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INTRODUCTION

The purpose of the present investigation 1s to study the hydrodynamac
propertics of a hydrofoil of finite span moving with constant vclocity through
decp water at a fixed distance beneath the froe surfrce,  The span of the
hydrofoil 1s parallel to the plane of the frce surface. This problem has re-
cently attracted a great deal of attention from both the theoretical and the
practical points of vicw. However, the idca of using the hydrofoil as an aid

for locomotion over a watcer surface is certainly not new,

As carly as 1898 Forlanini in Italy tricd to use hydrofoils for the pur-
posc of supporting high-spced boats.  When such a boat travels fast cnough,
the hydrofoil system installed under the hull can lift the hull above the water
surface so that the familiar ship bow-waves arc replaced by much weaker
waves duce to the submerged hydrofoil system.,  Conscquently, the resisting
forcc of the water may be considcrably reducced, and the speed-power ratio
may therceby be greatly inc. rased. Another practical application of hydro-
foils was madc in 1911 by Guldonil in Italy who replaced the ordinary floats
of a scaplanc by hydrofoils. The use of hydrofoils 1s floats provides greatly
improved acrodynamic characteristics of the scaplanc during flight.  Howcver,
the lack of knowlcdge of the fundamental propertics and design data of hydro-
foils has prevented the usc of hydrofoils in modern applications, The recent
rcvival of interest in the theoretical and experimental studies of this problem

is aimcd at removing these gaps in basic information,

It 1s krown that, for + wing moving in an infinite fluid medium, once may
neglect the influence of gravity and consider only the incrtia and viscous
(ffects; the Reynolds condition for dynamical similarity then holds, Under
this condition, thce nondimcensional lift and drag cocfficicnts depend only on the
Reynolds numbcer and the geomecetry of the body. However, the situation for a
hydrofoil ncar the water surface is quite different,  The hvdroforl differs from
the airfoil not only bucause of the possible occurrence of cavitation but also
through thc strong cffecct of the frec water surface.  For the motion of a
hydrofoil at shallow submuirgence, onc must consider the gravity coffect be-
causc¢ the wave formations on the froee water surface will influence decisively
its hydrodynamic propcertics, [t follows that, in this case, the nondimoensional
1ift and drag cocufficivnts will be functions not enly of the Reynolds number and

its geometry, but also of the Froude number and the cavitation number,
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The program cf this report is as follows: After a bricf survey of the
available theoretical and experimentzl information on the characteristics of
“vdrofoils, the thecory for a hydrofoil of finite span will be formulated. The
liquid mcdium is assumed to be incomprussible and nonviscous and of infinite
dupth. The basic concuept of the analysis is patterned after the famous Prandtl
wing theory of modcern acrodynamics in that the hydrofoil of large aspect ratio
may bde replaced by a lifting linc.  The lift distribution along the lifting line is
the same as the lift distribution, integrated with respect to the cherd of the
hydrofoil, along thc span direction. The inducced velocity ficld of the lifting
line 13 then calculated by proper consideration of lift distribution along the
lifting line, free water surfacc pruessurc condition tund wave formation. The
"local veclocity" so determined for flow around each local secucen perpendicular
to the span of the hydrofoil can be considered as that of a2 two-dimensional flow
around a hydrofoil without free water surfacce.  Thoe only additional feature of
the flow in this scctional planc is the modification of the geometric angle of
attack, 1s defined by the undisturbed flow, to the so-called cffective angle of
attack on account of the local induced velocity,  Thus the local sectional
characteristics to be uscd can be taken as thosc of a hydrofoil section in two-
éimension2l flow without frec water surface but may involve cavitition, More
preciscly, the hydrofoil scction at any location of the span has the same hydro-
dynamic characteristics as if it were a scction of an infinite span hydrofoil in
a fluid rogion of infinite extent at 12 geometric angle of attack cqual to a
together with proper modificition of the free stream velocity.,  Such charac-
teristics may be obtained by theory or by ¢xpuriment and should be taken at
the samc¢ Reynolds number and cavitation number, With this scparation of
the three-dimensional cffects and the two-dimensional cffects, the cffucts of
Froude numbcr arc singled out.  Thus @ systematic 1nd (fficient analysis of

the hydrofoil propcertics can be made.

The lifting linc theory uscd in this problum is developud through various
stages to include the formulation of the dircet or indircct problims and also
the problem of minimum drag. Finally, dctailed crlculations of the lift and
drag cocfficicnts of 2 specified hydrofoil 1re carricd out for the case of ¢llip-
tical distribution of circulation. The cffccts of the frece water surface and
the wave formation ~re vxamined in detail,  Needless to say, the neglect of
viscous cffccts will cause the omission of the frictional drag in the total drag
calculation. Howcver, this error can be cstimated scparately.  The problum

of the unstcady motion of 1 hydrofoil is briefly discusscd in Appendix 11,
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SURVEZY OF PREVIOUS RESULTS

The investigation of the propertics of hydrofoils has been so far mostly
cxperimental.,  Although there ¢xist some approximate theories, they do not
appcar to show the cffects of wave formation on the hydrodynamic charac-
teristics of the hydrofoil, especially when the submuergunce is shallow. In
Guidoni's workl, it is claimed that some of the advantages of hydrofoils over
conventional ships or floats arc butter lift-drag ratio and less scnsitivity to
» Tough water surfrce so that their usc may result in © substantial decrcease
in the structural weight of the hull,  On the other hand, a fcw disadvantages
are 1lso mentioned; for ¢xample, the danger to the hydrofoil caused by drift-
ing wood and scawced., At high trkc-off velocitics for the application to sca-
plancs therc is also the possibility of poor pcrformance due to profilc cavita-
tion. Somc carly preliminary work on the hydrofoil probicm was carricd
out by Keldysch and anrent.jcwz, Kot.schin3 and Wl’xdirmrow‘1 in ZAHI,
Their studics arc, in 2 broad sensc, only 1n extension nnd modification of
LLamb's work on the submurged cylindcrS and Havclock's work on the sphore
bencath a water surf:ccb' 7. In Keldysch's work, which is a special case of
Kotschin's, the problem of the two-dimensional hydrofoil was solved by re-
placing the wing by a circular cylinder with circulation. Wladimirow solved
the problem of hydrofoils of finite span by recplacing the hydrofoil by a horsc-
shoe vortex of constant cairculation along the span i1nd by assuming that the
frce water surface remains flat no matter how closc the hydrofoil is to the
surfice., The calculation then recduces to a two-dimensional probicm in the
Trofftz's plane bechind the wing.,  This approximation is cven poorer than the
assumption of infinit: Froude numbcr., In 1935, = test of 1 single hydrofoil
(the NAC#A 0.0009 profilc) was carricd out by Wiadimirow amd Frolow in the
towing tank of ZAHI‘. Experimoentally it was found that both lift and drag
cocfficients ducrense with the depth of immersion, but the rate of decreasc
of thc lift cocfficicnt was faster than that of drag, c¢spuecitlly for small depths.
The comparison between theory and experiment on this point was not very
satisfactory. About thc samc time, the probluem of cavitation on a submerge:
obstacle of hydrofoil scction such as a ship propelicr was approached by
Ackcreta, Walchncrg, Lcrbslo, Mxrtyrcr“, Gutschclz, and Smithl3.
Around 1937, furthcr contributions to the hydrofoil probicm woere made by
Wcinig“, Tictjcnsls, and von Schcrtcllb. Wceinig gave a preliminary yet

vxhaustive discus sion on hydrofoil and planing problems ncglecting completely
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the cffects of gravity and the frec surface elevation; the wave resistance for

both case¢s was cstimated approximately afterwards, During the last World
War, a series of tests on a number of hydrofoils of different foil scctions was
carricd out at NACA by LLand, Benscn and Ward”' 18,19 in the NACA towing
tank. Several intercsting results were found. At depths greater than 4 :
chords, thu influcnce of the frece surface is negligibly small.  In the range of
depths between 4 chords and approximately 1/2 chord, lift and drag co-
cfficients decreasc, and the cavitation speed increases, with decrease in depth
until the hydrofoil approaches and breaks through the surfacc at which point a
sudden decrease in lift occurs.  However, the corresponding values of the
lift-drag ratio incrcasc to maximum values when the hydrofoils are near the
surface then decreasc rapidly with further decrease in depth to values for

the planing surfaces. Obviously, these obscrvations indicate that there oxists
an optimum valuc of the depth for which the hydrofoil operates most ¢fficiently.
The cffecct of an increasc of speed is to reduce the mimimum drag coufficient

and to makc it occur at a corrcsponding higher value of the lift cocfficicent

until cavitation takcs nlace. Any lowur surface cavitation reduces the lift;
while complete upper surface cavitation prevents further increase of lift,

Undcr such condition, however, a maximum value of hift as high as | ton pcr
squarc foot was recorded. A profile with sharp leading cdge seems desirable
for reducing cavitation, The hydrofoil section NACA 16-509 was obscrved to
have favorablc hydrodynamic propertics. The stability problem of a system

of hydrofoils was studied by lmlayzo. An cxhaustive vcxperinm.gontal investiga-
tion of a single hydrofoil with large dihcdral was made by Sottoerl in the
Gottingen towing tank in which cighteen different profiles were studied; his re-
sults have boen made available only recently,  He found that a thin profile of
almost circular segmoent form with pointed nosc and an increascd convex camber
in the nose arca ic favorable for laminar flow, and consequently also reduces
cavitation, givcs higher lift and lift-drag ratio, and minimum spray formation
at the junction of the tip of the hydrofoil and the free water surfacec. The main
fcature of the depth cffccts on hydrodynamic properties are in good agreement
with NACA rcsults, [t was also found that a partial cavitation on the upper
surfaccv has a favorablce cffect provided that 1t covers less than a half chord
becausc a thin cavitation bubble layer reinforces the flow curvature and thoereby
increascs the lift,  In addition, the bubble layer lessens the surface friction by
acting as a cushion butwicn the solid surface and the high velocity water stocam,

However, this favorable range of operation 1s not very stable.
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GENERAL FORMULATION OF THE PROBLEM

Cons:dcer a hydrofoil of span 2b, with arbitrary profile and plan form,
moving with constant forward velocity U through deep watcer at fixed depth
of immecrsion h which is measured from its trailing edge to the mean free
water surfacce. If we choose a coordinate system fixed with respect to the
hydrofoil, then in this system the flow picture would appear to be stationary
with a uniform froc stream velocity U approaching the hydrofoi!. Let the
x-axis be parallel to the direction of the frce strcam, the z-axis point up-
ward, with z = 0 rcpresenting the undisturbed free surface and the trailing
cdge of the hydrofoil lying between (0, -b, -h) and (0, b, -h) as shown
in Fag. 1.

]
/
L disturbed surfacc ~mean free surface

S~ Tf.\
A

Fig. 1 - Coordinate system for the hydrofoil motion.

The ¢levation of the disturbed free surface caused by the hydrofoil 1¢ denoted
by %Z(x,y) mcasurcd from 2z = 0. The liquid medium is assumed to be in-
comprcessible and nonviscous so that the condition of 1irrotationality and con-
tinuity implics that the perturbation velocity potential ¢ satisfies the

Laplace cquation

‘72(,6 = 0. (1)
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From its solution the total velocity ficld of the liquid flow can be obtained as

—

taq, 1 = (95, 9,. q3) = grad o (2)

-
1

- U

The pressurc ficld muy be determined from the Bernoulli integral

N

%+% .6+gz=const (3)

in which the cffect of gravity has been taken into account,

Now lot us assumc that the rcsulting motion is such that almost cvery-

where !_‘;l is much lcss than U so that Eq. (3) may be lincarized to yicld:
L2 ) -
= t U+ g2 const, (4)

The corresponding linc'rized boundary conditions on the disturbed, free

surface now b.come

/X \
(%) - ug. (5)
h /2:0
and
3’.‘{. ,
z:0

Eq. (5) represents the hine irized kinematic condition on the froe surface,
while Eq. (b)1s identical with the dynamic condition p = p, - constant

on the disturbed surface. It may be noted th:t gravity affccts the kinematics
through the boundary conditions (5) and (6) and theroafter influences the
dynamics through Eq. (4), ¢von though it docs not appear oxplicitly in the

kinematical Eq. (1). The boundiry condition on the hydrotfoil surface is

&L - .y cos(n, x) )
an
3¢ . .
whero 5 is the nor:nal component of the velocity at the surface. It may

also bc montioncd hero th:t the real physical situation requires that the dis-
turbancc upstrcam should dirranish at a rate which 1s madc to agree with

obscrvation,

In order to simplify the proble m, it will be assumcd that the aspect




ratio

m - 200 ®

of the hydrofoil with plan area 3 and span 2b is so large that the whole
hydrofoil miay be replaced by a lifting line. Then the subseguent analysis
can be made similar to the Prandtl wing theory of modern aerodynamics

by introducing appropriate modifications of Frandtl's original concept. The
fundamental concept is that the circulation distribution along the lifting line
which replaccs the hydrofoil 1s the same as the distribution of bound vorticity
integrated with respect to the chord nf the hydrofoil along the span direction.
We then calculate the induced velocity field of this circulation distribution on
the lifting line. The characteristic length of this induced velocity field 1s
the span 2b or the immersion depth h, whichever is the smaller. There-
fore 1f h 1is much larger than the representative chord of tne hydrofoil, then
the characteristic length of the induced velocity field is very much larger tha:
the characteristic length of the local velocity field which 1s associated with
the bound vorticity and the circulation. Then as far as the lift production is
concerned, each scction of the hydrofoil is effectively surrounded by a
stream of infinite extent moving with an cffective velocity which is not the
free stream velocity U but the sum of U and the inducced velocity., We
then replace the boundary condition of Eq. (7) by the statement that the cir-
culation of the lifting 'ine at a certain spanwise station 1s the same as that
corresponding to a two-dimensional flow without frce surface around the
same local section with an effective free stream velocity equal to the sum of
U and the induced velocity. Although our argument for the lifting line con-
cept is based upon large aspect ratio /R. Experience with airfoils indicate:
that the theory can be expected to be sufficiently accurate even for /R as

low as four.

We shall assumec that along the lifting line the distribution of the cir-
culation strength [ (y) is known for given angle of attack and immersion
depth. It should be pointed out here that for shallow submergence the effects
of the free surface modify considerably the approaching flow velocities and
thereby make the pressure and lift distribution differcnt from 1ts corrcspond-
ing aerodynamic value. Therefore, in our hydrofoil problem the lift distri-
bution 13 no longer simply proportional to M(y) as it is in aerodynamic wing
theory but is rather a complicate function of T (y). When [M(y)is given,
the lift distribution can be determined as will be shown later. However, the

calculation of [M(y) for known lift distribution is more difficult, Strictly
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speaking, I (y) dcpunds not only on the flow velocity, angle of attack and the
seomutry ¢f the hydrofoil, butl nlso on the dupth of submergence h. When h
‘.nds to drliity so L. this hydrofoil 18 in a flow of infinite extent, the frec
~uriace 2.od voave ¢ Loris s5hould vanish and M (y) then tends to its conventional
oo ToGynais valag l‘c: v}, S.ncec the circulation for ¢qual airfoil ind cqual
cffeccuve angic of wttack s preportional to the approaching relative flow velo-
city, woe have

...(O' Y, 'h)

Fly) = 1 B Ty - (9)

SR (y}, instcad of [M(y) 2t d-pth h, were given, Eq. (9) would lead to an
integreol cquation for ' (y) as wil' be shewn later. A similar situation results

i{ one intcnds to find r'(y) at h i{or given gcomctry of the hydrofoil There-

given,

In this casc, the contribution of the lifling linc to the perturbation poten-
tial can be shown to have the following integral representation (cf. Ref, 22,

also cf, Appundix 1):

; 2
o, = sxgr_»_(r+h! r r(ﬂ)dﬂj sin\x de‘oo o il n)‘q\ +p |z+hB

o

en(zeh) 00 :
2 :jfh I dn( cosp(y-n)c plI""hld (
J-co Jo

+2)

it in1y be noted that the ~bove cxpruession satisfics Eq. (1) “nd has a singularity
zlong the lifting line, a2 jump of [ (y) ~cross the vortex shoct on the down.
stream sidd of the lifing line and 1s regular olscewhoere inside the water, Need-
luss to say, 2 has no nichrning above the free surface (2>%). [t may also be

rcmarked here that some other uscful reproscentations for can be written

. "1
1s follows (cf. Appendix 1) :

¢, = ‘Q‘Z;;%Ll‘)f Mn)d qf dgj k12+h|J(kJ(x-E)+(y-~1) Ykdk(10a)




or,
. . (z+h) [® () | x e
B i 0 (Y'n)2+(z+h)2— ( ! (xz«#(y-r])z+(z+h)2}

whoere JO denotes the Bessel function of the first kind.

It 1s convenicnt to decomposce ¢ into three parts
CE @t 9, t ¢ 11
S ‘11 ‘QZ \3 ( )

In such a w2y that the boundary condition of Eq. (6) is decomposcd 1s foliows

O¢)- 90,
——-x+———ax = 0 at z =10, (12)
and
303
U('a—x) = -ghL. (13)
z:=0

Physically this dccomposition means that 9y represents the potential due to
wave formation so that $y 1S the only part of ¢ which involves the coffect

of gravity, and it vanishcs when the gravitational effcct is neglected,  In this
c2se¢ the bound:ry condition Eq. (6) 1s also rclaxed. It docs not follow,
howcver, that the disturbance ¥ should also vanish because ¥ is also in-

flucnced by ¢

’

y *nd @, through Eq. (5). Thc remaining partof o
namely, L P is cquivalent to the potential of 1 biplane system in
infinite flow with the upper lifting line of an ¢qual circulation [ (y), rotating
in the same scense, distributed along the image points (z = + h) of the real
wing. In othcr words, ¢, represents the corrcction to ¢ duc to the effect
of the mcan froee surface z = 0. According to this reflection, ¢, may bo
written down dirvctly from Eq. (10) by rceplacing h by (-4). In the range

of pruesent intercest, we have

.00 oo oo
. \|2 2
1 r x A\ s
27 "5 P('l)dﬂj = dx[\ cos p(y -n)e® trlz-h) g,
- o J o
00 @
= zl.; Mm)an cos;;(y-*])c“(z'h)dp’ for z:0, (14)
-00 o

e e i e e
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which may also be converted into expressions similar to Eqs. (10a) and {10b).
It may be noted that this expression is regular everywhere inside the water,

Now it seems plausible to assume that ¢, and % may be represented

3
by the following expressions:
nee o @ 'Z——;
sin \ A"+u" (z-h
o3 f| Tlm)dn[ o, u) ZB= dn COSP\(Y”])C\{ b (z-h) g,
-00 o o
~ oo (e 9]
+ ,%;J  {r)dn cos u(y -n) e“(z'h)dp ] for z < 0 ;
Q0 (o]
oo oo o l—z—7
\
- r (n)dn BN, u) coshAx d\ cos u(y -n) e Aaw hdp ;

- 00 o o

where a(\,un) and 3(\,u) are two functions of u and \ to be determined
by using boundary conditions (5) and (13). Substituting these values into
Eqs. (5) and (13), we obtain:

v.
o\, p) = - —————y A

and
B\, ) = - %- a(\, u) .

These integral reprcesentations of o3 and & can be converted into forras con-

venient for cualculation by introducing the new variables k and 0 such that:

A\ =k cosb, p =k sin@
filien oo x rn/f2 ro
o = 3 _52_ r'("])dﬂ[ de sec?0 do ek(z-h) cos(kgcos O)o:o.i(k(y-vl)smg)kdk
3 ~—7
” k-4sec 0
-00 Jo Jo Ja
o) e )

5 '“<n>d,lJ M conuly-m) du ot RO ()
-0 fo)



o9 n/2 ®
e 1 F () dn sec’o do -tk cosjkxcosﬂc;s(k(y-n)sm 9) Kdk
i n U k -K sec @
| -o0 Jo o

(16)

[t can be scen that this value of & given by Eqg. (16) 15 even in < so
that the elevation upstream as merely the roflection of that downstream,
Thercfore it scems necessary to investigate the behavior of 4 for large nega
tive values of » .norder to make a comparison with observation.  The in-
tegral representing £ as given by Eq. (16) 15 indeterminate, but it s
fimiliar 1n plinc wave problems that ats principal value can be obtained by
considering < to be complex :nd evaluating 1t by contour integration. The
peth on the positive real agis should be indented iround the point
k = < sccZ® which is a simple pole of the wntegrand, s fter deforming the

contour to the imaginary axis, woe obtoin:

@
'A ohx cos{kx cos®)cos(k(y-n)sin@)

Frincipal value of | kdk
| . ¢,
Jo k-7sec @
2 -h sccao 2
S o-(signx)as sccTw e sin(. x<ce B)cos(.(y-n)sec 0sin@)
{ 0 b
-kix)cos @ : . ; .
. o kixicos a8 Wiy =) EH 0) sccrﬁcozsﬁkhl+ksmﬁm kdk . (17)
. 4
o K™+ A7 scc @

The integration of the iast integral an g, (17) with respect to 9 (cf. Eq.
(16)) should oniy cvtend over the range for which  x cos 8+ (y-n)sin@ > 0
for an assigned nownt (s, y), (cf. App. 1! for the detarl),  Ttas evident from
Eq. (17) that ~lthouch the integrs! vamishes ns x - w0, the first termroniains
cven for x - - a0, Then there mie surface waves even far ~head of the hydro
foil.  This s in contradiction wath ¢axperience,  The paradoy can be resolved
by obscrving that there ~re solutions of the basic flow cquation, the free wave
solutions, whica s:tisfy the surface pressare condition of Eq. (6), V'e can
then ~dd these solutions to our vielocity potentinal wathout rendering the soltion
so fxr obtarncd invahid for our problem. The appropriate free wave solution
to be added 1s deterimined by the condition that the frec surface clevation &
must vanish at large distances ~head of the hydrofoil, Therefore, we have te

superimpose on % ~nother system of waves




@ w/2 2
g = - ﬁ- M(x)dn secto c-h-.scc °sin(r"‘x sec @) cos((y-n) secZO sin0)do
oo o

(18)

which is odd in x. Inordcr to remain consistent with all the boundary con-

ditions, we must add to the velocity potential another term, say, g4 givea by

Qo n/2

.

: 2
sg= =] Tmlan| sec’o o ¥lzshjacc 0

cos(Kxsec@)cos(.{(y-n) secZO sin9)d 0,
T® ° ( for z = 0) (19)
which obviously satisfics Eq. (1). This part of the potential may be thought
of s a correction term, The same result can be obtained by introducing a
fictitious viscous term to the Bernoulli cquation (cf. Appendix II, Eq.(18) ), 2
device first discoverec by Lord Rayleigh. The physical significance of this
viscous term is, however, not easy to undcrstand., Gur argument, even if

somewhat lengthy, has its merit,

From the resulting expression of the surface clevation, & + a , it can
be scen that the term with the factor o K!X1€088 4p 20 (17) diminishes ex-
ponentially with increasing ix) both in upstream and downstrecam direction,
Hence for large positive vaiues of x, the surface elovation can be approximated

by

(o ¥ ﬂ/.’.
. 2 \f 4 -h lsec‘20

T (n)dn sece Q¢ sin({x scc Q) cos(,'\(y-n)sec?'o sin@) de ,

( for x > 0,large) (20)

This relation snows that X 1s analyzed inlo components of simple waves,
where each train of waves (corrcesponding to one valuc of @) propagates on
the downstream side of the wave front x cos@ + |y-n| sin@ = constant

(cf. Appendix 1I) with wave length

L. =‘Z"8U L (21)

i S\:CZO

This configuration of surface waves resembles that of typical ship waves
(cf. Ref. 5, pp. 433-437). To study the behavior of % dircctly behind the

hydrofoil as % — + o, y fimite, wo can approximate the integral in Eq. (20)
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by applying the method of stationary phasc (e.g. cf. Ref. 23, p. 505). Only
the result will be given here:

(o o]

Cw-jl- \‘-:—5- sin(;{xi»%)J i (m)dn + G(;l(-) , as x — + oo, y finite_ (22)
U
-

-1/2

the effect of free stream velocity 18 such that £ 1s proportional to U'l.

Therefore o tends to zero like 0(x ) far downstream ; and at fixed x
noting that in Eq. (22) 7 (y) is proportional to U. Eq. (22) shows that as
the distance from the hydrofoil is increascd only the total circulationon the
lifing line matters, the detail of the distribution of circulation i1s inconsequu:

tial.  This is, of coursc, what we would expect from general principles,

It may be also be scen from Eqs. (16) and (18) that there is a local dis-
turbance immcdiately above the obstacle., As we do not intend to examine
the surface wave pattern in detail, the above discussion suffices to describe

the gerncral behavior of the surface clevation,

Thus far we have found the complete perturbation potential, namely,
ST G Ot e, (23)

whare G a9y and ¢, are gaven by Eqs. (10), (14). (15) and (19)

respectively,

CALCULATION OF THZE DRAG FROM INDUCED VELOCITIES

The total drag, neglecting the part caused by frictional ceffects, ex-

pericenced by the hydrofoil may be calculated by using the Kutta-Joukowsky

law:
[0 &
&4 SO, y, -h)
D=-p| f(y) == dy (24)
oz
-w
where - % ¢ (0, v, -h) reprcsents the total induced downwash at the trailing

edge of the hydrofoil. If we split D into componcnts, cach of which corre-

sponds to the respective component of ¢, wo have

D:DI+DZ+DS+D4,
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where .00
o A
Dn: =P 1(Y)a—z' “n (0, vy, 'h)dYo (n:ll 2, 3, 4) (25)

-Q0

The calcul-~tion of Dl' the induced drag due to the trailing vortices of the
hydrofoil itself, 1s familinr 1n thrce-dimensional aerodynamic wing theory
and 's given by (cf. Ref, 22):

Q0
' : [ 2 2
D, - lf V()T + g(n) ]Mdu (26)
[¢]
where

QQ [0 V]

1 . -
{(n) - 7J f(n)cospndn,  glu) = ,l, T (n)sinun dn, (27)

-0 -0

f(u) and g(u) are thus merely the Fourier-coafficients of the circulation dis-
tribution r(y) .

9¢
For the rest of D, we first czlculate -a—zrl from Eqs. (14), (15) and
(19) and obtain:
[.rx) 0
24 M .
8z(02+‘3) -0 -3—"] " (n)dn cos(u(y-n)) pdu ,
T Joao )
PR
ag 2 n/2 ) 2
174 = - %-J r(.)dn sec’0 c'2'<h sec ocos(.-((y-v‘,) sec0 sin 0)de
=0 -co o)
£ =

Substitution of thesc values into Eq. (25) leads to:

r\m
r -2hyu | 2 2]
D, +Dy= - TN W) gw)” | wdp (28)
Jo
I'\“/’Z . Z 5
D, = wpriZJ g T SNASECO ! f(‘iscczo sin O)Z+ g(r\'ScCZO sin())Z ! sccSOdO
o

(29)

where f and g arce defined by Liq. (27). Thke combination of D, and D

3
represents the total contribution of the mean free surface effect, which

favor~bly decreases the tot:l dr~g ¢specially when h (s

i35 small, As h tends
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to zero, DZ + D3 cancels Dl' The part D4 represents thec wave drag due
to the downstrcam wave formation which results from the gravity effect. It
may be remarked here that the wave drag can also be obtained by the method

of traveling surfacc pressure (cf. Appendix III).

From the above result we sece that the drag is expressed in terms of the
Fouricr cocfficaients, (f(n) and g(un), of the circulation distribution [ (y).
Therefore for ~ given 7 (y), the total drag is completely determined.  In
most cases, the wing form 1s symmetric with respect to the central plane

y = 0, thatas,

“y) = (-y), (30)

then it follows from Eq. (27) that g vanishes identically under this condition.

By substituting the relations of Eq. (27) into Eqs. (26), (28) and (29),

the drags can be expressced directly in terms of the circulation distribution,

Thus
oo d'
= d
:rP— j () (nr) 4020 Jr‘(n)dnf d 7!
(-7 ) (26a)
(2h)° - (7 -7')°
C,"By - -3 _-,'1_*1/_ — dn (2R-)
"J J - ENC—r]
and
r 0 )
D, - "J P (1) G (m - ) dry oyt (292)
-0 -0
where
> n/2 2
"'\“ -2h &<su *) 2 . 5
G(n-n') = — e 4 suc cos[(y}-q').\’,scc Qsmo]scc 018 (29b)

O

Eq. (261) is the familiar drag formula for the Prandtl lifting line theory.
Eq. (29b) shows that G(*)-7)') 1s syinmetrical with respect to o and o',

It is seen that the drag compoenents Dl' DZ and D3 are independent
of the gravitat:onal ¢ffect.  They are thus properly called the components of

the induccd drag, All the drag caused by the prescnce of surface waves is

represented by D,. D, is thus the wave drag. Our calculation docs not
include, howcver, the skin friction drag produccd by the viscous shearing
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stress on the surface of the hydrofoil, This skin fri ction drag should be

added to the drag calculated in this section to obtain the tctal drag of the hydro-
(\)il.

CALCULATION OF THE TOTAL LIFT

It is well known that the lift exerted on a wing flying in an infinite fluid
1s given by
@

L, = »eU “(y)dy (31)

-0

In the hydrofoil problem, however, the approaching stream velocity is anflu-
enced by c¢ffects of the free surface and wave formations.  Hence, the total
11ft on the hydrofoil will differ from 1ts aerodynamic value L‘o by an amount
AL such that the total lLaft

L = L +aL (32)

where

Q0
. 00 ’ - M
Al. = p[‘ ’_‘(y) M——:‘%—n-l dy (3;’
Jew

From the exprussion of ¢ we find that ¢, and ¢, have no contribution ts the

1 4
value of _"E_Q_ at the hydrcefoil,  The final result s
X

- 3 :I 4]
3¢(0, y, -h) :(_% + g3> at x=0 z=-h

dX N Ax

-~ Q) ﬁﬂ/z ~AOD Z
1 . " |
: - - P )dn dO! < -—hkc\)s(k(y-pl)s”xo)k* Ascec @ Kdk
Z" =G0 G J0 k-l(scc ]
(34)
Substitmtion of this value into Eq. (33) yiclds:
(o8] (‘"-/-" ] 5
sL = -4 C-thpdpl [ sin @)% + glp sin0)® | BEXSecT® 4g
=2 Jo - p-xscc @
(35)
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where f and g are agnin given by Eq. (27) and g vanishes for symmetri-
cal wings. Equation (35) represents the contribution of frce surface ecffccts,

which tend to lessen the total lift,

By substituting the relations of Eq. (34) into Eq. (33), a direct ex-

pression of AL in terms of the circulation distribution ™ (y) is obtained:

a ™ O
aL = - -E-r M()C(n') F(n-n') dndn’ (352)
J-oo -
where
o o) /2
1 -2h + Zse 2o
F(n-n') = = L cos [(n-n')p sind] : do (35b)
T - o pn-1ssec @

Therefore the magnitude of AL 1s in gencral equnl to the magnitude of drag,

i.¢., of onc order smeller than the lift L.

In conncction with the prescnt discussion, we examine the effect of im-
mersion depth on the value of M(y)., Substituting Eq. (34) into Eq. (9), we

obtain the following relation for 2 symmetrical hydrofail,

r A rm/2 e 2o
- 1 -2h . . +Xsac
“(y) = !m(Y)‘ 1 - m{ e “pdpl f(u sinQ)cos(pysin@ " ]do
- u-Xscc ©
\JO (¥re ]
(36)

where .'"oc(y) is the value of T (y) for the same wing and same cffcctive angle
of attack as h -» », If "'(y) at depth h is given, then the merodynamic
value of the circulation of the same wing, l_m(y), can be calculated from Eq.
(36). On the other hand, if only F‘Jo(y) is known, then £q. (36) provides an
integral cquation for M(y) since f also depends on [ (y). However, for
modcerate values »f h, . (y) and I“w(y) are approxim ~tely equal as will be

shown later.

GEOMETRY OF THE HYDROFOIL; EFFECTIVE ANGLE OF ATTACK

Takc a strip of the hydrofoil of width (dy) in the spanwise dircction and
with chord c(y) located at y.  According to the basic concupts of the lifting

line theory explained in the scction "Genceral Formulation of the Problem',
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the circulation (y) =~round the lifting linc at y is the samc as the circulation
srcund the corresponding hydrofoil section, It then folluws that the lift on this
lifting linc segment is the same as the lift on this hydrofoil section, integraied
with respect to the chord of the hydrofoil.,  The local flo 7 around this hydrofoil

s¢ction in a plane y = constant may be then considered as a two-dimensional

flow around the samc nydrofoil section, with frec stream velocity (U + u(y), w(y))

and without free water surface. Therefore the local 1ift coefficient Ce (y) and

drag coefficient Cd(y) pcr unit chord length can be defined by
| S 2 3
¥ P [U+uly) |” cly) Cyly) dy = p[U*u(v)] F(y)dy

1‘-9 l U+u(y)_]z c(y) Cylyddy = p wly) ["(y) dy

where u(y) and w(y) denote the induced velocitics -g-‘xk and (-g—%) respcc-
tively at the hydrofoil, The above relations then give

) = Flusuy)] cw c,y) (37)

.

and C

= (38)

¢ (y) = i

d
¢
where e(y) is defincd by the above equation as the downwash angle.  Eq. (38)
indicates an importani fcature of the local flow that the actual absolute angic of
attack a_, mcasurcd fr-m the free stream to the zero-litt direction, is modi-
ficd to ~n effective angle of attack a,s mcasurced from the approaching stream
to the zero-lift dircction on account of the lecnl perturbed velocity 2s shown in

Fig. 2. The rclntion between o, and a, is given by

a, = a_ -¢(y) (39)
D
L -
f
I ~
zero lift line i ")
_— I
a_ i~ ol
=t Y F:‘Q-tit‘hif
€ UHFT‘““-*E"T_“?_K
/
‘;M— c(y) [
-‘-‘-‘-‘-‘"\-v

Fig. 2 - D:wnw~sh and cffective anglce of attack.

 ——————— e ——
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In this way we can scparnte the three-dimensional effects and twodimensionel
cffccts by taking the local scctional characteristics of the hydrofoil at depth
h and at absolute incidence a, to be the same characteristics of the scction
of a2 two-dimcnsional hydrofoil submerged at infinite depth and sustaincd ~t
an absolute incidence cqual to a,=a_ -¢ (y). Refcerring to these two in-
cidences, CC(Y) is approximately pruportional to e, or a, for mcst of
the usual profiles at smaji) incidences (Ref. 17 and 21). Moreover, when

e vanishes so do a_  and €(y). Hence we may put
“~

CC (y) = a,a,=a a_ . (40)

In gencral, all 2, @, a and a_ may bc functions of y. In particular,

a N e

a_ is constant for wings with no gecomeltric twist, and in addition with the

same profilc ~long the span, a  is constant, Combining Eqs. (37) - (40),
(Y

we have

. U c(y) 2 ' u
[_ = ——c— l + = @
(v = <4 o, (1 + 42 E (41)
For given i"(y), u(y) and w(y) arc dctermancd, then this relation gives the
value of the chord length c(y) cexcept for 2 proportionality constant, In

particular,

(o) = L-J—;Q [ a,(} +962)) -!g)-)] (412)

which gives the relation betwecen 7(0) and ¢,» the chord at the central

s« ction,

FORMULATION OF PROBLEM WITH SPECIFIED GEOMETRY

The problem is for given geomcutry of the hydrofoil, that is, given b,
c(y), °a(Y)' a, and h, tofind M(y), CL and Cp. The relation betwcen
the given quantitics and the unknown M(y) was approximated in the scction,

"Geometry of the Hydrofoil; Effective Angle of Attack' , to be

1___ﬂﬂ_=°1(1+3%’-’)-"ﬂ&), (42)

53U cly) 2,
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where from Eq. (34) and the scction "Calculation of the Drag from Induced

Velocitices!,

~Q Irwr/Z oo .
1 ~ -2h i . +r.scc @
uly) = - —— (n)dn dol ¢ PP cos p(y-ﬂ)SInO]E 5 S
Z"hd “ p-Xsec 0
-0 o o
(43)
8 0
r
1 r — N -2h . =
Wy) =gy TN (1= T cosluly )| wd
J-, /i
e n/2 )
o\ 5 - i oo i
¥ _1:- r‘(fl)dﬂ[ sce’9 o "2hisce @ cos;K(Yﬂ) scclo sinwadO
R Y (44)

Onc way to solve this integral cquation is by using a2 moethod similar to that of

27 . . : . . .
. Lotz in acrodynamic wing theory., This mcthod consists in assuming

for the circulation 7 (y) a2t distance y from the plance of symmeotry the formula

™
-—— r—
“(y)=4bU / A2n+lsin(2n+l)¢ ) y =bcosf ; (45)
n<o
=0, yi2b

s> that “(y) = M(-y) 2nd
oo

<
r(o)=4bu > ()" Ayvl - (452)
nzo

The coucefficients A arc to be determined by using the condition (12).

2n+l
The first term >f the Fourier scries in £q. (45), namely,

2
C¥) = 4bU A sinf = 4bU A, 1-17 : (45b)

represeants an clliptical distrabution of the circulation.,  The rest of the terms
may be rezarded as 2 metsurc of the deviation between the actual distribution

and the elliptical.

Substituting £q. (45) in (43) “nd integrating by parts with respect to n,

we obtain (cf. Appendix 1V, A)

|8

ay) = -U > (@) A, Ly U, (F) (46)

)

N/
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n/2 oo 2
uln#l(g) = % s—?;‘gc et EJ_MZEJZM\I(I sinQ)cos(tcos@ sin@) dt,
t- biscc0 (46::1)

\ = E- = depth - -5- span ratio . ' (46b)

In a similar manner, substitution of (45) in (44) gives (cf. Appendix 1V, B)

w(y) = qap D (ne ) Ay W, (8) e
n=Q

where

[\1 . 2 ) ]Zn+l
wZnH(g) . sin(2n+l)¢+(-)n”(sinﬂ)R& 1+ (2N -icos B)°- (2N -icos @)

l«l»(:'!x-icosﬁ)Z

n/2 2
+(-)n4b.< sin @ [c-lhr\scc ) Zn+l(b {sec Osan)cos(br(cosésec 0sin @)
> sec30

For symmetrical wing we require that both the chord c(y) and the incidence
°a(Y) are even in y, hcnce we may expand the following quantities into

Fourier series with known coefficients

o
c, sinf \—

—C(W— cos2nf , (48)

na(y) sinff = Z an cos2nf . (49)
ET )

Substituting Eqs. (15) - (49) into Eq. (42), we get

-
8 ~
co:e L}_‘C cos Zn¢| LZAZn*lsm(lnH)ﬂ]

n=o

: l I-L(-)n(Zm&l) A2n+luln+l(¢)-] Eazncos 2n ﬂ] -Z(Zrﬁl) A2n+lwln+l(¢)
n=o T mso0 n=o

(50)

where u2n+l and W, ., are given by Egs. (46a) and (472), To dectermine

the coefficients from Eq. (50) would necessitate the expansion of the

A2n+l
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left side, and both U Zn+l(p) and I-vzr”l(ﬂ), into a Fourier series in §, thus
leading to infinitely many linear equations, 1in infinitely many unknowns, The
s-lution to this problem is obviously a difficult one, However, a very good
“ppreximation can be obtained by using a method for practical calculation on
wings of finite span, duc to H. Glaue;tzs. Replace the infinite series repre-
sentation of [M(y) given by Eq. (45) by an approximate value in terms of a
finite series of, say, m+ 1 terms,

m
i'(y)=4bUn2-_6Azn+l sin(2n+1)f, y =bcosh . (s51)

This expression of T(y) then reduces the condition c{ £q. (42) to

J0

8b([sinf) [ : ) -

?; [3?(’;7)_-! L?Z:..OAZ“"’lsm(‘zn”)bl = | n ( ) (Z“H)Azm»l Zn”(ﬁ)J(na(Y)smﬁ)
Z(Zn+l) Athl ”Zn+l(¢) \42)
n=o

This equation cannot be satisfied identically for all values of ﬁ . However,
if (m+1) particular values are suitably chosen fcr @, we get m+ 1 linear
equations from which the (m+ 1) coefficients, Al' A3' - - A2m+l , can be

determined, The values of these so obtained will satisfy £q. (52),

)
not 1dentically, but only at the select;3+|:>loints. In general, the first four co-
efficients usually give a sufficiently accurate result, The detail of such cal-
culations will not be given here; however, the calculation of the first order
term is quite similar to that of a specific example of the direct problem dis-
cussed in the section "Example - Elliptical Distribution of the Circulation

Strength'',

Having obtained the value of T(y) for this indircct problem, the cal-
culation of the lift and the drag is then the same as that of the direct problem
discussed in section ‘‘Calculation of the Drag from [nduced Vc¢locities' and
section '"Calculation of the Total Laft'', The results can be directly written
down by ascribing to f(u) and g(u) the following value:

b b
-,l; Fn)cospndn = - ;l—“ sinum dq':é]:ﬂ dn
-b J-b

f(u)

bU

n
2n+l) A2 Jr sin{pbcosy)cos(2n+1)ydv

4bUN
vy

(- ) (2n+1) A

2ne1 J2ney (OW) (53a)

F\'J83f\48

o}
[}
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and

glp) = 0 (53b)

MINIMUM DRAG FOR GIVEN LIFT

We shall consider a hydrofoil of span 2b so that 7 (y) = 0 for {y| 2 b.
The problem 1s to find a distribution " (y) such that the drag D 1s minimum
under the condition of constant lift L., By the method of undetermined multi-

pliers the requirement 1s \
oD - )\061_, =0 (54)

where the variation is carricd out such that "7 (y) = 0 at y = + b, . Applying
the above variation to the gencral expressions for D and L given by Egs.
(26a) - (29b), (31), (35a), and (35b), using the relation that & | M) (") ]

= T(M)EM(n') + T(n')3M(r) and noting that both F(n-n') and .G( ven') d.efincd
respectively by Eqs. (35b) and (29b) arc symmetric with respect t> (v -n'),

we obtain

b

[z&-ﬂﬁ—‘lz-—hl g \O(U+z§i 0. v b )—lﬁr(y)dyzo.

I X
-b

Since O (y) 1s otherwise arbitrary, the quantity inside the bracket must

vanish identically., Or, using the present notation, we have

2 wiy) - \O[U + 2u(y))= 0. (55)

The constant multiplier xo determined by Eq. (55) cquals approximately
twice the value of the downwash angle € for not too shallow submergences;
more precisely, the difference ¢ - o 1s a sccond order small quantity

-

given by

A
o _ __uly) w(y)
R SR E VR (9 [V ET (O F

Therefore, thce condition for the mintmum total drag, accounting for all
causcs and holding Lift ccnstant, 1s that the total downwash angle must be
constant, along the span, up to the first order term.  When depth of submer-

gence becomes intunte, u(y) tends to zcero, the above condition s rceduced
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to the requirement of constant downwash which is in agreement with aero-

dynamic wing thecory,

Substituting the explicit ¢expressions of the induced velocities w{y) and
u(y) ‘given by £qs. (43) and (41) into Eq. (55), we obtain the following integral
cquation for [ (y):

b @
LI e | (- cosuly -n)ud
= n ply pdp
-b o
n/2 2
- EE R
+ 4f2' e gec 0cosl Ay- q)secZO smO)secso do
o
m n/2
= -2hpu + ., secZO . -
= 0 —Z (,)dv] e wdp cos(p(yw\)smO)f‘—'S:Z; de | (55a)
[ S
o o

To solve this equation a practical method of approximation similar to that used
in solving k.q. (42) of the indire ct problem may also be applicd here. Assum-
ing that the exact solution of Eq. (55a) may be approximated by the expression

given by Eq. (51), Eq. (55) can be reduced to the form

M

(2nt1) A, L1900 (8) = ‘os‘“‘ai% 'Z(')n““”) “‘znuuzmlw)l 2

=0 B n=o

3

where UZn+l and b'12n+l are given by Egs. (4va) and (47a) respectively.
Trom this equation the first (m+ 1) coefficients A may then be determaned
for (m+1) particuiarly sclected values of §. 1t should be remarked here
again that the solution so obtained cannot satisfy Eq. (56) identically in @,

biat nevertheless gives a good approximntion. The estimation of the deviation
of this solution from the clliptical distribution, which 1s the solution of the
corresponding problem in ~crodyn-mic wing theory, will be made in the speci-

fic e«~mple discussced below,
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EXAMPLE - ELLIFTICAL DISTRIBUTION OF
THE CIRCULATION STRENGTH

As shown in the indircect problem that the first term in the assumed ex-
pansion of M(y) given by Eq. (45) represcnts the so-called elliptical dis-
tribution, it would be of interest to consider a direct problem of a hydrofoil
of span 2b immersed at a fixed depth h with an ¢lliptical distribution of
(y), thatis,

2
=M -L 1
AR e A A (57)
= 0, |yl 2b .

Although for a given hydrofoil of fixed geometrical form this distribution
cannot be held for different values of h, ncevertheless it gives intercsting
results.  In this problem we shall further define the Froude number of the

motion by

e

which is one of important parameters of this problem, We shzll mostiy be
concerned with large values of ¢, corrcsponding to shallow submergences.
For instance, for U cqual to 80 ft/scc and h cqual to 4 ft, ¢ is approxi-

mately 50, We shall further denote
U
P67 "gb' + % ° M (580)

B i1s in gencral also very large in our velocity range of intercest,

For this distribution of M(yj wc¢ find, from Eq. (27),

- T ——— . glw) 0. (59)

a. Calculation of the Drlg__

Substituting Eq. (59) into Eq. (26), we have (cf. Ref. 24, p. 405):

2 2
wpf"o R Jl (s b) LT
D, = J —_—du = : (60)
o

1 4 " 8
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and from Eq. (28) wu¢ obtauin (cf. App. 1V, C)

ot [ 35 (ub)
D + D .. le] \,'-th. l dp
2t Dy T m
[0}
)
npr‘o" Kl 2 1\ 1
c -l 1-;x,|1+x K([__)-E(;) (61)

\ll + XZ \‘l + )\Z
where K(k) and E(k) denote the complete clliptic integral of the first and
svcond Kind respectively and N 15 the depth -21- span ratio defined by Eq. (58b).
Using the series expansiors ond the asymptotic expansions of K and Z
(cf. Ref. 26, p. 73), we find the behnvior of (DZ+D3) for sm=all and large

valucs of N respuctively os follows:

2 =
D+D;,""r‘o{__ A }1 _:_:_!'xz-“}_ £ (1 ,4\11+x‘3_4)
2773 T TS =3 | 8T T/ %8 3
t \“+x" - N1+X
S 31428
+ of 5 1 - )
(1+)\7) J
ns h=0; (62-)
4 3
"l I ! 1! (62b)
D +D, = - )1 - + 0(=) > 2s h—=oo . 2b
2773 T e | aa? b
As h—o0, the drag duc to the suriace effect dimimishes hke 17 . 'Vhen the

h
hydrofoil becomes a plinuing surface, i.e. h=-0, wec find that (D,+D3)

tends to a finite value -n p;"o"/8 which cancels Dl' and consequently, the

drag 1€ thea solely duc to the wave effect,

To {ind the wave drag, we substitute Eq. (59) into £q. (29) and obtain
the following integral™:

] >
f‘"/3 --Z- scc 9 l

D4 = ﬂp{"oz e 7 l
6 I s¢c @ siné !

-

2

Jl(é sec&OsinO) ! 5
| sec’90do (63)

* From the intcgral reprcscutation of the wave drag given by £q. (63), we
note that D

~2 1
D4 = pl o f(a', \), or, ——2-—2 = f(a', \)

pU ¢
o
which can be directly derived from dimensional analysis (cf. Ref. 5, p. 438).
This is a uscful non-dimensional form for expoerimoental purpese,

——
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For gencral values of the Froude number ¢, the above integral may be con-
verted into an infinite sceries, each term of which contains modified Besscl

functions of the second kind, (cf. App. 1V, D), 2s follows:

Q
Pl 1o SO Pr(negIn(neg)

e ( 4 )n rx (l)+[1+a(n+‘)]x (l)1 (64)
oy B¢ L.ni(ne1)(ne2) \2p° )l g Eelmntlie }
n=o

For very small valucs of ¢ (~large h, or \), we can use the asymptotic

:Xxpansion of Kn(i—) ,

2
| o -1/o 4 -
hn(;)? -z- Q¢ ll#

['.8 Qn -l)(4n -3102*.......] (65)

2! (8)°

30 we see that in this case the series in Eq, (64) converges very fast and the

final result may be expressed asymptotically by

e

2
D, “p;° € Zz/c ("1‘-)1/Z [l+-3-(l . '7)(”0(«2)], as o -0, (66)
g < 6p
which diminishes exponentially with increasing h, As a remark, the above
asymptotic expression of D4 for o small can also be obtained by evaluating
the integral of Eq. (63) in a complex 0 plane and applying the method of
steepest descent (e.g. cf. Ref. 23, p. 504).

For large values of ¢ (~ small h), Kn(':-») has the following expan-

sion:
@
) -2m
Ko(‘:-) = 108(20’)' IO(-}) +Z(Z—c-1l—T ” (m+l) 5
m:o(m.)
n-1
K (_) IY( -) (n m 1) (20)" 2m o
mz=o
o
+ (- )nznio’ — | log(20)+ 7* (m+l)+-zv (n+m+l)] ‘(n > 1)

It can be seen that the most important contribution to the sum of the series
n+l

1

in Z2q. (64) comes from the term %n! (20) of the expansion of Km\l(}!‘)'

As shown in Appendix 1V, E, this term results in a serics which converges
only for X2 1 and represents, 1n this region, an analytic function of A\,

Consequently the value of the wave drag D4 for shallow submergences
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(~\-1) may be obtained by somc analytical continuation of this function from
the region X\ 21 to the whole region of physical interest, namely, 0%\ ‘o
(«f. App. IV, E). The final rcsult is

)]*4'2 232y

npl‘ I ) [ \ 1
“,? 1-—-\ K( ) - E( 1B l;(1+x ) E( )
1422 11+xl ’ QI+X2
3 NN 13 1 3 1 1
e A-ATNI4N" F (-, 51 )] + logp+0(—~, =) p. as o>,
kl q ) H\Z_ lbpz ? o }

(68)

It is of interest to note that when the hydrofoil 1s close to the surface, the
wave drag is rather similar in bechavior but of the opposite sign and numeri-
cally almost twice of the drag duc to the surface effect (cf. Eq. (61)). How-
ever, it should be emphasized here that even i"(y),’r; were the same function
of y for all valucs of \, |‘o still depend on \, cspecially for N small,

(cf. Eqs. (§) and (41a), Consequently the actual dependence of the induced
and wave drag on X\ for a given hydrofoil at fixed geometric incidence can
nnly be determined after the function “o()\) 1s found later 1n 'his scction,

part (4).
It 1s also of interest to compare, when o is small, the first term in

&£q. (G4),

2
ﬂpr sz s . ] s l
C' = ]60 (&U‘; ) Ry / ! r(o(#) + (1 +%) ‘\1(;)] .

with the wave resistance on a moving sphere of radius r given approximately

by (cf. Ref. 5, p. 437, also Ref. 6):

3 2
K (3) + (1+%) 1<l(31-)] R %1) .

Zr3 3 “1/o
R:ﬂp (%—-) G

Cxcept for a proportionality consiant which depends on the size of the obstacle,
they have the same dependence on ¢, £vidently an obscrver on water sur-
face cannot distinguish bodics of diffecrent forms 1f they move ot sufficiently

grcat depth.
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b. Calculation of the Lift

Fhe total Lift ¢cxperienced by the hydrofoil can be obtained, by substitu-
ting £q. (£9) into Eqs. (31) -(35), as follows:

Lo=L_+aL +al, (69)
where
b 5 '
- -" *
Lo.pur*o[ qTLZ dy = 3 pUbLI_, (70)
b
-b
"’Fo2 "/ ao [ -2hy 2 du
AL'l :—Z_ —-—Z [ Jl (bp.Sll’\O) " ' (71)
sin @
o
n/2 a0 2
AL‘Z = . ‘pf'z —d—% r c-lth Z(b;.; sin@) ste O dp . (72)
o ; 1
sin G.Jo pulp-“sec”0)

It con be secen that l_.“ 1s the ncrodynamac value of the lift, ALl is inde-
pendent of the grovitational offect ~nd thus represents the correction duc to
the mcean frece surf-ce.  All the lift causced by the surface wave ceffects s
reproscnled by AL?_. For smnll incidence angles, 25 1s approximate ly
proportiontl to the incidence angle (ef, Fq. (41-)), hence relative to L,

aAl. 'nd D =2r¢ sccond order small quantities,

The intogral represcenting ALl contains the samo integral given in
£q. (61) (cf. also App. 1V, C), tic result of which m~y be then applicd here.
Aftir this substitution, integrating by parts wath respect to 9, we obtain

. simpler represcentation for AL {cf. App. IV, F):

1
pr 22 L’
A, = oo VI_—T (k) d k (73)
- K
(o]

where (k) 1s ~ derived complete elliptic integral (cf. Ref. 25, p. 73)
dcfincd by
~w/2

4(K) = sinzg coszﬂ

T . dg (73~)
! 1 -khsi:zﬂ_!zn
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and

: (73b)
\ll+x2
L
ror 0<h{o we have the corresponding values of A\ and X as 0<\<oo

and 1>x>0. When A\—0 (X=—1), the integral in Eq, (73) tends to a definite

value, namely

}:

lim X L (X !
Xx—1-0]  ¢(x) _Zz dk = [ @(k) dk
(o} l-k (o}
L[ 2 o
= 3 | kB(k) - (1-k )kc(k)} = 3 (74)

-0

where B(k) is another derived complete elliptic integral (cf. Ref, 25, p.78)
defined by

B(k) = -1:7 lE(k) - (1-k%) K(k)] . (74a)

Hence Zq. (73) indicates that ol tends to oo like -)l: as \— 0, noting that

™~ does not vanish, as will be shown later, This fact is not surprising i
because it is known that as the hydrofoil approaches the planning condition,

the total lift drops to almost half of its aerodynamic value Lo (e. 2.

cf. Ref. 14), The divergence of the integral in Eq. (71) simply implies

that this szcond order small quantity will grow so large that it will modify

the value of the first order quantity Lo.

For M\ not too small (~ x not too close to 1), the integral in £q. (73)
can be calculated by using the known cxpansion of &(k), (cf. Ref, 25, p. 73),

given as follows:

n [ kz 75 K

2 Z 2 3 ] (75)

Substituting this expansion into =q. (73), then applying the transformation
K2 :)(Zt and integrating termwisc, we obtain (cf. App. 1V, G) :

2
o a [““6 L8t 13015 1
l T I z 236 a. 3 23
64\\]1+x2 (1+\%) (1+x ) 8 (1+X\7)

o(—ﬂ’ . (76
' RSN ))} )
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This formula should be good for A>1 (or h>b). For B closeto 1 (hx0),
the above series converges slowly; hence we have to resort to some other

approximation in order to facilitate calculation. [or this case, we define

) 2
2
xa-x0 xka, xt "1xe = Zeont) (77)
+
Then
) 1,2, K 4
=l =X (=) + 00 )
1-k
and
re | X2
Pla T 4
el = - — G(k)dk-z} :—zé(k)dk +ofx' )],
Jo o ‘
Now the first integral can be integrated,
X
1 2
[ nax = xBpo - xx? o],
QO - .
and the sccond integral may be approximated by
X2
X 3(K)dk - - iog \ll-XZ e e et
1-K% i * ,l 2
o 14\
Finally we have
PZ >
AT 1 1 A S 5 il
AL1=-3TX i B(r )-ﬁ [ ( +§log N
‘llﬂ\z \u+x7‘ \“+x2 \n+xZ 14l -
+ o\ logh) , (78)

and using the known expansion of B(X) and ¢(Xx) as X -1, we obtain

2
pl"o 14\

.2 1-3x2[1 2-3:20
3In A og i B g \

Z ) s
al. | |j+ o(x' log\) as A\=0 (78a)

Th

The integral representing ALZ in Eq. (72) 1s indeterminate, but its
principle value exists. The mcthod of contour iniegration described pre-

viously in the section '""General Formulation of the Froblem' gives a complicated

——————— e S G-
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expression,  In this case we shall use the following approximation. By
2
p = (<sec”@)u we can transform Eq. (72) into the following form:
2 =
e m/2 -ﬁseczg Jl(%seczo sin Q) e 4
| f sec 0d0 (79)

secZO sin@

The inner integral is very simalar to that representing D4 in Eq. (63) which
i1s discussed in detail in Appendix IV, D, This integral may be treated in a
similar way (cf. App. 1V, il). Buecause the intercsting fcature of ALZ also
comes from the intcgration with recspect to u, we shall take only the first

order term of the .nner integral.  The final result is as follows(cf. App. IV, H):

for ¢ very large (shallow sckmergence),

ot | r(2) |1
aL, s —2- ()1 - o o2 Lo (== (r + 1og &) | (140005, 3) ; (80)
2 X} . b= no o o
4 |2 =gl i 2
,Wr(:—) \*l‘f J 4

and for ¢ very smnall,

/2

3
ALZ'E' 80 Ff‘(%) ;312 (1 +%+ ()(62)). (81)

From these relations it 1s of interest to sec that ALZ tends to a constant
value p"’oZ F'(é)/-iv'_l. as h tends to zero.  This result is quite a contrast to
the featurc of ALl' Compared with AI"I' the value of ALZ is smaller for

¢ large, and greater for o small,

c. The induced Velocity at the Hydrofoi)

In order to investignte further the geometric and hydrodynamic proper-
tics of the hydrofoil, w¢ need to know the value of Po . and if we want to cal-
culate Po in terms of given quantitics, we have first to obtain the values of

the u-velocity and the downwash at the hydrofoil (cf. £q. -t1).

Substituting the value of *(y) into Eq. (43), we may express u(y) in

terms of two parts :

aly) = u(y) + u,(y) (82)
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where
it /Z ~ 00
Fo ~ S Jl(p sin 0) . .
ul(Y) S R 7en dQ N —h—a-rb—cos(pnsan)dp, ( &)
JO JO
Ko F"/Z - -2\n 'Il("L Sin'6) ino schO d
U‘:(Y) = - = d0 N ——Sm-—- COS(pY] sin )m 1Y
Jo Jo (82b)
and

'.'.é. ,{-_—EZ. \:g. (82(‘)
u

The integral in Eq. (82:), which represents the effect due to the mean
free surface, c2n be evnluated exnctly.  The result i1s as follows,
(cf. App. 1V, 1)
() ey 2
) (nts n
o) = - =2 | l--v}: Ea Gy Fmiggoni W’ e
8 yrb \JT»;\ n:=o

The volue of ul(y) 1s 2lways negative and becomes infinite as h— 0, It can
be showrn that the 2bove scrics converges uniformly with respect to - when
0gm <« /o may also find that -.:l(y) is A slowly varying function of y

1n partcelar, the value of ul(O) is

.03 o 1 PRTLUNE )
Y SRC_ 2 e = <y 5 e
! leb oz < bene xuxz
\ \Ilf'«'f\
r ] 1
- -2 -~ B( o) (81)
i=h \ ‘\El‘f}\‘- \Jl+'\"

where Blx) a1s 2 dorived complete cllintic integral defined by Eq. (74a).

Il can be Lhown tat uz(y) 15 also a slowly varying function of y, i,c,
the values of u (y) 2t paints clo<c to the hiydrofoil differ very slightly from

its value at plinc ol symmetry iven by (cf. App. IV, J):

270 1 1 1 s |l
= OF —
TO Vo 1/4

u,{0)

1)

177 F !-;- )ll«fq-z-’yi'log—)J(l\fq-))
(1+:\%) \s+:\ ] \Ixnx

for ¢ large (85a)
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and
r i 1
~ [e] .
u,(0) ¥ e \P"—" C 7z (1+0(e) ) (or ¢ small (85b)

It is of interest to seec that ul(O) and uZ(O) are of the same order of

magnitude. Therefore the tota: u-component velocity at y=0 is

|‘\
u(0)? - =2 ! B L + 2 _pf |1 A 1+
nb 2 2 e l 2., 2 2
4\ \]uqx \ll+4x 2R (1+4)°) [ 144N\ +sz& 144\

l 2 2, 1 .
= (v+ log ;)J (1+ 0(-;) )}, for o large; (862)

and
u(O)‘-"-B——;;Po L1 - ) (14 0(35, o)) for o small. (86b)
- " ;2- .z? \7. ’ .
The downwash at the hydrofoil can be calculated in a similar way:
wly) = - @ (0,y, -h) = - (¢, +9, +9, +0,) (87a)
z lz zz 32 47‘ (0' Y, 'h)
wherc
)
i
:lz(o' Y, 'h) s o< ':12[ Jl(“b) COS(P Y) dp
Jo
r
r-I% v € b
Mo Izl {
gl - ===) jyp>b (87b)
2l
y -b
o
Pnr -2hu . .
. .b RS = > 1]
(n &z 732) (O,Y, 'h) T < Jl(bp) COS py dp ) (87(:)
o

—— ¢
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and

/2 .
2, J (Kbsec 0sin@)
¢, (0,y,-h) = -r e can=ecifnll cos(<y secto sinO)sccSOdO
4 o 2. .
& o sec 9 sin@

(87d)

Now the integral in Eq. (87c) can be evaluated while that in Eq. (87d) again

has to be approximated,

3’3;((:2" ¥3) = ;g 1 - R¢ 2h -1yl (Ref. 25, p. 33)
o 1 )
where 5

- 1
PAN I_(4)\Z+ 1- "]Z)Z + (4xr\,)z_l C s (-"1\£+ l-nz)

F,(hn) =
\] (an+ 1-T,Z)Z+(4>m)2
\ ot
2 2.2 2 2 . Z\
ini l_(4x +1-1n7)7+ (4\m) J SN e ) (88b)
\j(4\z+ 1-0%)% + (axn)?
and
h
A n= {? ) (86c)

It can be scen that Fl(x,r\,) 1s a slowly varying function of  for fixed \,

ln particular, we have

pl(x,o) - _)_L)‘_ , (89a)
\(lwﬂz
\ 2 2 2 2
F(ns) - NN R \Iu.\ -\ (89b) |
A\ 14al |

For small valucs of ¢, application of the mcthod cf steepest descent to the

integral in Eq. (87d) yiclds
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04,(00 vs -0 - ;% > e 27 (140(0)) (50)

which diminishes exponentially with increasing h and is independent of y for
points close to the hydrofoil. For very large o, the integral in Eq. (87d) also
represents 2 slowly varying function of y and consequently only the value of

®, (0,0, -h) is of intercst. It can be shown that (cf, App. 1V, K):
2

@..,2(0.0.-h)y-§-§{1- \J“ }[HO(}.{;)]

R 11
3"Z%("Z“S)(o,o,-h)[“o(v’ B)]. (91)

Finally we have the value of w(U), by substituting Eqs. (87a), (88)-(91) into
Eq. (87a), as follows

2

r
w(0)¥+ —&-‘g { 1 - A } [1 4.0(-(1;, %)]' , for o large; (922)
1+3)\ )

w(0) = +-{-‘5° { 1+8—12} [1+0(-—l-4- R Z/U)] , for o small, (92b)
\

which tends to zerodynamic value

Fol0)
Wm(O) = +._}S—_. (9ZC)

~s h— o0, |

It may be remarked here that both u(y) and w(y) arc almost constant
spanwise 2t points closc to the hydrofoil. This fact justifies some of the
basic rssumptions introduccd previously in the sections, '""General Formulation
of the Problem' and "Guoornotry of the Hydrofoil; &ffcctive Angle of Attack!'',
This result also supports the ~ssumption that the same circulation distribution

will hold for a wide range of depths.

d. Geometry of the Hydrofoil

We are interested primarily in the case of shallow immersion, because

the geomctry of the hydrofoil at deep immersion will be the same as the
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corresponding aerodynainic problem. 3Substituting Egs.

(86) and (92) into

(+1a) and neglecting second order small quantities, we obtain the value of

[ (2P(0)) as a function of N and ¢ as follows:
o

Uc a a
o 1 o - 2 A
tyyp @ [fz(*"’)* T °af1("'°)J
where 1 N
2B( |5 - Q )
2
(o) < — Bt N
anyr+an \uw\ \[Zi(lmxl)l"4 [\{1_4»-1\24»2
and
fne) = |1 - =2 | {1+0d -l-)-|
& " = ____Z |- 0" B K ’
1+3\
/s h tends to o, fl tends to zero and fz ternds to %;
r‘o at infinite depth becomes
1
2- U Co ac Oa
Pooo : L, 1 €
-g a

which is the well-known aerodynamic value of I

(93a)

|j+\l-£(y +1lo gé—)} + 0(;1—)

(93b)

(93¢)

hence the value of

(94)

in terms of given quantities,

It 1s of interest to note that F‘o changes with respect to r‘oo(O), as \ and
¢ vary, according to the following relation:
1 co
r ! 4+ A
r.o C = 80 ~ = f(\.o,oa) (95)
o 1 "o i
® :1--‘)—66[2(\ 0')+—o f()\,o)]

which is a function of \,¢ and a,

its squared valuc, TZ, are plotted against \ in Fig, 3

for a given hydrofoil,

This function and

for two incidences

a, = 3° and 6° under the following operating condition:
c =8ft, b= 2dft :2m, U= 100 ft/se SUSIRI55 (96a)
o , < ’ ac e n, = $¢c, « = E{-B- = .
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so that
15,5 o 1.314
yh === e ) ~uh (96b)
(o]

15.5,, 2 15.5
® 1+0.628 [fz(x, =)+ Sa 0N —X_)]

The values of T and f decrease with decreasing \, and tend to unity
asymptlotically as A—=o. For small values of X\ (X <1), both r'o and POZ

deviate appreciably from their respective values at infinite depth.

1t may be pointed out here that because both u(y) and w(y) are almost
constant along the span of the hydrofoil, it follows from Eq. (41) that for an

elliptical distribution of M (y), the plan form is also nearly clliptical,

2
c(y) = <, \Jﬁli é— , (97)

together with a negligible geometric twist,

Another consequence of the above results is that the condition of Zq. (55)
for minimum drag with prescribed lift 15 also approximately satisfied by almost
constant (spanwise) u(y) and w(y). Hence the hydrofoil of clliptical plan form

still gives approximately the minimum drag for a given lift.

e. Over-all Hydrodynamic Properties; Lift and Drag Coefficient

In this section we shall again only consider the case of shallow submer-
gence. Combining our nrevious results we obtain the total lift and drag of

the hydrofoil at small depths as follows:

2
Pl
L é-z-pUb - -—3%{: ifs(x) - f4(x.a)] (98a)
[0 o] =
where
2 2
(0 - —— {B( — - ¢ =) - g reg R0, (98)
x\"1+x2 L 41+xz Jnxz \hn
3 i '_'('i) A [ ]
(N o) s == (3) (1 - —=——~ ) — (v + log =)
) iz "F(%) 1n% ’
) A i 2 2
-6.05(1-0.19I___T)'_l+\j;-?(Y+log;-)] (98¢c)
N1\

and Po and '?'“(x.\r.aq) are given by Eqs. (94) and (95) respectively,
m <
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"pFO ; .
D : -—8—2 r;{fs(x)+2[l-f5(x)_|} ) (99a)
where
() - 2 a1 i K( =iy =iy | . (99b)
' 14\ 1+~

At this stage we should be able to see the properties of the total drag
excrted on the hydrofoil.  As mentioned before, when A—o D tends to

i 2 .
the zerodynamic valuc Doo ] rrpf“o /8, hence we write

"IDT = vt £(R) + 2 Tg [1 -0 . (99¢)
(o o]

This ratio 1s plotted in Fig. 4 for a, -~ 6° and under the operating condition
given by Eq. (96a), The first term on the right hand side represents the
contribution from the totzl induced drag; this quantity tends to Doo asymp-
totically for large h and decrcases rapidly as the hydrofoil approaches the
surface (h<2b)., The sccond term represents approximately the wave drag
which is negligibly small for h > 2b and becomes important only at small
depths. As a whole, the totzal drag D doviates only shghtly from D for
h ‘/;— , and decreascs moderately at small depths (h< z b) which is actuall)
the range of intercst, When the hydrofoil approaches the planning condition,

the total drag is solely due to the wave effect.

In order to measare the total drag, including the wave drag, exerted on
a hydrofoil, the cxperiment must be carricd out in 2 towing tank., Then it
would be convenient to define the over-all lift and drag coefficient with re-

spcoct to the towing speed, such as,

L D

C, = , C. = (100)
= leb:':'i D Z‘ szs

where p is thc density of the liquid, U the towing speed, and 3 the area
of the plan form. The above definition for CL and CD were used in pre-
vious expcriments (known to the author). In ordcr to compare with these
available experimental results, we shall also adopt the above definition of

C, and C.. Substituting £qs. (94), (98) and (99) into (100), we obtain



2
c a a c 2 a_a
. m o ¢ % ¥ 1 o e ar 1
CL=g Ryp) L o sy R 5) 1 % {‘3(""‘4("""J ’
(lL+g—ga) RS I
(101)
e
R s 2 250 [ - l
Cy=gr Ry ——'—l-c_ ifs(\) +2 ll = fs(\)]J , (102)
1+ g-to a_
o 4b” . o
where /R = .~ = aspcet vatio and 14, f,, f; are given in Egs. (98) and (99).
The 1ift drag ratio is
-
1 o e %Y ] {
l-— (§) | 1500 - )
= o 1+ ] a y
C_L £ i 8 L ) (103)
D 1% LI o ‘ =
T ('B') —_—— {fs(x) ti'l- fs(x)_'}
L1+ -é—-so- a

2
These rosults should b good for N\ 22 (h <2b) provided that o = EF 1s large,
]
say, greater than 20, From the expressions of L and D for h large, we
notc that 2s h— o, both C, and CD tend asymptotically to their aerodynamic

L
valucs, namely,

Lud ‘o 2 %A ] " co2 ®e %2 1°
ST 3 ‘R(T)—IT— » Cp¥ g R 1 %o '
l+ g5 o, ltgvw 2, -
so that
1 4
CR~¥— C
D .4 L

which cgrees with acrodynamic wing theory., However, it can also bz scen
from Zqs. (101) and (102) th=t cven for N small, CD/CLZ is still propor-
tional to 1/ AR if the smzall quantity of tic sccond order is neglected, From
this result it follows that in order lo improve the hydrodynamic propertics the
preference should be for a high aspect ratio hydrofoil, even for operations

ncar the water surface,

To illustrate the details of the behavior, and to compare our results
with experiments, we shall take specific values of Cor b, R, and a, to

dotermine all the cocfficients, This will be shown as follows.
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DISCUSSION OF RESULTS

Consider a hydrofoil of elliptical plan form with other specifications
and an operating condition given by £q. (96a) so that AR = 6.3. These data

serve to determine the coefficients in £qs. (101)-(103) which then become

C_ :4.74a, y- 0.306 oazrz {£3(x) - £4(x,c)} : (104)

Q]
@)
'

1,14 qazrz {fs(x) +2{1- fs(x)]} (105)

and

0

L, t-ooesa {6 - e} -
0.2¢a r {£,(0)+ 2 [ 1-£,00)]}

D
These equations re plotted against X\ for a = 6° in Fig. 5 and also

plotted against a, for several small values of X\ in Fig. 6. From these

curves scveral interesting conclusions may be drawn.

At depths greater than 2 chords, the influence of the surface of the
wzaticr 1s negligib'y small and the hydrofoil will have characteristics similar
to those of an airfoil ol tht same section. In the rangc of depths less than
2 chords, CD decrcases gradually oecausc the decrecase of liquid flow
(with respect to U) avove the foil diminishes the induced dovnwash., At very
small depths (h < co/Z), the wove drag only 1s important; our results show
that when the hydrofoil is near the surface, the rate of encrgy shed to form
the wave system s shightly less than the induced drag at large depths., In

the samie range of operation (h < Zco), C docreases comparatively

L

rapidly to almost %C as thc hydrofoil approaches the surface.  This re-

g duction in lift rcesults %rooom the decrease of mass of water flowing over the
upper surface of the hydrofoil, causing a recduction of the absolute value of
the negative pressurc on the suction side. The corresponding lift-drag
ratio decrcascs very slowly with decrcase in depths for h >c°/Z , and is
almost constant about the point h = -;‘-co. This ratio decreascs rapidly with
further decreasc in depth for h< 3 <o This rcesult also indicates that if the
water surface is not too choppy, then the depths between %co and 1 <,
would be a favorable range for operation.  This optimum rangce of depths
also associates with a stabilizing coffect because this range corresponds to

the middle part of increasing slope dCL /d X\, conscquently, any further
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decrcease in depths will result in a rapid decrcase of lift so the hydrofoil will
sink, and if it sinks, an increasc in lift will raise it up again., The abtove re-

sults as shown in Fig. 5 agree well with some of previous experiments (cf.
Ref, 17, 18, 4).

If we add an almost constant frictional drag (about CD( = 0.02) to the
drag cocfficient, then the result shown in Fig. 6 is in good agreement with the
obscrvations made in Rof, 21 and 18. The reduction in CL and ) with de -

crease in depths becomes more appreciable at larger angles of attack.

It 1s also of interest to consider the situation of practical operation.
When a hydrofoil moves through water of infinite surface extent at shallow sub-
mcrgence, an obscerver who moves with the hydrofoil can mcasure the value of
the approaching flow velocity U + u(0) more casily (for instance, with a pitot
tube) than the valuce of U at upstream infinity. Then if one defines the over-

all lift and drag cocfficient based on the value of U + u(0), thatis

c,'- L : c, - D (107)
%pUZ(l+u-§Uol)ZS zl-pUZ(l+‘-‘58))zs

where
C
(=)a.a

ci () BRI Wt Rl WY PR I (108)
Zrn lc N 1 g

L+ 55 2,

one will find that both CL' and CD' arc almost constant for x> 0,1 (cf.
Fig. 7) although cL'/cD‘ is identical to C, /C[,. However, the total lift
L and the total drag D calculated from Eq. (i07) would still have the same
dependence on A\ as CL and CD' only with a different proportionality
constant,

The above results are derived under the assumption of large Froude
numbers, the effect of speed U on CL and CD is dropped out from our
final formulas. This effect becomes significant for motions with small
Froude number (say, less than 1), For instance, lot us consider the same

hydrofoil as that in the previous case, but moving at a low speed,

U = 10 ft/secc, c, = 8ft, b=20ft, a, 22nm (109a)
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then
_ U - _ 0.156
g = rg = 0,156 , g = =

which may be considered as small for \ >i- . Using the values of u(0) and
w(0) for ¢ small (cf. Eqs. 86, 92 and 41a), we obtain the value of

i\, o, na) in this range of operation to be

C

i lvgp a 1
r(\.a,na)= -l_"g 2 = < = (o <-3-) (110a)
o0 l+é-€- a, [gz(x)+z%gl(\)]
where
- ==
g,(\) = ;lz | 1 - “J[‘Zr——;); : (110b)
g,(\) =2 {l o= ] (110¢)
1+4x?‘

The value of y given by Eq. (110) is plotted in Fig. 8 for a_ = 6°, using
the specification given by Eq. (109). The result shows that ™~ also decreases
with decreasing N\ for ¢ small, but the rate of decrease is slower than

that 1n large o casec,

Since the Froude number effect only ¢nters in the expression of D4
and AL.Z, it suffices to discuss only the behavior of these two quantities,
With respect to a convenient reference, say, Doo' wc have the values of

D4 and Al..Z for ¢ small as follows:

5 L % o2\
R \j 5 L o P (111)
[o o]
3
aL ]
2 . 2 1 2z
: A (112
_D; r \'Znﬁ )

Noting that B is proportional to UZ, it can be scen from above rclations
that for small Froudec numbers (~ low speeds) an increase in speed will

causc both CL and CD to decrease, with the drag decrcasing more
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rapidly, This effect has also been found experimentally at small values of U

(cf. Refs, 17, 21). iqs. (111) and (112) are plotted in Fig. 9 with the specifi-

cation given by (109).  In the present range of operation (o = = li6 . A >~é)

the wave drag is negligibly small compared with Doo , but Al..Z incrcases
very rapidly, relative to Dm' with decrease in depth, The total change in

al., in this range is, howcver, still quite small with respcct to Lo.

2
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APPENDIX I

Some Integral Representations of a Lifting Line

It is given that a lifting line of span 2b is located along y-axis from
-b to b with a known distribution of circulation |*(y), (see Fig. 9), the free
stream being uniform, of velocity U in x-direction. The problem is to find

the induced velocity potential  ¢(x,y, z) due to this lifting line.

z)
y
b /
/
> M (y) R e e e S o
U :
—_.——» = P R L T T T T R T
—— ; - X
g
S e e e
O T ardn sheet
-b/
Fig. 9 - A lifung line with its trailing vortex sheet,
First this potential ¢ should satisfy the Laplace equation
v% - o0, (1. 1)

Next we shall impose boundary conditions for this psoblem. According to
the lifting line theory, the approximation may be made that the trailing
vortex sheet is parallel io the free stream; that is, on the surface 2z = 0,
with x>0, |y] £b. 1Itis easy to see that boundary conditions for ¢ should

° be as follows (see, for example, Rcf. 22):
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(i) ¢ =0 on z =0, outside the vortex sheet;
(ii) Across the vortex shcet, ¢ has a jump M(y)

(x,y,0+) = + f..gﬁ on the vortex sheet;

(iid) -g-% , %& arc continuous and %% discontinuous across the vortex sheet,
but

|g-£ = I%‘L » S0 that the pressure i1s continuous there,
Yizz0+ YIz-0-

(1v and grad ¢ -0 as \y2+zz—o+oo and/or x - -0 .
¢ g \ i

Conditions (1) - (iv) also imply that

(v) olx,y,2) = -o(x,y,-2) .
(Vi) "aa_x' ¢(x,y, 2) SR %(xv Y, 'z) H

(vii) o(x,y, $0) = 1%\-} (1+sign x).

One way to solve (I.1) together with the boundary conditions (I. 2) is by

a Fourier transformation, Oeline the double Fourier transformation of

¢ (x,y,2z) with respect to ~ and y by

oo @
;(\.u.2)= zl;r -?:”‘xdx e-‘Pyo(x.y,z)dy (1. 3)

=-Qo0 -0

so that the inversion formula is given by

[0 0]

ao
1 Y N
o(x,y,2) = ﬂj e M da e *Yo(np z)dp (1. 4)
-

=00

Applying (I.3) to (I.1), we have

£ 2 2~

('—Z’\ '}*)¢=0-
dz

The solution which satisfies (iv) and (v) has the following form
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~ 2 2
o (A u 2) = (sign 2) A(\, p) O PO . (1.5)
so that

o (0w, 04) = AQA, p) . (1. 6)

Application of the same transformation (I.3) to (vii) gives:

o oo (o)
;.(X0 p, 04) = -gl—"-J‘ (q)c-”‘m dv Py sign x dx + S T
-0

-0 -0

Using the conventional method of summability, we have

oo 1/
e-l)‘x sign x dx = -Z- him e sinxxdx = i\
Joo ' e 04 !
and
r oo
=1AX
e dx = 2n&(\)
Jow
Hence we also have
i . ™
et 1 1 -, -
¢ nmon) s g | o rmem|[ rme ™ an (1.7)
-0
Comparison of (I.7) with (I.6) gives
o
1 1 , -1
A = = emem] | rm e an (1.8)
-00

Substituting (I.8) into (I.5) and then applying the inversion formula (I.4), we
obtain the solution

oo "_—_
xz"ﬂz Iz| du

W 0o
¢= sign 2 -lzj' ['(Y\,)d'\;[ i‘“T"idx cosp(y-n) e
2w
-0 ) )

(o o] oo =

1 - -p tzl
tq3| Tt)dn| cosulyn) e Fdu
-0 Jo

: (1. 9)

This form of integral representation for ¢ is the one given by von Karman
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(Ref. 22). A translation of the origin in the z-direction then gives Eq. (10)

of the text, Another convenient form of ¢ may be obtained by introducing

the following transformation of variables:
A\ =kcos@Q, p =k sinQ,
If one uses the relations:

n/2

Jo ( x2+yz) e % cos(kx cos @) cos(ky sin@) d@ ,

and
oo
F AN
cos ky = k Jo(k E+y~) d& ,

(o]

then Eq. (I.9) is converted to:

0] X (b o)
0 = "_“4?? (1) dnJ d#ZJ‘ el J (k \Igz+(y-n)z) kdk
=00 -Q0 (o]

or,
o0 ao roo

6 24@L:3. F(n)dn| ag] = Jo(kq(x-z)z*r(y-n)z) kdk
.

The choice of (I.9) or (1. 14) is only a mattcr of convenience. A close form of

¢ may be deduced from (1. 14) by noting that

@
r 3 e-klz' Jo(kﬂf)dk =T—'-;!17-2 .
)

Jo (o + 2z7)
Hence,
[0 o] [o0] -3/2
o g5 | Pman|  [-erfeen)®ea?] T
-00 o
o
&1 ro ' 1+ X ) dn
-00 (Y’“.) tz vxz+(y-n)z*zz

(1. 10)

(1.11)

(1,12)

(1.13)

(1. 14)

(1. 15)

(1. 16)
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It may be remarked that these results may also be obtained from the
differential point of view by considering the velocity field induced by an
clement of circulation M(y)dy at y and by integrating it along the lifting

line,

If |grad ¢ | << U and the effect of gravity may be neglected, then the

lincarized pressure is given by

P-P,=-pU (1.17)

where from (I.16)

-0 x2+(y-q)2+ z

0, = fm) 41 _|WZ ! (1.18)
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APPENDIY 11

Formulation of the Nonstationary Flow kFroblem and the

Stationary Flow as a Limiting Case

Take axes Ox and Oy in the undisturbed surface of deep water, and 0z
vertically upward, the origin being at rest with respect to the fluid at infinity,
Consider now the flow caused by a wing which starts to move at t=0 from the
position {0, 0, -h) in the negative x-direction with velocity U, The effect of
an element of wing span amn at y=n of circulation {'(n)an is to produce an
initial impulse symmetrical about (0,1, 0) on the initially still surface, Thesc
conditions correspond to initial data for ¢(x, y, z,t) and &(x, y, t) as follows:

paf(x,y, 0,0)=aF (s, wf=x+(y-n)
{ (11, 1)

a5(x,y, 0)=0,
where AF (@) should be equa! to the initial pressure perturbation on the frec

surface, Using (I.17) and (I, 18) and considering the cffects due to both thc

wing and its image, w< obtain

BF (e« S22 o T0)Su = 8B Mg (1L 2)

> 2 d
|x‘.+(y_q)z+hz]3/z [wz”‘z]a/z

The solution for ¢ which satisfies the Laplace cquation with initial condi-

tions (II. 1) is (Ref. 5, p. 432):

fo'0) [0 o)
paf =Jr ekzjo(k(é) ccs(\lﬁt)kdk AF (a) Jo(ko)udn . (z £0)
o o
and
[0 o) Qo
u:-é‘-‘-, V8K sin( \gk t) J (kw) kdk |  aF(a)J_(ka)ada .
[o] (o]
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However,
*® Uh =2 nJo(kn)
AF(Q) Jo(kn)ndo = -EZ?-r'(ﬁ)AY] (—ZT;T)-m da
a
[o] [o]

-«%—%—hl"(w])Aq “—2}‘—-—: K, (k h) (Ref, 26, p. 30)
"2

- s—g e KB N(n)an

so that
N 0O
88 = - 22 (n) AY,J 2P cos( R 1) T (kw) kdk
[o]
QO
8y = - -zg—gr‘(q)Ar, e ™K \ZK sin({ (g 1) J_(ku) kdk
(o]

The resulting values of § and &% due to the entire wing may then be

obtained by integrating af and A% along the span:

a [eo)
= - Z%TI Pman| MM cos( Ex 0) J (k@) kdk )
=00 o
>
[0 o) e o)
. r()dn] e P gk sin( (gkt) J (k®) kdk (11. 3)
mJ o /
-0

(o]

It should be pointecd out here that these are only the results due to an impul-
sive motion of a hydrofoil., To extend them to the case of a continuously
moving wing in (-x)-direction with velocity U, we have to superimpose all
instantaneous disturbances at x = - Ut attime t=1, We replace t by
t-T and x by x-£ = x+U1 and integrate with respect to T over the time

during which the system has been iu motion.

oo t (0 o)
g = - zl;j r-(r,)dqf U(t)dxj K2 8J47R (t-1) J (K \](x+U¥f+(y-n)2) kdk
- 00 o ) '

(il. 4)
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(11.5)

These are the integral representations of the solution of nonstationary motiun
of a hydrofoil. This @ is only the part of the perturbation potential due to
effects of free surface and wave formations, not including the contribution of

the wing and its image,

2516\
(o] t @ )
= - . " (n)dn| U(1)dt 8 {gk sin \ng(t-‘t)J (k“(x*&U‘rF'r(y-n)z)kdk
eng o 1
Now we shall pass on to the limiting case such that the wing has been in
motion since T = - oo with constant velocity U, A difficulty arises, however, |
becausec the integral with respect to T from <o to t is nonconvergent, J3ince
the experimental evidence ensures that Z should be finite, we must seek a
remedy in order to agree with observation. Mathematically it is usual in
these problems to introduce a convergence factor ¢ M) 04 then et m
tend to zero afterwards,

o t oo

g-=- z% :1:1‘6 "(n)dn e-p(t-x)d‘r ek(

z-h)

cos \E:(L-vt) Jo(k \‘(_x+U Ri»(y-v‘,)z) kdk

-Q0 J-Q0D vo (ll. 6)

[AN
'

o o) t ©

-1 :*:‘af P J R R L O O AL

-Q0 -0 o .
(11. 7)

Physically it is usually explained that the indcterminateness of the problem is
due to the absence of viscous effect. To avoid this difficulty, Rayieigh sug-
gested the assumption that the fluid element is also subject to a frictional
resisting force proportional to the relative velocity, Then, instead of Eq. (4)
we have (Ref. 5, p. 399)

—E—‘k-%% +gz-p¢=0 A (11-8) o

From this it can be shown that the circulation, hence also f, has a factor

e ¥ t, which shows the damping due to viscous ¢ffect,

It is natural to expect that expressions (11, 6) and (11. 7) will become in-

lependent of t with respect to.a coordinate system moving with the hydrofoil,



Hence we introduce the following Galiiean transformation:
X=x+Ut, Y=y, z=z, Tt =t (11.9)

and change the variable of integration from % to T =t-1 so that
x+Ut =x-UT

and then dropping the bar, we obtain:

oo r OO n 00
g- - ?_% :‘_‘f‘o P(n)dn| e*TarT ck(z'h)cos(@T/\Jo(kq(x-UT)A (,~-vﬁ)kdk
‘400 v O VO (II. IO)
(oo} (oo ~ 00
_ U lim -pT -hk
Zc- gm0 [nldn] eP dTl e ™ r inifek 73 (k Vx-uTf+(yn Pk dk
-00 Jo Jo
(11, 11)
which clearly show the independence of t. By interchanging the order of

integration, and using the relation:

"
Jo(k x2+yz) z %‘ exkxcosO cos(ky sin@) 40 (11, 12)
' (o]
we have
oo
s} =
A= lim e T sin ({gk T) 3 (K Vx-UTP+ (y-nf) kdk
k=0
bid 00
: lim 4| oKX Cos‘;’cos(k(y-n)s'mO) c-(“+lku Cosg)Tsin(\]gk T)dT
=0 "
(o]
" 2
= - lim -—12 \j& giix oSO k(7 20) Sin.0) S"Cz" do
p=0 nU o k - (Xsec“0+ 216 seco)

(11, 13)

where X - g/UZ and in the last step terms of 0(p2) have been neglected.
Eq. (II.11) then becomes

(o] " (e o]

2
1 . -hk+ikx cos@ . (sec”@) kdk
L7 == lim rrn)dnl 40| e cos(Ky-r)sin®
J . R e o. ‘ ’k-(r(sec%+2iﬁscc0)

(11. 14)
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If we let p—0 before we evaluate these integrals, we then obtain the same ex-
pression for ¢ as given by Eq. (1) which is derived by neglecting the viscosity
{rom the beginning, Cn the other hand, it is interesting to see what the value
of % will be as x—+ o 1if we lct =0 after the evaluation of the integral

with respect to k. First we rewrite (I[. 14) as the real part of the following

intecral:

R¢ @ m/2 2 ® “hk ci(x cos@+(y-n)sin@)k
DA —— LIm r(r.)dn sec 0d0 3 kdk
2n°U p—0] Jon/2 " k- (X sec®e +Zi%sec6)-

(11, 15)

This expression of & indicates very clearly that the surface elevation consists
of planc wave clements, each component moving in a line making an angle ©

with 0x. Now we rotate the axes 0x, Oy to Ox', Oy' given by

x'=xcos@ +(y-n)sin@, y' = -x sin@ + (y-n)cos® (11.16)

as shown in the following figure.

¥ A
= g W
— /'-/( » X

o

In order to study the bchavior of » as x'-s + 00, the integral with respect to
k may be transformed by contour integration considering k to be complex.
For x'< 0, we can deform the contour to the negative imaginary axis of k ;
and for x'> 0, to the positive imaginary axis. Note that the integrand has
a simple pole at k = ;\scc30+ x-%‘- sec@ which is located inside the contour

for x> 0 when p £ 0.  The residue of the integrand at this pole is equal to

2z e 2 ,
c.h'l\Sec AR S ;«,scczg as p—0 and should only concern the integral

x'> 0, By making p zero after the dcformation has been carried out, we
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then obtain different representations for x'<0 and x'> 0 corresponding to

different behaviors 'netpe == 4nd downstream of each wave element;

noo
':I-’mo ; "J Bk ixis __”“_”‘\.r.___' — dk
: 5 k-yCse s t;+2‘.‘oscc9)
> = 2
. -hAsec” . -x'a Rse-~ < i
- -an\seclo . hdsec 0511‘(’\x.s¢c20}+ o X'a Ase 0 co .ch+4n sinah ada, x'> 0;
J a4+ “sec’ @
o

@ 2

- JXan s.___'._.) c,os (:14' asinah adiay KO, (11.17)
5 ¢+ <"sec ®

The first term n (1i. 17) 1¢epresents simple waves on the downstream side of
the wave {rout x' - xcos€ + (y-) sin@ = 0 (- % <0 <-g-) while the other
terms represent distirbances symmeatrical with respect to x' = 0 and
diminisking exronentially with increasing distance from x' = 0. It should
also be pointed out hare that the integration with respect to ry (or @) should
be divided inio two regions in which the values of n correspond to x'> 0
and x'< 0 respectively for an assigned point (x,y). The final expression

of ¥ is then

n/2 ["\y+x cotf 2
L = —%—J schCd 0 { M (n)dn [-an\'c'h&sec °sr,ec?'O sin(r(x'secZO)
o] -0
A XS b} Z
| .-x'a {sec’@cosah+asinah
+ e ada
2 2 4
G a + K sec @
| *° e 2 .
. F(n)dn ex'n r.sec @ cosah+ a sinah Sda
>
Jy+x cot® Jo a ¢+ r([scc4°
b4
ﬂm a
+ (r)d-, i-ln N c-h‘ see gsec“(\ si)-.(.{;'scczg)
. <y-xcotd -
foo 2
‘l -X'a “.sec”d cosch+asinah
) e y— g ada
Jo a + K sec ®
y-x cotd lnm )
<'a < o ; i
+ P(n)a, | e lefC/cosahtasinah g4, (11, 18)
| - o a + /A sec @
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where
X' = x cosQ - (y-n)sin@ , (11.19)

In this way we may study the behavior of { as x-»+w, The second and fourth
integrals with respect to 1) are neghigibly small for large positive x a.nd
tinite fixed y as can be seen from the fact that both upper and lower limits of
integrati?n tend to +o0 and -0 respectively., The same is true for terms

x

. -x'a -x' : .
with ¢ and ¢ *'® which may also be neglected., Hence the only significant

term in Eq. (II.18) for large positive x is

(o  rw/2 .
1 . | -2 2c” L .
i‘j+mé - . ?ﬁ! [(r)] e BifE e osec40d0 sin(r, x cos 0)cos(,<.(y-q)sec?'0 sin@)dn

~ aC (o}

(4¥]

(11, 20)

which is the same as Eq. (20). The limiting valuc of the second integral goes

to zero as 0(';-_-) which ¢an be shown by apply:ing the inethod >f stationary phasc.
X

oo

PR

Z,='—lz' !é—g sin(.'\',x+%)' r~(~.1)dq+0(-)l:), as x»+ @ ,
g ==

~

-0 and y fixed, finite
(11.21)

For x negative and large with y again fimite and fixed, the first and
third integrals are negligibly small, The sum of the other two integrals can
be shown by using Watson's lemma to be nmiuch less than the absolute value of
Z given by Eq. (IL.21).

It 1s of intercst to note that by considering a convergcence factor u
(1sually called Rayleigh's viscous term) 1n the intermediate stages, the final
result of surface el¢vation becomes asymmetrical with respect to x :

v

7 damps out like 0(-%) on the upstream side and has a wave formation down-

stream of the hydrof()\:l and tinally diminishes like 0(-;-) for x large,
VX
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APFENDIX 111

Calculation of Wave Resistance by

Method of Traveling Pressure

According to the mcthod of traveling surface pressure (cf. Roy. Soc.
Proc. A, Vol. 93, p. 244 (1917) ), the wave resistance is simply the total
resolved surface pressure in the x-direction., Because ¥ is everywhere
small, this leads to

"'\
R = ﬁ F(o) 2% dx dy (111. 1)
J\J ax

taken over the whole surface. F(o) is given by (II. 2) to be

[0 0]
Uh dn
F(w)=-2pU(g, =-%—l/ - I11. 2
( P (g‘x)z=0 wv-mr(n) |(kx2+(y-n)2+hz J3/2 ( )

b4
Since [xz+ (y-h)Z +h” l 3/2 is even in x and (y-n), it follows that only the
part of ?E, even in both x and (y-n) contributes to R, Using the form

ax
of £ given by Eq. (18), which is the only part even in x and (y-n), we have

2 Q0 "TT/Z X
g-‘;; - - %—J r(fl')dﬂ' scc5° e-h/\Scc gcos()(x secO)cos(,(,(y-n')schO 5in0)do
=168 e
Hence
et [ I 2y
R = H—J P(ﬂ)dﬁl I.’(r{)dn:J sec’Q e Nvsec O o
n e J-w i
© g 2 .
dyi dx COSZ(/\xsccQ) cos(x (sy/-zn')scc 9 sin Q)
o Vo [xFH(ym)Zent)

Now the integrals with respect to x and y can be carried out by introducing

the transformation:
X = r cosfl y-1n =r sing
and using the notation

a= K sech b= schO sin @
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We then have

dYJ coséax) co;(tl(%-?;_' i
(x"+{y-n)"+h"}7"

-0 o
| 0 n/2 ]
dr
= —z-——-z-vr i cos(ar cosd) [cos(b r sind) cos(b(n'-n))+ sin(b r sinf)sin(b(n'-n))|d¢
)o (r7+h%) 3\. -n/2 /
~00 L n/2
=2 cos(b(n'—n)), .2 T3 dr! cos(arcosf@)cos(brsinf@d)dp
Jo (TR 1
(oo
= mcos(b(n'-n))| ——5=ry I (ir sec?@) dr (cf. Eq.(11.12))
(r+ h%)>’ o
1
= (Z":;sccug) cos(b(n'-n)) k‘l/Z (~h secZO) (cf. Ref, 26, p. 30)

" -hr(seczo
e

1)

cos(r(n'-n) secz() sin Q)

Therefore wc obtain
N o) ~0D /2
$2 . l 5  -2hisecto 2
R = Bﬂ; [(m)dn I r(n')dn" sec’ Qe ; cos(ii(n-n')sec ¥sin0)d 0
\.-m . <

-00 (o]

An/l . \
| . . ot i
<Z | ¢ Zhrsec0 sccSO J lf(iseczo sin @) IZ+ g(< scczO sin O)JZ; do
v . i N ‘|

+0

= mp

wnere f and g are defined by Eq. (27). This result agrees with Eq. (29).
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APPENDIX IV

Evaluation of Some Integrals
(A) Dcrivation of the Integral in Eq. (46)

Substituting Eq. (45) in (43), integrating by parts with respect to 7

and using the relations

y =bcos § n =bcosy¥ , (1v.1)
we have
Ir\b I-R/Z ~Q0 2
uy) = - =y | Mtn) coslynmin 0)dn) 40 e PMeos(py sin0) BEL3ESD gy
2w V_b . n-Ksec O
b A-R/Z -0 2
1 : . d: do -2h : +rsec O
=g : sin(pnsin 0)—617?) dY\, m! e “cos(pysan)f—s—cig— dp
2n” / J B -nsec
2= o o
. Fore) R n/2
= . TZ U Z (2u+1) A’n+ls sin(ub sin @ cosy)cos(2n+l) *d7, ;?nib >
i n-o “o V'o
.00 Z
|
< e'Zh“cos(pysin 9) tKsec ® dp
‘o p -<sec O

~

I sign is justified if the

The interchanging of thc order of >~  and

resulting series converges, Noting that

R
J sin(zcos *) cos(2n+1) ydy = (-)"n J2n+l(z) (1v.2)
o

where J dcnotes Besscl function of the first kind (cf. Ref. 24, p. 20),

Zn+l
we finally obtain

. © (_1'7/5i Q0 br( Zo
2U < n . ) -2\t t+bAsec . .
u(y) = - _— (=) (2n+l) AZn+lJ mJ e —b—-—-—-z; JZni‘l(t smO)
nso s 5 t-brscc

* cus(tcos @sin@)dt (1Iv. 3)

which is Eq. (46).
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(B) Derivation of the Integral in Eq. (47)

Substituting Eq. (45) into (44) and procecding in a way similar to that in

Lae previous case, we have -

0o
|
1 . d -2hp,
W(Y)=‘3-; Smpf\al:-dnl (1-e “;cos,;ydp
o

b n/2

e-Zhr-.seczv sec30

cos(ny sec® 5in@) oy~ d 0

sin( T]S\.CZQ sin O)d n!
v
)

Q

=U D0 ()@ A, 0 (e

n=o I

-ZXt) Jrn +l(t) cos(tcos @) dt

~N
m/2 " 2;; Scc3o I\
+4b | e “NSEC Jzn+l(b:~’_scc?1) sin 0) cos(bacosf schO sinO);m de J
o
(1v. 4)

The first integral on the right hand side can be intcgrated to give (cf. Ref, 25,
p. 37 and p. 33):

| cs-"1+l:s'-l s~ n sin(2n+l)P
! Z +l(t) cos(tcosp)dt = os i Zin)a il s 4 ¢J =(-) ——A‘n"‘)’

(1v. 5)
and
-2\t ' -(ZX\-1cos @)t
JZnH(t)cos(tcos g)ydte = Rtl c ( ) JZnH(t)dt
‘o \Jo
([T 2n+l | 'Z\
=Re .| 1+ (20-i cos )% - (2A- 1fos¢)' |1 +(2n- ;cos¢)", :

t )
(1V. 6)

Combining £qs. (IV.4-6), we obtain £q. (47).
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(C) Evaluation of the Integral in Eq. (61)

-0 2
R J,"(ub) . .
J e-2hp w:(mez“le(x)z‘dz (=

“ (V)
o o
-0
12 [ St L2, -2
---ZSK| c Jl (t)t dt
0
/2 .
2 2 z 2 2
= ;b_):l [\-\I—\ + sin 0]cos 0do (Ref. 24, p. 389)
"o

[R/Z 2
\ coSs O_do

1 ':l 4
R AREEEY
I‘ ) J 22 +sin%0 )
. . N
Ty 11
- %fl-%\ j1+xztx(-.l_:) - E (= )J,\ (Ref. 26, p. 73) (IV.7)
I — /|
\ 1438 a7

where K and E denote the complete elliptic integral of the first and second

kind respectively,

(D) Derivation of the Result of £q. (64)

Applying the transformation sec® = cosh% to the intcgral in Eq, (63),

we have
n/2 1 rA
2 : J (= sec”9 sin Q)
|
= e-(l/o'/secZO ! 1P i ] seCSO de
= J . sec O sin@ -
o
1 . N4 2
} _1 -1/o Fw-{l/c}coshu lrJl( sinhu) {' l+coshu) d
=3 e i c : -——z——/ u,
. Ly sinh u \
o
(Iv.8)
v Note that the above integral still converges as é-.o , keeping B constant,

2
-~

One way to obtain the result given in £q. (64) is by expanding the term A

into an infinite serics (cf, Ref, 24, p. 147) as follows:

™ . 2n+2 n 3
b z(z) ) Z\ (')n [_(Zn+3) (';) . ‘;S'\ (') r(“"’!) zZI'H'Z
! A%o nt (ne2)t (1)) ° &5 7 at (ael) (ne2):
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Introducing this expansion to Fa., (1V,8) and interchanging the order of (

J

and T ' sign, we ctlaia

)
al—

T 2
L e & (- , 2n ( 'T:’ coshu n 2
. ,ll- = ? /. Tm.i.').z'(:.l—;.'(m (-.,-‘; e sinh” u(2 +sinh"u+2coshu)du
% n=o ~
o

'rovided that the resulting series converges absolutcly, The region of conver-
geuce for ¢ and A will be shown below, By using the following relations
{cf. Ref, 24, p. 172)

[ ek 2 [n+g) o 1
P Y sink®™u duz—-—_—-(a-) Kn(u), (nj‘-z), a »>0)

“o ym
(Iv.9)

22 L (nt 3 K (a) i—.(“*l) n

|e-c1coshuzn o __l ?ni ( n ) = ' 2 (.?) K (a)

i sinh"ucoshudu=- - * da oD - = Q n+l1'®

o v
where K. denotes modified Bessel function of the second kind, we obtain

[ e 2 (Pl nt3)(n+3) ,

) ( 1, 1) 1,
Rl Wbwrpe PN 4 130 4 CX23) (#) | Ko (G) + L“c(mf)JKnH(?))f' (ii¥0)

Qj— 3

It can be shown that the above series has diffcrent regions of convergence for
itarge and small values of ¢ duc to the different behavior of the function
Kn(é-). When ¢ is small, this series converges absolutecly and uniformly for
any close interval of # ; but for large values of ¢ ( >>1), the above series
only converges for g = A\>1. The interchanging of the IN and 5" opera-

wion is justificd only when the above conditions are fulfilled.

(=) Derivation of the Result of £Eq. (68)

We want to sum the serics in £q, (IV,10) for large values of ¢. In

this case Kn(%) has the following expansion:

-
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Q. -2m
K (2) = log(20) [ (2)+ > 2l y(me),

!
m=o \M:

-n-2m
Sal3) = 2 3 LFL PRl (a2 - f‘:oﬁ,ﬁg T | lostze) Fav. i)
m=o0

+-§ w(m+l)+%g (n+m+l):|, (n21) J

It is easy to sce that the most important contribution to the sum of the series
in uq. (IV.10) comes from the term z(n' )(Zc)“ il of the expansion of

n”(-) The detail of the calculation can be shown as follows:

Decompose y , into three parts such that

1
S ~‘}11*le*<*}13' (1v.12)
where /“, ;{IZ and ‘}” arc given below,
.1 P
‘.-, c 2 |- (n+-z)l nbz) n
4"92 z =l (nfI)t (04 2)" 7) [‘(“*‘2’)) n+l( )
A =
e © - (- f‘[—(m»q-) (n+z) n+l
*In n/;)/,l n! (n+l)l (n+2)! ?
(nt) 2o (nea)t (20 Ve g Pt logl2e)
" n! (20 ]
c (-1 2 (Pneg)
-U - (n+z) | Pl = (-7 (n+z ="
5_ R CH T “'Z) T L T e (‘Z)
- —1- log(Zc) \ (Iv.13)

16p

Now both these two series converge only when A\ > 1 ; but the first series can

be directly related to a hypergeometric function which may then be continued
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analytically to the region 0<\ =1 as follows:

g)-( JPré (Mg l)nﬂ ) IZ(*}) _<°°\(-)‘|' Z(u%) ("::2)
-(_U!m (_xz T r(2) 34;-6 ["(s+2) = ¢

JERECTE IEIRR 'Y

7’

e \ | 3
=m |l —=F(y,3:2: —z')l .
N RPN 14\ )

If we use one of Gauss's recursion formulas, the above hypergeometric function

can be expressed in terms of complete elliptic integrals, (cf. Ref, 26, pp.9,10).

Flg. 3:2:K) -y ;kz)-r(-%,i.;x;kz)]

1]
md o
"
o
o4

420 -
= ; k ] X\(k) - u(k)} .
Finally we have
. A
<_\:o (-F (n+%) | D+l 4 —3
S n+.M!(,.\z) ”]1-;\‘114)\ K (=== -15(;;—_—_)|
n=o ; 12 a7
(1v. 14)

To carry out the summation of the second series in E£q. (IV.13), we note that

1f we write

e} 2 3

o Py feen >

f(z) = , zZh, z= X\, (1V.15)
n=1

n(n+l)! (n+2)!

then f'(z) may be expressed in terms of a hypergeometric function together

with an algebraic function as follows:

(- f‘- (n+ 3 %3 ¢ ~
f'(z) < 2 | z (n#l) = -',__(Zz) } l'é}z"F(%y é; 2;";')
n=l t ’
( S B e [ e
S -2 2 K - E(—) | }. IV. 16)
" ( Bz "= e ~ (Jl+z) (fln)’l ; (
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2 1
As z = \"-0, —r—l-:_ -» 1 ; the asymptotic value of f'(z) as z-+0 may te
+z

dcduced from the above relation by using the known asymptotic expansions of
K and Eo

SO 1 .4 2 132
f{z=)=n -l+~8-z+; [log‘%lz—-z--l+z- _(10 4)_-%)
\ J1+2
2 1
+ 0(z log z)JI
Since the integral of an asymptotic expression is also asymptotic, the asymp-

totic value of {(2) can then be obtained by integrating the above equation.,
The final result is

ﬂﬂ35+%kmz+0U)=+§bgg+0U) (1v.17)

Therefore, substituting Eqs. (I1V. 14, 17) into (IV.13), we obtain:

—
i = 1 4 ] Zl

’ \
1 | )3 1 1
. (1-2 . . i
ST § |~1 =N ] 14 ~K( F”’“é) E( — )J —?16 1085*“‘;. «)?‘ (1v.18)
I 14\ 14X ]

The second part of jl . namely, ‘:_le , is given by

& T o (-f(ne -%-)F(n+%) ¢ P

1
C’IZ"'4 3 Ef S CTIVA G2} (igz) Konls)

c ® (- )n'—(n+q2-) (n+z) n+l n+l)
Tor §i N CTIVRCITAN (zdz) [(“‘)(Z“) |

1 - - 1y
T ASIL N0 O TS It
T odne | iT(2) bl [ (s+2) st

4

o 1 1 1, )

= . %1; [ 1-F(-5. 5 ;Z)
1 i
e 7 Tl 3.,. .1 xl (1V.19)

= -m [Jl+\ 1‘( .z- .:T:Z)- ‘l *
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After this analytic continuation, if one uses again Gauss's recursion

formula, one finds,

13 22 13 13,1
r(-z,z;z;:-;z)—?\ \LF(z,z.l.-l-;;z)-F(-z,z.l.:;z-))?

= %{%(ux"‘)}:( L) -8 F(-%. %; 1;42-)} (1v.20)

1+x7‘

Combining Eqs. (IV.19) and (IV, 20), we have

j 0 (2, 23/ I V10
NESE !;(nx) :.(——-)--x-x 1438 - "Z ]sz))?( +(-))
\ _Il)"

(1V. 21)

it is evident that the hypergconctric function in the above equation has singu-

larity at X = 0, To calculate its value ncar \ =0, we need the following

formula
2]
(a,b; atb; z) = > an(l-z)n [ﬁn+ log(l—z)] (1v, 22)
n=o ’
where
o " (a+b)i (a+n)! {b+n)
’

P r%a) ~(b) M¥(14n)

ﬁn = y(a+n) + y (b+n) - 2y (1+n).
Hence
1 Y 22
| 2 [14x 3,1 4ﬁ+x A 4
O ;{(z-nop ) -2 () - tog L) sottionn)
(1v.23)
and finally we have
G =~ 2 J e [ s 1ol 'L
o157 o5 'k(lﬂ ) ’T" 7x 1\ log ey + ) l (1v. 24)

The third part of \-S'l denoted by CE\)D’ is
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- W 1 3
( . C g. (-7 ‘_n+—7.-)| (n+:,_-) e )n ] (l)
ol Lo wnmnyminT Sl Rl
13 4"‘32 A \ ‘T \ ’ Zp“
-4 Lo, 3
e 0 [ &2 (-]t ) (nt 3)

2

n

n,’ 1 . n =
TTl{ntvi )t ('iz') L 3 (n-1)! (20) ]+ 7 losg Zo} .

4

1]
Va
Y
,_—.\ —
o

rd
o~
[
~t,
-
3
-+
af o=
-
|
—
L]
-
+
oW
o

-

= = n ]
{'I : € » * ‘-: <~ l ” l Z
~13 8362'{ ré-Jl n(n+l; (ars)t (_\7) t g fogeo ? )

The series in the above equation can be approximated in a way similar to

that applied to Eq. {1V.15). The final resultis

.1 1 1
Sy F logp + A=, =) . (1v. 25)
13 1'6'; 8 ?‘ P

Therefore, substituting i2qs. (1V.18), (1V.21) and (1V. 25) into £q. (1V. 12),
we obtain a good approximation of the value of o‘)l defined by (IV.8) or

(1V.10) for o large as follows:

n/2 2 2 2
J |r\ e-? SEIE i Jl(-,!.-) scczO sin 0
-8 S| | ==tm——— sec’ @ do
‘o jee’? sin@ )
o 3/2
OO PR T 1 L1 ]1 2, 2372
= 2d(l-=\_ 14\ K - = N4+ 14\ -
zL =\ ! (-._2) (!_—E), | W\i;( )  E(—)
« 14X V14eN© 7 ) § 14\
3 2 452 1 3 1 ) 1 1
SN -\ 14N F(-%, 91 ) )+ logp + O(—y, =) (IV.26)
z 22 14\° J 64[32 ? o

(F) Derivation of the Result of Eq. (73)

Using the result given in Eq. (IV.7), we may write the integral in

Eq. (71) as follows:
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cos')’ﬂ dg }
‘o [l+}2 sinZO sindﬁ
. A

/

\"/Z /Z

n
+ -41- ( cosZO de
1198 -

cos"'] dg
o j l+;12 sinZD sigﬁ
o-

>0

/2 428 costd ap

I'd
A [M-‘2 sin?0 sintg)3/2
\

o
/ b
p'._;?. r /2 ’ I"/ . Z Z
- cos @ do -—sinf cos @ df
2 | ol 21 L2, o 2.)3/2
™o Jy it san--zsm0>1n¢
N A
-2 ~nf2 2
Plo l cos @ sin@
- - . - do (1v. 26)
2 o1 o 2.73/2 — ! *
LON "Io !H)? sin @ / j XZ* sino

where (k) is a derived complete elliptic integral (cf. Ref, 25, p. 73)

defined by
2

n/2 2 2
in @ cos @
Clk) = r h -1Zsin§¢ i3 2 ! Sl

Y]

o

<inally, changing the variable of integration from @ to k by

K= —3in6 (IV. 27a)

.’XZ+ sinZO
we obtain
!
!
oL, = - —— ,"_T é(k) dk (Iv.28)
where
J: ==
jln"‘

This is the form used in Eq. (73).

S S ] (1v, 28a)
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(G) Derivation of the Result of Eq. (76)

Substituting the expansion of €(k) given by Eq. (75) into Eq. (IV, 28),

then applying the transfcrmation kZ = fzt and integrating termwise, we have

=2 1 l
-?,;.z"r’f[ (1- t) (1- 7 t) 1+6Z; t+ (-3-) t +245(%-) t +0(}8)J 9—,:—

« t

_ 2
- 1@.{{.7 Fi13 g 203 ) FiG g3

2 2 23 L2 4
B g e B G g ds e[

-

(1v, 29)

where ZFl (a,b,c;z) denotes the hypergeometric function which has the

following intcgral representation:

1

. W C b i< -
' ,F (a,b,ciz) = I-F(F)é-c{)k_'?’j P 110 H1o2e) ®dt, (Rec >Reb>0) .
o)

Expanding thcse hypergeometric functions into convergent series, we

finally have

_2
"o .5 181 1 3015 1 (1)
2 - — ) + 2t +0 .
th 2 T ) 512 (102 & aad° e
64N | 14X

(H) Evaluation of thec Integral in Eq. (79)

Applying the transformation secO = cosh% to the inner integral in

Eq. (79), and procceding in a similar way as shown in (IV, D), we have



«74-

2

; mﬂ-%scco i Jl(ﬁ secto s‘mO)‘Z g
Q&"Z(U) = e l 3 J sec 0 dO
A l sec® sin@
u 00 u . 2
1 g | cgcoshuf Jggsinhu) [T o a

- e ~ ( ) cosh+ du
| T y; vi
5 z sinhu

| S (-Fneg) | 2ne2 [‘“’ -2coshu
w2 awIee (7p)

e sinh“"u(1+coshu) cosh% du
n=o "'o

Now sinhznu can be expanded in terms of coshmu as follows

2n

. 2n _(e'-e’Y) 1 Zn) 1 < 2n
sinh H = ' + - cosh(2n-2m)u,
e ZZn ZZn \ n ;n‘lr-’:_., ( fn (m) . )

and
u 1 3u 3 u
(l1+coshu) cosh 3 = ycosh> +3coshy .
Using the relation (cf, Ref. 24, p. 181)

[ o}
e-zcoshu cosh vu du = Kv(z). (Rc V>0' Re z>0) » (xv' 31)

L""'ﬂ

we then have

-2 o (-i‘.“(m%) 242 |, ;
MO+ v 1 (z5) {( ,,/ILK% (3)+ 3K, (%):l

n-1 ,

- 2n u u u
b Z, (-)m ( ml) ! Kl(n-m)-&é (;)+ 3K2(n-m)$_l. (?)+ 3 KZ(n-m)'_l.(;)

m=o . 2 2 2

+ KZ(n-m)-% (;‘;-))f b (1v. 32)
_)

When ¢ is very large, then (cf, Ref, 24, p, 80)

__.u , -2 P(n+d)
K,y s FEe® _K(Z_:.{? (eodye [Ee7 u)M’ (1vod)) . (1v. 33)
H ' nil2g T
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It can be secn that the first order term of e\jz(u) comes from the term with

K2n+2 (%). hence for large o, Jz(u) may be approximated as

g 2
Zu - o0 Y 3 3
r . - =7 = ('N(“"I)R"-“*};‘) 2n+2 .
o o) ¢ Ef? e ’ 'L B 1 T3 )11 Y2 Loy 1 ] (1+0(3))
n=o
&
l | u o / =l A 1 3 1 1
= - wl l- —— F(ws,1:2; 140(=) )
y A - Wk (3')) [ Jrl_;z (3.1 'i:z)] ( ()
1 2u 3
T = -= () 3
z fl ? ¢ ’ l - zl f_}_ g (l+0(\2, é) )o o — QO
4[n l r‘;r(?) T/
(1V. 34)

it can be shown by the method of

For small values of ¢ (h, \, large),
steepest descent that “92 has the same asymptotic value as _91 given in

£q. (66), that is

3
2u z
us 050, (IV. 35)

Jpzde [ RARLURE

Therefore, for o large, we have from Eqs. (79) and (1V, 34)

2u
Plo Mg = O F(%) L \Jm c ” du (14002, 3))
2. & a— S - =T J - o 'y
2 4 [n 1 {o J;r(z) ’l+k g o [u(u-1) g
3 2 _oo 2
P, 1, @ = 5" eI os
IR a2 [ [F et R
v 't 'l
2 1
(1+0(x%, <))
3 2
Plor 1, 1 g % [ rew . "5 z] 2 1
=§-_F — l + s (= (l 0 \.— .
40w (I)Jc' ﬁ[‘(i-) L0l IfT ) L‘(‘)_ o3

where Ei(t) represents the exponential integral function defined by

o0
(t real, cf. Ref. 23, p. 471)

-x
- e~ dx
E(t) = - | —

-

-t
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which has the following erpansion

- 2 3
- 2 2
BE): yrlgs ezt g ) oy () t. ... for o large

2
(1v, 36)
Finally we have
~3
Py .- { (7) 1 -
al, = | (l)(l- 1 _)‘___\’ 1+ -E—(7+log£) (l+0(\z,l) ), as¢—-o00
2 a2 4 ‘,'";“(_) r Z/t no c/ '
Sl i (1v. 37)

On the other hand, for ¢ small, the asymptotic value of AL.Z is

_Z . QO [ VY
Pl —= . -— =
A1.7=_5°_ ,:3}_’- p%l ¢ ¢ Lu‘_’-rdu (1+0{c) )
(o]
2 (o o] l/Z

(-4
e“ﬁ_:z_t) dt  (1+9(c))

2
i A i i
t

s 2 J'rgze

B
o

2
Pl
YA ﬁ_}ée £,8) (140(e) ).

The asymptotic expansion of Ei(é) for 5 large is

4

2
&) 2 .
E(S) T e (P 145+ 2 (§) + 0(e”)) .

Hence, ;
2 3

r z
(1v, 38)

ALZ';_'&BO— Jm (%) 'p-iz (l+%+ O(cz) ) as ¢.+0,

(1) Derivation of the Result of £q. (83)

From Eq. (82a), we have




R

n/Z Mool :
aq\z i_‘o [ 22 Jl(p sin @)
= —— =0 %= i “ M
UI(Y) ERN Wb | dOJ e et cos{pn sin@)dp
- o o
~ ¢m/2 o o 8in 0 2n. o . 2ra
o T e (5 (-F (5= )'/T (-F(unsing).
T e 1 G0 VA P ¢ B
4,0 \O n=o0 ‘m=0
-~ © __ oo
- le < g (- i i n?'m ([ .2 2(n+rh)+1
R T2 AP Z(n+m] R Yu du
n=o mio 0t (n+ 1) r(m+l)r(m+-z \Jo 7
nf2
“nZ(mH\) )
. 0de,
o
— + : 2 3 1,7~ 3
. o ;0 %\ s i e I (-n+m+-2-)' (n+m*-z)
e n;‘nf\. o n!(n+l)! Zz(n+m)m!r(m+-}) 4)‘2n+2m+2
- oo
ey I o 1 S ()‘“(%) (m+z) F(m+l m+3.2.. l)
4 [nbd s /—:o o5 E E ol
Now if we continue the hypcrgeometric function analytically to region
0< \ {0, we oblain
2
(y) 2 : >— Ml nr(m+2-)( L) E( 2,—15)
a(y) = - m¢ <, = -m;
! 4 [=b [_ Lo T 7 7 144\
(1v.39)

(J) Derivation of the Result of Eq. (85)

Applying the transformation p = (bmseczo)u to Eq. (82b), we have

_  ,00 /2 2u - u 2, .
‘HOJ du re-TSLCOJl(Fsec 0sin0)

vi cos(-\%] secZO sinO)sec40 do
sec sin 0

uz(Y) S

(Iv.40)
where
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The inner integral can be treated in a way similar to that applied to OGZ in
(IV.H). In particular, at y = 0, we have

ol @ 4 "m-gcosht’J(usinht)\ '
L AT d 1 t
uZ(O) = - 1—“9" e 7 'uTu' | e © [ l_z?nht J (1+cosht)COSh-z- dt
o “o Zz
r~ ks <o (-)n( u)Zn o - =cosht
= -2-8‘.’;7? e ¢ u—‘fl- du EJ ECYR RN J e 7 smhznt(Hcosht)cosh%dt
"o Rre o
' g @ (f "
=-m""n°J e aﬁduz—q—%-)w—n. n-i_. )L(l:)l (-)+3K(-)J
o n=o 2' 2z
n-1
N3 Zn u
e (_)"‘( KZ(n -m)+ 3( A KZ(n m)+ 1( 3 +3 K?.(n-rr:)- l(;)
m:=o z 2 2z
g
hZ(n m) 3( ) J l) *
For o very large, the first order term of uZ(O) comes from v
= - 25E
K2n+ 3(%) = J’Z% e ’ ent z “*‘O(l) )
Z ()
o
3/2 =F 20f - o :
= 2 e A (e (meP 0.
v u
s
lcnce, /
.32 oo 2u @
DN e _()“(m )f(m n
MR TR LT Y (P S N S b rn:i)' () (140 )
4n [n B = Ju(e-1) .25 * AN
3/2 138 00 2u
S A UL (R S I
= . il Fig,3:2:-—)! e (1+0(-))
an 7P (2) 3 :{Zo ﬂxul
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and (cf. £q., IV, 37)

r 00 2u

| & @ Tsu_gz"ffz:ll+g(y+log§-)] (l+0(-:7)),
o Ju(u-

o

we finally obtain
i~ 1
I o - l 3
u,(0)= - 35

R
F(g,
o (e /¥ 3

2 1
Yo —) L 1+ J;;(Y*los;')J (140(=) ).

-Mu

(IV.41)

This formula is good for all \, 0\ <o , provided that ¢ is large. The
above hypergcometric function can be expresscd in terms of tabulated elliptic

integrals by using Kummer's transformation and Gauss' recursion formula as
follows:

3 3 3 3 1 A
F (I;-_*r. -——2) = F (-Z -5 L - ——— ) (Kummer)
LR Lien?
:fzil-‘(%,%;l;kz)-i'(%.%;l;kZ)J (Gauss)
where
2 1 A
k = 2‘ = _ _Z
J 144N

Applying the transformation formula once inore, we obtain

3 3 1 2 2
F(z:x.Z;m\'kT [-l——z?('z-.- i3 k)- F(-Z (1K)
4 1 iy 2 A 1
:2 5—— | E(k)-(1-K) K(k) | =2 —5 B(K)
T OK(1-K°) ( ) ) K )) To1-K
4 2 N+and N
-;77_—-— B(Jz-l"_—7 )
J1+4x + 2\ v l+an©
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where B(k) is defined by i£q. (7:a). 3Substituting this relation into (IV. 40),

woe have
o 1 1 1A 1 ’
R TYVR A/ Bl S ( =
J1+40" + 20 i 1+4\

(1V.42)

Vhen ¢ is very small, we can apply the method of steepest descent to

the inner integral of £q. (IV.40)., The result is as follows:

e S o 2u
- ' j2no "¢ !u
uz(y)=- "0 BE : e 7 ==Y du (1+0{c))
‘-O
~ . “le [ 2¢ .
=y '5'5? ! -{- (%) (1+0(a) ) (cf. Section H, Eq. 1V, 38)
o 1 1
J2nc A

(K) Dcrivation of the Result of Eq. (91)

The method used to approximate

= /2 - 2 secto Jl(éseczc sin Q) 5
o4z(0.0.-h)=-:.-° e’ - sec’0 do
‘lo sec @ sin0

lor ¢ large is very similar to that discussed in (IV.D and E), Introducing
the transformation sec@ = cosh% to the above integral and then expand Jl

into a series, integrating termwise, we obtain

1 oo 1 1 .
. -=1 =-=coshu J( sinhu) 2
¢, (0,0, -k) = -'_‘T‘.’e G 112? 1+%oshu) a0
%2 g Zsinhu
o
2n
1 1 oo
" e= 0 (M) [ - =coshu
- '%% e 7 Y =t | e 7 sinh®™u (1 + coshu)’ du :
n=o ‘o
1 w - 1
ST - - (- (nt) n,
e g9 > AR 1 1 1
- K_(=)+ (1+o(n+w)) K__ (= IV. 44
SJTrﬂe O G2 (apz)‘ n()+ (olntg)) n+l(v)] ( )
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where the relations given by Eq, (IV.9) have been used, Referring to

the expression of K (-) for o large given by Eq. (IV, ll), it is easy to sce

that the first order term of ¢, comes from the term z(n!)(Z )n‘” of
the expansion of Kn“(-}). Then
1 1
~ 1l "7 &2 (‘)nr(“*z)
0y (0,0,m)2 - 2le (<) [c(m ) Fee ! aead b))
wanGS T e ) (b f
Yy d
KMo . & CTllneg) | o4l 11
- ) 1#0(-. )
= P < TR (4)‘2 [ = J
~ l N
~ 2P >ogr(n,z) lnl( 1 1}
= - = - (' ) 1+ 0(—, )
2 S Td e w [
— _% \
~ I o 1 1 1
= - 1-(1+ ) 1+ 0(-0 )
e T |
a’-;gnrn-—% [ 140, ‘)] (1v. 45)
I Jl+4\2 ,

where the appropriate analytic continuation from \>% to 0 X\ <oo is made

at the last step.
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