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Extended attempts are made to correlate previously obtained helicopter
longitudinal dynamic response data with theoretical predictions. The heli-
copter was a Bell, H-13 type, incorporating the stabilizer bar. The motions
were in response to a pulse-type stick movement.

Satisfactory correlation is obtained with either fairly complete equations
......... of motion or greatly simplified ones. The shortened equations are simple

enough tht evihfd'caculation of transient or frequency responses is
feasible. The attendant sacrifice in accuracy is shown to be negligible
compared to the errors due to inaccurate estimation of the important sta-
bility derivatives.

Strong evidence is given that the fuselage moment derivatives are
greatly different from theoretical predictions, and that they alone account
for the helicopter's dynamic stability in forward flight. It is also indi-
cated that, at least in the low speed range, the lift derivatives are inade-
quately predicted by theory, with the discrepancies probably associated with
the imperfect understanding of the downwash behavior.

Re-examination of the data for other than standard damper settings in- ....
dicates that loosening the bar damper setting does not materially affect the
damping of the phugoid mode, but rather affects the relative excitation of
the various modes of response in such a way as to give the impression of in-
creased stability. Although the inability of the stabilizer bar to dampen
the phugoid is predicted by theory, the other effects are not sufficiently
explained. A more detailed theoretical treatment of the stabilizer bar
failed to produce any improvement, and it is assumed that non-linear damper
characteristics are responsible.
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II. Introduction

A research program of flight-testing a Bell H-13 helicopter for its longi-
tudinal dynamic response characteristics was accomplished by the Cornell Aero-
nautical Laboratory, Inc., completed in March, 1951. It was the objective of
that program to demonstrate the feasibility of obtaining the dynamic stability
c'aracteristics of a helicopter, and to correlate these with the predictions of
a simple theory. The results were presented in a data report (Reference 1) and
an analysis report- (Retrenrice 2). The analysis was somewhat limited by the time
available- and the attempts to correlate theoretical and observed responses were

.. n olus ive.

It was believed highly desirable to make further attempts at correlation of
theory and experiment, in order to provide a more positive evaluation of the
theory. Particularly promising areas for further investigation were as outlined
below.

A. For most of the calculations of Reference 2, rather simplified
equations of motion were used. It was desirable to investigate m.re
fully the effects of those simplifications, and to show whether the
discrepancies were assessible to them.

B. The comparison between theoretical and observed responses was ori-
ginally on the basis of phugoid period and damping. This alone gave
little feeling for flying qualities, and it was desirable to compare the
entire transient responses, including the amplitudes of response, and the
short-period mode. Work on these two aspects of the problem would be
greatly facilitated by an analogue computer, which, fcrtunately, could be
made available. The length of hand calculations of this sort would have
been prohibitive.

C. Since the work of Reference 2 indicated that values of the stability
derivatives required for agreement were considerably different from theo-
retical predictions, any independent method for their evaluation would be
important. Particularly it was recognized that a method for evaluating
the fuselage moment derivatives, from the steady trim data could be de-
veloped.

D. The comparison of theoretical and derived frequency response data was
especially abbreviated in the previous work, and it was desirable to cal-
culate the frequency responses more fully than had previously been attempted
for comparison with the test data.

The material presented in this report is primarily centered in the areas
outlined above, and may be regarded as an extension of the data analysis
given in Reference 2.



III. Symbols

The symbols used in this report are the same as in Reference 2. They
are repeated here for convenience.

A* Forces and homents

L Lift force, perpendicular to relative wind,
positive up.

D Drag force, parallel to relative wind,
positive to rear.

/4 Pitching moment, positive nose up.

7" ThruSt, parallel to axis of no feathering,
positive up.

H "Horizontal" force, perpendicular to axis
of no feathering, positive rearw.rd.

non-dimensional
lift derivatives£ ,L

wa

non-dimensional
drag derivatives

aa,

3.



Wh

/- A1

Wh ao

non-dimens ional
moment derivatives

_.lM4 Wh ,

a -L-
m

Whd5,

total derivatives

1dM

B. Physical Dimensions of the Helicopter

M M)ass of the helicopter

Helicopter pitching moment of inertia
(slug - ft')

h Height of rotor hub above helicopter
center of gravity (ft.)

4.



I Distance of helicopter c.g. ahead of
the initial position of the axis of no
feathering

Distance of helicopter c.g. ahead of

rotor shaft

6 Number of blades

Rotor speed, radians/sec.

Rotor radius, ft.

C Blade chord, ft.

I b  Blade moment of inertia, slug-ft.2

Stabilizer bar moment of inertia

C- Stabilizer bar damping constant

ft- #/rad./sec.

S "Stability Ratio" - linkage ratio
between stabilizer bar and blade
pitch change

Tail area - square ft.

4t Tail length, measured from c.g. to
c.p. of tail (ft.)

Lock's blade inertia coefficient, r r
4

C. Velocities and Angles

U Speed of helicopter along the flight
path - ft. per sec.

U Increment of speed, A U U- Uf

Angle of attack of normal to axis of
no feathering

Longitudinal flapping angle from axis
of no feathering, positive if tip plane
is tilted rearward

C Downwash angle, positive downward

Flight path angle to the horizon,

positive in climb

5.



Pitch angle of fuselage, measured to
a reference in the fuselage, normal
to the initial position of the axis
of no feathering.

03 Pitch angle of the fuselage, measured
to the normal to the rotor shaft

ThN following are measured to a plane normal to rotor shaft:

03 Angle of attack of the normal to the
rotor shaft

ids Blade flap angle, positive up

PS c -a, 3s cos ( -b,.,s~n(

-CgL S~~ 6- bas 'S ntj - .. .

For the 2 blade see-saw rotor, the even
harmonics are zero.

Longitudinal blade flap, positive if tip
path plane is tilted rearward.

19s Blade pitch angle, positive for increased
pitch

9,9 A.3  - A, Cos - 6,, s,*"Z

As Collective pitch

Longitudinal cyclic pitch, positive stickfo rwa rd.

A Lateral cyclic pitch, positive stick right.

6.



For the Bell Helicopter,

so that

8ls, - 5

Aos " , ys # S M,,

1Swash plate inclination

~-s • -v,5 COS -Sifl &

US Longitudinal control angle, positive
stick forward.

VIS Lateral control angle, positive stick
right.

Bar flap angle.

'I ((,) =-_ ,,,, C, , , - i,, s;, (,
- nj, o , Cos j Mo. S;1 ¢0-.

M.Cos '13 - ''jsin

where V, is the aximuth of the

bar itself, and the even harmonics
are zero.

nos Longitudinal bar flap-positive if bar tip
plane is tilted rearward.

D. Aerodynamic Parameters

/4 Advance ratio, *

7.



Inflow ratio, of resultant velocity
along the axis of no feathering to
the tip speed.

Mean profile drag coefficient of
rotor blades.

a Slope of the rotor blade lift curve/rad.

Slope of the tail lift curve

bc
01 Solidity ratio, a u i-

Constant, k I
JCr

T
Cr Thrust coefficient Cr -

2? Rotor gyroscopic coefficient, L ft

E. Miscellaneous

Total rotor damping in pitch parameter
see Equation (9b)

Routh's discririnant

C, Stabilizer bar gyroscopic coefficient;

Root of the stability characteristic
equation

Dial readings of harmonic analyzer
expressed in units of variable.

, T Constants in expression (Equation 6 3, Ref. 2)
for transient response.

CFrequency (rad/sec.) in sinusoidal
frequency response calculations

F. Subscripts

( )r Of the rotor, Viz. M r

8.



( )f Of the fuselage, Viz.

)S Measured to the rotor shaft, rather than
to the initial position of the axis of no
feathering.

9.



iV. THECRY

The basic theory underlying the analysis here presented, is given in considerable
detail in Reference 2, where equations of longitudinal motion for the helicopter are
derived. It has been found convenient, however, to use those equations in slightly
different form for the investigations herein, and it is therefore desirable to show
how they are obtained from the work of Reference 2.

A. The Equations of Motion

1. The Drag Eauation:

Tht urag equation is essentially in the form given by equation (5)
of Reference 2. As before, the variation of drag with pitching, D 1
has been disregarded; but in this new work, the possibility of fuselage
drag change with angle of attack is allowed, and the assumption (p. 23
Reference 2) that the fuselage drag varies with the square of forward
speed, is renounced. This more general treatment is made feasible by
the further development of methods for evaluating these effects from
the flight data. The methods used are described in a later section of
the report. The drag equation is, then

D. +(.o4.~ = i~ .)

where the derivatives are

(la) --

(lb) J T I.

(d) ;a j 04

W4 c a, 100



In the previous work, the drag equation was replaced by a combin-
ation of the drag and moment equations. This is only fruitful if the
fuselage effects are assumed simple, as in Reference 2, and in this
more general treatment, it is more desirable to retain the form of equa-
tion (1).

2.. The Lift Equation:

The lift equation is retained in the form previously given (Refer-
ence 2, Equation 7), and it is again assumed that the effects of fuse-
lage lift and pitching are negligible. The result is repeated below.

(2) dN,-+ L 3  - d

where

(2a) •

(2b) 
'

3. The Moment Equation:

The important moment equation is again equation 11 of Reference 2,
in which the effect of pitching on apparent rotor forward speed is
neglecteds

4 '1.O' 2

i ( , + i41*g ) which ('" ia ,) q,

in which
11.



,j T __

(3a) -t -h a - 4 -W -- /

(3c) 4r j " .

(3d) * a

4. The Flap Equation:

This is the same as equation 13 of Reference 2, in which, again
the effect of helicopter pitching on rotor airspeed is disregarded:

(4) __o(R

e, d

* ( -s,e, d = ) , = *-, =. ,

where

(4~a) a _

(4b) 
a,

and the gyroscopic rotor coefficient, £, , is given by

12.



5. The Bar Equation:

The simplified bar equation (15, Reference 2) is retained, and
quoted here only for convenience:

C )n 0

where

(Sa)
C9C

The effects of concentrating the bar mass at the bar tips, rather
than in a ring of the bar diameter, have been examined, and are reported
in the Appendix. Although the more exact expressions there derived are
somewhat different from the above, it is shown that they are not signifi-
cantly so, and equation (5) is retained.

The foregoing equations suffice to calculate the helicopter response
to a movement of the cyclic control, U.,, , providing a means is at hand
for the estimation of the rotor and fuselage force and moment derivatives.

The evaluation of the rotor forces is purely theoretical, as in
Reference 2. Two discrepancies may be noted between the expressions be-
low and Reference 2, in i a7' and I- _

These arise from the use of a better expression for - (Ref. 2, p. 26 )
as follows,

AC

and equations (6) and (6c) below may be regarded as
refinements of (30)and (33) of Reference 2. For the current work, the
re-evaluation of . T is important; but with the method described later

w,
for evaluating Du and M from flight data, the term -/

exactly cancels out of equations (la) and (3a), and errors in its
estimation are therefore of no significance.

13.



Formulas for the rotor force derivatives are collected below,

corrected as discussed aboves

(6) a + A- (,A - ) T ,

3 TT
(6a) )7

(6b) N v O

(6c) / . r) - # (I ,

.,,,,. 4,(' ,/ 4**,~T k~4(I4 r)

+ + -
(6d) FIG~., ,4.~(~ ',

I,-.

16e) /3 , kr /1
W L4 '+" ' j ,"2 [ 7

The at derivatives in equations (4a)and (4b) are quoted
directly from Reference 2,

(6f 2.

14.



(6g)

It should again be remarked that in the expressions (6) through
(6 g), the collective pitch, G , has carefully been eliminated to help
avoid large errors in the derivatives due to small errc.s in its meas-
urement and inconsistencies in the original thrust equation.

It remains now to evaluate the fuselage force and mocient deriva-
tives. These had previously been shown to be very important, and
their estimation on purely theoretical grounds is especially difficult.
Even available wind-tunnel data (Reference 4) was unsatisfactory due
to the small scale and the absence of the rotor and horizontal tail.
Scale effect and rotor downflow could be especially important in the .
case oi ha H-13 helicopter since the NACA (unpublished data) has sh.wri
that the fuselage characteristics depend critically on the exact shape
of the large, bulbous, canopy; and are even widely different between
ships, due to manufacturing tolerances.

This situation led to the development of a method for evaluating
these derivatives from steady trim data at different airspeeds and c.g.
locations. Although the method suffers somewhat from a limited c.g.
range in the tests, it is perhaps significant that it does predict the
very stable fuselage angle-of-attack derivative required for correla-
tion of the dynamic stability characteristics. The method was quoted
in Reference 5, and a derivation of the equations is given below.

For a helicopter in trim, in steady flight, it can be shown, by
taking moments about the c.g., that

where H and 7 are resolved along and perpendicular to the no-feathering
axis, and A is the distance of the c.g. ahead of the no-feathering axis.

As the c.g. is moved, but the speed and r.p.m. are held constant,
the fuselage moment will differ because of the new angle of attack; the
N force will vary because of changes of attitude and cyclic control;
A will change; but h will not be sensibly different, and, to maintain
steady flight, T must remain practically equal to the weight. The chan-
ges in these quantities are related by the above equation as follows,then:

15.



where, since level flight was maintained, the change in
fuselage angle of attack can be replaced by the change in its
pitch angle.

Dividing through by Wh, there is obtained

j Mi 6 H Al

The N force increment may be expressed as

AN i H, /
16 aa W a

or, in terms of angles measured to the shaft,

Aw / JR A I M

W - W 4a, W1 WOt 0'

( e-

converting also the c.g, position, . , to the shaft reference
by

and

e . " 3  .h ,a ,

and substituting, there is obtained

(7) _._M i r d,

16.



In this equation, the derivatives of , '5, and , with
respect to c.g. position, Is/ , are evaluated by taking slopes of
the curves of Figure 2. The / force derivatives are calculated by
equations (6d) and (6e).

As the forward speed is changed, keeping other things constant,
the fuselage moment change will consist of two parts: one due to
change in angle of attack, the other due to the speed change. This
is expressed by

0+ _-f L 'A/ 4 W6.1J
dOs A/U.

Similar changes in reference axes give the following

(7a ) Wh d W " d ..r

/ H do at d ,h H d

Again, derivatives of 8,,, 9 , and a,,, with respect to forward
speed, "/U. , are evaluated by measuring slopes of the curves of Fig-

ure 1, and the -L __M term is known from (7). The ' -/U

derivative need not even be calculated, since when (7a) is substituted
in (3a), where it is needed, the term exactly cancels out.

The equilibrium of forces in the wind direction gives

Df - -hY

As the c.g. is shifted, keeping speed constant and level flight,

which, upon shifting reference axes and combining with the moment
relation, gives

(7b ) ,' . ../ " _ _/
VV 4 oe Wh a Ces d96$_

d Ih

17.



As speed is changed, the drag is affected by both the angle

of attack and speed changes, so that

tf' O + - - 4H
SU

This may be combined witn the moment change for the same

case to give

/ . - ,_

Cobining this in turn with equation (7b) yields

(70) -1± / _ 7141V0

0 Y YFslh

The derivatives of fuselage pitch, 4 , irith respect to speed

and c.g. position are taken with c.g. position and speed held constant
respectively. They have been previously evaluated for use in (7) and

(7a), and -/ __

is known from (7a). It may again be noted that the value of

-/ in (7a) appears in (7c), but that it cancels out when finally

substituted into equation(la).

Equations (6) and (7) provide the means used in this investigation
for estimating the derivatives appearing in the equations of motion,
(1 through 5).

B. The Analogue Computations

Considerable useful information about the natural motions defined by
equations (1) through (5) can be obtained relatively easily by setting the
determinant of their coefficients to zero, and solving the resulting charac-
teristic equation. It is of sixth order, the roots typically constituting
three complex pairs, indicating three modes of oscillation.

There is a very heavily damped, high frequency mode that for most pur-
poses is probably of little interest. A short-period mode, that is roughly
equivalent to the airplane's short-period mode, exists; and the long-period
mode may be likened to the airplane's phugoid. The latter has received
the major attention here, since the emphasis in the testing was directed in
this direction, and since most of the fundamental assumptions involved in
the theory seemed more applicable to slow motions. Correlation of theore-
tical and observed long-period motions, however, is difficult because of the

18.



practical impossibility of recording the helicopter response for sufficiently
long periods without disturbances from gusts and other random sources.

A number of solutions of the characteristic equation were made, to
correlate the observed and predicted period and damping of the long-period
mode. These mostly involved simplifications to the characteristic equation,
as described iii References 2 and 5, in order to simplify the computations.
It was partly the desire to remove these approximations, and to make feasible
a large number of arbitrary changes in the derivatives, that led to setting
up the complete five equations on an analogue computer.

More important, however, was the desire to examine and correlate the
entire transient control responses, rather than just the long-period fre-
quency and damping. The latter alone are hardly sufficient to give a good
feel for the adequacy of the theory for predicting the helicopter's hand-
limg qualities.

The control movements used in the test program were approximately rec-
tangular pulses of the cyclic stick. The analogue computer solutions were
for exactly rectangular stick movements, with amplitude and duration chosen
to simulate closely the actual control motions recorded during the tests.
Coparisons of computed and observed responses are shown in Figures 3 through
11. They are discussed in detail under Results and Discussion.

C. Simplified Equations of Motion

Although equations (1) through (5) can be readily solved on an analogue
computer, the labor of hand solution, especially for the transient pulse re-
sponses, is quite excessive. Since analogue computers are still relatively
uncomnon, it is desirable to investigate the possibilities for simplifying the
eqations of motion without affecting too drastically the calculated responses.

The analogue computer proved an ideal tool for this investigation, tool
and the various stages of simplification are indicated below.

1. The first set of simplifications corresponded roughly to those
described on p.32 of Ref. 2. The neglect of gyroscopic lag of the rotor
plane and the stabilizer bar permits equations (4) and (5) to be solved
for a,, and n,, , respectively. Substitution then in equations (1),
(2), and (3), reduces the number of variables and equations to three.

It is now advantageous to replace the drag equation by the com-
bination of the drag and moment equations. The resulting three equations
have the determinant given as equation (46), Reference 2. Additional
assumptions that

<.

s Cy ( 0"' - M.i) 0.

(M'er '+ "h1a, c,,) < <
19.



reduce the equations to the simple form

(8) d U 0 , - , ee,  +4 - 1 . 07] 0

(8a) d' L Vs

(8b) - .oT '

Trial solutions of equations (8) yielded results that were in-
appreciably different from the complete solutions, as discussed later
in more detail.

2. It was further suspected that the ( D - M..) and ( Da - 4 )
terms in (8) were insignificant, and that the lift due to control
movement, L., t' , might be unimportant. These terms were then
discarded for the final simplified case investigateds

= C
I U. W

ka) 1_ -iC d

Vo

- " -1 d :

(9b) 'Wh-4~ edt

where

,e w R e M.2 -

20.



Even these drastically reduced equations were found to result in
but little sacrifice of accuracy, and it was felt justifiable to use
them for the calculation of the helicopter's frequency response to
longitudina_ control, as given next section.

D. Frequency Response

The helicopter's steady-state response to sinusoidal longitudinal con-
trol movements of different frequencies was initially thought to be calcu-
lable on the analogue computer, using the complete equations of motion.
This would, indeed, have been desirable, but the weak damping of the long-
period mode gave trouble when this method was attempted. The starting
transients took so long to die out, before leaving only the pure steady-
state solution, that the method was considered impractical.

Although it would luve been equally impractical in the time allowed
to calculate b-y hand the frequency response by the complete equations, the
shortened equations (9) could be I1ndled fairly easily, and it was felt
that the additional approximations involved had been justified on the basis
of the analogue studies of the transient pulse responses.

The frequency responses were calculated in the standard way, using
equations (9), by replacing therein the operator 'ad by 1w , and solving
for the velocity and pitch responses, "YU and , for several different

frequencies. The resulting equations, left for simplicity in the complex
form are

L L - , ., (1 4 ),

where

(lOa) C, :
IWh

I
(lob) Wh~

(loc) ¢ :

(lod) 4 = LO

21.



(10e)4

C7~ WA

(log) C R.. -,.)

(10h) C, I

(10i) CL c ='qu - ;;Tat

(C. - + ca. ,,4) , (C, -(C c,)

where

(Ila) 7*=

The results of these calculations are plotted in Figures 12 through
15, converted to actual speed change in m.p.h. and pitch angle in de-
grees, per degree of longitudinal control. For convenience in covering
the wide range of values encountered, logarithmic scales are used for
the plots.
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Some discussion of the probable accuracy of these results, and a
comparison with the frequency response of Reference 2, which was obtained
by harmonic analysis of a test transient response, is given in the next
section.
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V. RESULTS AND DISCUSSION

At the outset of a presentation of results, and a discussion of
their meaning, it is desirable to clearly define the purpose of the
study, in order not to become lost in details not pertinent to the
main objectives. The principle objective of this work was to answer,
if possible, the following two questions:

(1) Are the equations theoretically derived capable, even with
complete freedom to choose values for the derivatives, of pre-
dicting, with reasonable accuracy, the longitudinal control re-
sponse of the helicopter; and if so,

(2) Are the required values of the derivatives reasonable, in
that they agree with values obtained by some other independent
method, such as theory, wind-tunnel, or steady-state flight data?

Although the indications are that the answers to these are affir-
mative, they can not go entirely unqualified. The data are not
sufficiently self-consistent to perntit a completely positive ans-
wer to question (1), and the alternate sources of information on
the required derivatives are in some cases sufficiently dubious
that an unqualified answer to (2) is impossible. These points are
discussed in more detail in the following pages.

A. The Transient Pulse Responses

The analogue computer solutions for the helicopter transient
response to longitudinal control pulses are compared with the re-
corded flight data in Figures 3 through 11. Quantitative agreement
between them is lir.ited principally by the following three factors:

1. The observed test transients were in some cases unquestion-
ably affected by gusts, for which there is no way to allow in
the computations. This factor is readily apparent, for example,
in Figure 11, where there is no other apparent explanation of the
fact that the steady-state of the airspeed response is displaced
from zero; and in Figure 6, where the apparent sudden shortening
of period at about twelve seconds is difficult to explain in any
other way.

2. The failure, or inability, of the pilot to return the longitu-
dinal control to zero, and to hold it steady, after application
of the pulse disturbance. This difficulty is exemplified by
Figures 3, 4, 5, 8, and 9, where considerable of the disagreement
between computed and observed responses is traceable to this effect.

3. Discrepancies between the shapes of pulses used in the tests
and on the analogue computer cause differences in the responses,
particularly in the first few seconds of response where the fre-
quency content of the input in the short-period range is of im-
portance. It was not possible, of course, for the pilot to move

24.



the control instantaneously; nor was it feasible, with the analogue
equipment available, to simulate exactly the shape of control movement
recorded in the tests. The best practic4l solution was to use, in the
computation, rectangular pulses matching approximately the test pulses
in area and duration. The result, of course, is that all the computed
responses are too fast, and have somewhat too great an amplitude, in
the first few seconds. The effect on the long-period response, at times
greater than about eight seconds, would be expected to be generally neg-
ligible.

Detailed discussion of the individual transients is given later in
this section. It is felt that, in view of the above three difficulties,
the computed and observed transients are in satisfactory agreement; and
that in answer to question (1) above, it should be stated that the equa-
tions of motion given earlier are capable of predicting, with reasonable
accuracy, the helicopter contro-response.

B. The Stability Derivatives

The rationality of the stability derivatives used to obtain the computed
responses shown in Figures 3 through 11 is, of course, a question of great
interest.

It had been suspected, from the work in Reference 2, where only the period
and damping of the long-period mode were considered, that the only really im-
portant stability derivatives are the static stabilities M and Mo, ; the
lift derivatives, L and 1, ; and the bar and rotor gyroscopic coefficients,
C, and £Y . It had been verified there that, at least as far as the roots
of bhe characteristic equation are concerned, equations (48), (49), and (50),
(of Reference 2), in which all other derivatives are neglected, yielded results
in satisfactory agreement with the more complete equations. It has been shown
in this study, that the other derivatives can also be neglected, for practical
purposes, An calculating the transient responses. For the resuonses of Figures
3 and 5, for example, analogfue computations using equations (9) gave results at
no times more than 15% different from those shown in the figures, which were
calculated by the more complex equations (1) through (5). Discrepancies in
the long-period mode of response were especially negligible, with even the 15%
errors limited to the first few moments of response.

Since it is fundamentally impossible to obtain information about derivatives
which do not materially influence the recorded data, it is not possiblq for exam-
ple, to evaluate the reliability of equations (7b) and (7c), for the drag deri-
vatives. by comparing calculated and observed transients. For this reason, the
discussion below, of the derivatives used, is limited to those which are import-
ant to the motions.

The fuselage stabilities, M,, and Mo., have been evaluated by equations
(7) and (7a); for the case of normal damper setting, normal c.g. position, and
333 rpm; over the speed range from 20 to 80 mph. The curves of trim at various
speeds and c.g . positions are shown as Figures 1 and 2. The derivatives of
cyclic control, fuselage pitch, and flapping, as required in equations (7) and
(7a), are determined as the slopes of these curves.
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Some scatter is evident in this data. It is believed, however, that

there are sufficient points that the curves are fairly well established,

and that the resulting values of Mu., and M*If are reasonably accurate.

Values of these two fuselage stability derivatives, obtained by the
method of equations (7) and (7a) are shown below. The damper setting was
normal, the c.g. position intermediate, and the rpm was 333.

Speed, mph 20 40 60 80

M -.200 -.239 -.220 -.239

M i -.035 -.024 4..007 t.071

The large negative (stable) values for the angle-of-attack stability

are significant, in that they differ drastically from theoretical predic-

tions (see Reference 2). The theory, however, included the effects of

rotor downwash only in a very approximate fashion. It w.as further shown

in Reference 2, and entirely verified in the analogue computer studies

here, that only a large,stable, MO,. can account for the stability of

the long-period mode of the helicopter's dynamic response characteristics.

It is therefore concluded that the values for Ma given above are reason-

ably close to the truth. It can only be assumed that the difficulty of

explaining them on theoretical grounds is due to very complicated rotor
downwash effects.

The contributions of the rotor to the Ma derivative are minor compared

to the large fuselage effects given above. For example, at 60 mph, the

direct rotor contribution calculated by the last two terms of equation (3b)

is

M : -. 025

and the contribution due to change in flapping is

Ma , a,, = +.033

The calculated rotor effects on Alw, are thus small, and tend to cancel.
It seems unlikely that even large percentage errors in estimating these
would be of any importance in this case.

The values for the fuselage speed stability, tabulatcd above, as ob-
tained from the steady-state data, are somewhat more questionable, since
the method of calculating them is not so direct as for the M W derivatives.
Also, the curves drawn with *., as independent variable are more diffi-
cult to fair (Figure 1), and the slopes are less likely to be accurate.
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The rotor contributions are here relatively more important, so that errors in
their estimatioa would be more significant. The various contributions are
compared below.

TEED ) rnph. 20 40 60 80.

A41L -.035 -.02h +.007 +.071

+I 4.018 +,010 +.013 4.022

Mal a,, +.015 .... 026 +.035 4.042

I .-.002 +.012 +.055 +.135

-.. 002 +.056 +.089 -.186

The values tabulated in the fourth row are the sums of the first three

rows, and represent estimated total static speed stability. The last row
shows the empirical values used in the analogue computations to obtain the
agreement on transient responses shown in Figures 3 through 11. The empiri-
cal values were determined primarily by the necessity of making the periods
of the long-per-iod mode agree with those observed. The frequency of the
natural oscillation is very sensitive to M., , so that the values given in
the last row are probably close to being correct.

While the discrepancies shown are large enough to be of interest, they
are not too large to explain by possible errors in the theoretical estimates
of the rotor contributions, or by cumulative errors in the determination of
the fuselage part.

The trend of rapidly increasing fuselage stability with forward speed,
is, of course, very important, and is unmistakably verified by comparing
the first and Last rows of the table. It may also be pointed out that this
trend, toward greater fuselage speed stability with increasing speed, should
be expected onLy for a fuselage statically stable with angle of attack. This
is because positive speed stability is associable with nose-up trim moments,
and the latter wiaL increase with speed because of the more nose-down angle
of attack only if the fuselage is statically stable ( M' f < 0
This trend constitixtes therefore an additional confirmation of the large nega-
tive values of A-14 previously discussed.

The lift deriatives, with respect to angle of attack and speed, were
assumed to be independent of the fuselage and to consist only of the rotor
contributions. rhe values of these, calculated by equations (6) and (6a)
are compared below with the empirical values required for the agreement shown
in Figures 3 taro-uEh 11. Again, the c.g. was in its "normal"position, the
damper setting was normal, and the rpm was 333.
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SPEED ) mph, 20 40 60 80

L , est +.320 4.157 +.009 -. 121

- C a4p, -+.025 +.019 +.009 -. 121

L O est .62 1. W 2.31 3.07

z .10 .38 1.43 3.07

It is seen iunediately from the table that at the high speed the
theoretical values are satisfactory. As the speed is reduced, the
agreement is poorer, until at the lowest speeds, the theoretical
values :--e entirely inadequate.

It is to be expected that the disagreements should be more pro-
nounced at low speed, since the effects of induced velocity changes
with speed and angle of attack are there more important and more un-
predictable. For example, if the L .320 in the 20 mph case had
been calculated assuming that the induced flow did not change with
forward speed; instead of by equation (6), where it was assumed al-
ways givei by (21) of Reference 2; the value would have been nega-
tive, and of about the same magnitude. Since which is the better as-
sumption is a debatable point, it is not too surprising to find the
empirical value about midway between the two extremes.

It is really disappointing that the values of L,, are not in
better agreement, since that derivative should be the most easily
predictable of all. Again, the agreement is good at high speed. but
very poor at low speed, where the induced velocity effects are un-
certain.

The empirical values of L and Z,, were primarily determined
by their effects on the amplitude of the transient responses. L
affects in a particularly noticeable way the vlative excitation of
the long and short period modes, while L is important to the rela-
tive excitation of the velocity and pitch responses. While great
accuracy can not be claimed for the empirical values tabulated in
view of the somewhat imperfect correlation of transients, it is be-
lieved that the indicated trends are correct, and that the large dis-
agreement with theory, at low speeds, is significant.

The rotor and bar gyroscopic coefficients, -0 and C were
calculated according to the theoretical equations (4c) an (5a).
There was no sound basis for arbitrarily modifying them, and it proved
impossible to improve the correlation of the transient responses ap-
preciably by assuming different values.

In particular, it was verified on the analogue computer that even
large increases in G would not predict the stable phugoid mode, un-
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less M,,were stable. The principal effects of very large C not apparent
in the observed responses would ber (1), strong tendency to destabilize the
short-period mode; (2) reduction of the amplitude of response for given in-
put; and (3), lengthening of the period of the phugoid mode.

Limited direct analysis of the data for bar deflection vs pitch rate in-
dicated the effective , to be about the theoretical value. This was
limited by the accuracy of the recorded bar deflection data, which was poor,
and by the fact that, in the absence of direct pitch rate measurements, the
pitching velucity had to be found from the slope of the pitch angle curves.

The available evidence thus suggests that the theoretical bar and rotor
coefficients are satisfactorily : ;curate; at least, in the case of the bar,
for the normal damper setting.

C. Bar Dan-per Setting

The effects of changing the bar damper setting, observed in the recorded
transients, can be assessed by comparing Figures 9 through 11. It had been
assumed, by analogy with the hovering case, that loosening the bar dampers
would stabilize the lonperiod mode of response; and the data (principally
the pitch responses) were originally interpreted as verifying this predic-
tion. Re-examination of the data (particularly with more weight given to
the velocity response) forced the conclusion that this was incorrect. The
apparent effects of loosening the dampers are: (1), to drastically reduce
the excitation of the long-period mode, especially the pitch response, with-
out affecting in proportion the short-period excitation; (2), to increase
the peri.od of the phugoid mode; (3), to change the damping of the phugoid
mode, as evident in the velocity responses, an inappreciable amount. It
is very easily understood, incidentally, how pilo-ts could misinterpret the
reduction of excitation of a marginally stable mode as increased stability.

Points (2) and (3), above, are in agreement with the theoretical predic-
tions previously discussed. The point of discrepancy is, however, that
whereas the theory indicates approximately proportional reduction of the
entire responses due to increasing ,, the data shows a super-proportional
reduction of the pitch respon'e in the phugoid mode. If, in the analogue
computations shown in Figure 11, for the loose damper setting, C9 were
taken large enough to give good agreement on the long-period pitch response,
then the initial, short-period, response would be far too small, and the
short-period mode would show very light damping, The latter, incidentally.
was never noticed by the pilot, as it should Lave been if actually present;
nor was it observed in the reduction of the test data.

The only way, within the framework of the present theory, to resolve
this discrepancy, is to--allc@i the lift derivative, L,, to vary with damper
setting. As previously noted. L, affects the relative excitation of
short and long period modes. In the computed transients, Figures 9 througb
ll, this variation was allowed, in order to obtain even the qualitative
agreement shown. The values of all derivatives were held constant, except

C, and ,which are tabulated below:
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DANPER SETTING z. 2 3

(hard) (normal) (soft)

CT .O .17 .22 .33
L oi. 01.00 .28

Since any effect of damper setting on L, is physical.Ly difficult,
if not impossible, to understand, no real significance is attached to
this result.

It was thought that coupling in the bar between lateral and longi-
tudinal modes might possibly account for the discrepancies, so the study
given in the Appendix was carried out. The result, however, indicated
the approximate bar equation (5) to be adequate, and showed that such
lateral coupling would be negligible.

It is assumed that the disagreement on the effects of changing dam-
per setting, is associated with either (or both) the feedback of blade
feathering moments to the bar, or non-linearity of the bar dampers in
any setting except the 'ormal one. (See discussion, Ref. 2, po55) It
has not been feasible, in the time allotted for this investigation, to
examine these possibilities in detail.

D. The Individual Transient Responses

1. 20 mph (Figure 3)

Agreement between calculated and observed responses is good.
The somewhat different shape of the short-period response, noti-
ceable in the pitch angle, is common to all the comparisons, and
is readily explainable by the difference in input pulse shapes.
The small excitation of the phugoid mode, relative to the short
period, requires the low value of L compared to the theoretical
as previously discussed.

2. 40 mph (Figure 4)

Good agreement can not be expected here, where the differences
in pulse shape and the failure to hold the control steady after the
pulse are important. Judging particularly by the nature of the pitch
response in the neighborhood of 6 seconds, the motion may have been
influenced strongly by a gust at that time. The best that can be
said is very qualitative -- that had these extraneous factors not
interfered, it looks as though the agreement would be reasonable.

3. 60 mph (Figure 5)

The natures of computed and observed responses are in excellent
agreement. The fact that the observed steady-state velocity res-
ponse is non-zero implies that the control was not returned to the
trim position, as sho.m. This effect is also evident in the pitch
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response, where it can account for most of the discrepancies.

4. 80 mph (Figure 6)

Agreement is reasonable, up to about 12 seconds, where the motion
seems to have been influenced by a series of gusts. The test data for
both forward and aft c.g. locations (Figures 25e and 27e, Reference I)
both show phugoid periods in agreement with the computation, and it seems
unreasonable to suppose that the apparent sudden shortening of period
after 12 seconds shown in Figure 6, is due to anything except extraneous
effects, such as gusts.

5. Formard c.g., 60 mph (Figure 7)

Agreement on the phugoid response is generally satisfactory. Im-
proved correlation on the short period response in the pitch angle
could be achieved by modifying the value of L., used, but this would be
inconsistent with the other cases.

6. Reduced rpm, 60 mph (Figure 8)

The principal discrepancy is in the steady-state values of the res-
ponses, which are non-zero clearly because the control was not returned
to zero. The sluggish short-period response, while riot too significant,
might be associable with a slower pulse application than indicated by
the data. Agreement could be improved by modifying certain derivatives,
but this would again be inconsistent with other cases, where th,• cor-
relation was better.

7. Hard Dampers (Figure 9)

The very large excitation of the phugoid mode is amply evident in the
observed response. The agreement shown is not bad, considering the large
control movements after the pulse; but it could only be obtained, as pre-
viously discussed, by the somewhat irrational use of large L.,

8. Soft Dampers (Figure 10)

Again. agreement or disagreement here is probably not significant,
since it was necessary to modify Lo, arbitrarily. The effects of damper
non-linearity at other than normal settings seem likely to be important.
This is a difficult matter to investigate theoretically, and it has not
been feasible to do so within the scope of this work.

9. Very Soft Dampers (Figure 11)

The large reduction in excitation of the phugoid mode of pitch res-
ponse is especially evident. The lengthening of period is seen, parti-
cularly in the velocity response, where it is also obvious that the phu-
goid mode is not heavily damped. Similar observations can be made of
the responses at 50 and 80 mph, Figures 30c and 30e, Reference 1. The
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i !Pry jl al . used In the calculator. ctems likeiy not to be
t he correct explanation. Further incrtys ; of CI ,lotu rot five
better agreement, since it reduces the amplitude of the short
period response too much., and would produce a very lightly damped
short-period mode, which is nowhere evident in the data.

E. Frequency Response

Equations (10)and (11) of this report were used to calculate the
helicopter frequency response at different speeds, shown in Fig-
ures 12 through l. Values of the various derivatives were the
same as those used in obtining the analogue computer Gransient
responses previously discussed.

Surely the frequency responses shown are more accurate in the
low frequency range than in the high. since the epirical method of
deteriining the derivatives weighted th ! lonT--period mode more
heavily Also, of course, the theoretical equations used for cal-
culations involve assumptions that are certainly not valid above,
say, rotor rpm. or about 5 cycles per second. The calculaticns
might nevertheless be useful in autopilot design, where stabili-
zation of the phugoid mode, involving only low frequencies., would
le the principal aim.

Direct comparison with test data Ls only posoille for the 60
mph forward speed, (Figure l), where the experimental points
shown are taken from Reference 2, Figure h. Those points were ob-
tained by harmonic an-lysis of the transient ressonse. Good ac-
curacy, partLcularly in the phase data,- is difficult to maintain
with that technique where the amplitude of response is small, as
it is above about .1 cycle per second. This is substantiated by
the scatter of the points at the higher frequencies.

In spite of the difficulties of obtaining the frequency response
e.rerimentally by, harmonic analysis of transients, and of the many
assumptions and simplifications involved in the theory, agreement
between the two is seen tole pretty good. Especially, the amplitude
curves fit the data well. The only serious discrepancies are in the
phases of the velocity response. Time, unfortunately, has not per-
mitted more extensive investigation of the possible causes.
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VI. CONCLUSIONS

As a result of further studies )f the H-13 Helicopter transient response
data, and further theoretical calculations of response ieharacteristics, using
an analogue computer, the following conclusions are drawn:

A. The equations of motion given herein, for the longitudinal dynamic
response of a gyroscopically stabilized helicopter in forward flight are
capable, given the proper values of the derivatives, of predicting with
satisfactory accuracy the responses which were observed in flight-testing.

B. The proper values of the important derivatives would not, in general,

be predicted by existing theories.

In particular,

1. The large stable contribution of the fuselage to the angle-of-
attack moment derivative is verified by steady trim data, and would
not have been predicted by any existing theory.

2. The stable contribution of the fuselage to the moment derivative
with respect to speed changes, partially verified by analysis of
steady-state data, would not have been predicted theoretically, but
might be expected in combination with strong angle-of-attack stability.

3. The important lift derivatives are not given to satisfactory accur-
acy by any of the existing theories, especially at low forward speed,
where the theoretical treatment of the downwash is doubtful.

C. For most purposes, involving interest in only the slower modes of motion,
the greatly simplified equations of motion presented herein should be adequate,
since comparisons with solutions of the more complete equations showed little
sacrifice of accuracy. Differences due to the additional assumptions involved
would be entirely overshadowed by inaccuracy in estimating the more important
derivatives.

D. The simplified equations predict with reasonable accuracy the frequency
response information derived from the original test data.

E. The effects of non-standard bar damper settings are still not satisfactor-
ily explained. It is assumed that they are associated with damper non-linear-
ities. Re-examination of the dataat least, however, confirms the prediction
that loosening the dampers does not materially increase the damping of the
phugoid mode. The data indicates that softening the dampers reduces the pit-
ching excitation of the phugoid mode, giving the false impression of increased
stability.
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APPENDIX - The Bar Equation

Because of the difficulties of explaining the effects of changing damper
settings, noted in Results and Discussion, it was deemed advisable to re-examine
the bar equation, (7. That equation involves the assumption (References 1 and
3) that the bar mass is concentrated in a ring, similar to a gyroscopic ring.
A better approximation would surely be that the bar mass is concentrated at two
points at opposite ends of a weightless rod. It was thought that this might
lead to some lateral coupling, which might explain the effects of changing damper
setting. It is shown below that, in fact, some lateral coupling will exist, but
that for frequencies involved in the phugoid mode, the effect is negligible.

It can be shown that the instantaneous acceleration, in a vertical plane and
normal to the bar,of the concentrated mass at the tip is

.'

-05 f *n 7 Cos' P .Sb;'$e ,

For small disturbances, this may be linearized to

r - 0 ° OS, "  7 2 .rn01,

If it be assumed that the bar motion is first harmonic, so that

39 , Cos(1- 3

and this relation be substituted above, then the inertia moment acting on
the bar is

Al; , _ r2 " I Z

-Ib [ ,l, - t S,

,, + 2 MI
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The damper moment is

M, -[ C (d-IS s - (,-13, , ) Cos ']

If the two moments be summed and set to zero, the coefficients of
sin and cos 0, must independently equal zero. Thus, the two equations
of bar motion are obtained:

(1.2a) (c d + I) CA + I C d2.&t "'

(1.2b) -, C, d

The solutions of these for P1,, and m,, are
_ (C ~~/ , 2, *

(1.3a) n'.I a42

(13b) 

2

Since A>>1 1, and for low frequency modes, such as the

phugoid, d is small,, these may be simplified to

(13c) et "-

(13d) d
d)62
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It may be noted that the expression for the longitudinal tilt is exactly
equation (5). ThW ratio of lateral to longitudinal tilt is

IT

For the phugoid mode, neglecting damping, d may be set equal to

where P , the period, is of the order of 20 seconds. The ratio is approxi-
mately

- ' .005

It is thus verified that for slCw motions, as are involved in the phugoid,
the lateral coupling is negligible, and equation (5) is suitable for the longi-
tudinal bar motion.

It seems likely that the effects of changing damper setting, unsatisfac-
torily explained in the main body of the report, may be associated with non-
linearity of the bar dampers.
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