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LI5T OF SYMBOLS 

b -      1 / L span of th«* hydrofoil 

U free  strcatn velocity 

h -      depth of submergence,   measured from trailing edge to 
the mean free water surface 

£ -      elevation of the disturbed free  surface 

f -      perturbation velocity potential  =    .-   +    ., +    ., +    e, 

C -      lOtal velocity  =    U i + q , q   =     grad   ,• 

p -      pressure of the liquid 

p -      density of the liquid 

g -      gravitational acceleration constant 

o -      plan area of the hydrofoil 

ec'  ratio of the hydrofoil   =    '—e-£ i aspc 

(y) -      distribution of the  circulation strength, =     (0) 

.2 A, -    e/u' 
n 

e 

total drag (neglecting friciional drag) =    D   + D 

D. - induced drag  =    D   + D   *  D 

D - wave drag 

I. - tO!.:>.i lifl   -    I.    + aL , 1-     - aerodynamic  value of   L o o 

u(y) - x-compunent of   q ,   evaluated at the hydrofoil 

v.(y) - downwash at the hydrofoil 

Q (y) - local lif* ro^ffirient  distribution (along the  span) 

C ,(y) - local drag coefficient di itribution (along the  span) 

c(y) - chord length of the hydrofoil,     c(0) c 

•'- (y) - downwash angle 

n - absolute angle of attack,   measured from the free 
stream to the  zero-lift direction 

a - effective antle of attack n    -   £ (v) c 6 a w ' 

a - slope of the  lift coefficient curve  against    a a a 

a - >lopc of tin-  lift coefficient curve against    Q^ 

u2 
I- roudc  number with respect  to h   -    —— 

gh 
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LIST OF SYMBOLS (Continued) 

u2 
fl -     Froud? .-• r-sh«T with re .pect to   b   =    —c 1 go 

\ -     depth - y span ratio    =   TT   = 

J  (z) -     B^ssel function of the first kind of order   n nN   ' 

K  (z) -     modified Besscl function of the second kind of order   n nx   ' 

K(k),   E(k)        -        complete elliptic integrals of the first and second 
kind of argument   k 

B(k),   <9(k)        -     modified complete elliptic integrals 

Y -     Euler's constant,   0.5772 ••• 

t ' thc ratio ro/r0 CO 

C. -     over-all lift coefficient =  —r >  

7 pU   s 

Cn -     over-all drag coefficient  -   -. •*— 
•jpU    3 



INTRODUCTION 

The purpose of the pr«_sont investigation is to study the hydrodynamic 

properties of a hydrofoil of finite  span moving with constant velocity through 

deep water at a fixed distance beneath the free  surf -co.      The span of the 

hydrofoil is parallel to the plane of the free  surface.      This problem has re- 

cently attracted a great deal of attention from both the theoretical and the 

practical points of view.      However,   the idea of using the hydrofoil as an aid 

for locomotion ovy.r a water  surface is certainly not new. 

As early as   1898 Forlanini in Italy tried to use  hydrofoils lor the pur- 

pose of supporting high-speed boats.      When such a boat travels fast enough, 

the hydrofoil system installed under the hull can lift the hull above the water 

surface  so that thu   familiar  ship bow-wavv.s are  replaced by much weaker 

wives due to the  submerged hydrofoil system.      Consequently,   the  resisting 

force of the water may be considerably reduced,   and the  speed-power  ratio 

miy thereby b^  greatly inc.  :ased.      Another practical application of hydro- 

foils was made  in  1911   by Guidoni     in Italy who  replaced the ordinary floats 

of a  seaplane by hydrofoils.      Thv. use of hydrofoils   is floats provides greatly 

improved aerodynamic characteristics of the  seaplane during flight.      However, 

the  lack of knowledge of the  fundamental properties  and design data of hydro- 

foils has prevented the use of hydrofoils in modern applications.      The recent 

revival of interest in the  theoretical and experimental studies of this problem 

is aimed at removing these  gaps in basic information. 

It is known that,   for   t wing moving in an infinite fluid medium,   one may 

neglect the influence of gravity and consider only the inertia and viscous 

effects; the Reynolds    condition for dynamical similarity then holds.      Under 

this condition,   th«_ nondimensional lift and drag coefficients depend only on the 

Reynolds number and the  geometry of the body.      However,   the situation for a 

hydrofoil near the  water  surface is quite different.      The hydrofoil differs from 

the airfoil not only because of the possible occurrence of cavitation but also 

through the  strong effect of the free water surface.      For the motion of a 

hydrofoil at shallow submergence,   one must consider the gravity effect be- 

cause the wave formations on the fr«.e water surf-ice will influence decisively 

its hydrodyn.jmic properties.      It follows that,   in this case,   the nondimensional 

lift and drag coefficients will be functions not only of the Reynold? number and 

its geometry,   but also of the Fronde number and the cavitation number. 
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The program of this report is as follows:   After a brief survey of the 

available theoretical and experimental information on the characteristics of 

'ivdrofoils,   the theory for a hydrofoil of finite span will be formulated.      The 

liquid medium is assumed to be incompressible and nonviscous and of infinite 

depth.      The basic concept of the analysis is patterned after the famous Prandtl 

wing theory of modern aerodynamics in that the hydrofoil of large aspect ratio 

may be replaced by a lifting line.      The lift distribution along the lifting line is 

the same as the lift distribution,   integrated with respect to the chord of the 

hydrofoil,   along the span direction.      The induced velocity field of the lifting 

line is then calculated by proper consideration of lift distribution along the 

lifting line,   free water surface pressure condition and wave formation.      The 

"local velocity" so determined for flow around each local section perpendicular 

to the span of the hydrofoil can be considered as that of a two-dimensional flow 

around a hydrofoil without free water surface.      The only additional feature of 

the flow in this sectional plane is the modification of the geometric angle of 

attack,   is defined by the undisturbed flow,   to the  so-called effective angle of 

attack on account of the local induced velocity.      Thus the local sectional 

characteristics to be used can be taken as those of a hydrofoil section in two- 

oinaension-il flow without fre«- water surface but may involve civitation.      More 

precisely,   the hydrofoil section at any location of the span has the same hydro- 

dynamic characteristics  is if it were a section of an infinite  span hydrofoil in 

a fluid region of infinite extent at a geometric angle of attack equal to     a    , 

together with proper modification of the fr«_c stream velocity.      Such charac- 

teristics may be obtained by theory or by experiment and should be taken at 

•.he same Reynolds number and cavitation number.      V/ith this separation of 

the three-dimensional effects and the two-dimensional effects,   the effects of 

Froude number are singled out.      Thus a systematic   ind efficient analysis of 

the hydrofoil properties can be made. 

The lifting line theory used in this problem is developed through various 

stages to include the formulation of the direct or indirect problems and also 

the problem of minimum drag.      Finally,  detailed calculations of the lift and 

drig coefficients of a specified hydrofoil are carried out for the case of ellip- 

tical distribution of circulation.      The effects of the free water surface and 

the wave formation are examined in detail.      Needless to say,   the neglect of 

viscous effects will cause the omission of the frictional drag in the  total dr ig 

calculation.     However,   this error can be estimated separately.      The problem 

of the unsteady motion of t hydrofoil is briefly discussed in Appendix II. 
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SURVEY OF PREVIOUS RESULTS 

The investigation of the properties of hydrofoils has been so far mostly 

experimental.      Although there exist some approximate theories,   they do not 

appear to show the effects of wave formation on the hydrodynamic charac- 

teristics of the hydrofoil,   especially when the  submergence is shallow.      In 

Guidoni's work   ,   it is claimed that some of the advantages of hydrofoils over 

conventional ships or floats are better lift-drag ratio and less sensitivity to 

i rough water surface so that their use may result in  ». substantial decrease 

in the- structural weight of the hull.      On the other hand,   a few disadvantages 

are  also mentioned; for example,   the danger to the hydrofoil caused by drift- 

ing wood and seaweed.      At high take-off velocities for the application to sea- 

planes there is also the possibility of poor performance due to profile cavita- 

tion.      Some early preliminary work on the hydrofoil problem was carried 
2 3 4 out by Keldysch ind Lawrentjew   ,   Kotschin     ind Wladimirow     in ZAHI. 

Their studies are,   in a broad sense,   only an extension and modification of 

Lamb's work on the submerged cylinder    and Havelock's work on the sphere 

beneath a water surface   '    .      In Keldysch's work,   which is a special case of 

Kotschin1 s,   the problem of the two-dimensional hydrofoil was solved by re- 

placing the wing by a circular cylinder with circulation.      Wladimirow solved 

the problem of hydrofoils of finite span by replacing the hydrofoil by a horse- 

shoe vortex of constant circulation along the span and by assuming that the 

free water surface remains flat no matter how close the hydrofoil is to the 

surface.      The calculation then reduces to a two-dimensional problem in the 

Trefftz's plane behind the wing.      This approximation is even poorer than the 

assumption of infinite Froude number.      In 1935,   a test of  i single hydrofoil 

(the NACA 0. 0009 profile) was carried out by Wladimirow and Frolow in the 

towing tank of ZAHI   .      Experimentally it was found that both lift and drag 

coefficients decrease with the depth of immersion,   but the rate of decrease 

of the lift coefficient was faster than that of drag,   especially for small depths. 

The comparison between theory and experiment on this point was not very 

satisfactory.      About the  same time,   the problem of cavitation on a submerge! 

obstacle of hydrofoil section such as a ship propeller was approached by 
8 9 10 11 12 13 Ackeret   ,   Walchner   ,   Lerbs     ,   Martyrer     ,   Gutsche     ,   and Smith 

Around 1937,   further contributions to the hydrofoil problem were made by 
14 15 16 Wcinig     ,   Tietjens     ,   and von Schertel     .      Weinig gave a preliminary yet 

exhaustive discussion on hydrofoil and planing problems neglecting complctel> 



-4- 

ihe efforts of gravity and the free surface elevation; the wave resistance for 

both cases was estimated approximately afterwards.      During the last World 

War,   a series of tests on a number of hydrofoils of different foil sections was 
17   18   19 carried out at NACA by Land,   Benson and Ward     '      '        in the NACA towing 

tank.      Several interesting results were found.      At depths greater than   4 

chords,   the influence of the free surface is negligibly small.      In the range of 

depths between   4 chords and approximately    l/2 chord,   lift and drag co- 

efficients decrease,  and the cavitation speed increases,   with decrease in depth 

until the hydrofoil approaches and breaks through the surface at which point a 

sudden decrease in lift occurs.      However,   the corresponding values of the 

lift-drag ratio increase to maximum values when the hydrofoils are near the 

surface then decrease rapidly with further decrease in depth to values for 

the planing surfaces.      Obviously,   these observations indicate that there exists 

an optimum value of the depth for which the hydrofoil operates most efficiently. 

The effect of an increase of speed is to reduce the minimum drag coefficient 

and to make it occur at a corresponding higher value of the lift coefficient 

until cavitation takes place.      Any lower surface cavitation reduces the lift; 

while complete upper surface cavitation prevents further increase of lift. 

Under suth condition,   however,   a maximum value of lift as high as  1 ton per 

square foot was recorded.      A profile with sharp leading edge seems desirable 

for reducing cavitation.      The hydrofoil section NACA 16-509 was observed to 

have favorable hydrodynamic properties.      The stability problem of a system 

of hydrofoils was studied by Imlay     .      An exhaustive experimental investiga- 

tion of a single hydrofoil with large dihedral was made by Sottorf      in the 

Gottingen towing tank in which eighteen different profiles were studied; his re- 

sults have been made available only recently.      He found that a thin profile o: 

almost circular segment form with pointed nose and an increased convex camber 

in the nose area is favorable for laminar flow,   and consequently also reduces 

cavitation,   gives higher lift and lift-drag ratio,   and minimum spray formation 

at the junction of the tip of the hydrofoil and the free water surface.      The main 

feature of the depth effects on hydrodynamic properties are in good agreement 

with NACA results.      It was also found that a partial cavitation on the upper 

surface has a favorable effect provided that it covers less than a half chord 

because a thin cavitation bubble layer reinforces the flow curvature and thereby 

increases the lift.      In addition,   the bubble layer lessens the surface friction   by 

acting as a cushion between the solid surface and the high velocity water sl.eam. 

However,   this favorable  range of operation is not very stable. 
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GENERAL FORMULATION OF THE PROBLEM 

Consider a hydrofoil of span   2b,    with arbitrary profile and plan form, 

moving with constant forward velocity    U    through deep water at fixed depth 

of immersion   h   which is measured from its trailing edge to the mean free 

water surface.      If we choose a coordinate  system fixed with respect to the 

hydrofoil,   then in this system the flow picture would appear to be stationary 

with a uniform free  stream velocity    U   approaching the hydrofoi!.      Let the 

x-axis be parallel to the direction of the free  stream,    the    z-axis point up- 

ward,   with   z = 0   representing the undisturbed free surface and the trailing 

edge of the hydrofoil lying between   (0,   - b,   - h)   and   (0,   b,   - h)   as shown 

in Fig.   1. 

/ 
-'disturbed surface '- mean free surface 

-f y7~^ 

Fig.   1  - Coordinate system for the hydrofoil motion. 

The elevation of the disturbed free surface caused by the hydrofoil is denoted 

by     £(x,y)   measured from   z - 0.      The liquid medium is assumed to be in- 

compressible and nonviscous so that the condition of irrotationaJity and con- 

tinuity implies that the perturbation velocity potential     ip     satisfies the 

Laplace equation 

V^, (1) 
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From its solution the total velocity field of the liquid flow can be obtained as 

O   -  U i + q , q  =   (qt, q2, q3)    =    grad    <p 

The pressure field miy be determined from the  Bernoulli integral 

(2) 

*   +    T   C •  Q   •   g* const (3) 

in which the effect of gravity has been taken into account. 

Now lot us assume that the resulting motion is such that almost every- 

where   | q I    is much kss than   U    so that Eq.  (3) may be  linearized to yield: 

"*"   +   Uc-       +    g z    -    const. (4) 

The corresponding line irized boundary conditions en tht.  disturbed,   free 

surface now become 

da. '' 
,iZ 

/z = 0 

and 

UT >x 
z    0 

ox 

-f* • 

(5) 

(6) 

Eq.   (5) represents the line irized kinematic condition on the  free  surface, 

while Eq.   (b) is identical veith the dynamic condition   p = p     - constant 

on the disturbed surface.      It may be noted that gravity affects Ih.. kinematics 

through the boundary conditions   (5)    and   (6)   and thereafter influences the 

dynamics through Eq.   (4),   ev:n though it docs not appear explicitly in th«. 

kinematical £q.   (1).      The boundary condition on th^ hydrofoil surface is 

&B.   =   - U coi(n, x) (7) 

where     y-     is the normal component of the velocity at the  surf ice.      It may 

also be mentioned her^   th it the  real  physical situation requires that the dis- 

turbance upstream should diminish at a rate which is made  to agree with 

observation. 

In order to simplify the  problem,   it will be  assumed that the aspect 



ratio 

t2 
/* ti|il (8) 

of the hydrofoil with plan area   5   and span   2b   is so large that the whole 

hydrofoil may be replaced by a lifting line.      Then the subsequent analysis 

can be made similar to the Prandtl wing theory of modern aerodynamics 

by introducing appropriate modifications of Prandtl's original concept.      The 

fundamental concept is that the circulation distribution along the lifting line 

which replaces the hydrofoil is the  same as the distribution of bound vorticity 

integrated with respect to the chord of the hydrofoil along the span direction. 

We then calculate the induced velocity field of this circulation distribution on 

the lifting line.     The characteristic length of this induced velocity field is 

the span   2 b   or the immersion depth   h,   whichever is the smaller.      There- 

fore if   h   is much larger than the representative chord of tne hydrofoil,   then 

the characteristic length of the induced velocity field is very much larger thai 

the characteristic length of the local velocity field which is associated with 

the bound vorticity and the circulation.      Then as far as the lift production is 

concerned,   each section of the hydrofoil is effectively surrounded by a 

stream of infinite extent moving with an effective velocity which is not the 

free stream velocity   U    but the  sum of   U    and the induced velocity.      V.'e 

then replace the boundary condition of £q.  (7) by the statement that the cir- 

culation of the lifting line at a certain spanwise station is the same as that 

corresponding to a two-dimensional flow without free surface around the 

same local section with an effective fri-e stream velocity equal to the sum of 

U and the induced velocity.      Although our argument for the lifting line con- 

cept is based upon large aspect ratio   /K.      Experience with airfoils indicates 

that the theory can be expected to be sufficiently accurate even for     >R    as 

low as four. 

We shall assume that along the lifting line the distribution of the cir- 

culation strength   r(y)    is known for given angle of ittack and immersion 

depth.      It should be pointed out here that for shallow submergence the effects 

of the   free surface modify considerably the approaching flow velocities and 

thereby make the pressure and lift distribution different from its correspond- 

ing aerodynamic value.      Therefore,   in our hydrofoil problem the lift distri- 

bution is no longer simply proportional to   T(y)   as it is in aerodynamic wing 

theory but is rather a complicate function of   n(y).      When   '"'(y) is given, 

the lift distribution can be determined as will   be shown later.      However,   the 

calculation of   P(y)   for known lift distribution is more difficult.      Strictly 



8- 

spe ikin^,   P (y)   depends not only on the flow velocity,   angle of attack and the 

geometry cf the hydrofoil,   but also on the depth of submergence    h.      When   h 

•viu'.s to it ii.-itv so    !.a.  *.hi3 hydrofoil is in a flow of infinite extent,   the- free 

•ur;,icu p.. d v.ave e.';< r;y ;;lou!d vanish and   '"'(y)   then tends to its conventional 

.->> rouynawic value     >'  , y).      S.nce the circulation for equal airfoil and equal 

effective angle o; attack »3 proportional to the approaching relative flow velo- 

city,   we have 

P(y)    =      1 
::(o, y, -h) 

r^(y) • CO 
(9) 

If     I      (y\   instead of    P(y)   at d   pth   h,    were given,   Eq.  (9) would lead to an oo 
integral equation for    f (y)   as wil1 be shewn later.      A similar situation results 

if one Intends to find    P(w   r>t   b   ior given geometry of the hydrofoil.      There- 

fore wo shall first consider the simple case in which   P (y)   is assumed to be 

given. 

In this case,   the contribution of the  lifting ime to the perturbation poten- 

tial can be  shown to haw the following integral representation (cf.   Ref,   12, 

also cf.   Appendix '): 

sipi! (z + h)     C       r-« /   \ J 
i  = —r^  I     r(n)dn Zv J 

/••CD . r*°° sin Xx    , . 

•CO 

cosn(y-T))e'        r    ' "d | 

r°° 
4  n '  " 

J-ro 

roo 
/ v    - ii  |z + hi , 

cosu(y -T})e   »* ' 'd. (10) 

It may be noted that the above expression satisfies Eq.  (1)   -nd has a singularity 

'ilong the  lifting line,   a jump of H (y)    .--cross the vortex sh^vt on the down- 

stream sidv  of the liftn-j,' line  and is regular elsewhere inside  the water.   Need- 

less to say,    9.  has no meaning above th>. free surface (z>*i).      It may also be 

remarked h-.-rt  that sorru  other ur.^ful representations for   v.    can be written 

as follows (cf.   Appendix I) : 

•if«^£±yr"r(T,)dnpd€re-M«*h|Jo(klj(x.0rt (y."^")kdk(i0a) 
^-OO «J   O        ^O 



or. 

4 TT 

•\GO 

loo   (y-T,)2 + (* + h)2 
jlhl 1 + 

\|x2 + (y-n)2 + (z + h)2/ 
dti,   (10b) 

whore    J      denotes the Bcssel function of the first kind. 

It is convenient to decompose   <p   into throe  parts 

*1  +   *l +   "'3 (11) 

in such 3 w->y thit the boundary condition of Eq.   (6) is decomposed   is follows 

dtfj 

Tx~ 
Hi 
dx 

=    0 at    z = 0 , 

and 

U 
'3<?3 

77 'z- o 
- K 

(1^) 

(13) 

Physically this decomposition means that    <f,    represents the potential due  to 

wave formation so that   v>      is the only part of    <p   which involves the  effect 

of gravity,   and it vanishes when the gravitational effect is neglected.      In this 

case  the bound try condition Eq.   (6) is  also  relaxed.      It does not follow, 

however,   that th^ disturbance    C     should also vnmsh because   K    is  llso in- 

fluenced by   >t.     ind   tp.    through Eq.   (5).      The remaining part of    <p    , 

namely,     * i  +   *> '    ls <-<iu'v'ill-'nt to the potential of  I biplane  system, in 

infinite flow with thu   upper lifting line of an equal circulation   T (y),   rotating 

in the s.ime   sense,   distributed along the image points (z - + h)  of the  roil 

wing.      In other words,    (p.,    represents the correction to   (p    due to the effect 

of the mean free  surface    z = 0.      According to this reflection,     <p,    may be 

written down directly from Eq.   (10) by replacing   h   by   (-li).      In the  range 

of present interest,   we  have 

1 
T7 

.co 

r (n)dri 
r CO • CO 

-co 

sin Xx I j\%    l 

 j    d\           cos^y-r^e' 

J   o 

»  (z*h^ d. 

r co poo 

- r(n)dTi cosu(y-ri) e>(z"h,d>i)   for    z/0, 

J-co J o 

(14) 
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which may also be converted into expressions similar to Eqs.   (10a) and (10b). 

It may be noted that this expression is regular everywhere inside the water. 

Now it seems plausible to assume that   <,       and   K   may be represented 

by the following expressions: 

poo rcr, 

^3 =1    r("n)d<n 
^-oo >J o 

,.      >    sin V. x     .. 
a(V.n)   —-^—   d\ cosu(y -^) e {\2+u2(z-h) 

du 

r oo 

£. IT 
(Odn 

sJ -QO 

OO 

cos u(y -Tj ) e*1* du , for    z  ^ 0    ; 

•J o 

r oo 

•oo 

rco 

(n)dn 
rco 

P (\, |JL) cos X x d X. 
z .     • u  TU    n, cos (i(y - n) e r        dji 

where   Q(X,JA)   and |3(\,^)   arc two functions of   u   and   X.   to be determined 

by using boundary conditions (5) and (13).      Substituting these values into 

tqs.   (5) and (13),   we obtain: 

a(\, u) 
<. 
T 

rr 2 IK  +H 

U 

and 

P(V.u) -   -J»   Q(V.u) 

These integral representations of    ^,    and   £    can be converted into forms con 

venient for calculation by introducing the new variables   k   and   0   such that: 

X-kcostt,       ^ = k sin Q, 

• oo 
Then 

*3 = -^|     r'(T!)d> 

i-00 

rx        r TT/2 pco 

del      sec2© del    e
k(z-h) cos(HCO50)c°s(k(y-Yl}sin8)kd 

k- A sec    8 
•Jo        Jo ••'o 

T, 
rco 

-oo 

^co 

(n)d, eH\^      / CQ8 jx(y- r|) d| for    z        0    ; (13) 
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r> oo 

1 

n   U 

pw/2 

r(n)d^ 
J-on 

r co 

sec   9 d 0 

Jo 

,"* k   co3(kx cos O)cos(k(y-T|)sir Q) .   . . 

k  -*  sec20 

(16) 

It can be  seen that this value of   £   given by F.q.   (16) is even in    <    so 

th.it the elevation upstream is merely the   reflection of that downstre \m. 

Therefore  it  seems necessary to investigate  the behavior of   ^    for 1-irge  ne«a 

live  values of   N    .n order to make a compinson with observation.      The  in- 

tegral representing    (.   as given by £q.   (16) i3 indeterminate,   but u is 

familiar  in plane wave problems that its principal value can be obtained by 

conside r ing    k    to be complex   ind evaluating it by contour  integration.      The 

path on the positive real axis should be indented   iround the point 

k  -   V. sec*"P    which is a simple pole of the  integrand.       After deforming the 

contour  to the  imaginary axis,   we obtain: 

i-rincipal valu'j of 

.oo 

), 

-hK    cos(k x cosW) cos(k(y-->) sin Q)   .    . 

k - :-. sec20 

-(sign x) ir<< sec   U e r,in(i<. xsec 0) cos(.< (y-f)) sec   OsinO) 

~oo 
-k i x s cos 8         \ i\.i        \        ni      sec"0cos(kh)+k sin(k h)    ... , , 7. cos h(k(y--.) sin 9) • • >      'i »      '    k d k   .      (17) 

k' •   <    sec   0 

The integration of the  last integral in Eq.   (17) with respect to    Q    (cf.   Eq. 

(16)) should only evtend over the  range for  which      x    cos 6+ (y-rj)sinO   >   0 

for an assigned point    (x,y),   (c f.   App.   I! for the detail).      It is evident from 

Eq.   (17) i.h".  -^lt!'.>'.i';h the integral vanishes as   x    • oo,   the first termrcmains 

even for    x -    - on.      Then there  ate  surface waves even far  ahead of the  hydro 

foil.       Tins ib  i:i contradiction with experience.      The paradox can be  resolved 

by observing thai  there   ">re  solutions of the basic flow- equation,   the free wave 

solutions,   whifii  satisfy the  surface pressure condition of Eq.   (6), Vre  can 

then "-(1:1 these  .solutions to our velocity potential without rendering the  sohtion 

so far obtained invalid for our problem.      The appropriate free wave  solution 

to be   idded is determined by the  condition that the free  surface elevation     4 

must vanish at large distances ahead of the hydrofoil.      Therefore,   we have tc 

superimpose on  £    another system of waves 
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ao r«/l 

r{T,)dri 

J-oo 

sec   Oe      '" $in(/x sec 8) co$(/(y-Ti) sec   OsinO)dO 

(18) 

which is odd in   x.      In order to remain consistent with all the boundary con- 

ditions,   we must add to the velocity potential another term,   say,    <p.,   given by 

IT 

-N CO oTf/2 

I    (r,)dr, 

-CO 

;ec   Oe '     *"      cos(Xx sec 0) cos(.<(y-T)) sec   Qsin0)d0, 

( for   z  ;   0) (19) 

which obviously satisfies Eq.  (l).      This part of the potential may be thought 

of as a correction term,        The same  result can be obtained by introducing a 

fictitious viscous term to the Bernoulli equation (cf.   Appendix II,   Eq.( 18) ),   a 

device first discoverec by Lord Rayleigh.      The physical significance of this 

viscous term is,   however,   not easy to understand.      Our argument,   even if 

somewhat lengthy,   ha* its merit. 

i 
From the  resulting expression of the  surface elevation,    C +   C   ,     it can 

be  seen that the term with the factor    c"k'Xl cos*   in £q,   (17) diminishes ex- 

ponentially with increasing    ixi    both in upstream and downstream direction. 

Hence for large positive values of   x,     the surface elevation can be approximated 

by 

~a. 
2 \ 

- Tf/i 

(n)d^ 

J-co 

4       -h  vsec28 2 sec   Oe    " sin('<x sec 0) cos^ty-'njsec   8sin0)d0, 

(for   x > 0, large)   (20) 

This relation shows that   £   is analyzed into components of simple waves, 

where each train of waves (corresponding to one value of   0) propagates on 

the downstream side of the wave front   x cosO + | y-^ | sin© = constant 

(cf.   Appendix II) with wave length 

2  TT 

"7~c0 
2rrU"' 2. cos   0 

8 
(21) 

This configuration of surface waves resembles that of typical ship waves 

(cf.   Ref.   5,   pp.   433-4 M).      To study the behavior of    £   directly behind the 

hydrofoil as    x —• r on,   y finite,   we can approximate the integral in Eq.   (20) 
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by applying the method of stationary phase (e.g.   cf.   Ref.   23,   p.   505).      Only 

the result will be given here: 

vOO 

—*»•   sin(,\x + £) 
IT X x 4 ' 

r (n)dri + C{ —) ,    as x -» + co,  y finite.       (22) 

-oo 

-1/2, Therefore   i    tends to zero like    0(x   */4*)   far downstream ; and at fixed   x 

the effect of free  stream velocity is such that   t.   is proportional to   U     , 

noting that in Eq.   (22) !~ (y)   is proportional to   U.      Eq.   (22) shows that as 

the distance from the hydrofoil is increased only the total circulation on the 

lifting line matters,   the detail of the distribution of circulation is inconsequei 

tial.      This is,   of course,   what we would expect from general principles. 

It may be also be  seen from Eqs.   (16) and (18) that there is a local dis- 

turbance immediately above the obstacle.      As we do not intend to examine 

the surfr.ee wive pattern in detail,   the above discussion suffices to describe 

the general behavior of the surface elevation. 

Thus far we have found the complete perturbation potential,   namely, 

M  +   C2+   p3*  *4 
(23) 

wh>: r 

respectively. 
V V *i and arc given by Eqs.   (10),   (14).   (15) and (19) 

CALCULATION OF  THE DRAG FROM INDUCED VELOCITIES 

The total drag,   neglecting the part caused by friclional effects,   ex- 

perienced by the hydrofoil may be calculated by using the Kutta-Joukowsky 

law: 

D --  -p r (y) ^-(o. y. -h)d (24) 

vJ-ao 

where    - «—- e (0, y,  -h)   represents the total induced downwash at the trailing 

edge of the hydrofoil.      If we split    D   into components,   each of which corre- 

sponds to the respective component of   o ,    we have 

D = D.   + D. + D    4 D    , 
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where 

Dn -  - p 

co 

' "{y)TT   ^n (°' y'   "h)dy '      (n=l'  2'  3' 4) (25) 

-CD 

The calculation of D., the induced drag due to the trailing vortices of the 

hydrofoil itself, is familiar in three-dimensional aerodynamic wing theory 

and >^ given by (cf.   Ref.   22): 

D, = ¥ 
OO 

•<(n)2 + 8(K)
2
 ]nd, 

whe re 

f(u) -  i 

^ co r oo 

r   (rj) cos P r) dT1 , g(p.) =   —     '" (-) sin^T, dr, , 

-00 -'-oo 

(26) 

(27) 

f(ti) and   g(ji)    are thus merely the Fourier-coefficients of the circulation dis- 

tribution   r(y) . 

For the rest of   D,    we first calculate   ——    from Eqs.   (14),   (15) and 
O 2. 

(19) and obtain: 

x = 0, 

XJ r>no 

l"(Tl)dr) 

-OO 

2h e"       ^ cos(hi(y-'p)) jidu    , 

-4 K 
2' , oo 

x = 0, 
z= -h 

r(':)dn 

-CO 

TT/2 

$..     -2<hsec   0        , ,.        .        2-        n.  , n sec   6 e cos(.^(y-f;) sec   0sin8)dfl 

iubstitution of these values int.) Eq.   (25) leads to: 

poo 

D2+ Di'- •¥(   c"2h^ if^2 + g^)2! ^ 
Jo 

(28) 

:nd 

>TT/2 

D4   =   IT p r. 
-2hKsec   0 i ,, •        2rt        „>2      , •        2n        n«2 e : f(-\sec   9 sin 8)   +g{Ksec   OsinW) sec   QdO 

(29) 

where    f   and    g    are defined by l.q,   (27).      The combination of   D-    and   D. 

represents the total contribution of the mean free surface effect,   which 

favorably decreases the tot   1 dr -g especially when    h   is small.      As    h   tends 
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to zero,     D,  • D^   cancels    D..      The part   D.    represents the wave drag due 

to the downstream wave formation which results from the gravity effect.      It 

may be  remarked here that the wave drag can also be obtained by the method 

of traveling surface  pressure (cf.   Appendix III). 

From the above result we  see that the drag is expressed in terms of tru 

Fourier   coefficients,    (f(u)   and   g(^),    of the circulation distribution    P (y). 

Therefore for a given    i-1 (y),     the total drag is completely determined.      In 

most cases,   the wing form is symmetric with respect to the central plane 

y -  0,     that is, 

r(y) =   r(-y), (30) 

then it follows from Eq.   (27) that   g    vanishes identically under this condition. 

By substituting the  relations of Eq.   (27) into Eqs.   (26).   (28) and (29), 

the drags can be expressed directly in terms of the circulation distribution. 

Thus 

r co 

•i--A 

c oo 

^-oo w -co (n-vr 4 n 

->oo 

rh)ch 
Poo   d1"" 

3v 
•n'- 

d-n' 

-co (26a) 

p CO 

p 

4r 
w -oo  J 

n OO 

• I ./< (i t-rf—S '       /, / A -•    r*- f ?«->'> 

and 

D4  = p 

^oo 

•oo 

O <A"> 

rh)r(V)G(---,i)dr,d-' 

•ou 

(29a) 

whe re 
r> TT 

G(-,-T)=  ^ 

11 
-2h.<scc a os r (T)-T)').<.sec   Psinolsec    8 fl 9 (29b) 

Eq.  (26i) is the familiar dr;\g formula for the  Prandtl lifting line theory. 

Eq.   (29b) shows that G(,]-f)')   is symmetrical with respect to -^    and    •"•/. 

It is seen that the drag components   D.,   D-    and   D,    are independent 

of the gravitational effect.      They are thus properly called the components of 

the induced Jr?.p.     All the drag caused by the presence of surface waves is 

represented by    D..      D      is thus the wave drag.    Our calculation does not 

include,   however,   the skin friction drag produced by the viscous shearing 
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stress on the surface    of the hydrofoil.      This skin friction drag should be 

added to the drag calculated in this section to obtain the total drag of the hydro- 

foil. 

CALCULATION OF THE TOTAL LIFT 

It is well known that the lift exerted on a wing flying in an infinite fluid 

is given by 

L       =    pU o r 

CO 

(y) dy (31) 

J-co 

In the hydrofoil problem,   however,   the approaching stream velocity is influ- 

enced by effects of the free  surface and wave formations.      Hence,   the total 

lift on the hydrofoil will differ from its aerodynamic value    L      by an amount 

AL    such that the  total lift 

L    »    L     +AL o 

where 

AL 

r oo 

•oo 

(y)   3^0, y,  -h)   dy 

3x 

(32) 

(33) 

From the expression of   0   we  find that    c.    and    <f      have no contribution to tin 

value of      -^-P     at the hydrofoil.      The fin-1.!  result  is 

•:'<p(0. y.  -h) 
Ox 

O  0, 

c»x •\t   x = 0,      z - - h 

1 

2 IT' 

a) 

-co 

r> Tf/2 oco 

•C»)d- d6 
2hk 

cos(k(y-v,) sin 0) k + ,-!sec   G kdk 

J(> 
k- «<soc    8 

(34) 

Substitution of this value into Eq.   (33) yields: 

n oo c* Tf / ?• 

AL ••5 
- 2 h i 

U Q\x 
{ft         n\£ A   /         ni^ 1 u + Ksec   8    . „ !  f(u sin 0)   + g(y sin 0)    ! C        , -   a H 

-JO 
- \   SeC     0 

(35) 
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where f and g are again given by Eq. (27) and g vanishes for symmetri- 

cal wings. Equation (35) represents the contribution of free surface effects, 

which tend to lcasen the total lift. 

By substituting the relations of Eq.  (34) into Eq.  (33),  a direct ex- 

pression of   AL   in terms of the circulation distribution   p (y)   is obtained: 

poo      n oo 

,L=   .-J. 
-JO    J-co 

r(ri)r(r)«)F(r1-r1')dT>dT1 (35a) 

where 

r oo 

F(TJ-Tl')   r-ij- 

r w 
-2hu 

e i 

/2 

cos [(T1-T1')U sinfl]   K>/<se"2°   dO      (35b) 
u - i^. sec   0 

Therefore the magnitude of   £L   is in general equr.l tc the magnitude of drag, 

i.e.,   of one order smeller than the lift   L. 

In connection with the present discussion,   wc examine the effect of im- 

mersion depth on the value of   r(y).      Substituting Eq.  (34) into Eq.  (9),   we 

obtain the following relation for a symmetrical hydrofoil, 

f»oo r^v/Z 

P(y) = rjy) 1 - 
1 

T7TT 
- 2 h u.    , 

e "^ a \i 

Jo 

f(u sin 0) cos(u y sin Q)^ 

v-« o 

+ Ksec   8 

u-Ksec   8 

(36) 

dO 

where   !~    (y)   is the value of '"'(y)   f~»r the same wing and same effective angle 

o( attack as   h —» oo.      If   " (y)   at depth   h   is given,   then the aerodynamic 

value of the circulation of the same wing,   |~    (y).    can bo calculated from Eq. 

(36),      On the other hand,   if only   H   (y)   is known,   then £q.  (36) provides an 

integral equation for   P(y)   since    f   also depends on  i~(y).      However,   for 

moderate values of   h,    ." (y)   and   i"1   (y)   are approxim -.tely equal as will be 

shown later. 

GEOMETRY OF THE HYDROFOIL; EFFECTIVE ANGLE OF ATTACK 

Take a strip -if the hydrofoil of width (dy)   in the spanwise direction and 

with chord   c(y)   located at   y.      According to the basic concepts of the lifting 

line theory explained in the section "General Formulation of the Problem", 
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the circulation >" (y)   around the lifting line at   y   is the same as the circulation 
nrcund the corresponding hydrofoil section.      It then follows that the lift on this 

lifting line segment is the same as the lift on this hydrofoil section,   integrated 

with respect to the chord of the hydrofoil.      The local flo / around this hydrofoil 

section in a plane   y = constant   may be then considered as a two-dimensional 

flow around the same hydrofoil section,  with free stream velocity   (U • u(y),   w(y)) 

and without free water surface.      Therefore the local lift coefficient C, (y)   and 

drag coefficient   C ,(y)   per unit chord length can be defined by 

4-p[u + u(y) j2 cMC^yJdy   =   p[lJ • u( y)| T(y) dy 

-^plu + u(y)j2c(y)Cd(y) dy   =   p w(y) T(y) dy 

where   u(y)   and   w(y)   denote the induced velocities   ?2&.   ind    (-—^) respec- 

tively at the hydrofoil.      The above relations then give 

and 

,-(y)   =    -|-|o + u(y)J    c(v)   C^y) (37) 

(38) 

where < (y) is defined by the above equation as the downwash angle. Eq. (38) 

indicates an important feature of the local flow that the actual absolute sr.gie of 

attack o , measured frr»m the free stream to the zero-lilt direction, is modi- 

fied to ^.n effective angle of attack a>t measured from the approaching stream 

to the zero-lift direction on .account of the local perturbed velocity as shown in 

Fie.   2.      The relation between   o      and   a      ;s given by 
0 Ik k* 

<(y) (39) 

Fig.   2 - D. wnw?sh and effective angle of attack. 
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In this way we can separate the three-dimensional effects and two-dimensional 

effects by taking the local sectional characteristics of the hydrofoil at depth 

h    and at absolute incidence   o      to be the same characteristics of the section a 
of a two-dimensional hydrofoil submerged at infinite depth and sustained *\t 

an absolute incidence equal to   a    = a    - f. (y).      Referring to these two in- 

cidences,    C, (y)   is approximately proportional to   a     or   a     for mest oC 

the usual profiles at small incidences (Ref.   17 and 21).      Moreover,   when 

a      vanishes so do   a %    and   € (y).      Hence we may put 

Cl M = aa aa = % °e (40) 

In general,   all   a   ,    a   ,     a      and   a      may be functions of   y.      In particular, a        a        e e 
Q      is constant i-r wings with no geometric twist,   and in addition with the 

same profile along the  span,     a      is constant.      Combining Eqs.   (37)-(40), 

we have 

r(y) 
. U c(y) a, 

(i^)- S^ (41) 

For given >^(y),     u(y)   and   w(y)   arc determined,   then this relation gives the 

value of the chord length   c(y)   except for a proportionality constant.      In 

particular. 

r(o) 
U   r     a o    e a   (J  + r>-Ti (41a) 

which gives the relation between  <~'{0)   and   c   ,   the chord at the    central 

st ction. 

FORMULATION OF PROBLEM WITH SPECIFIED GEOMETRY 

The problem is for given geometry of the hydrofoil,   that is,   given   b, 
c(y)i    &„(y)»    a      "nd   h,    to find P(y),    C.     and   Cn.      The relation between 

the given quantities and the unknown  r*(y)   was approximated in the section, 

"Geometry of the Hydrofoil; Effective Angle of Attack" ,   to be 

j« c(y) = 
d*4f»)  - *&». <«) 
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where from Eq.  (34) and the section "Calculation of the Drag from Induced 

Velocities", 

u(y) = 1 

2 IT' 

/•»O0 

J-oo 

w/2      poo 

(r)) dn, i d 0 

Jo 
-2h, cosL(y-T))sinolK + f-sec.°   Kdu   , 

1 'p-tsecQ 

(43) 

c~" r 
w(v) =T~J      "(^d-j       (1- e"2h^)cos[u(y^)"| ud* 

J-. Jo 

r OO 

-oo 

flt/i 

h)dn 5.,    -2h ' sec   0 |"   /        . 2n .1,. 
stc   U e cos j/. (y-rj) sec   0 sin 0   d 8 

(44) 

One way to solve  this integral equation is by using a method similar to that of 

I.   L;tz        in aerodynamic wing theory.      This method consists in assuming 

for the circulation ^(y)   it distance   y   from the plane of symmetry the formula 

oo 

(y) = 4bU A2n +     sin(2n+ 1) 0    , y = bcos0     ; (45) 

n = o 
= 0 , :y| *b 

so that       (y) = T(-y)   and 

oo 

r(0) = 4bU V   (-)nA2n+1 (45a) 

n = o 
The coefficients    A,       ,       ^.re to be determined by using the condition (42). 2n + 1 ' ° ' 
The first term of the Fourier series in Eq.   (45),   namely, 

r^y) = 4bU Aj sin t   --   -IbU Aj   \1 - ij (45b) 

represents an elliptical distribution of the circulation. The rest of the terms 

may be regarded as a meisure of the deviation between the actual distribution 

and the elliptical. 

.Substituting £q.  (45) in (43)   '.nd integrating by parts with respect to r\ , 

we obtain (cf.   Appendix IV,   A) 

oo 

\ u(y)   =   -tO, (-)"(2"*l)A2n+1  uZnrl (« (46) 

n=o 
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where 

*2„..<«-f 
r7t /2 pOO 

dO 
sin 6 

o <jo 

-2X.t  t + b/\sec   0  T ,. _. ,, H OVJ, e •     J.      . (t sin 0) cos(t cos0   sin0)dt, 
»     * *• *\       CUT 1 • t - DAsec   0 

K =   r-   -    depth - y span ratio 

(46a) 

(46b) 

In a similar manner,   substitution of (45) in (44) gives (cf.   Appendix IV,   B) 

,(y) =   -JL_V(2n+l)    A W (jj) (47) w/        sinP /   ,x '       2n+l*v2n+lv   ' v w 

where 
n=o 

*2n*l<«c  sin(2n,l)^(-rI(sin0)Rf   Nl+ (2X - i c ,s *)2-(2X - i c.sjQ J 

\Jl-t-(2V-icos0)2 

rrt/Z 2 

e ct      J-      .(b 'sec   0 sin Q)cos(bKcos 6 sec   OsinO) + (-)n4bXsin0 

secfll 
suiO   J dO (47a) 

For symmetrical winn we require that   both the chord   c(y)   and the incidence 

Q  (y)   are even in   y,     hence we may expand the following quantities into 

Fourier series with known coefficients 

c    sin 0 o 
c(y) 

CO 

/     C,    cos 2n 0      , 
£.      2n 
n=o 

GO 

(y) sin 0   •   y    B2    cos2n0 

(48) 

(49) 
n=o 

Substituting Eqs.  (45)- (49) into Eq.  (42),   we get 

oo 

c   a     IZC2nCOs2n*      zXi+l5^2"*1)* 
•-n=o J 41=0 J 

r   00 

•iL PS 

= i l-^(-)n(2n+l)A.   .^2n+1W][£B2nCos2n0]-£(2n+l)A2n+1W2n+1(0) 
oo CO 

n=o 
(-)"(2n+l)A2 

n=o n=o (50) 

where   \l.      .    and   fc/2   + i    are given by Eqs.  (46a)   and (47a).      To determine 

the coefficients    A2     .    from Eq.  (50) would necessitate the expansion of the 
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left side,   and both U .   ..(0)   ^nd    -v,   .i(^)»    int(J a Fourier scries in   0,    thus 

lending to infinitely many linenr equations,   in infinitely many unknowns.      The 

ujlution to this problem is obviously n difficult one.      However,   a very good 

••pproximntion can be obtained by using a method for practical calculation on 
28 wings of finite span,   due to H.   Glauc.t     .      Replace the infinite series repre- 

sentation of   f~(y)    given by Eq.  (45) by an approximate value in terms of a 

finite series of,   say,     m+ 1    terms, 

m 

(y) = 4bU 2_A2n+1  sin(2n+l)0 ,    y-bcostf. (51) 
n = o 

This expression of   ^(y)   then reduces the condition of Eq.  (42) to 

8b 
a 

•ill   r — "> rS 

7I7T    |^+»Sin(2ntl)^l   =     l-^.(-)n(2n+1,A2n+l
?'2n+l^ 

•   Sn=o „ -     n=o m 

2_(2n+1)A2n+l   >2n+1<'> 

(oa(y)sin^) 

(52) 

n=o 

This equation cannot be satisfied identically for all values of   0 .      However, 

if   (m + 1)   particular values are suitably chosen fcr    0,     we get   m+ 1    linear 

equations from which the (m + 1) coefficients.    A,,   A,,   -  - A,       , ,     can be -i \ / '        1'      3 2m+l 
determined.      The values of these    ,*,      ,    so obtained will satisfy Eq.  (52), 2n+l /     -i    »     #• 

not identically,   but only at the selected points.      In general,   the first four co- 

efficients usually give   a sufficiently accurate result.      The detail of such cal- 

culations will not be given here; however,   the calculation of the first order 

term is quite similar to that of a specific example of the direct problem dis- 

cussed in the section "Example - Elliptical Distribution of the Circulation 

strength". 

Having obtained the value of   l^(y)   for this indirect problem,   the cal- 

culation of the lift and the drag is then the same as that of the direct problem 

discussed in section "Calculation of the  Drag from Induced Velocities" and 

section "Calculation of the Total Lift".      The results can be directly written 

down by ascribing to   f(^)   and   g(u)   the following value: 

p b nb 

(M - i r(r,) cos u-T! dr)  =  - — 9in^ ^7)      d,n' 
-b 

oo 
4_b 

IT 
~V(2n+l)A,      , 

n^6 

«n 

sin(ubcosy) cos(2n+l) \»' d y 

oo 

.iiaYc-pu-u^.j 2n+l (bu) (53a) 
n=o 
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and 

8(H) -- 0 (53b) 

MINIMUM DRAG FOR GIVEN LIFT 

V/e shall consider a hydrofoil of span   2 b  so that   ~'(y) = 0   for   ly|    1 b. 

The  problem is to find a distribution   '"*(y)    such that the  drag    D   is minimum 

under the condition of constant lift    L.      By the method of undetermined multi- 

pliers  the  requirement is v 

D - X,   5L 
o 

(54) 

where the variation is carried out such that       ^(y) = 0   at   y = + b.      Applying 

the above variation to the general expressions for    D   and   L   given by Eqs. 

(26a) -(29b),   (31),   (35a),   and(35b),   using the  relation that 5, [ Hr,)!"^1)] 

=   r(n)6r(n') + n(T1
,)5r(Ti)   and noting that both   F(n.-r,»)   and   G( v- V) defined 

respectively by Eqs.   (35b)  and (29b) are  symmetric with respect to   (T-, -r)'), 

we obtain 

n b 

-b 

2  <MC
Vy>  -h)   -    K    (U + 2 2*[°' Y>  -h) )|o r(y)dy = 0 . 

d z 

Since    6'~ (y)    is otherwise  arbitrary,   the quantity inside the bracket must 

vanish identically.      Or,   using the present notation,   we have 

2w(y) - \   [U •   2u(y)]r  0 (55) 

The constant multiplier   \      determined by Eq.   (55) equals approximately 

twice the value of the downwash angle   (    for not too shallow submergences; 

more precisely,   the difference    i -    g       is a second order small quantity 

given by 

o   _        u(y) w(y)  ( -T - Lu.yv?M+>u(y), • 

Therefore,   the condition for the minimum total drag,   accounting for all 

causes and holding lift constant,   is that the  total downwash angle must be 

constant,   along the  span,   up to the first order term.      When depth of submer 

gencc becomes infinite,    u(y)   tends to zero,   the above condition is reduced 
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to the  requirement of constant downwash which is in agreement with aero- 

dynamic wing theory. 

Substituting the explicit expressions of the induced velocities   w(y)   and 
u(y)   given by £qs.  (43) and (44) into Eq.   (55),   we obtain the following integral 

equation for f (y): 

r b 
1 

7^ '(n)*i 
*J-b 

rco 

J o 

P b 

U - "7 

-2hH (1 -e   "    K) cosjify -n^d^ 

+ 4 

,ff/2 

Jo 

rco 

('))<h 
Jo 

-2   hsec   0        ...        .        2rt        rt.        5_   ,. 
e cost   .(y-l) sec   0 sin 0) sec   OdO 

ntr 
-2hu      , 

e udn 

ll 
it        \        «\ v- + •'• sec   0   . , cos(^(y-^ ) sin 0)*- «- d V/ 

u -  >sec   0 
(55a) 

To solve  this equation a practical method of approximation similar to that used 

in solving Eq.   (42) of the indirect problem may also be  applied here.      Assum- 

ing thiit the exact solution of Eq.   (55a) may be approximated by the expression 

given by Eq.   (51),   Eq.   (55) can be  reduced to the form 

m m 

y(2n,l)A2n+1«v2n+1(0),Xos,n0|i  - ^T< -f (2n+ 1) A^ ^^ { (0) (56) 

n = o n = o 

where   \i ,      ,    and   V,      ,    are given by Lqs.   (4c>a) and (47a) respectively. 2n+l 2n+l ° '     n      x       ' \        / r / 
From this equation the firs' ( rh+ 1)   coefficients    A    may then be determined 

for   (m+ 1)   particularly select."4, values of   0 .      It should be remarked here 

a&'ain that the  solution so obtained cannot satisfy Eq.   (5b) identically in   0, 

b it nevertheless gives a good approximation.      The estimation of the deviation 

of this solution from th_ elliptical distribution,   which is the  solution of the 

corresponding problem in aerodynamic wing theory,   will be made in the speci- 

fic example discussed below. 
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EXAMPLE  - ELLIPTICAL DISTRIBUTION OF 

THE CIRCULATION STRENGTH 

As shown in the indirect problem that the first term in the assumed ex- 

pansion of   P(y) given by Eq.   (45) represents the  so-called elliptical dis- 

tribution,   it would be of interest to consider a direct problem of a hydrofoil 

of span    2 b   immersed at a fixed depth   h   with an elliptical distribution of 

P(y),     that is, 

r(y) = r i b6 
I y | 4: l> , 

|y| >^ 

(57) 

Although for a given hydrofoil of fixed geometrical form this distribution 

cannot bo  held for different values of   h,     nevertheless it gives interesting 

results.      In this problem we  shall further define the Froude number of the 

motion by 

,2 
1 

h~T 
u (58a) 

which is one of important parameters of this problem.       We  shall mostly be 

concerned with large values of   a,     corresponding to shallow submergences. 

For instance,   for    U    equal to    80 ft/sec    and    h    equal to 4 ft,    cr    is  approxi- 

mately    50.       We  shall further denote 

1 U 
bT      F& *•*•> 

(58b) 

p    is in general  also very large  in our velocity range of interest. 

For this distribution of  P(y)   we find,   from Eq.   (27), 

zr rb 

(M -- 
\ 

2 _    Jj(i*b) 
1 * *7   cos(wy)dy =  I   Q  g(n) = 0 (59) 

a.    Calculation of the  Drag 

Substituting Eq.   (59) into Eq.  (26),   we have (cf.   Ref.   24,   p.   405): 

D, 

_ 2 poo    . 2 ,    . . 
TT pr^ jj (ub) "p 

.2 

•K    = (60) 
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and from Eq.  (28) we obtain (cf.   App.   IV,   C) 

IT p n 
Dz • U3 

oo 
•2hu    Jl  ^b> 

TT pr 
< l - - x , 

tr 
1  + X 

1 + X. 
I        ? 

(61) 

where    K(k)   and    E(k)   denote the complete elliptic integral of the first and 

Second kind respectively and   X   is the depth - y span ratio defined by Eq.  (58b). 

Using the series expansions and the asymptotic expansions of   K   and   E 

(cf.   Ref.   26,   p.   73),   we find the behavior of   (D.fD   ) for small and large 

values of   \    respectively as follows: 

TrpT 
D,+ D,S   - 

TT 
log- 

4^x2 

4   ( 
•(lo; 

4^77 4> 
\|l + \' 

; 4N1+K2 
,   «(     *•          i       4V1+K   » 
+   0( —T   lo8 T ) 

(1 + XT 

D2+D3 

-2 r 
^.[i.J- 
64 X      ^        4 X \     ! 

as    h-* 0 

e s    h -» QD 

(62a) 

(62b) 

As    h-*co,     the drag due to the  surface effect diminishes like   —j .      '.hen th. 

hydrofoil becom.es a pi int.ing surface,   i.e.     h-»0,   we find that   (D, + D.) 

tends to a finite value  - TT p•" "/8    which cancels    D.,    and consequently,   the 

c'rajj is the T solely due to the  wave effect. 

To find the wave dr.iy,   we  substitute Eq.  (59) into Eq.  (29) and obtain 

the following integral*: 

D.   =  Trpj- 
4 o 

r"   2   -i.SCc?o!  J.(Jt sec^OsinO) 
e    * i     1   P,      1 sec   0 d 0 

ice   0 sin U 
(63) 

From the integral representation of the wave drag given by Eq.   (63),   we 
note  that 

2 4 
Dj = pfo   l{a, \),    or,     j-—^ =   f((r'x) 

p U   c r o 
which can be directly derived from dimensional analysis (cf.   Kef.   5,   p.   438). 
This is a useful non-dimensional form for experimental purpose. 
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For general values of the Froude number   <r,    the above integral may be con- 

verted into an infinite series,   each term of which contains modified Bessel 

functions of the second kind,   (cf.   App.   IV, D),   -is follows: 

4        4 ^     ZLn!(n+l)!(n+2)!     \ 2p2/    j     n*     L 2  1     n+l<rj 
n=o 

For very small values of   <r   (—large    h,    or   X) ,   we can use the asymptotic 

:xpansion of   K (—) , r nV 

Kn(±)*^V'/' ,  , 4r,Z- l2       , (4nZ-l)(4n2-32)     2X 

l#   ° 21  (8)^ 
(65) 

So we see that in this case the series in Eq.   (64) converges very fast and the 

final result may be expressed asymptotically by 

D^ 1+J0 --i-2)«r>0(«r2) 
6p 

as   <r -»0, (66) 

which diminishes exponentially with increasing   h.      As a remark,   the above 

asymptotic expression of   D      for   a   small can also be obtained by evaluating 

the integral of Eq.  (63) in a complex   0   plane and applying the method of 

steepest descent (e. g.   cf.   Ref.   Zi,   p.   504). 

1 For large values o(   j   (\ small  h),     K  (—)   has the following expan- 

sion: 
oo 

K (I) = log(2a)-I   (i)+y&i 
-2m 

O'ff O'ff' 

n-1 
m=o 

Kji)4Vl-)>:p-0^(2,)"-2 - c.rr\ 
n'o" 

m = o 
co 

in; 

. - n - 2 iT» 

(•)nV^n"m)'l    [log(2cr)+^(m+l) + ^  (n+m*l)]. 

(67) 

(n^l) 

m=o 

It can be seen that the most important contribution to the sum of the series 

in Zq.   (64) comes from the term   y nl   (2<r) of the expansion of   K      .(—). 

As shown in Appendix IV,   E,   this term results in a scries which converges 

only for    \ >, 1    and represents,   in this  region,   an analytic function of    \. 

Consequently the value of the wave drag   D.    for shallow submergences 
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(•-\ '1)   may be obtained by some analytical continuation of this function from 

the  region   X >, 1    to the whole region of physical interest,   namely,    OS- X '• oo 

(cf.   App.   IV,   E).      The final result is 

Ttpr 2 r 

i— i     1 - — K \I 1 + KZ 

t IT ' 

-|x-X2^l + X2 F(4,  |;  1 i-Lj) 

Ktz^) - E (==:)!    • 4 

W J     +^, 
2 2 3/2 1 

\|'i+x2 

1 + X 
•-^T    logP+0(-l.i) 

16^ f     * 
>.   as <r-*oo, 

(68) 

It is of interest to note that when the hydrofoil is close to the  surface,   the 

wave drag is rather similar in behavior but of the opposite sign and numeri- 

cally almost twice of the drag due to the  surface effect (cf.  £q.  (61)).      How- 

ever,   it should be emphasised here that even   I  (y).'H     were the same function 

of   y   for all values of    X,    f       still depend on   X,   especially for    X small, 

(cf.   Eqs.  (9) and (4 1a)',      Consequently the  actual dependence of the induced 

and wave drag on   X    for a given hydrofoil at fixed geometric incidence can 

only be determined after the function   r  (X)    is found later in this section, 

part (d). 

It is also of interest to compare,   when   <r    is small,   the first term in 

Eq.   (04). 

/<r   I -,   /1\   .  /,  . ff »   ,.   #l> 
rrpr 

"TT u K<7>*"*f>Ki<r> 

with the  wive  resistance on n moving sphere of r-dius    r    given approximately 

by (cf.   Rot.   5,   p.   437,   also Ref.   6): 

2   3   3 

U 

-1/c 
K0<7>*<»+|>K1<7> (<r - Fh} • 

Except for a proportionality constant winch depends on the size of the obstacle, 

they have  the same dependence on   a.      Evidently an observer on w?.ter sur- 

face cannot distinguish bodies of different forms if they move at sufficiently 

great depth. 
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b.    Calculation of the Lift 

The total lift experienced by the hydrofoil can be obtained,   by substitu- 

ting Eq.   (59) into Eqs.   (31)-(35),   as follows: 

L = L   • AL. + AL, o 1 1 

where 
rb 

o      r        o y'£   dy=JPUbrc 

(69) 

(70) 

pr 
«w/2 

AL, 
d8 

sin   0 

,oo 
-2hn . 2,, 

c        ^J.  (bp. m8)^ (71) 

AL. 

nn'2 n oo 

Jo 

dd 

sin  C 

•2hji _ I,.           nX    sec   Odu 
^J, (b^ sm8) "-   r-y 1 

u(u-Ksec   0) 
(72) 

It cm bo  sjen th"-.t   L      is the  aerodynamic value of the lift,     AL,    is inde- 
o 1 

pendent of the  gravitational effect and thus represents the correction due to 

the mean free surf-.ce.      All the lift caused by the surface wave effects is 

represented by    AL?.      For  small incidence   ingles,    •'      is approximately 

proportional to the  incidence angle (cf,   Eq.   (4 1a)),   hence  relative to   L    , 

AL    "\nd    D    .^re  second order small quintities. 

The integral representing    AL      contains the  same  integral given in 

Eq.   (M) (cf.   also App.   IV,   C),   the  result of which m-.y be  then applied here, 

After this substitution,   integrating by pirts with respect to   0,   we obtain 

: simpler  representation for    AL.    (cf.   App.   IV,   F) : 

I - y—i 
-^      C?(k)dk (73) AL 7T 

l 

where    (!(k)   is - derived complete elliptic integral (cf.   Ref.   2S,   p.   73) 

defined by 

-TT/2 

2(k) sin   0 cos   0 . a 

I 1 - k    s I n  (3 I 

(73a) 
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>* = 
\l + \' 
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(73b) 

For    0<.h ,'ao   we have the corresponding values of   \   and ^C   as    0 < \ < oo 

and    1 >X> 0.      When    K-» 0   (X-*!).   the integral in Eq.  (73) tends to a definite 

value,   namely 

lim 
^1-0 

rx 
d "Mr 

i-(£) 
-£,     dk = 

1 

(*(k) dk 

il kB(k) - (l-k2)kC(k) 5 L 
l (74) 

where    B(k)   is another derived complete elliptic integral (cf.   Ref.   25,   p. 78) 

defined by 

B(k) 1 
~2 E(k) - (l-k')K(k) (74a) 

Hence £q.  (73) indicates that   AL.    tends to   oo    like   •?-   as    \—»0,   noting that 
2 i-1      docs not vanish,   as will be  shown later.      This fact is not surprising 

because it is known that as the hydrofoil approaches the planning condition, 

the total lift drops to almost half of its aerodynamic value    L      (e.g. 

cf.   Ref.   14).      The divergence of the integral in £q.   (71) simply implies 

that this second order small quantity will grow so large that it will modify 

the value of the first order quantity   L   . 

For   \   not too small (^jf.   not too close to    1),   the integral in Zq.  (73) 

can be calculated by using the known expansion of   C*(k),   (cf.   Ref.   25,   p.   73), 

given as follows: 

^k) = ir|"l + 6 iT + zr42)2 + 2454)3+ 0<k8> (75) 

Substituting this expansion into Zq.   (73),   then applying the transformation 
2 2 k    = X  t   and integrating termwise,   we obtain (cf.   App.   IV,   C) : 

WPC 
AL.  = - 

64\\| l + \' 

1+    5        1 181 1 3015     1_ 

*  "^(l+K2)      TO(1 + \212  +      8D      (U\6) 
rj 

+ o(      U' (76) 
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This formula should be good for   \>1     (or   h>b).     For    0   close to    1   (h:sO), 

the above series converges slowly; hence we have to resort to some other 

approximation in order to facilitate calculation.      For this case,   we define 

X2 = i -X' .    _X2«i   .    >'2 =-*-r = x* 
l+x 

+ 0(X4> 

Then 

1"(^2 12       k2 4 1-  iX
d  (*      )  +   0(X'4) 

7* 1-k 

and 

(77) 

£L, 
prv. o 
nX 

Jo 

(S(k)dk -^>'2 * j (*(k)dk + Of*.'4) 

<-»o 
1-k 

Now the first integral can be mtegiatcd, 

c«(k)dk =   -jfxBix) -XX'2 <SJx)] . 

and the second integral may be appioximated by 

-X       > 
1 

1-k 
2 *(k)dk = - -j-iog \)l-X    =   - jlo8 l 

^ l + x 

Finally we have 

2 

AL.^ - 
PfL 

1~       3n \ 
Ji + \2     jiTx2     \[ux2 L \|i+x2      lux2 

^ ,     1    ,      i,      \ll-»XZ 

<5 (==) + 5 leg  nr 

+ 0(K* logX) , (78) 

and using the known expansion of   BQO   and   ($(X)   as _X"*1.   we obtain 

2 
PH 

AL, ^ 1 - 3TT\ 
o      |    ,      ,.2 f .       ,      3      5,        ^ll + \ 

1 - 3X      log 2 - -r + ^ log 
2 - 

>* 0(X4 logX)   as X-*0     (78a) 

The integral representing   £A^?    in Eq.   (72)   is indeterminate,   but its 

principle value exists.      The method of contour integration described pre- 

viously in the section "General Formulation of the  Problem" gives a complicated 
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expression.      In this case we  shall use the following approximation. 

u - (<sec   0)u   wo can transform Eq.   (72) into the following form: 

By 

^oo 

AL. u^-l) 

• IT/2 2u        2» — sec   8 

Jo 

J1(isec20sine) 

—^T"  sec   0 sin 0 
sec   8d0      (79) 

The  inner integral is v>:ry  simitar to that representing    D.    in Eq.   (63) which 

is discussed in detail in Appendix IV,   D.      This integral may be treated in a 

similar way (cf.   App.   IV,   H).      Because the interesting feature of   6L.?    also 

comes from the integration with respect to   u ,    we shall take only the first 

order term of the .nner integral.      The final result is as follows(cf.   App. IV, H): 

for   cr    very large    (shallow submergence), 

AL 
4    |2 4 

r (-) 

j* r(i)   \jwx2 . 
1 ' ^<Y + 1

°E|) (l+0(X2,i) ;  (80) 

and for   cr   very small, 

AL ~P'o 3/2 
(81) 

F rom these relations it is of interest to s^c that   AL?    tends to a constant 

value    p'~"     r(7)/4{2     as    h    tends  to zero.      This  result is quite a contrast to 

the feature of   &L..      Compared with   AL.,    the value of   &L,    is smaller for 

a    large,   and greater for    <r    small. 

c.    The Induced Velocity at the Hydrofoil 

In order to investigate further the geometric and hydrodynamic proper- 

tics of the hydrofoil,   we need to know the value of   P    ; and if we want to cal- 

culate     P     in terms of given quantities,   we have first to obtain the values of 
o 

the    u-velocity and the downwash at the hydrofoil (cf.   Eq.   11). 

Substituting the value of   r(y)   into Eq.   (4 3),   we may express   u(y)   in 

terms of two parts  : 

u(y)    =    Ul(y)+ u2(y) (82) 
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wherv 

<->r/ 
' > 

u^y) -" 

u,(y) = 

I   o 

roo 

7T 

dO 

Jo 

0«r/Z       n<x> 

dO 

O v 

'  sin 6 cos(jiTisinO) dK , (82-0 

_2       J^ sinO) 

—ET^o—C 

2o , n.        sec   0        , os(fiT] sin 0) «— d u 
ji-b/<scc   8 

7!ld 

-I- <•#• F ' 

(82b) 

(82c) 

The  integral in Eq.   (82.),   which represents the effect due to the mean 

free surfTce,   c->n be evaluated exactly. The  result is as follows, 

(cf.   App.   IV,   I) : 

co       n > 

u.(y)S  --l£ ±— \        '—,    *' —W~    F(n4,i-n;2;     »       ) (83) 
a   r- v      v i   i    -v - -—' (l+4\ )                                           1 + *X 8^Trb\ulf-«\n = o 

The  value of   u.(>)   is always negative and becomes infinite as   h-»0.      It can 

b^   shown that the  above  series converges uniformly with respect to   r)    when 

OS ri £ 1 V/c irny also find that   •.:.(>')    is a slowly varying function of   y  ; 

in particular,   the value of   u.(0)   is 

Uj(0) f_o 

16b 

1 

\ \\l^,\Z 

_    ,1       1      , 1      , 

1+ i\ 

irb 
-  B( 

\ \jl + l\2 \ 

(84) 

1+4V 

where    D(k)    is  i derived complete elliptic  integral defined by Eq.   (74a). 

IL can be >hown in t u,(y) is also a slowly varying function of y, i.e. 

the value.-* of -J ,(y) at points close so the liydrofoil differ very slightly from 

its value  at pi .n>_ o:  symmetry (,iv^n by (cf.   App.   IV,   J) : 

ujo)s--.i 4 
2 TT  U 

1 I 

\1K ,   1/4 
I 

(1+:C) ^i+4K   +2\      MJ       ^ji+.R' 

1 
#• 

l+\br(Y+i°g;:) 

for   a    large   ; 

<i*o£>) 

(85a) 
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and 

u.(0)£ £2.        -_L-    .      1      (l-rO(a) ) - ., 
2 aL n  .2 , for   <r    small 8b ^FJr" (85b) 

It is of interest to see that   u.(0)   and   u?(0)   are of the same order of 

magnitude.      Therefore the tota;   u-component   velocity at   y = 0   is 

u(0)*-l^ B 
itb 4K^l+4\Z ^1+4 \2 VTK(1+4X2)  '    [^l+4X2+2\i    ^\ ^~~" Z' L 

* M(T+io8l> (ItO(i)) 

and 

,    for   a   large ; (86a) 

•v      ro 1 
u(0)?"T^    *T  (1  '   ^T7-)(1 + 0(T' a) ) ' for   a    small.  (86b) 

The downwash at the hydrofoil can be calculated in a similar way: 

My) = - *   (0. y, -h) =  - (v      + v2    + v,    + »4   ) 
z z z MO. y.  -h) 

(87a) 

where 

M (o.y. -h)=-i^ 

io 

Jj(»ib) cos(^y) djj. 

r-Tb- |Y| « b 

r 
L-A?(i- =yy=) iyi>b , 

|/-b« 

(87b) 

U2Z      ^z' (0,y, -h) "   T 

00 

• 2hu e    '  '   j.tbu) cos ji y    dp. (87c) 
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and 

»A (°.y. -h) - -Ki 

f,T//2   >u,       2o J.(*bsec2esinQ) -2h.\sec 0    lv 

 ? 
cos(x.y sec 8 sinO)sec 8d0 

sec 0 sin0 

(87d) 

Now the integral in Eq.   (87c) can be evaluated while that in Eq.   (87d) again 

has to be approximated. 

£<V«3> =   To 
(0. y. -h) 

1 - FU 2h-t|yl 

^  (2h- i|y| )2+b 

> (Ref.   25,   p.   33) 

«{'-i^' (88a) 

where 

F^X.r.)  "- 
2K 

\ 
(4X2 + l-n2)2+(4Xn)2|2 + ({\-+ 1-n2) 

\| (4\2+l-r1
2)2 + (4\r1)

2 

|nl   \  !.(4X2
+ l-n

2)2+(4\T1)
2j'2"-(4X2

+   i-r,2) 
(88b) 

\\ (4\2+ l-n
il)2

+(4Xr1)
2 

and 

v- =r • *{ (88c) 

It can be seen that   F.(X,^)   is a slowly varying function of r)    for fixed   X. 

In particular,   we  have 

Fj(X, 0) 
?. jTx 

\1 1 +4X2 

(89a) 

F,(\,+ 1) 
\J_X    'JUK2 + \2    +     )K   ^H-\2  - \2 

(89b) 

\\   1 + X' 

For small values of   <r,    application of the method cf steepest descent to the 

integral in Eq.   (87d) yields 
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~    r. 
,p.,r(0. y, -h)3 - ^ ^   e"2/,r(l •<>(,)) -2/c (90) 

which diminishes exponentially with increasing   h   and is independent of   y   for 

points close to the hydrofoil.      For very large   a,   the integral in Eq.  (87d)   also 

represents a slowly varying function of   y    and consequently only the value of 

<p„    (0,0, -h)   is of interest.      It can be shown that (cf.   App.   IV,   K): 

<W°'°.-h>*-^( 1  - 

i l + ir - 

dl     l       3/(o,0, -h) l+<. £> (91) 

Finally we have the value of   w(0),    by substituting Eqs.  (87a),   (88)-(91) into 

Eq.  (87a),   as follows 

w(0)~+-£° 1 

Co 
w(0)=+1^ 

l+4\ 

1 {—4][ 

1+00]' 

1 + 0(4. ^e*2/ff 

K 

which tends to aerodynamic value 

w   (0) 
CO 

r  (o) 1 oov   ' 
lb 

for   a   large; (92a) 

for   a    small , (92b) 

(92c) 

as   h —• co . 

It may be remarked here that both   u(y)   and   w(y)   are almost constant 

spanwise at points close to the hydrofoil.      This fact justifies some of the 

basic assumptions introduced previously in the sections,   "General Formulation 

of the Problem"    and   "Geometry of the Hydrofoil; Effective  Angle of Attack". 

This result also supports the assumption that the same circulation distribution 

will hold for a wide range of depths. 

d.    Geometry of the Hydrofoil 

We are interested primarily in the case of shallow immersion,  because 

the geometry of the hydrofoil at deep immersion will be the same as the 
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correspondmg aerodynamic problem.      Substituting Eqs.   (86) and (92) into 

(4 1a) and neglecting second orier small quantities,   we obtain the value of 

P   (*P(0) )   as a function of   \   and   <r   as follows: 

T U c     a    Q 2 o    e    a 

(zf^) + ;°.fi<^)| 

(93a) 

where 
2B( 

V tt f,(^. <0 -• ; B(    •JU.J* r< —- 1 + Jrr<Y + log-   +0(- 

4M1+4JC UI+4V      J7K(1+4K  )V    Ml+-1\+2>J 
(93b) 

and 

y*,,,.   [l-_^]f,+0(i(i)"|, (93c) 

/• s   h   tends to   a),    f.    tends to zero and   i?   tends to   y ; hence the value of 

P      at infinite depth becomes 
o r 

CO 

r U  c     a     Q 
: oca 

1 + STT ae 

(94) 

which is the well-known aerodynamic value of   P    in terms of given quantities. 

It is of interest to note that   P      changes with respect to     P    (0),     as    K   and 

cr   vary,     according to the following relation: 
co 

UFTae 

co 1 + T17 Qe[f2(V'<T>+£Qafl(X,<r)] 

y (\,<r.a  ) (93) 

which is a function of   \, cr    and   a      for a given hydrofoil.      This function and 
2 a 

its squared value,    y- ,    are  plotted against   \   in Fig.   3 for two incidences 

o    =3      and   6      under the following operating condition: 

c     = 8 ft,    b --  20 ft,     a     = 2tr,    U  =   100 ft/sec,    r  -- —r- o e eh 8 
15. 5 

(96a) 



-38 

so that 

1. 314 (96b) 

°oo      1 + 0.628 [f2(X, -^^J+IQJ^K, i^)l 

The values of   T   and       *r    decrease with decreasing    X,   and tend to unity 
' 2 

asymptotically as    \-*co .     For small values of   X. (V. < 1),   both    P      and    P 

deviate appreciably from their respective values at infinite depth. 

It may be pointed out here that because both   u(y)   and    w(y)    are almost 

constant along the span of the hydrofoil,   it follows from Eq.  (41) that for an 

elliptical distribution of   P(y),   the plan form is also nearly elliptical, 

c(y) = c A 
2 

•h- (97) 

together with a negligible geometric twist. 

Another consequence of the above  results is  that the  condition of Eq.   (55) 

for minimum drag with prescribed lift is also approximately satisfied by almost 

constant (spanwise)   u(y)   and   w(y).    Hence  the hydrofoil of elliptical plan form 

still gives approximately the minimum drag for a givi.»n lift. 

e.    Over-all Hydrodyn;*mic Properties; Lift and Drag Coefficient 

In this section we shall again only consider the case of shallow subxner 

gencc.      Combining our previous results we obtain the total lift and drag of 

the hydrofoil at small depths as follows: 

LsJpUbr    '•' 2 r o 
CO 

'   U^     j f3(X) - f4(X.<r) 

where 

f3(M D l-U.-S-   <3( 1    .       ^ ,2 .       Vl+X^ 
) - £ V   log   -T- 

\^1 + \Z   I     JH\Z    {l+?       ii + \z 

)[1 + jX(Y+ioc|)] 
r, 3 v 

f4(\,a) =  2± r(i) (1 - _L-  -JL- 

= 6.05 (1   - 0.19 

\1 + V" 

l+^|-i_(Y+log|)] 

(98a) 

(98b) 

(98c) 

and   P and '^"(X.J.Q   )   are given by Eqs.   (94) and (95) respectively. 
O v ci 

CO 
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D = 

who re 

TT p r 
oo ^ jf5(M + * f l-f

5(M]j  . 

f5(M 7^ K( ) - E( 

\\+k£ R •) 

(99a) 

(99b) 

At this  stage wc should be  able to see the properties of the total drag 

exerted on the hydrofoil, 

the  aerodynamic value 

As mentioned before,   when   X —• oo    D   tends to 

D__  "    TT pF       /8 ,   hence we write 
oo 'CO 

£- =  Y2f3(\) + 2r?ji - f5(M] 
CO 

(99c) 

This  ratio is  plotted in Fig.   4 for    a     =6      and under the operating condition 

given by Eq.   (96.1).      The firot term on the   right hand side  represents the 

contribution from the totnl induced drag; this quantity tends to    D       asymp- 

totically for large    h   and decreases rapidly as the hydrofoil approaches the 

surface    (h < ?.b).      The second term represents approximately the wave drag 

which is negligibly  small for    h > 2b    and becomes  important only at small 

depths.      As a whole,   the total drag    D    deviates only slightly from   D        for 
u I OO 

h :' -r ,     and decreases moderately at small depths    (h<*b) which is actually 

the  range of interest.       When the  hydrofoil approaches the planning condition, 

the total dr^g is  solely due  to the wave effect. 

In order to measure the  total drag,   including the wave drag,   exerted on 

a hydrofoil,   the experiment must be carried out in a towing tank.      Then it 

would be  convenient to define the over-all lift and drag coefficient with re- 

spect to the towing speed,   such as, 

'L 
L 

D 
7 p 

D 

77 (100) 

where    p   is the density of the liquid,    U    the towing speed,   and   3   the area 

of the plan form.      The above definition for    C.     and   C_    were used in pre- 

vious experiments (known to the  author).      In order to compare with these 

available experimental results,   wc shall also adopt the above definition of 

CL   and   CD. Substituting Zqs.   (94),   (98) and (99) into (100),   we obtain 
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CL=5   ,«<-£) 
a    Q     v^ 

e    a   J 
TTT * «V 

a    a   v~ 
e    a j 

1 + * TT ae 

k(M-f4(X,<r)j . 

(101) 

'D " 5T 

whore    <*ft 

c     2 a    Q 

1 + 

c aa   } 

1 co 
IT ac 

|f5(K) + Z[l- f5(\)]|    . (102) 

a   .i 

4 b' 
= aspect ratio and   t-,   f.,  f_    arc given in Eqs.  (98) and (99). 3*    4*    5 

The lift drag ratio is 

c 

1 - -W h?> 
3i 

a    a    v e    a ' 

1 + 
1   Co 

(f3(M - f4<K.«r)| 

?V aeJ 

'D 1   ,   o. 1       Q       V~ 

u + 1  Co 
ST % 

(103) 

f5(X) + z'i-f5(\)« 

These results should b: good for   X ^2   (h < 2b)   provided that   <r =   -^-r-    is large, 
'6 n 

say,   greater than    20.      From the expressions of   L   and   D   for   h   large,   we 

note that as   h-*oo,    boih   C.     and   C_.    tend asymptotically to their aerodynamic 

values,   namely, 

WL=   S 

c a    Q r    *(-£)- 
i*  »  C° 

CD^£    ^^2 
a    a " 2 

.* » C° l + STTa< 

so that 

D      *^R       L 

which agrees with aerodynamic winj, theory.      However,   it can also be seen 

from £qs.  (101)  and (102) that even for   X   small,    Cn/C.       is still propor- 

tional to    1/ >R   if the small quantity of the second order is neglected.      From 

this result it follows that in order to improve the hydrodynamic properties the 

preference should be for a high aspect ratio hydrofoil,  even for operations 

near the water surface. 

To illustrate the details of the behavior, and to compare our results 

with experiments, we shall take specific values of c , b, /R, and a to 

determine all the coefficients.      This will be shown as follows. 
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DISCUSSION OF RESULTS 

Consider a hydrofoil of elliptical plan form with other specifications 

and an operating condition given by £q.   (96a) so that    /& = 6. 3.      These data 

serve to determine the coefficients in Eqs.  (101)-(103) which then become 

CL = 4-74 %r_ °-3o6°a
2r (f3(x) • f

4^'°')} • (l04> 

CD i  1.14 oa
2
r

Z {f5(K)+ 2[l- ts(\)]\ (105) 

and 

CL l-0.065aar{fj(X)-f4(X(tr)}     ^ ^ 

^D 0. l**&r {f,.(X)+2   [l-f5M] 

These equations   .re plotted   igainst    \   for   a     =  t)      in Fig.   5 and also 

plotted against   a      for several small values of    X   in Fig.   6.      From these 

carves several interesting conclusions may bo drawn. 

A t depths greater than 2 chords,   the   influence of the  surface of the 

water is negligib'y  small and the hydrofoil will have characteristics  similar 

to those of an airfoil o. the  Scime  section.      In the range of depths less than 

2 chords,     Cp.   decreases gradually oecause the decrease of liqaid flow 

(with respect to U) aoove the foil diminishes the induced dovnwash.      At very 

small depths   (h < c   /2),     the wjve drag only is important; our results show 

that when the hydrofoil is ne.ir the  surface,   the rate of energy shed to form 

the wave  system  .s slightly less than the induced drag   it large depths.      In 

the  same  range of operation   (h < 2 c   ),    C.     decreases comparatively 

rapidly to almost   yC, as the hydrofoil approaches the surface.      This re- 

duction in lift results from the decrease of mass of water flowing over the 

upper surface of the hydrofoil,   causing a reduction of the absolute value of 

the negative pressure on the  suction side.      The corresponding lift-drag 

ratio decreases very slo-vly with decrease in depths for   h >c   / Z ,    and is 

almost constant about the point   h -• y c   .      This ratio decreases rapidly with 

further decrease in d^pth for   h < «r c   .      This result also indicates that if the 7   o j 
water surface is not too choppy,   then the depths between   -j c      and    1 c 

would be a favorable  range for operation.      This optimum rang.- of depths 

also associates with a stabilizing effect because this range corresponds to 

the middle part of increasing slope     dC. /d X ,    consequently,   any further 
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decrease in depths will result in a rapid decrease of lift so the hydrofoil will 

sink,   and if it sinks,   an increase in lift will raise it up again.      The above re- 

sults as shown in Fip.   5 agree well with some of previous experiments (cf. 

Ref.   17,   18,   4). 

If we add an almost constant frictional drag   (about   CQ    = 0.02)    to the 

drag coefficient,   then the result shown in Fig.   6 is in good agreement with the 

observations made in Ref.   21  and 18.      The reduction in C,     and   Cn   with de- 

crease in depths becomes more appreciable at larger angles of attack. 

It is also of interest to consider the situation of practical operation. 

When a hydrofoil moves through water of infinite  surface extent at shallow sub- 

mergence,   an observer who moves with the hydrofoil can measure the value of 

the approaching flow velocity    U + u(0)    more easily (for instance,   with a pitot 

tube) than the value of   U    *t upstream infinity.      Then if one defines  the over- 

all lift and drag coefficient based on the value of   U  + u(0),     that is 

C'=    h       , C   '  =   2  (107) 
1      ,,2.,      u(0).2c. u        1     ,,2,,      u(0).2  . 
7PU  (l+Jpi)    S 7pU(l + -5^)    o 

where 

c 

*&•••& ii^   KM- (.••) •      1    ° 

one will find that both   C.      and   Cn'    are almost constant for    X > 0. 1 (cf. 

Fig.   7) although     C'/C   '     is identical to   C,/CD.      However,   the total lift 

L   and the total drag   D   calculated from Eq,   (i°7) would still have the same 

dependence on    X   as    C.     and   C_.,    only with a different proportionality 

constant. 

The above results are derived under the assumption of large Froude 

numbers,   the effect of speed   U   on   C.     and   C„   is dropped out from our 

final formulas.      This effect becomes significant for motions with small 

Froude number (say,   less than 1).     For instance,   let us consider the same 

hydrofoil as that in the previous case,  but moving at a low speed, 

U a 10 ft/sec,       c    = 8 ft,       b = 20 ft, a, = 2 rr (109a) 
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then 

P 
U2 

0.156   , 0. 156 

which may be considered as small for    \>j.      Using the values of   u(0)   and 

w(0)   for   c   small (cf.   Eqs.   86,   92 and 41a),  we obtain the value of 

yi\,a,a   )   in this range of operation to be a 

r(\,a,aa) =   -S. 

CO 

where 

I*  l   C° 1 + S T ae 

,      1 C° l + *T ae g2CM^8l(M 
W<f (110a) 

g,(M 7 (110b) 

g,(M = 2 1  - 

1+4 X. 
2 J 

(110c) 

The value of   y*   given by Eq.   (110) is plotted in Fig.   8 for   a     = 6   ,   using 

the specification given by Eq.   (109).      The result shows that   f  also decreases 

with decreasing    X,   for   tr    small,   but the rate of decrease is   slower than 

that in large    <T   case. 

Since the Fronde number effect only enters in the expression of   D. 

and    AL,,    it suffices to discuss only the behavior of these two quantities. 

With respect to a convenient reference,   say,     D    ,    wc have the values of 

D.    and   AL,   for   a   small as follows: 4 Z 

D1 

CO 
>riA» 

3 
7 

2\ 
T (in) 

^2 
TT 

CO r \JZ TT p 

3 
7 (H2) 

Noting that   (3   is proportional to   U   ,     it can be  seen from above relations 

that for small Froudc numbers (-^ low speeds) an increase in speed will 

cause both   C.     and   Cn    to decrease,   with the drag decreasing more 
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r^.pidly.      This effect has also been found experimentally at small values of   U 

(cf.   Refs.   17,   21),      £qs.   (111) and (11 2) are plotted in Fig.   9 with the specifi 
156 

, \>T) 

ases 

cation given by (109).      In the present range of operation   (a 

thj wave drag is negligibly small compared with   D     ,  but   AL?   incre 

very rapidly,   relative to   D    ,    with decrease in depth.      The total change in 

AL,    in this range is,   however,   still quite small with respect to   L   . 
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APPENDIX I 

Some   Integral   Representations   of   a   Lifting   Line 

It is given that a lifting line of span    2b   is located along   y-axis   from 

-b   to   b   with a known distribution of circulation  f'(y),  (see Fig.   9),   the free 

stream being uniform,   of velocity   U    in x-direction.      The problem is to find 

the induced velocity potential       *>(x,y, z)   due to this lifting line. 

U 

*»   x 

vortex sheet 

Fig.  9   - A lifting line with its trailing vortex sheet. 

First this potential    <p    should satisfy the Laplace equation 

V1"*     =    0 . (1.1) 

Next wc  shall impose boundary conditions for this problem.      According to 

the lifting line theory,   the approximation may be made that the trailing 

vortex sheet is parallel to the free stream, that is,  on the surface    z - 0, 

with   x > 0,     |y| 5 b.      It is easy to see that boundary conditions for     <p   should 

be as follows (see,   for example,   Rcf.   22) : 
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(i)   <p = 0        on   z = 0,    outside the vortex sheet; 

(ii)   Across the vortex sheet,      <p has a jump P(y) 

(x,y,0 + ) = +        y '      on the vortex sheet; 
(1.2) 

but 

(iii)   -r&- ,  *£   are continuous and    «•   discontinuous across the vortex sheet, v a 2.     ax 3y 

If* z=0 + 
ill 
3y 

,   so that the pressure is continuous there. 
z^O- 

(IV)    ($>   and grad   <p-»U     asuy+z—•+co    and/or   x —• CO 

Conditions (i) -  (IV) also imply that 

(v)   ©(x, y, z) --  -0(x,y, -/.)  . 

(V1*   aix" *^X' y' Z^ = ' Jx (x' y' "z) ; 

r<\\ (vii)    ^(x.y, +0) = +_ —%-> (1 + sign x) 

One way to solve (I. 1) together with the boundary conditions (I. 2) is by 

a Fourier transformation.      DeTinc the double Fourier transformation of 

9 (x, y, z)   with respect to   \    and   y   by 

rtCO 

<p (K. n, z) =   j^ 
-i \ x   . v e d X 

-co 

pco 

-co 

e"lKY v(x, y, z) dy (1.3) 

so that the inversion formula is given by 

<p(x. y. z) =   YH 

•CO 

-co 

r oo 

e d V. el KY <J> (\,>I, Z) du 

-co 

(1.4) 

Applying (I. 3)   to   (I. 1),   we have 

(—j   " *   - K  )   »   - ° • 
d z 

The solution which satisfies (iv) and (v) has the following form 
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<? (X,u, z) = (sign 7.) A( „.„,.- ft? w . 
so that 

ip (K,n, 0 + ) =  A(X, u) . 

Application of the  same transformation (I. 3)   to   (vii) gives: 

*(K.K.0 + ) = 77 

poo 

-oo 

h)e*l^dTJ 

p oo poo 
-iXx . e sign xdx t 

•oo 

-iXx   , e dx 

-co 

Using the conventional method of summability,   we have 

Poo 
I -iXx 2    . 

e sign x dx =   —    urn 
1     C-»0+ ^-co ^ 

piA 
e       sin X x dx 

_2_ 
iX 

and 

I 
oo 

e dx = 2 irfi(X) . 

'-oo 

Hence we also hove 

7 U.U.0 + ) =   -L   [  ^  + n6(X)J 
r> CO 

rWe^dr, 
-co 

Comparison of (I. 7)    with (1.6)   gives 

^^)'T?[TT 
+
"

6(X)
] 

CO 

T(n) e'1^ dr^ 
•oo 

(1.5) 

(1.6) 

(1.7) 

(1.8) 

Substituting (1.8) into (I. 5) and then applying the inversion formula (1.4),   we 

obtain the solution 

9 = sign z 

r oo 
1 

2/ 

r oo 

f'fajdn, 

-oo 

poo 
sin X x dX cos u(y-n) e- (?+7M 

4 w 

r>oo ^00 

r(n)dnj      cosu(y-n,) e~K   Z  du 
oo Jo 

(1.9) 

This form of integral representation for    <P    is the one given by von Karman 
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(Ref. 22). A translation of the origin in the z-direction then gives Eq. (10) 

of the text. Another convenient form of ip may be obtained by introducing 

the following transformation of variables: 

X. = k cos 0 ,       \i. = k sin 0, 

If one uses the relations: 

(I. 10) 

(kpT7)= 4 
rn/2 

cos(kx cos 0) cos(ky sinfl) d8 , 

and 
Jo 

cos ky = k 

oo 

Jo (k jpTy2)   dK  , 

(I.11) 

(1.12) 

then Eq.   (1.9) is converted to: 

.   signz 
co 

roi) dn 
-co 

f* x        poo 

d* 

CO yj 

-kl zl Vk Jc2 + (y-n)2)kdk : (1.13) 

or, 

pco 
sign z 

4  IT 
rh)di 

-co 

'OO 

d« 

OO vj 

•CO 

c'klz|   J0(k\|(x-£)2
+(y-r,)2)kak (1.14) 

The choice of (1.9) or (I. 14) is only a matter of convenience.      A close form of 

ip   may be deduced from (I. 1-J) by noting that 

r»co 

k e 
-k|z| U! 

Jo (U   + z   } 

Hence, 

z 
*   =4T 

z 
4rr 

Poo 

-co 

'CO 

-OO 

P(n) dn 

'CO 

[(x-C)2 
,-|-3/2 

• (y -l )" + z"J d£ >2 .    2 

Jo 

rh) 4—? <]+- 
(y- ' U* + (y- i2 x   2 

1 )    • * 

)dt1 

(1.15) 

(1.16) 
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j 
It may be remarked that these results may also be obtained from the 

differential point of view by considering the velocity field induced by an 

clement of circulation   P(y)dy   at   y   and   by   integrating it along the lifting 

line. 

If   | grad <p | << U    and the effect of gravity may be neglected,   then the 

linearized pressure is given by 

P - PQ = . p u <?x (1.17) 

where from (I. 16) 

roo 

3T 
dn pfa) _,    . 

r 2 2     V' 
-co ix   +(y-n)   + z| 

(1.18) 



-5i- 

APPENDIX II 

Formulation   of   the   Nonstationary   Flow   Problem   and   the 

Jtationary   Flow   as   a   Limiting   Case 

Take axes   Ox   and   Oy   in the undisturbed surface of deep water,   and   Oz 

vertically upward,   the origin being at rest with respect to the fluid at infinity. 

Consider now the flow caused by a wing which starts to move at   t = 0   from the 

position   (0, 0,  -h)   in the negative x-direction with velocity   U.      The effect of 

an element of wing span   A r)  at   y -T\    of circulation    T'^JATI    is to produce an 

initial impulse symmetrical about   (0, rj, 0)   on the initially still surface.     These 

conditions correspond to initial data for   <p(x, y, z, t)   and   4 (x , y, t)   as follows: 

PA0(x, y,   0, 0) = AF(M) , u2 = x2+ (>—n)2 

A4(X, y, 0) =  0 , 

(II. 1) 

where    AF(ta)   should be equal to the initial pressure perturbation on the free 

surface.      Using (I. 17) and (I. 18) and considering the effects due to both the 

wing and its image,   we obtain 

AF(o)s - iJfJl HnU*i   = . £"!» £hl±n—,  (ii.2) 
"   fxS(yV^Z]3/2 ^  [<o2

+h2]3/2 

The  solution for   «p    which satisfies the Laplace equation with initial condi- 

tions (II. 1) is (Ref.   5,   p.   4 3 2): 

>oo »oo 

PA0 = 
Jkz . 

•   \ (kU)ccs(^kt)kdk       AF(a) J   (ka) ado   ,       {z. £ 0) 

and 

r oo 

gp 

roo 

^gk sin( \Jgk t) J  (kco) kdk AF(a) J0(ka) QdQ . 
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Howevcr, 

roo 
Uh 

AF(Q) Jo(kQ) ada = - ^^ ?'ir>) **) 

•QO 
a J    ka 

(a   +hVL 

^nrr^)Ati ^   K    j (kh) (Ref.   26,   p.   30) 

fU      -kh.-,,   > - e I   (r,) An 

so that 

poo 

A0 =  - ^   r(rj)AT, ek(z'h)cos(   ^t)Jo(kK)kdk 

Jo 

'00 

AS =  -7V5-r(r1)or1]      e_hk   $V sin(   \[ik t) JQ(kto) kdk 

The  resulting values of   0   and    C   due to the entire wing may then be 

obtained by integrating    £0   and    £>'-.   along the  span: 

U 
7^ 

ou 

P(T1)dT1 

-CO 

CD 

:k(z"h) cos(  ^gk t) J  (ka) kdk 

C -- - 
u 

77g 

poo 

rinjdt, 
-CO V 

r>oo 

»-*"hk  ^gk sin( vJg~kt) J  (kw) kdk (II. 3) 

It should bo pointed out here that these are only the results due to an impul- 

sive motion of a hydrofoil.      To extend them to the case of a continuously 

moving wing in (-x)-direction with velocity   U,    we have to superimpose all 

instantaneous disturbances at   x = - Ut    at time    t= a.      We replace    t   by 

t -1    and   x   by   x - £    = x + Ut   and integrate with respect to i    over the time 

during which the system has been in motion. 

roo 

0= - 
1 

77 r(n)dn 
J-oo 

poo 

U(a)d<c e
k(l-c

hc)sjgk(t-a) J  (k \l(xTurfT(y^r) kdk 

(il.4) 
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f\ oo 

C = - 
1 

r»t 

r(r))dn 
-oo 

poo 

U(l)dT e"kh   ^k sin ^fgk"(t.T)Jo(k\J(x+UTf+(y-r1J
2)kdk 

(XX. 5) 

These are the integral representations of the solution of nonstationary motion 

of a hydrofoil.      This   0   is only the part of the perturbation potential due to 

effects of free  surface and wave formations,   not including the contribution of 

the wing and its image. 

Now we shall pass on to the limiting case  such that the wing has been in 

motion since   T =  - oo    with constant velocity   U.     A difficulty arises,   however, 

because the integral with respect to   1    from -oo   to    t   is nonconvergent.      Since 

the experimental evidence ensures that    t.   should be finite,   we must seek a 

remedy in order to agree with observation.      Mathematically it is usual in 

these problems to introe 

tend to zero afterwards. 

these problems to introduce a convergence factor   e and then let   ^ 

r»oo 
rf _        U   lim 

" TTT U -» 0 

r t 

r(r,)dr, 

-co 

pOD 

•(l(l-l). e   rx       'dx 

-co wo 

ek(z"h)cos tfyT(i-1) JQ(k ^x+Uif+(y-r:)
2) k d k 

(XL 6) 

roo 
U_   lim 
irg  ^-»0 

r t 

r(r,)dr^ 

-oo 

r>oo 

e-^-^dT 

-oo 

-hk 
(gic sin^gk(t-i)JQ(k J(x+UiJ2+(y-^)2)kd 

(XL 7) 

Physically it is usually explained that the inde terminateness of the problem is 

due to the absence of viscous effect.      To avoid this difficulty,   Rayieigh sug- 

gested the assumption that the fluid element is also subject to a friciional 

resisting force proportional to the relative velocity.      Then,   instead of £q.  (4) 

we have   (Ref.   5,   p.   399) 

-f-+ifr-   + gz - ^0 = 0 (II. 8) 

From this it can be shown that the circulation,   hence also    0,    has a factor 

c   ^   ,     which shows the damping due to viscous effect. 

It is natural to expect that expressions (II. 6) and (II. 7) will become in- 

dependent of   t   with respect to a coordinate system moving with the hydrofoil. 
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Hencc we introduce the following Galilean transformation: 

x = x + U t , y = y , z=z, F=t (II. 9) 

and change the variable of integration from   i   to   T = t -1   so that 

x + Ux  = x - U T 

and then dropping the bar,   we obtain: 

pOO 

0=-^ 
U   lim 

2"TT n-»0 

poo 

rhjdr, 
-OO 

r>oo 

e^TdT e
k(z-h)Cos(^ikT)Jo(k^(x-UT)2+(/-n

2))kdk 

(11.10) 

poo 
U    lim 

2irg ^-*0 
ThJdr, 

-co 

'CO poo 

e'^dT -hk 
fik sin(^k T)Jo(k i(x-WlfHy-^?)k d k 

(11.11) 

which clearly show the independence of   t.      By interchanging the order of 

integration,   and using the relation: 

/»TT 

>K   '     ' J„ (k«.S,'|=i i k X COS© ,. n\    J « e cos(k y sinO)  d 0 (II. U) 

we have 

pOO 

,-J. = lim 
4     u-0 

"^T sin('likT) J  (k fc-UT^(y^)2) kdk 

Jo 

PTT 

lim   — 
^-•0 

pOO 

ikx cosO       ,, ,     ...        .. 
e cos^y-1!) sinO) c-(u + ikUcose)Tsin(^rgTT)dT 

-*0   TTIT    1k 

ikx cosO ,. ,        . -. sec 0 
e cos(k(y-T|) sin 0) • d9 

k - (r<sec 8+ 2i£ sec8) 

(11.13) 

where   K  - g/U      and in the last step terms of   0(^   )   have been neglected. 

Eq.   (II. 11) then becomes 

/>oo 

C = —i—   lim 
2n  U   u-»0 

r(n)dr, 
-co 

PIT 

dO 

o 

r»co 
-hk + ikxcos0      lyJ       .       ~v (sec C) kdk coa(Ky-r,)sinfl)  » i  

k-(rCsec8+2ifescc e) 
(H.14) 
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If we let   u-»0   before wo evaluate these integrals,   we then obtain the same ex- 

pression for   4   as given by Lq.   (!•:) which is derived by neglecting the viscosity 

from the beginning.      Cn the other hand,   it is interesting to see what the value 

of   ;-   will be as   x—» + co    if we let   u—»0   after the evaluation of the integral 

with respect to   k .      First we  rewrite (II. 14) as the real part of the following 

integral: 

r> no p IT/2 pco 
Rt lim 

2n   U   u 
HMdv, 

-oo 

sec 8d8 

-n/2 

-hk kdk 
i (x cos8+(y- Ti)i,ine)k 

.k-(K sec28 +2i ^ aecQ). 

(11.15) 

This expression of £    indicates very clearly that the surface elevation consists 

of plane wave elements,   each component moving in a line making an angle    0 

with   Ox.      Now we  rotate  the  axes    Ox,   Oy     to   Ox',   Oy'    given by 

x'   = x cos 0 + (y-'i)sinO  , y1  =   -x sin©   + (y-'n)cosQ (11.16) 

as  shown in the following figure. 

y-Tj 

In order to study the behavior of   '.    as   x'-» • oo,   the integral with respect to 

k   may be transformed by contour integration considering   k   to be complex. 

For   x' < 0,   we can deform the contour to the negative imaginary axis of   k ; 

and for   x' > 0,     to the positive imaginary axis.      Note that the integrand has 

a simple pole at   k = ASCC"8+ I-T£  sec 8   which is located inside the contour 

for x' > 0   when   u f 0.      The residue of the integrand at this pole is equal to 

2 I -hKsec   6 + ix'rCsec"6 I,. _ ,    .      ,.       , .. , . c A, sec  0     as   u—»0   and should only concern the integral 

x' -> 0.      By making    u   zero after the deformation has been carried out,  we 
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then obtain different representations for   x'< 0   and   x'> 0   corresponding to 

different behaviors   "p*tr'    r    *r.d downstream of each wave element: 

^CO 

lim -hk + ix::; dk 
k-v;< sv- - b -»• 2: '• sec W) 

, 2A    -hA-sec 0       , 2«. = -2TTi\sec 9 c sin(<\x'sec 0} + 

poo 
•x'a <se-. 0 cor ah+ a sin ah      ,        t^« 
 s -, f  aaa, x'> 0; 

a   + ,v sec   0 

r>oo 
xa iv s.- •  d cos r.h + a sin ah 

c   + <   sec 0 
da.      x' < 0. (11.17) 

The first term in (II. IT) leprcsents simple waves on the downstream side of 

the wave front   x'  - xco^y + (y-r}) sin 6 = 0     (- •*• <0 < -r )     while the other 

terms represent disturbances symmetrical with respect to   x'  = 0    and 

diminishing exponentially with increasing distance from   x*  = 0.      It should 

also be pointed o it hztc that the integration with respect to r)   (or 0)    should 

be divided into two regions in which the values of   rj    correspond to   x* > 0 

and   x'< 0    respectively for an assigned point   (x, y).      The final expression 

of   C   is then 

K. = 
1 

2rr   U 

P IT/2 f 
sec2CdW    i 

•» y+x cote 

T (n)dr) f-2TrKe*h'<'sec °sec29 sin(K.x»sec29) 

-co 

poo 

1' 
•x*a Ksec 6 cos ah + a sin ah 

—r~~z—TZ  a   + <\   sec 0 
adc 

po 

+ 
f>00 

rhjdr, 
y+x cotO 

poo 

x'a <\.sec   9 cos ah + a sinah        . e         T—2 r     ada 
a    * K.   sec   0 

rtr.Jdr,  -^rCe 
w y-x cot9 

-h ;. St. c   Q        l„        , .—, 2, 
sec 9 si>;(.\.x'sec 9) 

pco 
-x'a   ..sec   d cos ch + a sin ah       ,  "1 

e    —rrj—rQ 
QdQJ 

Jo a   + K   sec 9 J 

•> y-x cot9 ,->ir 

Hi)*! xa   \src "rosah + a sm 

CO 

ah 
~i—I T~ 
a    + r\ sec 9 

ada (11.18) 
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wherc 

x'  =   x cosG - (y-nJsinO . (11.19) 

In this way we may study the behavior of   £   as   x-» + oo.      The second and fourth 

integrals with respect to i-j     are negligibly small for large positive   x   and 

finite fixed   y   as can be  seen from the fact that both upper and lower limits of 

integration tend to   +00     and    -co    respectively.      The same is true for terms 

with   c and   e" which may also be neglected.      Hence the only significant 

term in Eq.  (II. 18) for lar^e positive   x   is 

I w>        pr/2 2 

lim     Y    ^      2<       r>   \'        -?.hK sec~0       4rt . _ ,. n.        ...        .       2~        n, . 
<•    -  - —rr I    I (rl)\      e sec 0d0 sin(r. x cos 0) cos(K.(y-^)sec esinOJdr) 

-0C       ~° (11.20) 

which is the  same as Eq.   (20).      The limiting value of the second integral goes 

to zero as    0( -r)     which t m be  shown by applying '.lie method   )f stationary phase. 
Jx 

*> - "-T   f?x   "»(--i*+7)i    InldT, + o(±), 

00 

as x -» + 00 , 

-a) and   y    fixrd,   finite 

(11.21) 

For   x   negative and large with   y   again finite and fixed,   the first and 

third integrals are negligibly small.      The sum of the other two integrals can 

be  shown by using Watson's lemma to be much less than the absolute value of 

4   given by Eq.  (II. 21). 

It is of interest to note that by considering a convergence factor   ^ 

(usually called ^ayloigh's viscous term) in the  intermediate stages,   the final 

result of surface elevation becomes asymmetrical with respect to   x  : 

»    damps out like    0 (-•*•)   on the upstream side and has a wave formation down* 
x 1 

stream of the hydrofoil and finally diminishes like     0 (—)    for   x   large. 
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APPENDIX III 

Calculation   of   Wave   Resistance   by 

Method   of   Traveling   Pressure 

According to the method of traveling surface pressure (cf.   Roy.  Soc. 

Proc.   A,  Vol.  93,   p.   244 (1917) ),   the wave resistance is simply the total 

resolved surface pressure in the   x-direction.     Because  £    is everywhere 

small,   this leads to 

R = F(o)  &• dx dy jj dx 

taken over the whole surface.      F(m) is given by (II. 2) to be 

(in. i) 

F(U) = -2pU(e    ) 
** z.-\j 

Uh pun 
CO 

rw - UTl 

-'-CO 
x2 + (y-T1)2 + h2 J TTl (III. 2) 

f    2 2       113/2 Since   | x   +(y-h)   + \\" \ is even in   x   and   (y-Y)),    it follows that only the 

part of    9j»     even in both   x       and   (y-"r,)   contributes to    R.      Using the form 
dx 

of C    given by Eq.   (18),   which is the only part even in   x   and   (y-T}),    we have 

^oo 

3x "Uit 

ir/2 

r(l')dri«|      sec5Q e"hf/vSec 8cos(,< x sec8) cos(K.(y-r|')sec28 sinO)dO 

Hence 

R s£ hrt,' 
T" 
IT O 

-CO 

CO •CO 

I 
-TT/2 

r(n)*l       \'(rt)dr)' 
•OO J-CO 

5n   -h/vsec 0 ,A sec 0 e dO 

^"OO        'CO 
I 

d y j     d x cos(K '^x secB) cos(^ (y-T)')sec 0 sinO) 

• (v-T^ + hM''2 (V + ty-T^ + h2) 

Now the integrals with respect to   x   and   y   can be carried out by introducing 

the transformation: 

x = r cos 0 

and using the notation 

y - rj   = r sin 0 

a = K sec 0 b = /. sec 0 sin 0 
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We then have 

, .00        pOO 

dy 

-00     Jo 

-00 

(x  +(y-n)   +h   ; 

IT/2 .-CO p 

r d r I , ri. 
"2  u2J/2'       cos(arcos0) 

'o   <r   +h  )       J-./1 
-co 

cos(b r sin0) cos(b(rj* -q))+ sin(b r sin0)sin(b("n' -*))) 

, >/2 

d0 

= 2 cos(b(r,'-r)))l    —5 5-rr--5-dr! cos(a r cos 0) cos(b r sin 0) d 0 
J     (r   +hV" v  o 

^00 

n cos{b(r)' -r))) 

^o 
(r%h2p 

T-—    J   (-:.r sec 0) dr (cf.   Eq. (II. 12)) 

2    7 
(^W\SCC Q)     costbh'-T!))  K.l/2(.hsec28) (cf.   Ref.   26,   p.   30) 

w     -h-<.sec 0 ,    .   ,     .        2„ _. 
T^   e cos(i' (ry —r\) sec 0 sin8) 

Therefore we obtain 

,     -co NCO •Tf 

n p 

/2 

["(ilJdT!      RTI')*!' sec 0 e 

CO -co ^o 

-IT/2 , 

5„    -2h^.scc 0        . .,        ,v       2,. «\jn cosii.^ri-T^'Jsec flsinOJdO 

-2hNsec 0       5n   I f 
. s • 

2 

+ 0 

ec 0 - [f(<sec U sinO)'|  + j g(,\jec 0 sinO)J    \ d 0 

wnere    f   and   g   are defined by Eq.  (27).      This result agrees with Eq.  (29). 
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APPENDIX IV 

Evaluation   of   Some   Integrals 

(A) Derivation of the Integral in Eq.  (46) 

Substituting Eq.  (45) in (43),   integrating by parts with respect to    r\ 

and using the relations 

y = b cos 0 T)   = b cos f        , (IV. 1) 

we have 

u(y) = 
2TT 

b -w/2 

!^(TI) cos^TjsinOjdTJi    dO 

'-b 

-co 

O        " o 

-2hu       . .. ii + i'.sec 0       . :      ^cos(^i y smO) c———*-   \io\t. 
\i. -£scc   0 

Ji 

2w 

r/2 -co 

'-b 

sin^sin 8)   • vl/ dr| ( •    » i    e      Kcos((iy sinS)* ——r~ d 

' j u -<\scc w 

CO 

u -<\s 

ir/2 

—2"    ^~-   (2n+1) A2n+1!     sin(Hbsin0cos*)cosUn+l) *d'l       n^ 
no 

,   CO 

- o 

-2hu       . n, Lt + KsecO    . e      rcos(tx y sin 0) r —«— dpi 
H -,< sec 0 

The interchanging of the order of     %~       and 

resulting series converges.      Noting that 

sign is justified if the 

r IT 

sin(z cos • ) cos(2n+ 1) fd^r     =(-)  J J,   +i(z) (IV. 2) 

where   J,     .    denotes Besscl function of the first kind (cf.  Ref.  24,  p.   20), 

we finally obtain 

co r
w/2        ,-co 

,   v 2U   V*   ,   .ri,,     ,.   . I      dO 
«(y)«-T 2T, (_) (2n+l^n+i     s-T17 

n^o JQ 

-2\t t+b<<sec 0   T        ,,        oX 6 TV, ^J2n+l^tSin8> t-brtsec 0 

Cos(Lcos0sinO)dt (IV. 3) 

which is Eq.  (46). 
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(B) Derivation of the Integral in Eq.  (47) 

Substituting Eq,  (45) into (44) and proceeding in a way similar to that in 

the previous case,   we have 

~"b ,-co 

w(y) = - 1 

-b 

• b 

dP   . /,       -2hii. . 
Sin^T1Tn dTM     ^ Jcosuydu 

V r ...    r' 2.                          3 fv .   , ,          2.        n\d       , -2h? sec v       .             2_        n.sec6    . _ — snUr.Tisoc 8 sin 8)-r—df); e                     cos A y secy JinO)—i—*   d6 
IT   ! ' d n       M *    '                       ' sin 8 

CO 
CO 

n=o 
= U JE!  (")n(2n+1)A2n+l^ (1-c        ) J2n+1(t)cos(tcos0)dt 

l   'o 

• 4b \ •'       e 

1 
J,      .(b.-.sec w sin 8) cos(b*.cos0 sec8 sin8)-^—TT d8    • 

(IV.4) 

The first integral on the ri^ht hand side can be interpreted to give (cf.  Ref.   25, 

p.   37 and p.   33): 

•co -1 

o 

T         /.\         /.         ,k\A.      cos«(2n+l)sin    cos 0 I      _.   xn   r,in(2n+l)0 J2nfl(t)cos(tcos0)dl = sm^       L-(-) s;,/i    ' 

(IV. 5) 

and 

-co 
-l\ 

rco 
lJ2n+1(t) cos(t cos 0) d t = R I j     c'(2X-1 COS 0) l J2n+1(0 d t 

= R* {   |  !l +(i\-i cos V)Z - (2\-i :os 0) i2n+l I 1 +(2K-i cos 0f 
• -il 

(IV. 6) 

Combining Eqs.   (IV. 4-6),   we obtain £q.  (47). 
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(C) Evaluation of the Integral in Eq.  (61) 

poo . 1.  . . roo 
-2h^   Jl kb>   . e      r   ———— dii = e'^j/Wt'dt      (K*{y) 

I    3 
7 ST 

ao 

c'2Xt J2(t) t"2 dt 

2    3 
7 ST 

r/2 

fx-  /\2+sin20     cos28d0 (Ref.  24,   p.   389) 

1   • 4 M - - X 

r/2 
COS    « 

I "     I /~2~ ~u JX   + 

•dO 

sin   0 

=   i\ 1-ix jl + X2| K(~r) - E{-=^=r)  >     (Ref.   26,   p.   73)    (IV. 7) 2 !        n I      £..2 /. ..2  J! /HX2 Vl + \' 

where    K   and   n,   denote the complete elliptic integral of ihe first and second 

kind respectively. 

(D) Derivation of the Result of Eq.  (64) 

Applying the transformation   secO = cosh ~    to the integral in Eq.   (63), 

we have 

c* Ji» 
r"/z -<2/.;,«A i ¥» »«z'si""»v * 

J sec 0 sin 0 
sec  0 dO 

»       i /    I       h l \        u       f Ji("Tff sinhu) I    -I/a |      -il/a,cobh u   |    176 ' = y e e »      ' |    » 
I    •» sinh u 

N2 2 
/   1 + cosh u \     , 
—z—; du« 

(IV. 8) 

1 Note that the above integral still converges as    — -*0 ,    keeping   6   constant. 

One way to obtain the result given in Eq.  (64) is by expanding the term   J." 

into an infinite series (cf.   Ref.   24,   p.   147) as follows: 

2n+2 

J, (») 
~     (-)nr(2n+3)(|f'   " ^     (-)nRn+4) 

> 
2n+2 

n=o    n!   (n+2)I   f(n+l)ij 2 ^   ]7n!  (n+l)l (n+Z) 
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Introducing this expansion to Eq.   (IV. 8) and interchanging the order of 

an 1   Tj   sign,   we obtain 

1 
m ov 

1       e a   - >     (-,     i.n 2n   i — cosh u 

:  T      ~r L, nT^ny;^"^^       e 
d/w      P      n=( 

sinh    u (2 + sinh u + 2 cosh u) du 

provided that the resulting serie6 converges absolutely.      The region of convex 

^cnce for   a   and   \   will be shown below.      By using the following relations 

(of.  Ref.   24,   p.   172) 

-co 
u •> I (n+"r)    ->n i -acoshu    .   .2n     . x      2    ,2, ,,   ,   » .    .      1, . A. e sinh    u du = - (-) Kn(a) ,       (n^-^),   a > 0) 

j TT 

(IV.9) 

i °°          .                                   !"(n+4)         A     K  (a)         j   (n+ h    , n I    -QCOShu?n                                       «-'   ,n   d    ,    r.    \           *       2'   ,?M    ,.       ,   » 
e sinh*nucoshudu = - —  ?•   ^ (——) = —:  (-•)    Kn+l(a) 

o 

where   K      denotes modified Bessel function of the second kind,   we obtain n 

^•^L     nl(n+l)l(n+2)i      ffi   |   Kn^ *  \}*«r*±) j *n+ ,(±) | .     (IV. 10) 
li I 

It can be shown that the above series has different regions of convergence for 

iargc and small values of   a   due to the different behavior of the function 

K   (—).      When   a   is small,   this series converges absolutely and uniformly for 

any close interval of   (3 ; but for large values of   <r   ( >M),    the above series 

only converges for   •*- - K>1.      The interchanging of the and   S~* opera- 

tion is justified only when the above conditions are fulfilled. 

(L) Derivation of the Result of Eq.  (68) 

V/e want to sum the series in Eq.  (IV, 10) for large values of   v.     In 

this case   K (—)   has the following expansion: 
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KQ(i) = log(2<r)    yi)*   £   ^V)  1    v(m+l) , 
m=o   (mW 

K (L =i  f  <-n"-m-I)t(2gf 2m   (,yi ?    (2grn-2m       riog(2<r) 
nV)      2   <^- ml N     ' v   '   ^-        ml (n+m)I     \     8V     ' 

V 
(IV. 11) 

+ ^   *(m+l) + ^ > (n+m+1) | ,   (n>l)     j 

It is easy to see that  the most important contribution to the sum of the series 

in Eq.  (IV. 10) comes from the term     y(n[)(Za) of the expansion of 
1 K  .,(—).      The detail of the calculation ran be shown as follows: 

n+ i <r 

Decompose   * .    into three parts such that 

J 
* 1  "    Ml       -M2 -*12     ^~ 13 ' 

where ^.jj.., t#.2   anc* .-V'i *   arc 3»von below. 

7«i-rr(n+±)fW) 
c/ir 

4w^ n=0 
/-     ni(nfi)t (n+2)i      (77>    l/(n+7'J   Kn+1(7' 

(IV. 12) 

e'7 *    (-/T(n+|)! (n+|)       a  n+1 
= 47   ^nl{n+ljl(n+2)l       ^ 

n=o,l ^P 

.(ni)(2<rr1-(n-l)i(2,f-1
+2(.r1       ^iM j 

nl (2«rf+1 i 

• -        co ,      (-f-2(n+|)      j   n+1       j",   (.fr2(n+|)       1   n 
JRT ')   •*-     (n+IJl{n+2j!  nr>       ' -3/L. n(n+lj!(n+2)l  Hf) 

l6p2 I 
(IV. 13) 

Now both these two series converge only when   K > 1  ; but the first series can 

be directly related to a hypergeometric function which may then be continued 
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analytically to the region   0 < X --. 1   as follows: 

«^(-f!2(n+|       J 
-<••  (n*l)!(n*2)l7 

n=o * 

n+1 2,1 

8* 

=   IT 1  - 

r 
ir   I   1 

.'1+X 

—   F ("T » T : 2 ; 
2 *      £ 1+X 

V)) 

If we use one of Gauss's recursion formulas,   the above hypergeometric function 

can be expressed in terms of complete elliptic integrals,  (cf.   Ref.   26,   pp.9, 10). 

k 
r(7,7;l.k)-F(-7,^;l;k) 

=   i   k"2   i   K(k) - 2(k) 

Finally we have 

,2,   . 3 oo  (-f,^(n+4) n+l ! — -2- 

>-    (n,l)i(n4t    (? =WT  -7X   *,UX 
n=o * r..2 

Ji+x' Jl+X' 

(IV. 14) 

To carry out the summation of the second series in Eq.   (IV. 13),   we note that 

if W2 write 

co 

f(z) =   /-    n(n+l)i (n+Z)i    * 
n=l 

z = X   , (IV. 15) 

then   f'(z)   may be expressed in terms of a hypergeometric function together 

with an algebraic function as follows: 

.2,      3, _2,1 

f. 
n = l 

f'<z> = - Z,  (n*l)l<n*l)»    2 " " 777) 
1   1 1    1 

r (2)!^ »-ii-F<*f*;-*) i. 
z' 

= - ir 
8z     n yi+z        jut  J J 

(IV. 16) 



-69- 

As   z a X -» 0,    s—r  -*• 1  ;   the asymptotic value of   f'(z)   as   z-»-0   may be 

deduced from the above relation by using the known asymptotic expansions of 

K   and   E. 

f'(Z)= « I'B rr+s 4, 

li 
+ 0(zMogz)l 

Since the integral of an asymptotic expression is also asymptotic,   the   asymp- 

totic value of   l(z)   can then be obtained by integrating the above equation. 

The final result is 

f(z)^ + | logz* 0(1) = + Jlogf + 0(1) (IV. 17) 

Therefore,   substituting Eqs.  (IV. 14,   17) into (IV. 13),  we obtain: 

f . . <> 

n= T il"7xl I+?|K(-=T)- E(=r)   --^riogp + oA, i)>. (iv. 1 

The second part of ^jt.  ,    namely,   -?,? »    is given by 

8) 

•; e"*    » (-rr(n+|)P(n+4)      w   n 
^12=777  L.  n'.(n+l):(n+2)l  (TTI)     Kn+1(^ 

4«P    n=o 2p 

1 . , 
eT   »   (.f-(n+{)i(n+|) n+1 n+1 > 

n=o 
(n+l)i(n42j!     ^' 

e*7 ri4>n|)     - (.frc^R-i)  (7> 
I        H2) 

s = o I   (s+2) si 

'T7 

e 

l    l 
l.F(.7>I;2;--J.) lvl 

1      3 1 vl + r F(-i, 4; ^i-^) - X 4 m 
(IV. 19) 
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After this analytic continuation,   if one uses again Gauss's recursion 

formula,  one finds, 

2     2 1 + X^        3       {      L    L 1+^ *     L 1+X*    J 

2 r 2 1   3 1  J. 
*fc J 

) >  (IV. 20) 

Combining Eqs. (IV. 19) and (IV. 20),   we have 

3/2 L=i;!<^2)        E(-^)-4K-X2JU7F<-1, fl;-^) W)) 
/.'> 

(IV. 21) 

It is evident that the hypergcometric function in the above equation has singu- 

larity at   X - 0.      To calculate it* value near   X = 0,   we need the following 

formula 

00 

(a.b; a+b; z) =     V,an(l-af     Pn+log(l-z) (IV, 22) 

whe re 
n=o 

!~(a+b)' (a+n)! \b + n) 

pn =  t(a+n) + ; (b+n) - 2*(l + n) . 

Hence 

w    I     3    ,       1    v      2J,,     .      4 /l+\   v       3,1      ,      4 jl+X2w\_»l ,n/v
4i«„v \ F(-T, 7; 1 ; j   = -\(2 - IOR __L- ) - j- (T - log —- )( O    +0(X logX), 

2     2 2*; X 4n     3 X l + J/ 

and finally we have 

(IV. 23) 

^12-^{<1+x2>3   2-^fK-?v2  ^X1 log ii^ + 0(X2) j (IV. 24) 

fl 0 The third part of  v^.    denoted by CM v    *s 
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1 

(•    = 

^13~ 

7    ~   (./T'.n+i}f(n+^) 

2 
4TTP" n=o 4p 

1 
7   f   00   (-fr(n4i-)r(n+4) 

% 
^?  I n='i "^^T^TT"   ^    I I (-^T)        i(n-l)l(Za) + I log 2(T 1. 

or, 

<j e"7   I   ~    (.fnn+4)r(n+{) n ] 

The series in the abov^ equation can be approximated in a way similar to 

that applied to Eq.  (IV. 15).      The final result is 

<^13 
-U. iogp+ 0(-i, i) . 
16P2 f    * 

(IV. 25) 

Therefore,   substituting £qs.   (IV. 18),   (IV. 21) and (IV. 25) into Zq.   (IV. 12), 

we obtain a good approximation of the value of ^ .    defined by (IV. 8) or 

(IV. 10) for   a    large as follows: 

.-3x s 

sw/2     2 2D — sec 0 
9 e ,J,(v)scc20sin0s 

* 1  

sec4'9 sin 0 
sec OdO 

-»    ,.ix!i+?!K(J-).i:(-i TI   *       L    T.T2      rr:.2 ?>i }•*(*•• 
23/2 1 x2)      E(-=Lr) - 

l+\ Jl+X    ' J 

1 

J-"2 
1+X 

-4x .X
2
.J1 + X

2
F(4.T^'-

L
T)  '   +-^7   logp + 0(ij, I)       (IV. 26) 2 2   2       i+x2  j     64pr pr  ff 

(F) Derivation of the Result of Eq.   (73) 

Using the result given in Eq.  (IV. 7),   we may write the integral in 

Eq.  (71) as follows; 
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.2    rXt/Z .n/2 

AL. csc28d8 \ 1  - 1 cos 

pf 
- cote 

{ 

n/2 

laL 
/ l + JL sin 8 sin0, 

1-1 
TT 

COS £d£ 
vn/2 rw/2 

o        I l + -j sinOsin0, rrV 
cos 8 d6 

8*0 

w/2   sin2ff cos2^ dff 

I 1+^ sin28 sin20^ 3/2 

2     rJ,/Z 

-U- i     cos2e de 
w\ 

V 
sin20 coaZ0 d0 

o ... .2 r 
3/2 

•IT/2 

w\ 

2    o cos     8 
6(- sin8 -) de (IV. 26) 

where   <£(k)   »s a derived complete elliptic integral (cf.   Ref.   25,   p.   73) 

defined by 

6(k) = 
2w        2rf sin 0 cos 0       d0 

I 1 -k   sin 0, 
(IV. 27) 

I-inally,   changing the variable of integration from   0   to   k   by 

k = 
sin 0 

. K2 + sin28 

we obtain 

AL 1 

>"     |l-£)Z 

1 - k 
j-   6(k)dk 

where 

1 
J~"   W 

This is the form used in Eq.  (73), 

(IV. 27a) 

(IV. 28) 

(IV. 28a) 
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(G) Derivation of the Result of Eq.  (76) 

Substituting the expansion of   <t(k)   given by £q.   (75) into Eq.  (IV. 28), 

then applying the transformation   k   = f. t   and integrating termwise,   we have 

AL, = 
P' 

_2 
= "nrf d-t)7(i-/2 t)"7 \l**4 t+^(-f2)2t2+245(42)V+0(78)] & 

'• ' y   t 

^;2Fl(l'!'2:/)+l4)    2Fl4'f3;>2) 

+ ll   ^VzF^^l^^.l^^V^^.^S^^.of^Vjl 

(IV. 29) 

where    -F. (a,b,c;z)   denotes the hypergeometric function which has the 

following integral representation: 

[ ) (c) ^(a.b.cjz)  =     •(b)X^.b) tb"l(l-t)C"b'l(l-zt)"adt,    (R/c>R/b^0) . 

Expanding ihcse hypergeometric functions into convergent series,   we 

finally have 

*h 
np ! 

64\ 

-2          I 
o  ! , ,   5        1 18i   _J         3015        1 Q !      1 

J^i) •«^?,,?T* iITT? 7" ^*°i^^.l il 
(IV. 30) 

(H) Evaluation of the Integral in Eq.  (79) 

Applying the transformation   secO = cosh y   to the inner integral in 

Eq.  (79),   and proceeding in a similar way as shown in (IV. D),   we have 



CV2 (u) = 

74- 

rw/2     2u        2_    -   . ,u        2. _. . 2 - —sec 0   j    J.U- sec 0 sin 0) 

I      sec y sin 0 
sec 0 dO 

• 

U     rOO U , 
,      -— -— cosh u 
ie   * 

Jj^sinhu) 

1    .   .  •y sinh u 

.1 + cosh u. . u   , (       • ) coshy du 

!     *§»    (-fRn*|)        /U/«+2f -Jco.hu^   ^n 

7r e       I-   nl(n+lj'.(n+2)l (IP} sinh    u(l-fcoshu) coshy du 

n = o 

Now sinh     u   can be expanded in terms of   coshmu   as follows 

sinh    u 

2n , . u    -u. , 2n
u = (e :e   ) =  JL 

21" 
^   I'D^lfVr   (^)cosh(2n.2m)u 

m=o 

and 

(1 + cosh u) cosh -j   =   j cosh -y + * cosh » 

Using the relation (cf.  Ref.  24,   p.   181) 

r°° -zcoshu , , 
i        e cosh v u d u K

v(*i. (Ri? v>0,   R? z>0) , (IV. 31) 

we then have 

,     .1  oo (-fT'(n+4) 2n+2 f , ,   . f 

i" n=o k   T T        • 

m=o '   '• 2 2 2 

,U, ' 
+ K2(n-m)-3(7);: 

2        ; , 

2 

(IV. 32) 

When   a   is very large,   then (cf.  Ref.  24,   p.  80) 

u u    Ji\'\_ ,  1 

K„+. <?>= jl'"' -i~fe <'•»# i5«'' ^r"+<>»- <IV-"> m(2j)' (?' 



• 

-I 
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It can be seen that the first order term of <oL(u)   comes from the term   with 

K,   . 3 (—),   hence for large   a, ^2(u)   may be approximated as 

0 U)- 
-^r - i-m^^b    2n+2 

V tiro- 
I   n7c 

0+0(±)) 

_ 2u 
i    1     /  u a    /   r-r/l»\ i X,      _,1     3   , .    1     x l7'?' 

Jl+X 
i+x 

(i + o(i)) 

= r* r^.^r.   r* 
4j^ J <r ^ni> /T+x*: 

U + 0(X2, i)),    <r-co 

(IV. 34) 

For small values of   a (h, K,   large),    it can be shown by the method of 

steepest descent that   ^   has the same asymptotic value as  Jf.    given in 

Eq.  (66),   that is 

2u 3 
7 

J2(u)= £   e*  *    /^     ^  (l + 0(<r)) as     o ->0 . (IV. 35) 

Therefore,  for   er   large,  we have from Eqs.  (79)   and   (IV. 34) 

2u 

*4 = 
pR 

4/7 
°r<i) A (1- ni 00 

X    \ 

prn 
r<?) x   , 

fu(u-l) 
du   (l + 0(X2,±)) 

2      00 

= - T= 1 VT) — il * ^n 
4 JIT Jr Vtr| (£)     ,'1+x" 

112 * • * 
-it 

t£le  '    dt 
> 

(1 + <X\2. ;)) 

rirff'   ,       <r   - #2. 
i'ff' 

(i + o(x2.i)). 

where    E.(t)   represents the exponential integral function defined by 

(t real,   cf.  Ref.   23,   p.  471) Ei(t) = 

-00 
e     dx 

x 
-t 
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which has tlie following expansion 

;.<|>=   T*io,.f •*• ^(|)   • jfoji)   * for   a   large. 

(IV. 36) 

Finally wc have 

PC ° r(i-)d- 
C     4 j 2        4 

(4) 
j^|) r1+^

; 4r-N,j 1+ lrr(Y + log^) w<r I' (l + 0(\2, i) ),  as <r-co 

(IV. 37) 

On the other hand,   for   <r    small,   the asymptotic value of   AL~   is 

-,2 

*4 
. uo       Cu 

o       '"nir     1 a       J u 
u-, "5-  IT ^ 

^2 
pi o rsF I    " 

*~T"~" J~T ~2  e 
o <   £. p<: 

du   (l + 0(<r) ) 

2 co 
<r •t <i + !*> 

1/2 

dt (l + 0(<r)) 
i 

r2 -- 
-v;   p ' o        I n<r      1        <r   r- /2.   /.,n/   \\ 
-   -f-     JT    ^ e        *W   (l + OU)). 

The asymptotic expansion of   Z.(—)   for   —   large is 
i <r cr 

2 2 
Ei<7> =   e'   (?)   (l + f+ 21  (f)   + 0(0) . 

Hence, 
-,2 3 

7 
*4= JV   (|)     -^   (1+|+ 0(vC)), as   <r » 0. (IV. 38) 

(I) Derivation of the Result of £q.  (83) 

From Eq. (82a),  we have 
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".<*> • (-ST'     • " Sfej   *J    •   ""    '.uo       »*"> "»•>' 
x = 0 - «> 

o o 

((iT) sin 0)d(i 

.,    i w/2      oo 

4~?T> dC e    U  ,nnti)i   ,/\>-—ri^T!—, 
n=o m=o ' 

\ 
- J v. d uau 

—<        CO      CO •» , oo 

^  n=o m::o ni (n+l)l ^n+m,r(m+1 )Rm+ I)\J 
T"'   .  | i    e"2)V(n+m,+ 1<v'> 

. 2(m+n) 
*in Odtt/ 

_^        oo    oo     ,   vn+m 2m 
o      \      \ 

4irb   <—•   <--• 
n = o m=o 

(n+m+i)!   (n+m+.|) 

n!(n+l): /ln+m,m!r(m+i)        4X2n+2m+2 V 

2m x 

o         ,     ?•   t-Hft)     Hnv^j , 3   2 1   . 
T    TT/-      ^     F(m+7,   m+7;2;--7)     . 

4 fn b     4X m=o 

Now if we continue the hypergeometric function analytically to region 

OCX C00.   we obtain 

^(y) 
r. 

4 J rrb 2    Z * 1 + 4X^ *   c 1+4X 
2X J 1+1X    m=o 

(IV. 39) 

(J)  Derivation of the Result of Eq.  (85) 

Applying the transformation   ^ = (bA.sec 0)u    to Eq.  (82b),  we have 

u,(y) = - 

where 

tf, ! o 
00 

_du 
u- 

.IT/2    2u       2_  . /U        ln        .. ._.sec « J^sec flsinO) 
pz . :— cos(T 

1 ft -     1 

sec   sin 0 

•f • 

2 4 sec 0 sinO)sec 0 dO 

(IV. 40) 
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The inner integral can be treated in a way similar to that applied to ^i,   in 

(IV. H).      In particular,   at   y = 0,    we have 
<^2 

u2(0) = i\»o 

QO        U 

e         e u- 1 

00        u u -     ,              - — cobht'J. (*«•*• sinh t) x 

<r    du <r 1 Zp    ' 

sinh t 
(1 + cosht)cosh» dt 

•Jo 
oo     u 

e        TTT du   ^    nl(n7l)i 
n=o 

2n 
?   (-ftA)       f°°  '-cosht 

Sinh    t (1+cosh t) cosh-^dt 

-oo      u 
K.I o   I <r 
T^ I    e &i-r&) 

2n 

~ duZ..   nl(n7l)! (n ) 

n=o I 
K3(J)+3Kl(f) 
7 7 

n-l 

+   L("'BC)|K2(n.m)+3§)^K2(..«Kl(f,+1I^n-»).l§) 
7 7 7 m=o 

•V-io^) )] 
For   cr   very large,   the first order term of   u?(0) comes from 

K?n+?y  ~ J77 e       - 

u    ,2n+l,   - ,       3. 
(2n+7>    ...„,i 

2   /<r« 
=    —-(—) e 

•   ^, ~    (1 + O(-) ) 

3/2       -      A2n 

0 
a-       4 

::;nce, 

, (o-'-'lisL 
3/2     oo      2u 

4TT >p 

(?) 

du 

Krtn*|)r(n+|)(l+0(i)J. 

oo 

X^-l)    n = o 
J_ (   »   )   (1 + 0(1)) 

3/2     r~/^r")5\ (OO      2u 
(KTif ! ly\lp 3   5   ..     l,        "T      du       rilQ/lM 

4n   fiF P I   (2) 4V* /u'(u-l) 
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oince 

<T)r<7) 4 sin 17 
J2   TT 

,3/2 1 r/3    5    :> 1   \        (2X)  ' ,-,3     3    ,. 
4    4 4V4        (l+4X/)i/4       4      * 1+4X* 

and (c£.   Eq.  IV. 37) 

f oo      2u 
du 

W'u(u-l) 
J    2 J JTCT 

1 +   I— (Y+ log -) (1 + 0(7)). 

we finally obtain 

u2<°>= - IE T= ,      llAH   F<T' ?: 2 ; -L7) j  1+ S(Y+ log|) I (1 + 0(1) ) 
*      j2X   (1 + 4X)  ' * 1+4X     I       J 

1
 TTff 

(IV.41) 

This formula is good for all X,    0^\<oo ,    provided that   <r   is large.      The 

above hypcrgcometric function can be expressed in terms of tabulated elliptic 

integrals by using Kummer's transformation and Gauss' recursion formula as 

follows: 

^,3,3,        1     , _       3    3 1 X      » 
F(7'T' 2'7~^) -t(7'7' z'l'   ;==> U4V il+4X2 

(Kummcr) 

where 

2   I'     ,1    3    .    ,2.      -,1     1    ,    .2. 

k 

J-      1 X k = 7 ' ^^= 
2 j 1+4X 

(Gauss) 

Applying the transformation formula once more,   we obtain 

Ff3     3    ? l     \=    2 

M' 4"'    ' 2T T 4    4 l+4X'i;   k* \ 
1       rfl 1     1     I,2!       IT/1       1  • 1   .lA -—^F(7,-7;l;k)-  F(7, ?.l;k ) 

1 -k 

1 

"   k2(l-k2) 
E(k)-(l.l^)K(k)1   = £    -^ 

;    w   i-k* 
B(k) 

2  J1+4X* 

w   r 
B 

J 1+4X   +2X 
( j 7 - 7==^   ) 
X 4 V 1+4X 
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where    B(k)   is defined by £q.   (7ia).      Substituting this relation into (IV. 40), 

wo have 

I2\    (U4K) Jl+4X2 + 

L— B (rr» ~-i-.\(uo(i)). 
2X 

7      . !i 
Jl+ 4\ 

(IV.42) 

V/hen   <r   is very small,   we can apply the method of steepest descent to 

the inner integral of £q. (IV. 40).      The result is as follows: 

      oo      2u 

o 

u2(y)= - "iiS 

*TF    JV<!> (lt0('»> (cf.   Section H,   £q.   IV. 38) 

J Zwo-    X 
(IV.43) 

(K) Derivation of the  Result of Eq.   (91) 

The method used to approximate 

«. (o, o, -h) = -.-,; 
f/2      2        2.    T   »1        2_ _.  sec 8   J.(isecOsinO) 5 

sec 0 sin 0 
sec 0 d8 

lor   <r   large is very similar to that discussed in (IV. D and E).      Introducing 

the transformation   sec 0 = cosh y   to the above integral and then expand   J. 

into a series,   integrating termwise,   we obtain 

- — coshu  J.(TT sinhu)      .  .         ,2 <r                   lx7p              '    /1 + cosh u.    . e —«—t:     ( . )   du •P    (0,0. -h) = -^e   ff 

T sinh u 

•  2n , 1 v oo       1 1 /    fl/   1 \            oo        i          . _ p oo (./(^py)       | coshu 

To? e       <- nTTn+TT!       e 

n=o •_ 
sinh     u(l + coshu)    du 

••yl    O 

8 /^p 

OO       -    Jl j   , 1 v 

L    "nl(„"lf!   (-^r)n| «„(?)* t!••(«T» Kn+1<;> 
n-o op       '. J 

(IV. 44) 
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where the relations given by Eq,  (IV, 9) have been used.     Referring to 

the expression of   K (—) for   a   large given by Eq.  (IV. 11),   it is easy to see 
I _,. i 

that the first order term of    <?.     comes from the term   «(nl)(2a) of 

the expansion of   K   ,,(—).     Then n+1 <r' 

2/r nX      (n+1)l       ^        ^ *' *  J 4\ 

s rvi) 

--y 

*{'-»•*>' 
1 
7 »*°£. j> 

2\ 1*<4 ?> / 
(IV.45) 

where the appropriate analytic continuation from   *•>"•   to   O.A'-'.oo   is made 

at the last step. 
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