘t;g (l)) is equal to MP 2{5 (X> which tells

us according to (4,19) that
P(g_(_{)) = é(g(l) - 300) (4. 48)

In the latter case for non-local functions of the displacement oper-
ators alone, say J‘ (’P) , we conclude from (4,27) with /i =0 ,

and (4, 18) in conjunction with (4.19) that

P(f_(_f)) = c§ (_}__(:E) ~—f (O)) (4.49)

(4.48) implies that measurements of a local function lead to one and
only one value--if indeed we might make an association of our
sveraging process with anything corresponding to physical reality

in this stage of the development, The implications of (4.49) are

»aloo. similar but we observe that for this case the distribution of

f (*P) centers about )(( O) which is devoid of reference to the dis-
p-l:;mont operator, This is to be contrasted with the results of
(4.48) where the distribution of g (Z) centers about g (X) which
depends upon our external Yukawa variable X % .

These results which are direct consequences of our averaging
process for the extreme cases of a locsl function and a non-local

function which depends solely upon the displacement operators are to
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a certain extent plausible, Let us now consider what happens when

we treat the non-local function L_ 3 defined by

L3 E (25, £-% P ) (4.50)

3 I f2 2
A /\
™~
- U _x dUnN L T
: "z"(xlax‘ X5 ,)*243[’4 ,U]
T
"I p [lcz)U]) (4.51)
“as we see upon applyfng (4.36) and (4,42), If we apply (4.36) to
the last two terms of (4,51) we finally obtain
M 20 Lo 0T p
-L
LU‘ (X, )X X ;{ygg[%,l”";zbﬂn,u;,}. (4.52)
Consequently,

L (X‘i"x z)::‘)- é'r&,‘.; ']-2 [L LM }(4.53)

Now from (4.52) we see that if U = ‘ L =0, Moreover,
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if we put U = L 3 therein and make use of the well known relations

[Z 7L3] = -i«}éz_ [—lz) L3J = Lﬂ'. (4.54)

1

- A~

and recall that X , and 7(/2 are respectively equal to X , and
VS

2 |
XZ from (4.5), we may verify that L5 = = Z for we then have

i

T (2 42« L

3-‘-4{5-)-(—2 1+<-)7‘ '} -3 (4.55)
~

The fact that L: is non-positive indicates that the averaging

process as developed above is not a good one, We shall, however,

investigate the averaging process further,

It is well known that the spectra of an operator is invariant
under a unitary transformation, The question arises as to what
changes are brought about on the probability distribution of an oper-
ﬁor relative to our averaging process if it is subject to a unitary
transformation, A further inquiry might be made as to the condi-
tion that the probability distribution be unaltered, Let us give our
attention to any operator U . Now if S is a unitary operator
S = S ™! , then from (4.26)

NN "
SUS" =16 Tr SUS-‘PQMX 4"“) (4, 56)
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80 that it is at once apparent that the probability distribution of L_}
is indeed subject to change and that it will be invariant if S com-
2LX%p,.

mutes with U or with R 6 1 . If we assume that the

unitary operator S may be written as
L
S =¢'9 , (4.57)

where g is hermitian, we may state that the probability distribu-

tion of U is invariant if g commutes with U or with

RE2:K* fuu

. Let us investigate the latter possibility,

g REVE] 0,

gRezLxﬂ-ﬁu- Reu')wﬁ"c(j _ O, “.58)

implies upon taking the adjoint and recalling that g = g 5 R = R P

<24 -2 1 XM
e 11,)("‘.3“?5’36 2 )X P R= O) (4.59)

2LX% Y Lo
(4. 59) is consistent with (4, 58) since RC X =+€ a7 R

i
Now since R z | » (4.58) or (4.59) implies

d- € “"”””‘Rﬁ R X (4.60)
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This latter equation tells us that
) 2L XM STV (ad
3=R6 ﬁ*ge ﬁ“’R) (4.61)
since »’7/" anticommutes with R . (4.61) yields equivalently

Pj R - ezix/"ﬁ“g e-zl)f'“f/u (4.62)

which tells us that the probability distribution of U. will be in-

RgG,p)R= g+ K, P, o
g(-z,-,p)-.-g‘(zwg,p)) (4.63)

from the property of the reflection operator R and (3,34), (4.63)
can be satisfied if g is an even function of the f ’S only. This
result is quite general so that we can state that for any operator
U ) U and conssquently the probability distribution of U will be
the same for the operator ,U? [Lge (»f) U] IJ(F L:' l'ge (f)})
where ge (f) is an even function of the /P ’S.

We shall now undertake to investigate the second possibility

for the invariance of the probability distribution of any operator
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For this case we must have
[g) U] = O, (4.64)

so that g will depend upon the operator U under consideration,
To effect a solution of (4.64) we could appeal to the work of Part III
section 11, However, we may effect a solution by inspection by

noting that the hermitian expression,

g=Za(U')lU'><U’1, (4.65)

Ul

i
where the  ’S are real and I U >J< U' ' are the eigen-kets and
eigen-bras corresponding to our operator U , satisfies (4.64),
] )
The operators ' U > < U l form a mutually commuting system,

(4. 65) may be written as

9= D a (U')gu, 5 .66

ul

where

gu' = U U, (4.67)

We note that each of the g ’S satisfies
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(4.68)
Gu G = Go Svur

where ’L is any integer. This is due to the property: <U' ' U“> =

$

us to write

o g Which is satisfied by our eigen-bras and kets, (4,68) enables

Sw = ela(u')gu,
=+ (ei w0 _ i)gu, , (4.69)
Consequently,
SU % 6L%,a(d‘)gu.
z | +; (e g, (4,70)

88 we see upon using (4, 68) 'again. Now if A is any operator we

may readily show that

QRS < A+SinalU)lg, Al-25inta(U)y,, g, AL
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.In general
SAS=A+i S Sina(U)g,, Al
- ‘5{'{’2" {l -Cos G (U ). Cos Q.(U”)-*' Cos ((L(U')—O'(U.»] [gu')tgu")A]]

#i3 [sin(@W)-alU)- sinallds sinalllg Ag .. .72

u’

}

n
(4,72) would enable us to compute the change of A brought about
AN

by a unitary transformation which renders U and consequently

the probability distribution of L)_ invariant, The first type of
tunsformatign exemplified by the unitary operator S,, =20P L g e (P)
}uveo atl A invariant so that only the second case with our uni-
tary operator given by (4. 70) is of importance in ascertaining
changes in the probability distribution of operators induced by uni-

N\
tary transformations which render U invariant.

18, Examination of Results

The results that we have obtained particularly that one which
N\

2
pertains to the non-positive nature of L 5 where L3 is given by
(4.50) does not appear to be reasonable. This leads us to venture
the statement that the averaging process is perhaps incorrect,

From (4.26) the density operator function is
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¢ =6 RE wm

and our results are intimately related to this identification,
Now there exists a striking analogy between our averaging
process and the averaging process which is used in Quantum

Statistics'!) where

fq 2 Im DB, {(m'| (4:74)

m/

Z Eh. =1, (4.75)

P
If we introduce (4.74) in (4.18) and (4,19) with the operator U

replaced by Tr f @ U we obtain upon using {4, 70)

Plpg)= 2 R, 8lpa- R, w1

a very reasonable result, which may be interpreted to mean that
f -
| measurements o f Q lead to any one of the eigen-values of _f’Q ,
g ' namely, the Pm' . The introduction of (4,73) into (4,18) and (4,19),
however, leads to divergent results since the trace of any even

power of f is infinite, It is believed that our averaging process
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should possess the same kind of consistency as that exhibited by the
density operator fQ defined in (4.74) so that if we accept this
test for consistency we must conclude that f given by (4, 74) is
defﬁctive.

Indeed, it may not be amiss to redefine our averaging process
and use (4,74) in place of (4,73) with our |m'> denoting an arbitrary
complete set of basic kets, It does not seem that one would be able
to choase such a f which would have properties similar to that
exhibited by (4,5). If such were the case our formalism would make
no reference to the Yukawa variables (4.1) and subsequent averaging
over the internal variable ';u . The averaging process seems to be
inconsistent with the notion of eigenvalues of operators so that this
may be cited as an objection to the averaging formalism in the present
state of development of the theory, It may be necessary to resort to
the fQ given by (4.74) with P m' denoting the probability distribu-
tion of the "' which could stand for the collection of Quantum num-
bers denoting the momenta and the mass, The kets 'Yﬂ’) can be
associated with the basic kets of a four dimensional harmonic
oscillator, for example, It is planned to pursue this line of thought

further,
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V. VARIATION PRINCIPLE FOR OPERATOR FIELDS

19. Fix:lt Operator Identity

Let us consider the trace G of an operator function L (f,,\)

ofautofoperatorl)lA with A = /, 2)-“
G=Tr L (f"\ ). {5.1)

If each of the )[ A ’§ is subject to an arbitrary variation <§ f A

(operators in general) the first variation of G may be witten as

oG =Tr FA (fA)tg](A) (5.2)

where the FA may be calculated if the explicit form of L (f A) is
specified, Moreover, in (5.2) we are using the summation conven-
tion for the indices A » Now if the variation é)(A arises from an

arbitrary infinitesimal similarity transformation: U"? E’é’ U€'3 5

ész = [2)][,« 1, | (5.3)

if g is an arbitrary infinitesimal operator. In (5.3) we have denoted
the change of J( A under the infinitesimal similarity transformation
by JS f,\ + Upon replacing J]LA by és fA given by (5, 3) in (5.2)

we obtain to first order



oo, RS E

G T F g 10l =T lh, Pl g e

But G is invariant under a similarity transformation, éS G in
(5.4) denotes the ''change' of (j under the similarity transformation,
Consequently, since 55 GZO.‘ and since 3 is an arbitrary

infinitesimal operator we must conclude that

[}A FA] 0. (5.5)

The above equation é-tabliohee an identity (the first identity) between
the coefficients F A appearing in (5. 2) and the )( A » (5.5) would
enable one to construct identities corresponding \to any function of
the operator )( A + namely, L (f A)' This result is quite general

and we will have occasion to use it in later developments,

20. Integration of Operators

In order to make connection with certain mathematical opera-
tions in current physical theory it is convenient to introduce an
operstion which enables us to integrate operators. Such a type of
integration may be brought about by introducing a four-vector space-

time C- number C/u' into our definition in the following manner

/éz‘”ﬂ*/\ («P,L} €""”ﬁ“ d C) (5.6)
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where A (,/P, Zﬁ) represents an operator and d C corresponds to
: P 2
any combination of the products of d Co) d C 5 C‘ C  and d C 3,

For example let us consider the operator N defined by
N{er] '—‘-A GLCA’“NWQ'“A’”(] T, (C)) (5.7

where (T is a space-like surface in the (- space, The operator
N [ T} given by (5.7) is in general a function of the surface U~

so that

SNI# ) eic“ﬁbNre-LcﬂfM

PYad J

(s}
q
~
(@}
o
]

R - ‘ Y
=L6Lc &LP )NV‘JeLc '6“’) (5. 8)

e

where the left hand side of (5.8) is the functional derivative of N [U’] .
If ['Pv. N Nr] = O, then N [V"] is independent of J ., Thus,

[;PV’ ) N r] = O provides us with a useful criterion for the inde-
pendence of surface integrals of type (5.7) upon the shape of our
surface, Furthermore, this example indicates that our definition of
integration enables us to take over most of the properties of integrals

occurring in the C- number formalism,
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21. Infinitesimal (= Number Transformations

A covariant vector operator, say /)“ , is an operator

which transforms like

A/w (c)= (a°%c/")o A°< (5.9)

under the C- number transformation
c~ = c* (o C>). (5.10)

(5.9) establishes the relationship existing between the ''components’
of our covariant vector for different - number coordinate systems,

K, Ky
In general a mixed tensor operator, say /g3, p: <+, transforms like

Taar (@)= e Y e

Y LV N —e, phy e
(‘)L bcp'a %C—"" )o l/y‘;/ﬁz . (5.11)

X

(5.11) is merely the convegtional definition of tensor transformations.
If we consider the transformation (5.10) to be an infinitesimal

C~ number transformation

C’“foC/u-f'S/U'(oCd)) (5.12)
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of
where §/u' is an arbitrary C~ number function of the oC » then

the first order equations corresponding to (5.11) become
x « "-—d [ ‘ ‘/J' .
[ - R I.
T oﬁz (C)-() )ﬂ,ﬁll ;/.4. 7;9@2"*5 Olﬂ,

- V;. K, Kgeee |,
S Taei =S o 1A ey

However,

T;f;: (c):T;' OO+ TS it )/“ (5.14)

to first order, where in (5.13) and (5.14) we are using ( )./u, to
denote partial differentiation with respect to o C/u' . The first varia-
tion of the tensor Tﬂ ﬂz ' - which arises from an infinitesimal de-

formation of our C— number coordinate mesh system is defined to be

S Tomi = Tam i (O- Tz

d"a“' Tag - K’,“a'“ SU. Y.
ol §)5/ OT"" T (5.15)

Tm or, /u’f,wj
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as we see upon introducing (5.14) in (5,13) and redefining our dummy

X, Xy -
indices, It is not difficult to show that ém Tﬁ‘ p". .. is a tensor

it 5/% is a vector, Indeed (5.15) may be written as
«, « ! ! OQ, =2 e
g T "'-OT/GI/"& T /ﬁz 5
K kg S oS, %, § V.. .t
-9 V4 )ler B, v B,
. Cx Ky v e
""'OT,&/ ,6:_"' ' S/u/ (5.16)

where ( ) )/“ denotes covariant differentiation defined with respect
to a set, ¢ I f;— » of Christofel symbols, We observe that this
set is quite arbitrary and may be calculated using any metric tensor,
Generally the set © [_ o~ can correspond to any linear connection,
T5 %
Now if B, B, '+ i8 & mixed tensor of weight one (tensor
iy
density) the transformation equations will be similar to (5.11) with
the exception of a factor on the right hand side which is the Jacobian
of the transformation (5.10), For an infinitesimal transformation

(5.12) the Jacobian :T(%C) or J—(o%) works out to be up to

the first order
:T(C/OC) = | + )/;: )
j(°%)= | - i//t:

(5.17)
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Proceeding in a fashion similar to that which lead to (5.15) after
noting that the transformation (6,11) is multiplied by j (o C >
on the right hand side we obtain
=« °‘z." /“-‘x o<y KA Xa,
émT ' e +DI;‘pA‘“ s
_ or,,«;wgv"‘_ orcx,_-- §
. By 28 S »‘451
(5.18)

N ovz;;;,‘f:wg 72.2,“’5 )

for the change of our tensor density of weight one corresponding to
an infinitesimal deformation of our C— number mesh system,

Examination of (5.15) and (5.18) shows that we may write
T = - Bpu gv _ A
om Ta =~ WAL » o T 07;,/4.5 5 (5.19)

and

S

ST WS T T eh 5 oam

dl“
In (5.19) and (5,20) we have replaced the collection of indices (ﬂ, B,
by capital letters as indicated. The w’S appearing in the last two
equations are constants which may be calculated for any collection

of indices.



Py SO

.
[ T,

78.

22, Second, Third and Fourth Operator ldentities

Let us consider a Lagrangian density function .l.'.: (j’A) of a
set of operators fA . If we subject the fﬁ to a variation éf A )

élqu) -F% oA G®, (s.21)

where FQ and GB are operators in general, These latter quan-
tities can be calculated if the form of L (fA ) is given, Here again
the capital letters refers to collection of indices and the summation
convention is wed,

Now, if L can be expressed as & sum of polynomial func-

tions of the operators ]lA we have upon noting that for any opsrator r

[E)‘A,fﬁ”‘ﬁ”]‘fﬂﬁ,]fAzwaﬂ#—](AlD:fAl]{A;u- S
Sfafa; a2 (0fa ) u, .t fa (A0 fA; -{M* ¥

*See (5.39) for more general argument and a simpler and more useful
version,



(r,L]=F? [r,fA] G*® (5.21a)

(5.21a) will be referred to as the ucoﬁd identity,

If we introduce L in place of L in (5.1) we eonclude by
comparison with (5,2) and (5, 5) upon using the cyclic property of the

trace that the first identity takes on the form

[]‘A]GGFQJE O, (5.22)

in terms of the Fa and G B appearing in (5,21). (5,22) is an iden-
tity and does not depend upon any particular physieal interpretation,

Now let us consider the invariant
01’51 L:(°C)c‘4o C, (5.23)

where we have denoted by © L (o C) the expression

LGQ= € L (g)e i m
(5.24)

=L (ofa Q)

where quantities with symbol o( )denoto the Lorents (flat space)
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components. (5,23) in conjunction with (5. 24) is an example of inte-
gratioa of operators as exemplified by {5.6). Now if we take the
first variation of (5,23) we have upon using {5.21), where L-’ (C—)

is obtained from o!.;(oc) via (5.10),
sul SL(c)d* ¢,
| :l F@ ((.)é](A (C)GB(C>C“’C. (5.25)

1f our variations are due to an arbitrary variation of our C- number

mesh system, then according to (5.18)
émI= ~L (oL(oC)g/‘)wc“oC) (5.26)
which may be transformed into a surface integral

§m1=~/ o[._(oC)S’“dV/’,,(oC). (5.27)

Consequently, if the arbitrary (- numbers 5 e appearing in (5,12)
are chosen such as to vanish on the surface U~ then ém I =0 .
This corresponds to the circumstance that our C- number mesh system

is chosen to be subject to infinitesimal deformations within the surface
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T bounding V and vanishing on the surface.
But the second equation of (5.25) in conjunction with (5.19)

with T;\ - fA , implies that

Snl =
./ (W oFA0) o (a6 () 5
#oFB(:C) ofa(6€) o, G* 6§} doC. .10
S 1 -
J {58 [F860ac (60,650, -
FBOO ofalbC) o CHO}§ d%ec
[ W5t JF36C) fc 6o GO o).

Now if our arbitrary infinitesimal deformation is chosen to vanish on

the boundary U bounding V then (5, 27) shows that §m I = 0O
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which would imply in view of {5.29) that only the volume integral

would survive which in turn would have to vanish on account of the
v

arbitrariness of the deformation vector § within the volume,

We conclude, consequently, that
WA LF60) of 6€).GBLO] ,
N e (oc)ofA(oc.)), -G8 ()= 0. (5.30)
{5.30) is an identity, But all of the symbols in {5, 30) which involve

(0 C) are obtained via unitary transformations of the type (5. 24).

Consequently, (5.30) may be written as (the third identity).

iW:{t[ﬁUFg)(c C;B}—iFQ[ﬁ})LA] GBz0O. (s.a

Again we emphasize that (5,31) is an identity. {5.31) and (5.22) are
the priacipal identities of this piece of work and have as yet nothing
whatsoever to do with physics., We shall presently make contact with
physics after considering an example.

Let us consider the operator

L=A"B.C,

where A’u and B/-b are respectively contravariant and covariant
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vectors while C is a scalar density,

-(SA#)B, C+AM(5B,)C+A*B, (5C).

If the variations are of the type given by (5.15) ad (5,18) then the

SL-+A™S A, 5B, C
(B, 87 B, §7)C
-AB, (C87),

--(AB,), C57-(A“B.CET),,
--(A#“B. C§7)

?

so that in the volume integral of é L (compare with 5, 29) has for
' v
the coefficient of g zero, which we wished to show, To illustrate

(5. 22) we have on comparison with (5. 2) and (5. 5) to show that

[A«,B, CI+ (B, ,C A+ [C A“B ]- 0.
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Evaluation of the commutators show that such is indeed the case,
These examples should give us confidence regarding the general
results obtained, namely those summarized in (5.31) and (5. 22).

As a summary we have from (5.22), (5.21a) and (5,31) the

[fa,GEFs 1z 0,
(M L1z Fe (M, falGS (5,32
(Wit [p, F3 £ G®)-i Fe g, falGP= 0,

Pl

A '8
respectively, where ' is any operator and FB and G are

defined through (5. 21)

oL =F3 éfA G®, (5.33)

and further where the UJ’5 are defined by (5.19)

émjA-‘-‘- ~wW -fs 5)‘; - of,\)/w [ LT

< 8
(5.34) shows that (UA{," Fé fc G appearing in the third
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equation of (5,41) is merely the coefficient of "j':: in 5 !.; given
by (5.33) if the variations arise simply from an infinitesimal C -

number transformation givea by (5.12), namely
- B A vV
gC,}A 2 - wA/\} fB )/u_ . (5,35)

Upon combining the second and third identities of (5,32) with r-

replaced by PV' , we conclude that
i[-PM,FQ Wa¥ )(c Ge-$%L]=o. (5.36)

These identities especially those obtained using the trans-
formation properties of tensors are useful, However, we had to
appeal to our integration formalism and there may be simpler ways to
obtain the resuits independently of any refereance to our integration
f;:rmaliom. The first expression of (5. 32) is quite general, the

second expressioa can be put in a more useful form by noting that
éWrL=W(FéL+g§l"), (5.37)

which from (5. 21) and cyclic property of the trace may be written as

SFFL;=W(L§F+GBFFQ éfA)) (5.38)
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so that we conclude upon camparison with the work which led to (5.22)
that (the fourth identity)

[F \:]E-[f/\)GBng]) (5.39)

2

for any operator r « This result is independent of the customary
consideration regarding the invariance properties of !: and could
be made the starting point for construction of Charge-Current
Densities and Stress'-Energy-Momentum-Tensors, In the following
section we shall use (5.39) as starting point and determine what con-

ditions must be satisfied for the existence of Conservation equations,

23, Question of the Existence of Conservation Equations

In certain cases it is not too difficult to construct noa-local
stress -energy momentum tensors by inspection or by comparison
with well known local field expressions for the stress-energy-momentum
tensors. For these cases the operator field equations involve com-
mutators of the fields with the displacement operators ,ﬁu . The
question arises as to the construction of the stress-energy -momentum
tensor when the operator field squations involve the operator fields
and the displacement operator in an arbitrary way, Some time ago(:”

an identity was discovered which had as a result shown the existence

of a non-local vector function N'u' which satisfied a conservation
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equation LP/“’ R N M ] . We may be ahle to use a generalization
of this identity (the fourth identity) (5.48) to study the structure of

conservation equations,

v
From (5.22) and (5,39) we have upon replacing r by /f

in the latter the two equations

[jAJ G*Fé8l. = o,

(5.40)

i

[p, L] + [}, GETFa).z 0

Now if we identify f A) /U.: o, /’ b R 3 » to be the displacement
operators ﬁ and the rest of the A 75 to be collection of indices

/
specifying the fields, say A » then (5,40) may be expressed as

2. GO PRl =- [y, G2 FY] |

(5,41)

P L+ Gop F]_ = - [, 6% A,

where n,« v is the flat space metric ternsor, The first equation of

(5. 41) would imply the existence of the conservation equation

[70/“)'\//"]_ = O) (5. 42)
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if the field equations
B A
G F g = O J (5.43)
are satisfied, where

N'uL = G° F’; . (5.44)

On the other hand if (5,43) is satisfied, we cannot in general be

assured that

[70/1,7/*“]- = O, (5.45)
unlesse

[fA’J GBJFW FQ']_ =0, (5. 46)
where the stress energy-momentum tensor is

TAT 2L+ G2 p FE. s

(5,46) and (5.43) may be simultaneously satisfied if the fields are local
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fields, Another version of (5, 46) can be written as

L, 6% 8] = [, G Lp5FET), o
(5.48)

=(fa, (G2 p ] _FE]_,

if (5.43) is satisfied.
We conclude that there exists a vector operator N/“/(S.M)
/u.\r
and a tensor operator T (5.47) which satisfy conservation

equations (5,42) and (5, 45) if
B [}
G Fg = O ) (Field Equations) | (5.49)
implies

[)(A')GB/PW FQ'] - =0 5 (5.50)

also, It does not seem to be possible to make any further significant
reductions on this phase of the problem.

Applitation of this method to the simple case of the Lagrangian

L+ given by

tle =[pr, Ve [p,, U2, o5
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which involves a single scalar field U and comamutdtor or anti-

commutator expressions
{A,B]i‘ = AB ¢ BA) (5.52)
shows that if (5,49) is satisfied, namely,

Lo, 0. ULt ) = o,

then (5,50) is satisfied. T-.’— turns out to be

4 T = P O UDk G UTe -0 Ul (7 Ul
"[»Pr,U]t W,U]t) (5.53)

whiile N'u' works out to be

N e U (U »p’u‘l J (5.54)
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V1, PHYSICAL INTERPRETATION OF OPERATOR FIELDS

24, Introduetion

It is appropriate to close this initial phase of the investigation
of the theory of operator fields by suggesting a possible interpreta-
tion of the C~ numbers appearing in the expansion of operator fields
of type utilizing the basic functions Xh‘ K defined by (2.37): in
particular the C~ number n' which in the following we shall denote
by %. . A clue regarding an interpretation is given to us by exam-
iming the result of a novel feature of a variation principle for non-local
fields (5. 42, 5-44)(3) whereby the existence of a divergence-less four
vector is shown, It was also shown that it is possible for a (real)
hermitian non-local field to give rise to an operator for the net number
of quanta with either positive or negative integer eigenvaluel.“’
This property suggests that even a real field in operator field theory
has associated with it a four-current vector. Only for complex
fields is it possible to construct four current vectors with the customary
properties for local fields in present theories, Since even real non-
local fields imply the existence of particles with charge, one would
expect that such a fisld could be in interaction with external local
electric and magnetic fielus, The structure of the interaction must

be chosen in such a way as to be non-existent in the limit of the local

field case, This would imply that even a real non-local field has the
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potentiality of manifesting properties of non-real local fields in inter-
action with an external E )H field, For the sake of simplicity the
case for a constant external electromagnetic field is considered,
while the non-local field is taken to be of the electromagnetic type,
One way to introduce an interaction of the type contemplated

above is to replace the displacement operator ’f,u, by the operator

[/f’pr:/ﬁu-—g/c A/’:,) (6.1)

2L
where g is a coupling constant, ( the velocity of light and A n
the external local vector potential, Such a replacement assures us

that the commutator expression

(B, UL = L, V1o -8/ AL, UL,

is devoid of terms containing the coupling constant (7 if U isa
local function, As a consequence of the definition of fi“ we find

that the BJ, do not commute amongst themselves:

(B, P =-9€0p AL -9 2 g ]

= _’K %C F;r‘, (6.3)

Jt
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where F/:fnf

strength tensor,

is the assymmetric external electromagnetic field

25, The Field Equations

The field equations for our non-local electromagnetic field in
interaction with a given external local E y H field may be obtained in
the same manner as the commutator equations for an electromagnetic
field in an earlier piece of work(s) by merely replacing the /P/L by

81, in the commutator equations for Maxwell's Equations to obtain
% Ip ]

= 6.4

h L f w O P (6.4)

Vfa{f;),_,ﬁw]*'%“ﬁ)ﬁﬂ] +L/ﬁ[@,ﬁr] =0, (6.5

.

where

[ % (B A, ]
}/‘ur-/ﬁ[a,/\v.] /f,’ E,,A/u . (6.6)
The above equations reduce to the ordinary equations if the A ’S are
local independently of the value assigned to the coupling constant.

a
Now let us consider the case where the A/u, are the vector

potentials for a constant local external t J H field, For such a case

#(6.5) is only valid for a constant }.'_/ H field. In general this equa-
“ion would be non-homogeneous,
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2
the A 25 may be written as
L : o<
A* = <« K, (6.7)

where the (/rw,"stre C~ numbers depending upon the external field
strengths E and H » and the Z’S are the space time operators,
The proper identification of the C v’Swhich lead to the constant

EJ H field follow upon making the identification

@)
i

Vads O, A= O, 2,3
£
Cos = E,s , s= /,2,3 (6.8)

2
Crs =-Csp =3 F, 521,23

> 2

2
where the F ’S are the constant external field strengths. For the
P v ] is

s (- number as we see from (6.3). This observation coupled

case under consideration here we conclude that [B‘, "

with (6,.4) enables us to write

(B, [P~ A7) = o, 6.9
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providing we take as our supplementary condition on the A S
[B,O)A’w] = Q, (6.10)

Now let us seek a solution of {6.9) of the form of a non-local

plane wave defined by
P ' v,
A{;'k = ey 4 6"""'% 5 (6.31)

where CZ/“' , %f and k v are C‘ numbers, The introduction of
(6.11) in (6.9), (6.10) and (6.5) lead to the equations restricting the

above (- aumbers if we make the observation that
‘ e 'k ~
Fp, CFwaerA] -
i g ok, LY
bt §€ Guu GIETRAENTA | i
which is a consequence of our fundamental commutation retationship

[14’“; *F,.J = Lh S . (6.13)

.

The result (6.12) implies from (6.10) and (6.9) the following relation-
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v
ships existing between the C" numbers a(u-. % and k&l’:

l§u, ¥ (}2/“ -+ % 9«,« %d )) (6, 14)

ar” K/w = 0, (6.15)
K’“ K"“ = O, (6.16)

From (6.6) we may write
= v §R, ck, L
E" ~ f v € 7 € 5 (6.17)
where the C~ numbers ](M are given by

][Mf' =K a, - Kr

6.18
ML ( )

Cb/u ‘.

These results enable us to state as for the classical treatment of

Maxwell's equation that upon identifying E‘_ ,~ 8ccording to the scheme
Foo = ~Fos=-CEs, 521423

-F. = Ez b Ha . El =F|.3"Hz; F;ar' =-H
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the vector KS , 5= ’) %3 is perpendicular to the vector ES

and H s + Furthermore, upon using the scheme (6.19) with the

F ’S replaced by :f ’S and L:; by 6.5 and H s by “\ s Wwe find
that the vector 65 is perpendicular to "\5 all of which is in com~
plete agreement with the properties of a plane wave solution of
Maxwell's equations with the exception of the finding that the ordinary
propagation four-vector }3“ is to be replaced by K“' given by
(6.14). The general aglu'tion of (6.9) will of course correspond to a
sum over %. and '? subject to the restrictions (6,14), (6.15) and
(6.16), The coefficient of a’“‘ in (6,11) forms a set of basic func-
tions aside from a normalization factor.(6) These are essentially

the ankl given by (2.37).

26, Mass Equivalent of Non-Local Photon

The results that we have obtained virould enable us to consider
the polarization effects of the non-local electromagnetic field in
interaction with the constant external EL) H‘.field. It would be more
interesting, however, to coftisider the consequences of the relation-
ship (6.16). If we define the equivalent mass /OL through the

equation

/aqu":-k:-— C.ZHQP') (6. 20)
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then (6,20) in conjunction with (6,14) and (6.16) implies that
/qu*: b:‘f'Cz!?' b + ZCt"_?'Et2 C botb"'é l ,  (6.21)

where

t

b.
b

Hcaqi=-gETg
ac (H® x %)=*9Ac(ixﬁ“)

(6.22)

i

in vector notation,

(6.21) together with (6.20) or direct appeal to (6.14) yields
k‘,:—boi C,E"’V’Q'J (6.23)

which may be interpreted to indicate that when a non-local photon is

in an electric field there is a contribution to the energy of the nature
‘J E.o.

of a dipole term, namely - D_ =3 L i , 80 that we may

attribute to a non-local photon the electric dipole moment g ‘:6, .

This identification has as a consequence given physical significance

to the (= numbers q_ appearing in our expression for a non-local

plane wave. It would appear then that a non-local photon would be
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subject to deflections in an inhomogeneous electric field as a con-
sequence of its electric dipole moment and the massive properties
which it would possess by virtue of (6.21) in the presence of & con-
stant electric field and consequently also in an inhomogeneous one,
To consider the effect of our H ® field, we may expand ko given by
(6.23) in a power series in the H Q‘S. Upon retaining terms which

contain ‘H“ to the first power and making use d _(6. 22) we find
ka‘:::gge-%t% H"'(fﬁxkﬂktt Clkl, (6.24)

If we take ‘?°>O in the absence of the E ’H field, (6.24) indi-
cates that our non-local photon possesses a magnetic moment:

(3/2 ) (ix E)/’ k ‘ . Thus, we would also expect a non-local
photon to be subject to a deflection in an inhomogeneous magnetic
field. We note that the dipole moment and magnetic moment are
perpendicular to one another while the propagation direction _’3 / l h ‘
is psrpendicular to the magnetic moment vector.

In general we will not be able to say that/uz>o unless
certain conditions are satisfied, We shall investigate the situation
on the basis of the expression (6.24) for ko which provides us with
first order correction terms in terms of the first powers of our

external E ) H field, Upon introducing (6,24) into (6,20) we obtain
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to the desired order (the upper signs in (6.24) is taken),
pct=clklglaE g +H (gx8) k1]
3C'H3%*[2§+EXHVIH}, (6. 26)

Consequently, in order thlwz > O , the dipole moment vector
g i must be orientated in such a way as to be intermediate to
those positions corresponding to the extreme cases of perpendicularity

and isodirectionality to the vector f defined by
F = C\h”ﬂ gl‘*’kxﬂ'y’k‘} . (6.27)

P =
In the former case /U» C would attain its smallest value zero while

in the latter it would have its maximum value, namely // g%l | F | .

If we average /‘«b over those directions for which /J. > O we obtain
</u> = ;-ZC-I ( 'Qi' I FI)'%
3 %a(( Jgf '@ /fl ‘Zgﬂq—ngHO&) (6.28)

e

which would provide us with an estimate of the equivalent mass of a
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non-local photon in an external E) H field,
Let us now make an estimate as to the order of magnitude of

</U'> . Now, upon making the substitution

IE)/ctkl = |2 E*+kxH>

(6.29)

in (6,28) to indicate the magnitude of the external effects of the field

as measured in Gaussian units we find that
(/U->/m = % (w%c’y{ ’%’& f %‘}i(‘ % l C.)z‘ , 16.30)

where 6 is the electron charge, n its mass, é the magnetic
moment of a Bohr magneton, and )L the wave length of our non-local
photon, However, we must have on the basis of the assumption of the

validity of the expaneion which lead to (6. 24)
2.
27",9/6‘ ,%’(%_c) %C_"(IF%HC>< l) (6.31)

where A ¢ denotes the Compton wave length and we have assumed
F |k x H*|
the rough numerical equivalence between ’.'... and C f X ' o
e -13 N "t N
xfweukoAv-/O . g\-ﬂe/ and ,f)/“?‘Cu/OLF Gauss,

(6.31) implies that if %( /0,000 cas. the expansion (6.24) is valid,
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These results would show that if we take % to be the order of
magnitude of a Compton wave length that %) = / 0-3- electronic
masses which would correspond —™ 500 E . V. On the other hand
if % is of the order of an electronic radius </A> = 3x /0-5

electronic masses '-C'— = /5‘ E V.

27, Equivalent '"Index of Refraction' of E,H Region

In order to gain a rough idea as to what could be expécted to
occur when anon-local photon impinges upon a region possessing an
E ) H field we may assign to the region an equivalent index of

refraction

- l
n =Bk,
&:I—g%-f/zc_‘llzll. (6.32)

(6.32) is obtained by making an analogy with optical theory and using
our expressions for ko given by (6. 24) which in turn may be ex-
pressed in terms of F defined in (6,27). (6.32) indicates that if

2
/-L 2 O , the "wave velocity' would be greater in a region con-
taining thet ) H fields than in one devoid of such fields, Moreover,

we note a dependence of n upon the direction of propagation
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relative to the orientation of our external Ej H field and upon the wave
length which enters into our expression (6.32) in such a way as to show
that one can expect N to deviate from unity in a manner directly
proportional to the wave length, If /LLJK O, then }) > | which
implies that the '"'wave velocity' is greater in a region not containing
the E J H field, In this case also, the region would possess aniso-
tropic properties with N deviating from unity tinearly with increasing

wave length,

28, Summarz

In order to indicate conveniently the order of magnitude of the
eifects implied by the existence of a non-local photon in interaction

with a constant external E) H field, let us define
(gF) —
¥R = B, .39

as measured in Gaussian units and put

gls!  _

47?ﬁ - a,,v (6.34)
which is the number of Bohr magnetons ((85 ermc ) expressed

in terms of our coupling constant and the vector i which appears in

our non-local plane wave (6.11), The inequality (6.31) takes on the
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form

/lamew< 2MC7€J (6.35)

where Bma«.. denotes the value attained by B in (6, 33) when

oy

is perpendicular to J: defined in (6,27). ?L is the wave length
of our non-local photon, N the electronic mass and 6 the charge.

Introducing (6,33) and (6. 34) into (6.30) and (6. 32) we obtain

w%“" = %W%C (me)-%(fg/A>A) (6. 36)

Ih—“=(e/2mc3>la’8 (6.37)

(6.35), (6.36), and (6.37) become upon introducing the numerical
values of e/, m , C , and 5 R

1. 1X/0% > AT B o,
@Vm = 4ox j)0'* (]‘yﬂt)% , (6. 38)

In-1l =32 "/O'q(/la/B).

(6.38) shows that for pronounced measurable optical effects, say
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‘“" ' '::: 0. » some of the non-local photons would have to
possess an equivalent magnetic moment of the order a' = 30% B
Bohr magnetons. If such were the case then Wy 1M  would attain
a value of order /07/\- electron masses,

These effects, of course, would vanish in the limiting case
of local fields: %s = O » independently of the value assigned to the
coupling constant g . Consequently, it would appear that non-local
field theories could be examined in the light of experiments which are
implied in this work if we assume that our procedure for introducing
an interaction is correct and that the photons existing in nature are
non-local, In the same way, we can consider other non-local
“particles': ''neutral" or '‘charged' in interaction with a constant

E ) H field of the type considered here.
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